University of Technology

Computer Science Department

Computer Organization and Logic Design
(salaiall araatll g o gaalad) CuS
()

Stage: 15t Class
Year: 2024-2025

58 58 3l e taal 3

cs.uotechnology.edu.iq

Part Three: Logic Design
()

G) A3 1 g3l) (g B 5 yalaa 7 sk (ha pLgEN day Land) oy sAdiade
(Types of number systems

CEDAR Logic Simulator gt »

Al il pall ol e cu il il gl i 5o

: B | CEDAR Logic Simulator — O X
File Edit View Help
fEEH e af D@ @0 NN Y zm & @

,.
PR BN Y. T S W

- Basic Gates

= Invert & Connect
- Input and Output
= Decorations

- MUX and Decoder
- Add & Compars

- Flip Flops

- Registers

= RAM and ROM

- Chips

Pagel page2 Page3 Paged4 PageS Page6 Page7 Page8 Page9 Page 10

DEDS):
DD
DI
D33
oD D

BElE)

RS RN RY

Figure 1: CEDAR Logic Simulator

Electronic and Logic Circuits

Modern devices contain two types of circuits:
Electronic circuits

The basic components of electronic circuits are transistors, resistors,
capacitors, etc. Electronic circuits operate on a wide range of voltages such as (1V,
2.1V, 3.3V, 12V) positive or negative and deal with analog signals.
Logic Circuits

The basic component of digital circuits are logic gates such as AND, OR,
NAND, NOR, XOR, XNOR, NOT... which deal with digital signals.

Integrated Circuits (I1C)

“Integrated circuits consist of logic and electronic circuits built on a single
small block or chip of semiconductor that all work together to perform a specific
task. The IC is easily breakable, so to be attached to a circuit board, it is often housed
in a plastic package with metal pins.

Logic Gates
The set of logic gates is:
Name Graphic symbols Truth Tables

NOT — A =N
(Inverter) A A =~A (@] = i
Complement 1 O

Buffer A |> A A A
- O O
A4|>C>—><}A b 1
AND A —] A B AB
O O O
F o AB |1 o o
B — o a1 o
a a a
Negative . - — AR
AND AND AB A B A B
—O] O O A
1 O [®)
ANDf o 1 o
1 4 o
NAND A AB A B AB
B or O O 1
4 (AB) | 1 O 1
- L O
OR AABL AB
A O O o
A+B o 1 1
B 1 O 1
1 1 1
Negative A - — Same
OR B®_ Are NAND
:[;:D " | (De Morgan's theorm)
NOR A Same
A+B Negative
B AND

(De Morgan's theorm)

C

s O—

Negative A _ Same
:@ (De Morgan's theorm)
XOR ~ o e
A@B
Exclusive OR j o O o
(A+B)(A+B) o 1 1
=COR AB+AB |-+ © 1
1 1 o)
XNOR
A Ao | A B | ACE
Exclusive B 0 O 1
NOR AG®B
' or ~ 0 1 0
(ADB)
1 O 0
1 1 1
Note:
The number of inputs bits for gates ranged from 1 to 8-bits (1byte).
. A BC]|] ABC - _
3-input AND 500 = B:Iput (1-byte)
A 001 0 —
B —)_ . LR
- 1111 1 =
. ABClA+B+C
3-input OR oool o
A D oo1]| 1 - ==
= .
< 1111 1
3-input AND

)| By -

Lgale Alatal) Jgaad) 34T o rraua J<a (logic circuit) Addlaia 5 sls i sl (e Sl ;A3
(Truth Table)

Example 1: Design logic circuit diagrams for OR & AND gates.

A B| A+B
00| O
01| 1
10| 1
11 1

On/Off Taggle Switch LED
A B| AB

00]0 ._ —
01| 0 AND -
10| 0 | M—
11| 1 E

Text (in Decorations):

It is used to give labels (names) to the inputs and outputs of logic gates.

- Basic Gates Pagel page2 Page3 Paged4 Page5 Page6 Page7 PageB Page9 Pagel0
- Invert 8 Connect = = = = = = = = =

-]l‘il..t and Ol..iu‘t
- Decorations

- MUX and Decoder
- Add & Compare

- Flip Flops

- Registers A

- RAM and ROM

10 - Chips F

e \
m

Lab=l B

4 [FENES

oy hn

Text Height 1

O Cancel

Example 2: Design the logic circuit diagram of the XOR gate.

NE g
A® B @' LH—\TOR\\ alp
>1

0 ™0 o« 21 T 10
E’ A L * | AND
&

S=(A+B)(A+B)

.

S
A

On/Off —_— ——

1
1 Taggle Switch 7/ LED
0

== OO |
=[O, |O|®

. NANB) 11
ye-

- & /7B

Example 3: Derive the logic circuit diagram and truth table from the following
Boolean expression (logical expression).

Z=A B + B C
Sol:
Logic Circuit Diagram

A A'B

5 |
A W] AB+BC

e B =
e] Mz

C !/—4—{>Q—~—o— B C'

CI
The truth table

A B ¢ A’ 6 A’B B C’ A’B+BC’

0 0 1 1 0 0 0
0O 0 1 1 0 0 0 0
0O 1 0 1 1 1 1 1
0 1 1 1 0 1 0 1
1.0 O 0 1 0 0 0
1 o0 1 0 0 0 0 0
] 1 @8 0 1 0 1 1
1. 1. 1 0 0 0 0 0

Example 4: Derive the Boolean expression and truth table from the following logic
circuit.

o

The Boolean expression:
Z=AB+AB
The truth table:

A B A’ B’ A’ B’ AB A’B’+AB
9.0 1 1 1 0 1
0.1 1 0 0 0 0
1 0 0 1 0 0 0
R | 0 0 0 1 1

Example 5: Derive the Boolean expression and truth table from the following logic
circuit.

ABC|AlC[X A |

000][1[1]1 ﬂ Sore O\ AB LT
001(1]o]o T ABHRAC
010 [1)1[1 3+

011 |1{o]4 E/ B vl
100011 = T) (A
101]ofofo E'_FDG‘ ;
110(o|1[1 ™

1110]o|1

The Boolean expression:
X =AB + B + C

The NAND Gate as a Universal Logic Element:

s —] P—i a—>o—a

(a) A NAMND gate used as an inverter

A — AB — A —
AR = AR
B — B —

(b) Two NAND gates used as an AND gate

]
A
D— \B=A B R AW B
p— {6
] % ps

(¢) Three NAND pates used as an OR gate

Al

v

; &=
A—E G, AB=A+R ;
B_E Gz B

(d) Four NAND gates used as a NOR gate

Ex-OR Function using NAND qgates
S =A®B = AB + AB =(A+B)(A+B)

Ae

& D

& :

Bo

MAMND Gate Realisation

The NOR Gate as a Universal Logic Element:

ok

(a) A NOR gate used as an inverter

A+AB ;
B A+ B

= e
b=\ }» —)
P _“ i

A — :
i) _‘ —n

(d) Four NOR gates used as a NAND gate

Types of logic circuits (Integrated Circuits)
Digital logic circuits are divided into:
1- Combinational Logic Circuits.
Its main component is the gates.
Such as: Adder and Subtractor circuits
2- Sequential Logic Circuits.
Its main component is the Flip Flops
Such as: Counter and Processor circuits
The difference:
Sequential in which the output change occurs only at the edge of
the clock pulse (CLK), example of CLK impulses: Traffic signal, Horse racing start
signal. While the combinational changes its output at any point (any time) according
to the state of input (according to the user).

Combinational Logic Circuits.

Comparator [2x3]

Logic circuit used to compare two digital numbers
A<B| A=B | A>B

1-bit L
Comparator

g

T

L]

U-"| >w wp >
>
il
v}

>

Figure 3: Comparator [2x3]

Adder and Subtractor circuits

Adder circuits

Used to perform addition on binary numbers.
Half - Adder circuit:

It used to perform addition on 2 bits. This circuit takes two bits A and B as
inputs and produces two outputs S (sum) and C (carry). If both A and B are equal to
1, then the value of the C (carry) will be 1, otherwise the carry will be 0.

Half- Adder guestions:
S =A®B = AB + AB =(A+B)(A+B)
cC=AB

AB|sS|cC - Ty
n AND I}' —- l—

oo fofo] ovor | — |ANP - EE,
Switch

olife] B H— v seum

11§01 | 4 || XOR)=l

Truth table B [7: LED

for half adder

Figure 4: Half Adder Logic diagram

Figure 5: Half Adder Block diagram

Full-Adder circuit:
The full adder is used to add 3-bit. The Full Adder has three input A, B, and
carry (C in) and two output sum and carry (C out).

Full - Adder questions:
S=A@ B@Cin
C=AB@ACin®BCin = AB@Cin(A + B)

C= AB@Cin(A +B)

] AB
] _ Cin (A@ B)=ACin @ Bcin

Cin —— :z : S=A®B®C|n
‘ j)i: A®B

Figure 6: Full Adder Logic diagram

Truth table for Full Adder

Inputs Outputs
A B Cin Sum Carry
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
{ l
X Y
C t Ci
e N == T o
1-Bit Full Adder | Sum

Figure 7: Full Adder Block diagram
4- Bit Full Adder:

The 4-bit full Adder is used to add 4 bits.
e . .

Figure 8:4-bit Full Adder Block diagram

4- Bit Parallel Adder:
Two 4-bit digital circuits are connected together in parallel to add two binary
(4-bit) numbers as shown in the following figure.

=
go——————4 1) |/ I 3}
Binary J ——— I A 3 2 4 4-bat
number A I — 3 (] 3 _— sum
e] N g b _,‘
—1 1
Binary 2 B
number /3 — 1 3
S £5
I t : -
cl-)-'r’:—:, Co Cy p——— Output
AT carry

Figure 9: 4- Bit Parallel Adder:
Example:
Draw the 4-bit parallel Adder and find the sum and carry of the following two
4-bit numbers, knowing that the input carry (Cn-1) = 0.
A=1010 , B=1011
Sol:
For n=1
A;=0, B;=1, C0=0 =» z =1, and C;=0
For n=2
A,=1, B,=1, C1=0 = 3=0, and C,=1
For n=3
A3=0, B3=0, C2=1 = 3=1, and C3=0
For n=4
A,=1, B4,=1, C3=0 =» 3=0, and C,=1
Results = 0100 with carry (1) =»(10100)

A1 B1

=

(LSB)

Subtractor circuits

Used to perform Subtraction on binary numbers.
Half-Subtractor circuit

A half-subtractor circuit is used to perform a binary subtraction of 2-bits of
data. It is based on the following Truth Table.

—Do— "\ Borrow
Diff|Borrow /

\ T Difference
7 —

Figure 10: Logic diagram of half subtractor

Full-Subtractor circuit
A full-subtractor circuit is used to perform a binary subtraction using three
bits of data.
Full - Subtractor equations:
Dout = Bin@(AGCOB)
Bout = Bin (A B)@AB

Full-Subtractor Circuit

Borrow

S D :
Borrow in >

)

—@® Diff

~

Figure 11: Full subtractor Logic diagram

Truth table for Full subtractor

Inputs Outputs
A B Borrow;, Diff Borrow
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

A — Diff

Input Full-Subtractor Output

B Circuit
Borrow
I

=Borrow Out

Figure 12: Full subtractor Block diagram

4-Bit binary Adder-Subtractor
For n-bit binary subtraction, full adders are used with the complement applied
to the number being subtracted.

L T Y Y

Full Adder Full Adder Full Adder Full Adder

l l l

Cout 3 53 51

Figure 13: Bit binary Adder-Subtractor

Decoder and Encoder circuits
Decoders:

A combinational logic circuit that converts an N-bit binary input code into 2N
output channels in such a way that only one output channel is activated for single
binary number.

Types of Decoders
e 2x4 Decoder (2-binary input & 22 = 4 output channels)
e 3x8 Decoder (3- binary input & 23 = 8 output channels)
e 4x16 Decoder (4- binary input & 2* = 16 output channels)

AO ——edWAP

~ [T

Figure 14: Logic Diagram of 2x4 Decoder
Note: (E) used to Enable (1) / Disable (0) the Decoder, default value (1).

Truth table 2x4 Decoder

Inputs Outputs

Al A0 D3 D2 D1 DO
o 0 o0 0 0 0 4
1 0 1 0 0 1/
2 1 0 0 1 -0
3 T 1 0 0

The Boolean expression for each output is:
po=AB|D2=AB

Di=aAaB|D3=AB

-
{._IChannel3
binary —F 1173

» 1
input 32 |—°|_ JChannel 2

| @D 00(] ul_.] Channel 1
0

_
._| Channel 0

—l
. l__l2
—o—’_.|__|

)
o

—H

1 1
) Figure 15: 2x4 Decoder Block diagram
et A dad e slis (Truth Table) dsaadl of (A ail Leadl Gaail) vie ;Alaadla
Decoder implementation

Example 1: Use 2x4 Decoder as 2- input AND gate.

Sol:
A B | AB
O O o —
Y © o —
© A o AND
= T ¥ a1
2- Input AND gate
Z=AB
N |[E]| 2x4Dpecoder 1
' — 11 L - l_
S s I E ey |
- 01 AB
—[] 00 []—

< slie (decoder) JI @ (Truth table) Jsas Jules :dkiadta

Example 2: Use 2x4 Decoder as 3-input AND gate.
Note: (E) used to Enable (1) / Disable (0) the Decoder.

Sol:
= AaBs |las
= o O O o
= | O o 1 o _—
. = |o 1 O o A
= = o 1 1 o —_
S — o o o
o o o 1 o
= 14 O o AND
o 1 1 1
Figure 15: 3-Input AND Truth Table
Z=EAB
1 -1 1 7777777 |
K{I _) T 2X4 Decoder 1
Emm——]
e R .
- : i EAB
- [l oooOl]l—

Example 3: Use 3x8 Decoder as 3-input AND gate.

) —

AND

3x8 Decoder

e T

dAddd 000D

aa00aagoll
04040400
0000000%

| 1]

-1

]
|

Example 4: Use the Decoder as 2-input OR gate.

Sol:
A B F
O] O O O (SOP)
-1 O 1 -1
2|20 | = F(A,B)=} (1,2,3)
3 -1 1 -1 Decoder Output

(SOP)
F(A,B)=) (1,2,3)
2x4 Decoder
—E 3
2 F|
" L
L 4

0 ol

Example 5: Use 3x8 Decoder as 3-input NAND gate.

Sol:
A B C | ol
o |oo o[“
553 >
=2 |lo 1 o]
=]|lo1 2l NAND
alm oo
=|l1 0 1|1 (SOP)
e |1 1 0] Faa,.s,.c)=2.(0,1,2,3,4,5,6)
-1l 12 alo

|
o |
N

u 3x8 Decoder 8-input OR gate

—E = xg
e e =1
- . _.J
+E
— [[]

o=N WA OO

Example 6: Use the Decoder as Full Adder.

Sol:

The truth table of Full Adder

NONRWN=O

Example 7:
Use a decoder to design a logic circuit defined by the following Boolean function.

F=x"yz +x2z

Sol:

NOUAUNRD

Inputs Outputs
A B Cin Sum Carry
0 0 0 0 0
0 0 1 1 0 (SOP)
0 1 0 1 0 S(A,B,C)= Z (1,2,4,7)
0 1 1 0 1
1 0 0 1 0 C(A,B,C)=). (3,5,6,7)
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
iCl
O O = o
A O = TR
- - =1
: g | (S|

=
X v Z| X[=] xXr=]| x= | X¥r= + x=
oOoOoOoO|1 1 o o o
oo 1|1 | o o o (%)
o102 1 O 1
o1 1|1 |o o (%) [5)
14 oo0]Jo | 1 (%) (%) [5)
1 01]o|] o o 1 1
1 1T OJO | 1 o o O
14 1 1 |JlOo | O o 1 1

F(x yv Zz)=2(2,5,7)

. U U T F(x, y,2)=2(2,5,7)

lTT

0 I— F=x"yz'+xz

Example 8: Use a single decoder to design a logic circuit defined by the following
Boolean functions.

Fa=xvy 2 + x'vy
Fz=x"y" 2"+ xvy
Sol:

Fa: (O, yv. =)
F= (. v, =)

(=, 3., a4)
=(O., 6, 7)

PR RROOOOIX
ROKROROROI|N
I

|
‘(. BPROORROOIK
|
|
M
=}
M-

NODAUWNAD
QOOHHHOOJ

n
PR OQOQOOHN

3
1T

Example 9: Use a single decoder to design a combinational circuit defined by the
following Boolean functions.

F,=(y" +x) =z
Fo=vy 2+ X"y +vy z

Fs=(x+vy)=z

Sol:
F,=(v"+Xx)z=vy" Zz+ x=z
Fo=vy 2 + xy +vy 2z
Fs=(x+Vy)z=xz+vy =z

x Y z F, F, F3
o O o o o 1 o
1 O o 1 1 O o
2 (o] 1 (o] '®) 1 (o)
3 O 1 1 o 4 1
a 1 o o o 3 o
S 1 o 7 1O 1
= a | 1 o o 1 (o]
7 2 ! i ¥ 1 O i N

Fl (xl yl Z) — 2(1) 5) 7)
F.(x vy, 2)= 2(0, 2, 3, 4, 6)

F:(x ¥y, 2)= 32(3,5,7)

.-

[BN B BN BN BN

(|
O
[

Example 10: Use 3x8 Decoder to design a logic circuit defined by the following
canonical (SOP).

F(A.B,c,Dp) =) (0,5,10,13,15)

Sol:
Note: If 4 values are required to be input to a 3-input decoder, two 3X8 decoders are
used and the E value is used to input the fourth most significant bit (MSB).

ABCD|F —
AR
v “‘w/

i/ *
N

Y Y

0
§ 0
[0
§ (1]
a 1
0
0
0
0
- 1
29 (1]
n L J
2lhoss :
o
0 . L
1 —] OD .
Encoder:

An encoder is a digit circuit that performs the inverse operation of a decoder.
An encoder has 2N input channels and N output binary numbers.
Types of Encoders

e 4x2 Encoder (4-input channels & 2-digit binary number output)
e 8x3 Encoder (8-input channels & 3-digit binary number output)
e 16x4 Encoder (16-input channels & 4-digit binary number output)

4x2 Encoder
4x2 Encoder logic circuit

Binary Output

‘om! 'oEm
— ¥

l m 5%

L]

Input Channel . (;p.,-,"-"-.ei!é
ﬁ ﬁoi Ii T"_l
iDjJ L_J L _|
. CI‘I:'Iel 2. E-E Cha.rj'lel 3.
Truth Table of 4 x 2 Encoder
Inputs Outputs
D3 D2 D1 DO Al A0
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1

The Boolean expression for each output (Al and AO) is.

A0=D1+D3
Al1=D2+D3

Binary Coded Decimal (BCD):

Binary coded decimal means that each decimal digit, O through 9, is
represented by a binary code of 4-Bits. This system is used in LED displays in front
of stores.

4-Bit LED Display
OnN/Off Taggle wwitch
o o 1

1

To represent two-digit decimal numbers from 00 to 99, two LED displays are
placed side by side (8-bit LED display), and to represent 3-digit digit, three LED
displays are used, and so on. This means that the number of LED Display used will
be equal to the number of digits.

Example:
Use the LED display to represent the number 42 in BCD.

Note: LED displays can be used to represent hexadecimal digits from O to F.

w
L N |

L

T 11

Rt
316
HEL 1
dor

4-bit Hex Keypad

g -

(T Ly
[o
LA

[R
I I 1 0 I A

BCD Conversion:
BCD weight = (23 22 2t 20)
weightvalue=(8 4 2 1)

Base = BCD

Weight value | Convert to decimal decimal
8 4 21

0000 0 0
0001 1 1
0010 2 2
0011 2+1=3 3
0100 4 4
0101 4+1=5 5
0110 4+2=6 6
0111 4+2+1=7 7
1000 8 8
1001 8+1=9 9

Example: Convert the following numbers.
1- (1263)10to BCD
Sol: 1 2 6 3
0001 0010 0110 0011
(1263)10= (00010010 0110 0011) gcp

2- (010101110101) gcp to decimal
Sol: 0101 0111 0101
Weight 8421 8421 8421
4+1=5 4+2+1=7 4+1=5
(010101110101) gcp = (575)10

Decimal Coded Binary (DCB):

The Encoder can be used to convert numbers from decimal to binary.

Example:

Use a 4x2 Encoder to design a logic circuit that converts numbers from decimal to
binary.

Read Only Memory (ROM)
Stores binary information permanently. it’s a decoder connected to OR gates.

e Number of decoder output lines >= Number of numbers in the set
e Number of OR gets = Number of bits in great number

Example 1:
Design a ROM to store the following data (101,011 ,100,010)

Sol:
e 4 number in the set = 4 decoder output lines = 2 decoder input lines

e 3 Bits in great number = 3 OR gets.
Decoder Output Data

input lIines

A B Fo F1_ F2
O OO0 1 o 1
1 O 1 O 1 1
2l10] 1 o o
11 o 1 o

State Table

O =N
)

| ~1
1F]
Example 2:

Design a ROM to store the following data
(1001 ,0110,1011,1100,0101,1010,0111 ,1110)
Sol:
e 8 number in set = 8 decoder output lines = 3 decoder input lines

e 4 Bits in great number = 4 OR gets.
State Table

A B C Fo F1 F=2 F3
O O O O -1
-1 O O 1 o
=2 o 1 O 1
3 o 1 1 (o]
P 3 1 O O 1
5 1 O 1 (@]
[53 1 1 O -1
ra 1 1 1 [@]

O=NLhao®_
LN B BN BN BE B

:iJm |
7
_
—
i

\

Multiplexer and Demultiplexer circuits
Multiplexer (MUX) or Data Selector:

It is a combinational circuit that selects between several digital input signals
(or analog signals) and forwards the selected signal to the output channel. The
selection of the input signal is controlled by a separate set of digital values known
as select lines (Control lines). A multiplexer of 2N inputs has N select lines, which
are used to select which input line to send to the output channel.

Types of Multiplexers
1) 2x1 Multiplexer
1- 2N = 2'=2 Input signals.
2- N=1 select lines (Control lines).
3- One output channel.
Note: The number of selection lines is equal to the power N.

S1 So

-

Az—>

Az— 41

A1__,| Multiplexer — Y
Ao (Output)

The logical expression of the term Y is: Y=S". Ag+ S.A;

HOAF\L 1| e [
-

o
-

[S]
L]
)]

=
1
1 e | ~ £va

G

11
< —eoeo—]

“d

\m

<}—== Power(vdd) =1 / == Ground =0

S (Select)
Ao

L

41>o—:>7
—
A D) —

Figure 17: Logic Diagram of 2x1 Multiplexer

Example: Design a logic circuit in which a multiplexer is used as a Changeover
switch between public and local electricity.

.public 1(S) |||’_.public 0 (S)
0

-
1 N

local

local

2) 4x1 Multiplexer
4- 2N = 22= 4 Input signals.
5- N=2 select lines (Control lines).
6- One output channel.

Select lines | Output

| |

4x1
Multiplexer

— Y
(Output)

g

Logic Diagram of 4x1 Multiplexer

3) 8x1 Multiplexer
7- 2N = 23=8 Input signals.
8- N=3 select lines (Control lines).
9- One output channel.

Select lines Output S$1 S2 So
sz 51 50 ! \LJ\L
0 0 0 A A7 —

0 0 1 A, A6 —
0 1 0 A, A5 — 8x1
As .
0 . . " Multiplexer | ¥
1 0 0 A A3 —
1 0 1 As A2 —
A1 —
1 1 0 As Ao

Block Diagram of 8x1 Multiplexer
4) 16x1 Multiplexer
10- 2N=2%=16 Input signals.
11- N=4 select lines (Control lines).
12- One output channel.

De-multiplexer (DE-MUX) or Data Distributor

A Demultiplexer reverses the function of a multiplexer, taking the digital
signal from one channel and distributing it over a certain number of output lines
(single-input, multiple-output switch). For this reason, a multiplexer is also known
as a data distributor.

Types of Demultiplexer:
e 1x2 Demultiplexer
e 1x4 Demultiplexer
e 1x8 Demultiplexer
e 1x16 Demultiplexer

S (Select)

NS
l/-/

(Input)

Figure 18: Logical Circuit of 1x2 Demultiplexer.

So S1

Figure 19: Logical Circuit of 1x4 Demultiplexer.

The basic function of a Multiplexer and Demultiplexer:

A multiplexer combining multiple inputs into a single data stream. On the
receiving side, a demultiplexer splits the single data stream into the original multiple
signals.

=0
I
o

2x1

1x2

Multiplexer I Demultiplexer
Ao= 101 1 \J 11— Ao= 101
A1=111 o~ ol Ai=111
One Data line
s= 1
2x1 | 1x2
Multiplexer I Demultiplexer
Ao= 101 \4 - =
1 ~ : 1 Ao= 101
A1=111 o o— A1=111
One Data line

2x1 Bo 1x2

Multiplexer Demultiplexer

i
-

L

Multiplexer implementation

In MUX, Implementation tables are used to build a logic circuit that fits the
number of multiplexer inputs.

Example 1: Use 2x1 MUX to design a logic circuit defined by the following
canonical (SOP).

F(XY) =>2(1,2)

Sol:

In 2x1 Multiplexer:
13- 1 select line =» The First one left column (X) is select line.
14- 2 Input =>»The table is divided horizontally into 2 sections.

wnt Implementation table

- (00X
-\Q-\O.<5
O« Qnl

WNi20Q

2x1 MUX
Example 2: Use 2x1 MUX to design a logic circuit defined by the following

canonical (SOP).
F(,Y,Zz)== (0,1,3,6)

Sol:

S input Out Implementation table

X YZ YZ YZ YZ .- -
1ala s3] i 00 01410 11 Fo = yz+vzevz
2lo|10|o| "] 1] 1 1 / =Y(Z+Z)+YZ
3jlo|11] 1 ol 1213 =Y(1)+YZ
s/1|/oo]o] =7+YZ> (9
s|1/o1] o0 1 T = U=
6|1|10]| 1 4|[s]le| |7 -(Y'I'l)(Y'l'Z)
711|111] o0 / =(1)(Y+2)

Pin Pin

(1) Fi=YZ (0) Fo=Y+Z

X Iinput

Output
1 |
|

2x1 MUX

Example 3: Use 2x1 MUX to design a logic circuit defined by the following
canonical (SOP).

F(A,B,C,D)= l (0,1,5,6,7,9,10,15)

F1 =BCD+BCD+BCD
=B(CD+CD)+BCD
F1 =B+BCD

Sol:

S Input Out —_——

AlBc D | F gB&p BCPBch BCD BCD
ololoool1 000 001 010 110 111
110001 1
2j0jo10]00 1
3 ojo0o11 0 7
401100 0
SJ0j101 11
6 JOj110)} 1
710111 1
s8|l1looo0 o — ___ __ _

911/001 1 Fo =BCD+BCD+BCD+BCD
1oj1l010 | 1 =BC(D+D)+BC(D+D)
11111011 10 g -BE+aC]
1211100 1 0

11101] 0

11110 1

11111 0

5 EEE
A\ﬁj Lﬁk%

L]
B

L]

Example 4: Use 4x1 MUX to design a logic circuit defined by the following
canonical (SOP).

FaA.e,c)=) (0,1,3,6)

Sol:

In 8x1 Multiplexer:
15- 2 select line =» The first 2 left columns (A, B,) are select line.
16- 4 Input =»The table is divided horizontally into 4 sections.

S1 Sol in gout Pin O

1
NO —

o 1 1 C+C=1
0 . 0
1 1 1 C
2 O 1
3 - 2] [3
4 O 2 0
5 1 ?l S
6 O 1 -

3 C
7 1 |€| 7

e 8 1] e
o+ o| o©
S - &M
r |Qo m 0O
6 O T- R
N _U\DDD
" -l o] |@ O +
& 10% aa!8 e
. FEEEE
s oael S H 18880808 (8
m- < T
2 o
I © = &N ® ppu TR T
/1

& &

OrO0O™O™"O™O®"O™O® O
COrrjoOrvriOOT OO ™T

eNoNoNell i R i (eN-NeNe [K N
CO00 0000 T ™

ornmtnonoa S T[NOID

Example 5: Use 4x1 MUX to design a logic circuit defined by the following

canonical (SOP). F(A,B,C,D)

Sol:

-
-Do—

Example 6: Use 8x1 MUX to design a logic circuit defined by the following
canonical (SOP).

F(A,B,c,D)=) (0,1,5,6,7,9,10,15)

Sol:

In 8x1 Multiplexer:
17- 3 select line =» The first 3 left columns (A, B, C) are select line.
18- 8 Input =>»The table is divided horizontally into 8 sections.

Implementation Table

input D D

Pir
o 1

DA DO DAAFOJAOOG
S QuQO=uQ=wQ=Ql=Q|= Q= 0|0

O=PDOR AR Ol | 0|0 Of= <7

-

-
_— ® & —
D I

O=NWAOON
3
3
0

ol ia

A Block diagram:
Is a diagram of a system in which the principal parts or functions are

represented by blocks connected by lines that show the relationships of the blocks.

y

8x1 MUX

"TO" Named Link & "From' Named Link
It is used to connect the lines of the parts of the diagram to each other.

1 - Basic Gates Pagel page2 Page3 Paged4 Page5 Page6 Page7 Page8 Page9 Page10

2 - Invert & Connect

- Input and Output

- Decorations
- MUX and Decoder

3

4

5

6 -AddBCompare || 0000 eeaa.

7 - Flip Flops
& - Registers
% - RAM and ROM

10 - Chips

Time Interval:

In the context of oscilloscopes(O-Scope), is the time difference between two
specific events captured during waveform analysis. These events could be voltage
transitions, current changes, or any other signal characteristic that you are observing.

£ut

LU RN T Y [

-
[=]

CEDAR Logic Simulator

File E-cllt' Help
| B> B Osepey G O I M ®

- Bacic Gat

= LNt S0 MU
- Decorations

- MU and Decoder
= idd B Compare

Fhp Flops

- Heqsters
- RAM and ROM
- Chips

Settings

- [:;uﬁ
e -
g 1 =

- =3 Pags4

FPag=5S Pag=s©E

Pag=T Pag=E8 Pag=5%

Mz==—= & &1

Page 10

.............

A - Time signal line

B - Time signal line

Z - Time signal line

o0 e

<1 Selecting inputs and outputs

Pause

Export

Load

(=)

ND»

-

=

Latches:
A latch is a digital memory circuit that stores one bit of data. Data remains in
memory as long as the power is not turned off.
Type of Latches:
There are basically four main types of latches.
1- SR-latch
2- D-Latch
3- JK-Latch
4- T- Latch

SR-latch (Set-Reset Latch):
There are two types of SR-latches, the first is Low Active SR-latch and the
second is High Active SR-latch.
Low Active SR-latch
It consists of two NAND gates coupled with feedback arrangement where the
outputs are connected back to the opposite inputs (Bistable Multivibrator).
Memory

S S —4S N —— Q 1-Bit
S Q Set
Reset|— —
R—OQR D— Q
S R | Q | Mode of Operation
1 1| Qo No Change
— g1 0] 0 Reset
_ Qo 1]1 set
R — 0 0 4 Invalid condition

Figure 20: Low Active SR-latch

e
: &;@1 5“1?”*} &

E!H%>O*+DJ W

High Active SR-latch
It consists of two NOR gates coupled with feedback arrangement where the
outputs are connected back to the opposite inputs (Bistable Multivibrator).

(Set) p—
S o S Q
(Set)
B (Storage)
(Reset) Ll e
e - (2 Mode of Operation
0 0| Qo No Change
Qe 1 0 Reset
R (Storage) 1 0 1 Set
(Reset) 1 Bit - Invalid condition
Figure 21: Active High Active SR-latch
OB wn N =
S P N\~ 2 s P | \Oog
ey L v
Set) Set HJ
,f e J'K ~
|
T Bit = 1 N Bit =
o N\ — Reset ¢ \
J - R y
E / e Memory | [Memory

—_—— - -

Timing Diagram of High Active SR-latch
I - — = 3 <> - |1

Timing Diagram

Example 1:
If the waveforms in the given timing diagram are applied to a High Active

SR-latch, draw the resulting Q output waveform in relation to the inputs.

S
R
Sol:
Mode of Operation
No Change
Reset
Set
Invalid condition
1
S
119, 00 o0 0 0 0
- 1 1 1 |1
0{0|0 |0 0 0 o| O | 0
Q 1111 11/ 1 1 1
| 0] O ? 0|2
N Invalid condition A

Note: In timing diagram of High Active SR-latch start, the S, R inputs start from the
low level (0) and the Q output start from the high level (1).

Example 2: Draw Q@ output of the previous timing diagram.

B N I O

If the waveforms in the given timing diagram are applied to a Low Active SR-
latch, draw the resulting Q output waveform in relation to the inputs.
Note: The timing diagram start from the high level (1).

Q
Q

S
1
Sol o

S R | Q | Mode of Operation
1 1 | Qo No Change
1 0| O Reset
0 1 set
0 O Invalid condition

Note: In timing diagram of Low Active SR-latch start, the S, R inputs start from the
high level (1) and the Q output start from the low level (0).

Gated SR-Latch (28%):

A gated SR latch requires an Enable (EN) signal to pass the input forward.
(Enable "EN=1", Disable "EN=0"). There are two types of Gated SR-latches, the
first is Low Active Gated SR-latch and the second is High Active Gated SR-latch.

Low Active Gated SR-latch

S

S

Storage
1 Bit

EN —
R R — Q
EN=1 State Table

Mode of Operation

No Change

Reset

set

Invalid condition

Before Passing the inputs (EN=0)

L

HEEDee b—r@j
-

After passing the inputs (EN=1)

High Active Gated SR-latch

S o— S s — Q
al =
ENo—4 if EN =
S R | Q | Mode of Operation
0 0| Qp No Change
Q (L I Reset
1 0] 1 Set
R o—r Y Invalid condition

D-Latch (Data Latch):

It is a Gated SR-latch that has only one Data input (D) with EN. This Data
input is called D input. When the D input is High (1) and the EN is High (1), the
latch will set. When the D input is Low (0) and EN is High (1), the latch will reset.
Low Active D-latch:

If EN=1
Mode of Operation
RESET
SET

High Active D-latch:

if EN=1

Mode of Operation
SET
RESET

JK-Latch

This latch is designed to solve the "invalid condition " problem of the SR latch
which occurs when S=1 and R=1. The latch complements the output in state of
“invalid condition " (J=1, K=1)

Note: J=S and K=R.

LN i
-) — 1
1) '3 — ——Q
1 s
EN EN
P 1 0 5
— —_— 0 = S
[[
High Active Low Active
IfFEN =1
Inputs Outputs
. | = Q Comments
(8] O Q No change
O 1 O Reset
1 o 1 Set
' 1 Q Output change

State Table of Low Active JK-Latch.

T-Latch (Toggle Lath)
It is a JK-latch that has only one input (T) with EN. This latch is called a
Toggle latch because of its ability to complement the output of its state.

D
L, -

Low Active
State Table of Low Active T-Latch.

if EN = 1
1 Q Mode of Operation
0 Q No Change
1 < | Output change

Low Active T-Latch.

Sequential Logic Circuits.

Single-Pulse Generator (CLK):

w> D < Single-Pulse Generator

Eg; o L \ . L
= { A
m B | O-Scope

[None]

Elip Flops

The Flip Flop is a latch with a Clock (CLK or CK) instead of Enable (EN).
The clock is used to synchronize the forward pass of inputs with each clock pulse.
Clock Pulse:

A single clock (CK) pulse contains two edges, a Rising Up edge (positive)
and a Falling Down edge(negative). The input is passed forward either when the
pulse edge Rises Up or Falls Down.

Rising Up Edge Falling Down Edge

High(1)
Low(0) I_

High(1) — —
Low(0) ‘ |

One Clock Pulse edges

Type of Flip Flops:
e SR-Flip Flop (SR-FF)
e D-Flip Flop (D-FF)
e JK-Flip Flop (JK-FF)
e T-Flip Flop (T-FF)

SR-Flip Flop (SR-FF)
It is a Low Active Gated SR-latch with a Clock (CK).

S g Storage S —O|s L Q
1 Bit CK _
I Q R—dR P— Q
ifCK =1 State Table
—— S |R| Q | Mode of Operation
0j]0 No Change
= R | Reset
1|0 set
R 111 Invalid condition
Figure 22: Logical Circuit of SR-Flip Flop

Logic symbol of SR-Flip Flops:

In Figure (A) Positive SR-FF, the clock pulse (CK) starts at a low level (0)
and then rises to a higher level (1) (positive clock pulses). In Figure (b) Negative
SR-FF, the complement of the clock pulses is taken, where the clock pulse starts at
a high level (1) and then decreases to (0) (negative clock pulses).

—1S

—=@a)CK l

—R

CK "41]o

CK
(A) Positive SR-Flip Flop (B) Negative SR-Flip Flop

Timing Diagram
Example 1:
Draw the output shape of SR-FF in case the edge is up.

N 1 1 [[

S | | I |
SR P |
Sol:
S IR Mode of OPeration
OO |GQo No Change
(o B By | O Reset
1] O 1 set
-1 1 > Invalid condition
= —J 1 111
S O O | 1 | O | 1
R_u 1 | O | 1 | O
Q O O 1 O 1
Example 2:
Draw the output shape of SR-FF in case the edge is down.
CK [1 L1 1 L1 ° 1
y I [I I
e I | I
Sol
S IRjO Mode of O!)eration
OJO |GQo No Change
O] 1 O Reset
1] O 1 set
101 2>

Invalid condition

CK
S
1 (1] 1 (1] (1] 1 0o
(1] 1 (1] (1] 1 (1] (1}
R
1 1 1 0 1 1
Q 1]

D- Flip Flop (D-FF)
It is a Low Active D-latch with a Clock (CK) instead of Enable (EN).

IfCK=1
Mode of Operation
RESET
SET

[B

Single-Pulse
Generator

y > 0

Clear

O

D Flip Flop- Low Active Set / Reset

Timing Diagram
Example 1: Draw the output shape of D-FF in case the edge is up.

e — [] [[

k2 | | |
Sol:
D | Q | Mode of Operation
0 0 RESET
1 1 SET
"B
I B 1] o | 1 | o
o —171 - 1 =
Example 2:

Draw the output shape of D-FF in case the edge is down.

CK
D e—
Sol:

D | Q | Mode of Operation
0 0 RESET,
1 SET

CK :. - :r -r . . 1_;

1 0 0 1 1 0 0
b —

JK-Flip Flop (JK-FF)

Itis a Low Active JK-latch with a Clock (CK).

if CKK = 1
Inputs Outputs
J = Q Comments
O o Q No change
O 1 O Reset
1 O 1 Set
- = Q Output change
State Table of Low Active JK-Flip Flop
- -G
- - >

- -

Q

JK Flip Flop-Low Active Set / Reset

FL TL
L LlJ

Timing Diagram

Example 1: Draw the output shape of JK-FF in case the edge is up.

1

CK
i ——
K I
Sol
iIf CK = 1
Inputs Outputs
. j L Q Comments
O O Q No change
O 1 O Reset
1 o 1 Set
" . Q Output change

| 4
o T UL L LTI LT LT L
y o[o §1\ 0 [1 |io §1\ ‘0 51\ 1
0o [(11 14 lio o “\] io [i1 \ 0
K : : \ : : : : : : :
: : \ : : : : = : \ :
0 1\ 0 1 1 Jqo 0 1 \\ 1
Y \ Ay
Output change Output change Output change
J=1,K=1 J=1,K=1 J=1,K=1
Example 2:
Draw the output shape of JK-FF in case the edge is down.
s L1 L1 LI L1 L
N 1 I
B I]]
Sol
IFf «p< — 1
ITmapruts Outputs
¥ = L @& Comments
O O Q No changce
O 1| O Reset
1 O & Set
- = 6 Output change
J 1 | (1] ‘0 | 1 1
K—F 1 _lo T 117 1 i1 1
0
Q OA 1 |0 1

Output change

Output change
J=1,K=1

J=1,K=1

Output change
J=1,K=1

T-Flip Flop (TEF)

It is a Low Active JK-Flip Flop that has only one input (T) with Clock (CK).
This Flip Flop is called a toggle Flip Flop because of its ability to complement the
output of its state.

ifCK=1
T Q Mode of Operation
0 Q No Change
1 < | Output change

State Table of Low Active T-Flip Flop

N
11" =
7 1l
D/‘73> Il
Not — ——K O
o g
Positive T-Flip Flop Negative T-Flip Flop
Examplel:
Draw the output shape of T-FF in case the edge is up.
e I 1 | I A O
Sol:
IfCK=1
T Q Mode of Operation
0 Q No Change
1 <a | Output change
CLk] i]]]]
T 'O i | : 1 ‘1 'O 'O

: ' N .'
Q :o‘;./-ml_\\w -

Output change Output change Output change
T=1 T=1 T=1

Example 2:
Draw the output shape of T-FF in case the edge is Down.

CK
T
Sol:
ifCK=1
T Q Mode of Operation
0 Q No Change
1 | Q Change

ok |

T

Sy

Output change Output change Output change
T=1 T=1 T=1

Shift Reqister:
It is a small memory built from a set of Flip Flops connected together and has
two main functions:
1- data storage.
2- data movement.

Shift Register Operations:
There are 4 main operations that can be performed on SISO registries:
1- Shift Right Operation
2- Shift Left Operation
3- Rotate Right Operation (ROR)
4- Rotate Left Operation (ROL)

Type of Shift Registers:
1- Serial In/ Parallel Out Shift Register (SIPO).
2- Serial In/ Serial Out Shift Register (SISO).
3- Parallel In / Serial Out Shift Register (PISO).
4- Parallel in / Parallel Out Shift Register (PIPO).

Serial In / Parallel Out Shift Register (SIPO):
In this type, data is entered in serial mode and retrieved in parallel mode.

Shift Right Operation

It consists of shifting all the binary digits to the right by 1 digit and adding (0)
at the beginning digit (to the left). A binary shift right is used to divide a binary
number by two.

128 64 32 16 8 4 2 1

-\\._ . \\\\)/ /2

The logic circuit of Shift Right Register

To build a Shift Right Register, a set of JK/D Flip Flops can be connected in
series mode. The digits of number are entered from right to left until it is complete.
The logic circuit of 4-bit Shift Right Register using D- Flip Flop.

1 1 0

Parallel Output
0 1
Serial Input D 0 T D 0 T D 0
1010

D Flip Flop 1 D Flip Flop 2 D Flip Flop 3 D Flip Flop 4
Clock Plusef

,

cK cK CK CK

Working Principle:
The working principle of SIPO shift registers involves enter the digits of the

number bit by bit from right to left with one clock pulse per bit until the number is
complete.

Example: Design SIPO Shift register to store 4-bit numbers using Shift Right

Operation.
Sol:
Input Number ‘S 1 ' 1
P 010 L L | L | L |

-

L >y—=1> 0o 1> O o> 00— > 0O
A [T

(]
[
[

=

o
[
s

=

o
.
L

=

o
[

Initial Setup (Clear)

All flip-flops are cleared initially (Clear) to insert new data sequentially,

starting from the first flip-flop.

A

1 1
L L

L]
=
o

[]

L]

[—7
L |

2

L]

Shift Right Reqister using JK Flip Flop
The Logic circuit is:

Serial Input

Serial
output

CLK
+ 5
Input number 11 0l 11 10l
1010 i —> B — i 10
@) O O O

o<
t t
~ V
8
)
)
.

Shift Left Operation
It consists of shifting all the binary digits to the left by 1 digit and adding (0)
at the end digit. A binary shift left is used to multiply a binary number by two.

Example: Design SIPO Shift register to store 4-bit numbers using Shift Lift
Operation.
Sol:

[[— [—1
_J ITI |TJ Input nu1rnob1e(r)
i ' <

Ex: To enter number (1010)
{ | { | <« 010

Serial In / Serial Out Shift Register (SISO).

In this type, data is entered and retrieved in serial mode. The entered number

is output in full after 4 zeros.

Example:
Design SISO Shift register to store 4-bit numbers using Shift Right Operation.
Sol:
1o 1]o >
. 0
Serial Input n 0 D 0 D 0 D 0 _9
Serial
D Flip Flop 1 D Flip Flop 2 D Flip Flop 3 D Flip Flop 4 0utput
Clock PIqu:' » oK CK CK

Parallel In / Serial Out Shift Reqgister (PI1SO).

In this type, data is entered in parallel mode and retrieved in serial mode

Example: Design PISO Shift register to store 4-bit numbers using Shift Right

Operation
Sol:

Shift mode

Load mode B2

B3

D3

v

Qs

Parallel in / Parallel Out Shift Register (PIPO).
In this type, data is entered and retrieved in Parallel mode.

Example:

Design PIPO Shift register to store 4-bit numbers using Shift Right Operation.

w

ol:

ﬁ.j h.j
= —

ol
Lo

’—k[] a] a

> o >~ 0

- T o
=

Bt
&l

Ex: To enter number (1010)

|_-
)

Rotate Right Operation (ROR)

It is a shift to the Right but the bit that falls off at the Right side is put back on
the left side.

z A
7 © 5 4 3 2 1 (@]
[clololalolalalza]

Example:
Design Rotate Right logic circuit to store 4-bit numbers using Shift Right Operation.
Sol:

The working principle is:
1- Enter the number (Ex\ 1010)
2- For a full rotation to the right, enter four zeros (0000).

(! ! I_._l
L__1 L _ L]

1
L]

=
=)
L
e
=]
L
L
=
=
L
4
=
=
L

Rotate Left Operation (ROL)

It is a shift to the left but the bit that falls off at the left side is put back on the
right side.

=10 SB

0
0
H
0
.
H
H
0

Wave of Clock pulses (Wave Clock) :

— Enwert S Conmect
o - - -

- Deecorations

- ML and Decoder
- Add B Compars

- Fhip Flops

- Registers Variable-Rate Square

- RAM and RO

- Chipe — Wave Clock

Buooynunsn

T

TEL

Binary Counter:

It is a set of flip-flops with clock pulses (CLK) used for counting.
Types of Counters:

The binary counter is consisting two types.

1- Synchronous counter.

2- Asynchronous counter.
Counting direction

1- Count UP (Incrementing)

2- Count Down (Decrementing)
Counting method

1- Normal counting

2- Decade counting

3- Random counting
Asynchronous counter.

In this type there is no clock directly connected to all the flip-flops, only the
first flip-flop is timed by the external clock while the rest of the flip-flops are timed
by the output of the flip-flop before it.

Logic Circuit of Asynchronous counter

To build an Asynchronous counter, a set of Negative T-Flip Flops can be used.
1- The number of T-FF = the number of bits in the count number.
2- State table

Count UP Q Output

Count Down E Output

Note: Notice the difference between positive and negative flip flops.

- |
Dz:> |
Not — =K 0O
& .
Positive T-Flip Flop Negative T-Flip Flop

Normal counting
Use full digits storage space.
Ex: (0to 11),

(Oto 111),

(0 to 1111),

(111to 0),
Example 1:
Design (0 to 7)10 Asynchronous counter.
Sol:
The number of Flip Flops = the number of bits in the count number.
Count number (7)10 = (111), = 3-bit, So the number of T-FF =3

Clock
pulse(CLK)

Note: The most important bit (MSB) should be on the left.
TR TY EW
MSB L[T! @ Li;lJ LSB ===
T T T P
O 1 O
Q# Af'— T 4-Bit LED

Display

% Negative T-FF &

In the previous example, the Wave Clock (Wave of Clock pulses) can be used
to make the counter count continuously.

= 1 (| 1
_TJ L _J L _J]
Wave ® ‘
Clock O O o O
—T a — T =" |7 (] =%
i—‘ (] (] *{_j
K a— K O— —K a—
© (@] &)

Example 2:

Design (7 to 0);10 Asynchronous counter

Sol:

I Count UP Q Output I

Q Output

Count Dovwn

State table

’
H
W

L
é..
\/H

T

e
-
s
T
|
|

‘' 'mE 'l
L |

Example 3:
Design (15 to 0)10 Asynchronous counter.

P @ @

o wm e
L I! I_._I L]

Decade counting
Counting from-to specific numbers
Ex: (0 to 100),

(10 to 100),
(10to 111),
(110 to 0)2
(101 to 11011),
Example 1:
Design (0 to 4);0 Asynchronous counter.
Sol:
1- The number after (4)10 is (5)10 = (101),
1 O 1
Qo Q1 Q2
2- Use the NAND gate and connect it to the circuit as shown in the following

figure.

Qo Q1 Q=2

Ll | I |
Clear all 3 T-FF
(O O 0)

i
117

&g N N

3. T QQHI b T (e $ e T QQ B
=C> Lt =O>

K O —K Q- —K O

| 4

QO'EE Q2

Example 2:
Design (0 to 4);,0 Asynchronous counter.

Steps 1 and 2 as in the previous example.
3- The low number is (2)10 = (010),
0o 1 0
Co C1 C:=z

4- Connect the NAND Outputs with zeros only and ignores the ones.

L]
L]
(]

o A o A o A
3 . T e . e T Qe s o T e
—e > > >
~—K'Co 0— —K O K 'C2 0—
O
Cljar $ c:iar

Example 1:
Design (15 to 4)1p Asynchronous counter.

Note: In countdown, the smallest number is the input to the NAND gate.
Sol:

The number before (4)10 is (3)10= (0011),.

O [0] 1 1

Qo 1 Qz a3
| | | |

L p

— -

[

Clear all T-FF

1
+

P ¢ & 9

i

Fi_l o
|- |- |- -

Synchronous counter

In synchronous counters, the clock is connected to all Positive T-Flip-Flops
in order to transmit the clock pulse synchronously to all T-FF at the same time.
Note: In synchronous counter a Positive T- flip flop is used.

Example 1: (2-bit T-FF)
Design (0 to 3)10 Asynchronous counter.
Sol:

LSB <——> MSB

Clock
pulse(CLK)

VAN
<
(]
‘
[]

&
|

Note: When using more than 2 T-Flip Flops, the design will be changed.

Example 2:
Design (0 to 7)10 Synchronous counter
LSBE Qo Q1 MSB Q2
: Hn
T Q T aQ T Q
CK __ CK CK
CLK |
‘o lr e e
e
‘!
Q2 _ L
Q1L -
0 — 1 >
Q A & J &
o7 Qf—- —7 0 -7 0
- - -—i>
e K 0 K Q . K a
® o >

Example 3:
Design (0 to 15)10 Synchronous counter.

Q3
o0 00 u
W N = O Qz(HL:
/NN % Ql -
1 1 N\
ﬁ AEE Qo
EEAN \
/I !
4 4 j/ aH-HHHAH e
ool Qe T 0 Tooee T IO
—i A K QdF K 0 K O
— o 0 0 0
))-

Random counting
It is used to count any random set of numbers.
EX: (3,1,2,0)

(7,5,3,6,1)

(1,7,5,3,6,8)

The logic circuit of the Random counter
The logic circuit consists of the following:
1- D-Flip-Flops
2- Controller
3- Number of D-FF = number of bits in the highest number in the set

Example 1: Design (3,1,2,0)10 counter.

Sol:
1- The largest number is (3)10 = (11), =» 2D-FF
2- Controller design

Outputs inmnputs Outputs inputs
Set 1 QO DO Set 1 QO D1
3 -1 -1 -1 3 1 -1 O
-1 O -1 O -1 O -1 -1
= -1 O O = -1 O O
O O O -1 O O O -1

LEB <> MSB
Qo Q1

Controller

<::> Do = QoQ1 + (_1061

| b1 =G4

CLK

O
Qo QoQ1+QoQ1
O
— 0 Qe
] >D1 0 ED-. Q Controller /
O

Example 2: Design (7,5,3,6,1)10 counter.

Sol:

1- The largest number is (7)1 = (111), = 3D-FF

2- Controller design

Set

S0WAN

Q= Q1 Qo D= D1 Do
-1 -1 -1 -1 O . |
-1 o 1 O 1 -1
O -1 -1 -1 -1 O
-1 -1 O O O -1
O O -1 -1 -1 -1

Do

EO*QD=0=>Q2Q1
Qz2Q1 * Q2Q1 =Q1 > Qo

Do = Q2Q1 + QoQ1 I

Qz2Q1

3261 Q2Q1 QzQ1 Qz2Q1
Qo 00 11 10
Bo o |
D |7 (=3 I a
Qo 1
I 3 I 7 =
(_2261 * Q2Q1 =Q2 E> Qo
62—61 * Q2Q1 =Q1 |:> Qo
D1 = QoQ1 + QoQ2
a _ _ 1 i _
2Q1 Qz2Q1 Q2Q1 Qz2Q1 Qz2Q1
Qo 10
D2 6 a
7 5
Q2Q1 * Q2Q1 = Q2 > Qo
Q2Q1 * Q2Q1 = Q1 = Qo
D2 = QoQ1 + QoQ2
LSB €—> MsB
Qo Q1 Q2
f Controller
IDo = Q2Q1 + Qo1 l
CLK

[D4

Qo1 + Qoazl

D= Qo1 + Qo_dz
&

