
 
 

 

 
University of Technology 

 
 

Computer Science Department 
 

 
 

INTELLIGENT SEARCH TECHNIQUES 

 

 
 
 

 

 

cs.uotechnology.edu.iq 
 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
1 

"Artificial Intelligence Concept and Fundamentals" 

  

1. Definition of Artificial Intelligence 

       Artificial intelligence (AI) is technology that enables computers and machines to 

simulate human learning, comprehension, problem solving, decision making, creativity and 

autonomy.AI The branch of computer science that is concerned with the automation of 

intelligent behavior.AI must be based on sound theoretical and applied principles of that 

field. These principles include the data structures used in knowledge representation, the 

algorithms needed to apply that knowledge, and the languages and programming techniques 

used in their implementation. For any computing system it is very important to achieve an 

acceptable level of software quality. The basic goal of software quality is the prevention of 

software faults or, at least, the lowering of software fault rates. 

 

2. Principles fundamentals of A.I. 

      Artificial Intelligence and Artificial Evolution is an attempt to make a computer, a robot, 

isions when it 

tries to solve problems or execute a task. The aim of AI is to improve technology by adding 

functionality related to the human acts of reasoning, learning, and problem-solving.  

AI is governed by four concepts or principles, these four concepts are: 

 Explanation  

The primary principle is that AI systems should be able to provide clear explanations for 

on how they process data, make decisions, and arrive at specific outcomes.   

 Meaningful  

The explanations provided by AI systems need to be understandable and meaningful to 

humans, especially non-

why a certain decision was made. It will just lead to more confusion and lack of trust.  

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
2 

 Explanation accuracy  

to be accurate.  

 Knowledge limits  

 crucial 

for AI systems to be aware of their limitations and uncertainties. A system should operate 

 

 

 

 

 

 

 

 

 

 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
3 

Part 1:"Knowledge Representation" 

 

1. Knowledge Representation Schemes 

         Knowledge representation (KR) is a part of the Artificial Intelligence which responsible 

for representing information about the real world so that a computer can understand and can 

utilize this knowledge to solve the complex real-world problems such as communicating with 

humans in natural language. It is also a way which describes how we can represent 

knowledge in Artificial Intelligence. Knowledge representation is not just storing data into 

database, but it also enables an intelligent machine to learn from that knowledge and 

experiences so that it can behave intelligently like a human.  

In Al, there are four basic categories of representational schemes: logical, procedural, 

network and structured representation schemes. 

1. Logical representation uses expressions in formal logic to represent its knowledge 

base. Predicate Calculus is the most widely used representation scheme. 

2. Network representation captures knowledge as a graph in which the nodes represent 

objects or concepts in the problem domain and the arcs -represent relations or associations 

between them. 

3.Procedural representation represents knowledge as a set of instructions for solving a 

problem. These are usually if-then rules we use in rule-based systems. 

4. Structured representation extends network representation schemes by allowing each 

node to have complex data structures named slots with attached values. 

1.1 Logical Representation 

      One way of representing fact is the language of logic. The logical formalism applies 

because it immediately suggests a powerful way of deriving new knowledge from the old 

mathematical deduction. In this formalism, we can conclude that a new statement is true by 

proving that it follows from the already known statements. There are two types of logic 

representation, these are: 

 Propositional logic. 

 Predicate logic. 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
4 

1.1.1 Propositional Logic 

Propositional logic, also known as sentential logic or Boolean logic is the branch of logic that 

deals with propositions which can either be true or false. It forms the basis of many logical 

systems and is fundamental in the field of computer science, mathematics, and philosophy. 

 

Here are some key concepts of propositional logic: 

 

1. Proposition: A statement that is either true or false. For example, "It is raining" is a 

proposition. 

 

2. Logical Connectives: Symbols used to combine propositions. The main logical 

connectives are 

 AND ( ∧ ): True if both propositions are true. 

 

 OR ( ∨ ): True if at least one proposition is true. 

 

 NOT ( ~ , ): Inverts the truth value of the proposition. 

  

 

  

 

3. Truth Table: A table used to determine the truth value of a proposition based on the truth 

values of its components. 

 

4. Tautology: A proposition that is always true, regardless of the truth values of its 

components. 

 

5. Contradiction: A proposition that is always false. 

 

 

 

 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
5 

 

For example: 

P: It is sunny today. 

Q: The sun shines on the window. 

R: The blinds are down. 

 

 

(~R): The blinds are not yet down. 

 

Some Examples: 

 

-  Using AND ( ∧ ) 

 Let p: "I will go to the park." 

 Let q: "It is sunny." 

The compound proposition p∧q ("I will go to the park and it is sunny") is true if both p and q 

are true. If either p or q is false, the whole compound proposition is false. 

- Using OR ( ∨ ) 

 Let p: "I have a cat." 

 Let q: "I have a dog." 

The compound proposition p ∨ q ("I have a cat or I have a dog") is true if at least one of p or 

q is true. It is only false if both p and q are false. 

-  Using NOT ( ~ ) 

 Let p: "I like spinach." 

The proposition ~p ("I do not like spinach") inverts the truth value of p. If p is true (I like 

spinach), then ~p is false, and vice versa. 

-   

 Let p: "I study." 

 Let q: "I will pass the exam." 

except when p is true and q is false. 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
6 

- Using I  

 Let p: "I have a driver's license." 

 Let q: "I can legally drive." 

drive") is true if both p and q have the same truth value (either both are true or both are 

false). 

- Truth Table for p∨~q 

Let's consider p: "It is snowing," and q: "It is cold." 

P Q ~p p∨~q 

T T F T 

T F F T 

F T T F 

F F T T 

Note that a definition of truth is not assigned to this proposition; it can be either true or 

false in terms of binary logic. Propositions can also be combined to create compound 

propositions as shown below: 

 ~ (~p) = p        double negation 

 p ⋀ q = q ⋀ p       commutatively 

p ꓦ q = q ꓦ p 

 (p ⋀ q) ⋀ R = p ⋀ (q ⋀ R)     associativity 

(p ꓦ q) ꓦ R = p ꓦ (q ꓦ R) 

 p ꓦ (q ⋀ R) = (p ꓦ q) ⋀ (p R)     distributive 

p ⋀ (q ꓦ R) = (p ⋀ q) ꓦ (p ⋀ R) 

 ~ (p ⋀ q) = ~p ꓦ ~q      DE Morgan’s law 

~ (p ꓦ q) = ~p ⋀ ~q 

 p ↔ q = (p → q) ⋀ (q → p) = (~p ꓦ q) ⋀ (~q ꓦ p) 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
7 

Example: Prove that (P ∧ Q) is not equivalent to (P  Q); in other word prove (P∧ Q) ≢ (P 

 Q) 

Sol : 

 

Example: Represent the following knowledge using the propositional logic method. 

shines on the screen. If the sun shines on the screen, the 

 

Sol: 

 

 

 ~R 

 

1.1.2 Predicate Logic 

In the previous section, propositional logic was explored. One issue with this type of logic is 

that it is not very expressive. In this section, we will explore predicate calculus otherwise 

known as Predicate logic or First Order Predicate Logic (FOPL) is one of the oldest and most 

important knowledge representation schemata used in AI. Using FOPL, we can see both 

predicates and variables to add greater expressiveness as well as more generalization to our 

knowledge. In FOPL, knowledge is built up from constants (the object of the knowledge), a 

set of predicates (relationships between the knowledge) and some number of functions 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
8 

(indirect references to other knowledge). We can say that predicate logic is a high-level 

human-oriented language for describing problems and problem-solving methods. The basic 

ingredient logic is the following: 

 Connectives: 

∼ or ~ Represents negation.  

& or ⋀ Represents conjunction or AND. 

| or Represents disjunction or OR. 

 

or if and only if (iff). 

 Quantifiers: 

ꓱ Existential quantifier (there exists). 

ꓯ Universal quantifier (for all values). 

 Constants: 

Fixed value terms belong to a given domain. Usually denoted by letters near the 

beginning of the English alphabet and number, e.g., a, b, D, 100, etc. 

 Variables: 

Terms that can assume different values over a given domain. They are usually denoted by 

words and letters near the end of the English alphabet, e.g., x, y, z, etc. 

 Auxiliary symbols: 

), (, [ ], { } are used for punctuation. 

 Functions: 

Function symbols defined over a domain (say D) map n element (n > 0) to a single 

element of the domain. Here n is called the rank or ary or degree of the function. Letters f, 

g, h and words such as age-of ( ), and cause-of ( ) represent functions. An n-ary function 

-ary function 

is a constant. 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
9 

 Predicates: 

Predicates denote relations or functional mapping from the elements of domain D to the 

values true or false. Letters and words near the middle of the alphabet such as p, q, R, 

EQUAL, etc. are used to represent predicates. Like functions, predicates can have n (n>= 

0) terms as arguments. A 0-ary predicates are referred to as atomic formulas or atoms. 

When we want to refer to an atomic formula or its negation, we use the worker literal. A 

predicate which has no variables is called a ground atom. 

Examples: consider the following sentences and their predicate form: 

- Caesar was a man. 

Man (Caesar) 

-  Caesar was a ruler. 

Ruler (Caesar) 

- All Romans were either loyal to Caesar or hated him. 

ꓯx (Roman (x) → Loyal to (x, Caesar) ꓦ Hate (x, Caesar)) 

- Marcus was born in 40 A.D. 

Born (Marcus, 40) 

- If it doesn't rain tomorrow, Tom will go to the mountains.  

~rain (weather, tomorrow) →go(tom, mountains).  

- All basketball players are tall. 

 ꓯ X (basketball _ player(X) →tall (X))  

-  Some people like fish. 

 ƎX (people(X) ˄ likes(X, fish)),  

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
10 

-  If wishes were horses, beggars would ride.  

equal(wishes, horses) → ride(beggars).  

-   Nobody likes taxies 

 ~ ꓱ X likes(X,taxi). 

- All basketball players are tall.  

ꓯx, y Play (x, y) ⋀ Game (y, basketball) → Tall (x) 
ꓯx Play-basketball (x) → Tall (x) 

- All dark streets are dangerous.  

ꓯx Street (x) ⋀ Dark (x) → Dangerous (x) 
ꓯx Dark-street (x) → Dangerous (x) 

- All Policemen protect all people from crime. 

ꓯx, y Policemen (x) ⋀ People (y) → Protect (x, y, crime) 

- A burning stove is hot. If I put my hand on a burning stove, it will be hurt. 

ꓯx Stove (x) ⋀ Burn (x) → Hot (x) 
ꓯx, y Stove (x) ⋀ Burn (x) ⋀ Put (y, hand, x) → Hurt (y, hand) 

- If I am in a quiet dark street and I see an old man then I will not worry about my 
safety. 

ꓯx, y Street (x) ⋀ Quit-dark (x) ⋀ See (x, y) ⋀ Old-man (y) → ~ Worry (x, safety) 

- Some students like AI. 

ꓱx Student (x) ⋀ Like (x, AI) 

- If one of two integers is positive and the other is negative then the product is 
negative. 

ꓱx, y, z Int (x) ⋀ Int (y) ⋀ Pos(x) ⋀ Neg (y) ⋀ Pro (x, y, z) → Neg (z) 
 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
11 

 

Example: Convert the following sentences into Predicate logic form:  

"All people who are not poor and are smart are happy. Those people who read are not stupid. 

John can read and is wealthy. Happy people have exciting lives.  

Solution: 

 ꓯ X (~ happy (X)).  

ꓯ Y (read (Y) ~ stupid (Y)).  

read (john) ᾿ wealthy (john).  

 ꓯ Z (Happy (Z) exciting (Z)).  

1.1.3 Resolution Theorem Proving 
Resolution is a technique for proving theorems in the predicate logic using there solution by 

refutation algorithm. Their solution refutation proof procedure answers a query or deduces a 

new result by reducing these to clauses to a contradiction. 

The Resolution by Refutation Algorithm includes the following steps:- 

a) Convert the statements to predicate calculus(predicate logic). 

b) Convert the statements from predicate calculus to clause form. 

c) Add the negation of what is to be proved to the clause form. 

d) Resolve the clauses to producing new clauses and producing a contradiction by generating 

the empty clause. 

The statements that produced from predicate calculus method are nested and very complex 

to understand, so this will lead to more complexity in resolution stage ,therefore the 

following steps are used to convert the 

Predicate calculus to clause form:- 

 

by replacing each instance of the form 

 Q)by expression (~P Q) 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
12 

 

2.Reduce the scope of negation. 

- ~(~  

- ~(∀ ∃X ~ b(X) 

- ~(∃ ∀X ~ b(X) 

- ~(a∧ ~ ~b 

- ~ ~ ~b 

3. Standardize variables: rename all variables so that each quantifier has its own unique 

variable name. For example, 

-∀ ∀ ∀ ∀Y b(Y) 

4. Move all quantifiers to the left without changing their order.  

For example, 

-∀ ∀ ∀X ∀  

5. Eliminate existential quantification by using the equivalent function. 

 For example, 

-∀X∃ ∀X mother(X,m(X)) 

-∀X ∀Y ∃ ∀X ∀Y p(X,Y,f(X,Y)) 

6. Remove universal quantification symbols. 

For example, 

-∀X ∀  

7.Use the associative and distributive properties to get a conjunction of disjunctions called 

conjunctive Normal Form(CNF). 

For example, 

-  



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
13 

-a∧(b∧ ∧b)∧c 

- ∧ ∧  

-a∧ ∧ ∧c) 

8. Split each conjunct into a separate clause. For example, 

-(~ ~ ∧(~ ~  

~ ~  

~ ~  

9. Standardize variables again so that each clause contains variable names that do not occur 

in any other clause .For example, 

-(~ ~ b(X) e(W))∧(~b(X) ~ e(W)) 

~ ~  

~ ~  

Example: Use the Resolution Algorithm for proving that John is happy with regard the 

following story 

Anyone passing his history exams and winning the lottery is happy. But anyone who studies 

or is lucky can pass all his exams. John did not study but he is lucky. Anyone who is lucky 

wins the lottery. Is John happy?  

A: Convert all sentences into Predicate logic form: 

1. happy (X)). 

2. X Y(study(X) lucky(X) pass(X,Y) 

3. ~ study(john) lucky(john) 

4.  X Lucky(X)  win(X, lottery) 

happy (john) Required to prove it 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
14 

 

B. Convert the statements from predicate calculus to clause form. 

1. Remove (Ÿ) 

Å∀X ~(pass(X,ai_exam) ∧win(X,lottery))῀ happy(X) 

Å∀X ~(study(X)῀lucky(X)) ῀ ∀E pass(X,E) 

Å ~study(john) ∧lucky(john) 

Å∀X ~(lucky(X))῀ win(X,lottery) 

2.Reduce ~ 

Å∀X(~pass(X,ai_exam) ῀ ~ win(X,lottery)) ῀ happy(X) 

Å∀X ~) study(X)∧~lucky(X)) ῀ ∀E pass(X,E) 

Å ~study(john)∧lucky(john) 

Å∀X ~lucky(X)῀win(X,lottery) 

3.Standardize Variables 

Å∀X(~pass(X,ai_exam)῀~win(X,lottery))῀ happy(X) 

Å∀Y ~) study(Y)∧~lucky(Y))῀ ∀E pass(Y,E) 

Å ~study(john)∧lucky(john) 

Å∀Z ~lucky(Z)῀win(Z,lottery) 

4. Move all quantifiers to the left 

Å∀X(~pass(X,ai_exam)῀~win(X,lottery))῀ happy(X) 

Å∀Y ∀E ~) study(Y)∧~lucky(Y))῀ pass(Y,E) 

Å ~study(john)∧lucky(john) 

Å∀Z ~lucky(Z)῀win(Z,lottery) 

5.Remove ∃ ÅNothing to do here. 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
15 

6.Remove ∀ 

Å ~) pass(X,ai_exam) ῀ ~win(X,lottery))῀ happy(X) 

Å ~) study(Y)∧~lucky(Y)) ῀ pass(Y,E) 

Å ~study(john) ∧lucky(john) 

Å ~lucky(Z) ῀ win(Z,lottery) 

7. CNF 

Å ~pass(X,ai_exam)῀~win(X,lottery)῀ happy(X) 

Å ~) study(Y)∧~lucky(Y))῀ pass(Y,E) ſ (a∧b(῀c ſ c῀)a∧b) 

The second statement becomes: pass(Y,E)῀~study(Y)∧pass(Y,E)῀~lucky(Y) 

Å ~study(john)∧lucky(john) 

Å 8.Split ∧ 

Å ~pass(X,ai_exam)῀~win(X,lottery)῀ happy(X) 

Åpass(Y,E)῀~study(Y) 

Åpass(Y,E)῀~lucky(Y) 

Å ~study(john) 

Ålucky(john) 

Å ~lucky(Z)῀win(Z,lottery) 

9.Standardize Variables 

Å ~pass(X,ai_exam)῀~win(X,lottery)῀ happy(X) 

Åpass(Y,E)῀~study(Y) 

Åpass(M,G)῀~lucky(M) 

Å ~study(john) 

Ålucky(john) 

Å ~lucky(Z)῀win(Z,lottery)lucky(Z)῀win(Z,lottery) 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
16 

C.Add the negation of what is to be proved to the clause form. 

Å ~ happy(john). 

Add edit to the other six clauses and shown below: 
Å~pass(X,ai_exam)῀~win(X,lottery)῀ happy(X) 
Åpass(Y,E)῀~study(Y) 
Åpass(M,G)῀~lucky(M) 
Å ~study(john) 
Ålucky(john) 
Å ~lucky(Z)῀win(Z,lottery) 

Å ~ happy(john). 

D.Resolve the clauses to producing new clauses and producing a 

contradiction by generating the empty clause 

There are two types of resolution ,the first one is backward resolution  and the 

second is forward resolution . 

1.Backward Resolution 

 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
17 

2.Forward Resolution 

 

 

1.2 Network Representation 

1.2.1 Semantic Representation 

A semantic network is an alternative to predicate logic as a form of knowledge 

representation. The idea is that we can store our knowledge in the form of a graph, with 

nodes representing objects in the world and arcs representing relationships between those 

objects. A semantic network represents knowledge as a graph with nodes corresponding to 

facts or concepts and arcs to relations or associations between concepts. 

Example1, represent the following facts using a semantic network: 

 Emus are birds. 

 Typically birds fly and have wings. 

 Emus run. 

 

 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
18 

Example2, represent the following facts using a semantic network: 

Nona is a cat. Nona caught a bird. Nona is owned by Hiba. Nona is ginger in colour. Cats 

like cream. The cat sat on the mat. A cat is a mammal. A bird is an animal. All mammals are 

animals. Mammals have fur. 

 

 

 

 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
19 

Example 3 Computer has many parts like a CPU and the computer divided into two types, 

the first one is the mainframe and the second is the personal computer. Mainframe has a line 

printer with large sheet but the personal computer has a laser printer. IBM as example to the 

mainframe but PIII and PIV as examples to the personal computer 

 

 

Example 4: Layla told suha,she gave Selma a book, 

 

 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
20 

1.2.2Conceptual Representation 

A conceptual graph is a finite, connected, bipartite graph. The nodes of the graph are either 

concepts or conceptual relations. Conceptual graphs do not label arcs; instead, the conceptual 

relation nodes represent the relation between concepts. Because conceptual graphs are 

bipartite; concepts can be arcs to conceptual relations and vice versa. 

Examples, represent the following sentences using a conceptual graph: 

 The colour of the dog is brown. 

  

 

 

 Mary gave John the book. 

  

 

 

 The dog named Emma is black. 

 

 

 There are no pink dogs. 

 

 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
21 

 

 

 Tom believes that Jane likes pizza. 

 

 

 The red book is big. 

 

 

 There is a person called McGill, Lil and Nancy. 

  

 

 

 

 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
22 

WORKSHEET 1 

 

1. Convert the following sentences into Predicate logic form:  

John likes all kind of games. Football is game .chess is game too .anything anyone 

plays and is not killed by is games. Tom plays tennis and still alive .tom likes anything 

that john likes. Is John like chess? 

2. Given the following Predicate logic statements , prove ~ s(W): 

           (1) ∀X [ (∀Y s(Y) ∧v(X, Y)) ⇒((∃Z ~ t(X, Z)) ∧v(X, X)) ] 

            (2) ∀X∀Y s(Y) ⇒t(X,Y) ∧v(X,Y) 

3. Represent the following sentences using Conceptual Graph method: 

- John likes small cars. 

-Mary gave Tom red book. 

- John thinks that Mary gave the book to Tom. 

John thinks that Mary gave the book to Tom in the classroom. 

4.Represent the following sentences using a semantic network. 

Frosty is a snowman. A snowman is made of snow. Snow is frozen water. It is slippery 

and soft. Snow is cold. Ice is also cold. It is also frozen water, but unlike snow, which 

is soft, ice is hard. Ice is clear in color." 

 

5.  

p: "It is raining." 

q: "The ground is wet." 

 Determine the truth value of the statement: "If it is raining, then the ground is wet, 

or it is not raining." 

6. Represent the following sentences using a semantic network and conceptual graph  

Teachers and student is people. Teacher work in the university .they has lectures, 

subjects and good information .john is teacher .he teach artificial intelligence. 

Students learn in university .tom is student in computer sciences department 

.computer science is department in university.it consist of six branches 

SW,IS,AI,DS,NW and MM.  



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
23 

 

s  

1. Search Algorithms 

Search is an important aspect of AI. Search can be defined as a problem-solving 

technique that enumerates a problem space from an initial position in search of a goal 

position (or solution). The manner in which the problem space is searched is defined by 

the search algorithm or strategy. As search strategies offer different ways to enumerate the 

search space. Ideally, the search algorithm selected is one whose characteristics match 

that of the problem at hand. 

State Space Search 

State Space Search is a collection of several states with appropriate connections (links) 

between them. Any problem can be represented as such a space search to be solved by 

applying some rules with technical strategy according to the suitable intelligent search 

algorithm. To locate a solution, state space search entails methodically going through every 

potential state for an issue. This approach can be used to solve a variety of AI issues, 

including path finding, solving puzzles, playing games, and more. The fundamental concept 

is to visualize the issue as a graph with nodes standing in for states and edges for transitions. 

To provide a formal description of a problem must do the following operations: 

1. Define space search (state space) that contains all possible states. 

2. Specify one or more states within that space that describe possible situations from 

 

3. Specify a set of rules that describe the actions available. 

4. Specify one or more states that would be acceptable as solutions to the problem. These 

states are called goal states. 

5. Determine a suitable search strategy to reach the goal. 

 

 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
24 

 

Some common terms in the searching issues 

Å Search Tree: is a tree in which the root node is the start state and 

has a reachable set of children. 

Å Search Node: is a node in the search tree. 

Å Goal: is a state that an agent is trying to reach. 

Å Action: is something (operators, possible moves, rules) that an agent can 

choose to do. 

 Branching Factor: is the number of actions available to the agent 

 

Traveling Salesman Problem (TSP) 

The TSP concept depends on finding a path for a specified number of cities 

(visiting all cities only once and returning to the city that started with) where the distance 

of the path is optimized by finding the shortest path with minimized cost. 

 

Example: The below figure shows a full connected graph, (A,B,C,etc) are cites and 

the numbers associated with the links are the distances between the cities. Starting at A, 

find the shortest path through all the cities, visiting each city exactly once returning to A. 

 

 

 instance of traveling Salesman  

The complexity of exhaustive search in the traveling Salesman is (N-1)! , where N is the 

No. of cities in the graph. There are several techniques that reduce the search complexity: 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
25 

1- Branch and Bound Algorithm: Generate one path at a time, keeping track of the best 

circuit so far. Use the best circuit so far as a bound of future branches of the search. 

Figure below illustrate branch and bound algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B C D E A= 375 A B C 

E D A= 425 

A B D C E A= 474  

 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
26 

2. Nearest Neighbor Heuristic: At each stage of the circuit, go to the nearest unvisited city. 

This strategy reduces the complexity to N, so it is highly efficient, but it is not guaranteed to 

find the shortest path, as the following example: 

 

 

 

 

 

 

  

Distance of nearest neighbor path is A E D B C A=550 

Is not the shortest path, the comparatively high distance of arc (C, A) 

defeated the heuristic. 

 

2.  Search Techniques Types 

There are different types of searches used in artificial intelligence; They are commonly 

divided into three categories. One of them is uninformed(blind , the other is informed or 

Heuristic searches and Random searches 

1- Blind Search is a technique to find the goal without any additional 

information that helps to infer the goal, with this type there is no 

consideration with process time or memory capacity. 

2- Heuristic Search always has an evaluating function called the heuristic 

function which guides and controls the behavior of the search algorithm to 

reach the goal with minimum cost, time and memory space. 

3- Random Search is a special type of search in which it begins with the 

initial population that is generated randomly and the search algorithm will be 

the responsible for generating the new population based on some operations 

according to a special type function called fitness function. 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
27 

2.1 Blind Search 

Blind Search, also known as Uninformed Search, refers to search algorithms that explore 

the problem space without any domain-specific knowledge (heuristics) to guide the search. 

These algorithms only rely on the problem's structure and the state space to find a solution. 

They do not have any additional information about how close a state is to the goal state.  

In blind search, the algorithm expands nodes without any sense of direction or focus towards 

the goal. As a result, it may end up exploring a large portion of the search space, which can 

be inefficient for large or complex problems. 

 

 There are several types of blind search algorithms, each with different strategies for 

exploring the state space. Below are the most commonly used ones: 

 

2.1.1 Depth  First  Search Algorithm 

In a depth-first search, when a state is examined, all of its children and their descendants are 

examined before any of its siblings. The depth- first search goes deeper into the search space 

whenever this is possible only when no further descendants of a state can found owe it. 

 

 

 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
28 

 

For Example : 

Start State: A  

Goal State: U 

 

 

SOL: 

 

 

Final Path:  

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
29 

Depth  First  Search Algorithm 

Begin 

Open: = [start]; 

Closed: = [ ]; 

 

Remove leftmost state from open, call it x; If x is a goal then return (success) 

Else begin 

Generate children of x; Put x on closed; 

Eliminate children of x on open or closed; put remaining children on left end of open End; 

Return (failure) End 

 

2.1.2 Breadth  First  Search Algorithm 

In breadth-first search, when a state (node) is examined, all of its siblings are examined 

before any of its children. The space is searched level-by-level, proceeding all the way across 

one level before doing down to the next level. 

 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
30 

For Example Start State: A Goal State: U  

 

[open] [closed] 

 

 [A] [] 

[B,C,D] [A] 

[C,D,E,F] [B,A] 

[D,E,F,G,H] [C,B,A] 

[E,F,G,H,I,J] [D,C,B,A]   

[F,G,H,I,J,K,L] [E,D,C,B,A]  

[G,H,I,J,K,L,M] [F,E,D,C,B,A] 

[H,I,J,K,L,M,N] [G,F,E,D,C,B,A] 

[I,J,K,L,M,N,O,P] [H,G,F,E,D,C,B,A] 

[J,K,L,M,N,O,P,Q] [I,H,G,F,E,D,C,B,A] 

[K,L,M,N,O,P,Q,R] [J,I,H,G,F,E,D,C,B,A] 

[L,M,N,O,P,Q,R,S] [K,J,I,H,G,F,E,D,C,B,A]   

  

[M,N,O,P,Q,R,S,T] [L,K,J,I,H,G,F,E,D,C,B,A] 

[N,O,P,Q,R,S,T] [M,L,K,J,I,H,G,F,E,D,C,B,A] 

[O,P,Q,R,S,T] [N,M,L,K,J,I,H,G,F,E,D,C,B,A] 

[P,Q, R,S,T] [O, N,M,L,K,J,I,H,G,F,E,D,C,B,A] 

[Q, R,S,T,U] [P, O, N,M,L,K,J,I,H,G,F,E,D,C,B,A] 

[R,S,T,U] [Q, P, O, N,M,L,K,J,I,H,G,F,E,D,C,B,A] 

[S,T,U] [R,Q, P, O, N,M,L,K,J,I,H,G,F,E,D,C,B,A] 

[T,U] [S, R,Q, P, O, N,M,L,K,J,I,H,G,F,E,D,C,B,A] 

[U] Goal [T, S, R,Q, P, O, N,M,L,K,J,I,H,G,F,E,D,C,B,A] 

[] [U,T, S, R,Q, P, O, N,M,L,K,J,I,H,G,F,E,D,C,B,A] 

 

Final-Path: 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
31 

 

Breadth ï First ï Search Algorithm 

Begin 

 

Remove left most state from open, call it x; If x is a goal then return (success) 

Else 

Begin 

Generate children of x; Put x on closed; 

Eliminate children of x on open or closed; Put remaining children on right end of open End 

End 

Return (failure) End. 

 

 

2.2 heuristic Search 

The heuristic search strategies (also called Informed Search). A heuristic is a method that 

might not always find the best solution but is guaranteed to find a good solution in 

reasonable time. By sacrificing completeness it increases efficiency. Heuristic search is 

useful in solving problems which:- 

 Could not be solved any other way. 

 Solution takes an infinite time or very long time to compute. 

There are several methods for heuristic search, from these are:- 

1- Hill Climbing. 

2- Best-First Search. 

3- A algorithm. 

4- A* algorithm. 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
32 

 

2.2.1 Hill Climbing 

 

track of the one state you are considering, and the path that got you there from 
the initial state. At every state, you choose the state leads you closer to the goal 
according to the heuristic estimate, and continue from there. 

Hill Climbing

top of a hill, and you go in the direction that is up from wherever you are. This 
technique often works, but since it only uses local information. 

 

Example 1: Search for R with local minima from A 

 

 
 

 

Sol: 

Open close P 

[A] [] A 

[D4,C5,B6] [A] D4 

[H3,Q5,P7] [D4,A] H3 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
33 

[U2,O6] [H3,D4,A] U2 

[R1] [U2,H3,D4,A] R1 

[] [R1,U2,H3,D4,A]  

Final Path:  

 

Example 2: Search for R with local maxima from A. 

 

 

 
 

 

Sol: 

Open close P 

[A] [] A 

[C3,B2,D1] [A] C3 

[G4,F2] [C3,A] G4 

[N5, M4] [G4,C3,A] N5 

[R6,S4] [N5,G4,C3,A] R6 

[S4] [R6,N5,G4,C3,A]  

Final Path:  



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
34 

 

Hill Climbing Search algorithm  

 

Begin 

Open: = [Initial state];        %initialize 

Closed: = [ ]; 

CS= initial state; 

Path= [initial state]; 

Stop= FALSE; 

While open <> [ ] do          %states remain 

Begin 

    If CS=goal then return path 

              Generate all children of CS and put them into open;  

   If open= [ ] then 

            Stop= TRUE 

   Else Begin X= CS; 

  For each state Y in open do Begin 

          Compute the heuristic value of y (h(Y)); 

  If Y is better than X then 

         X=Y 

 End; 

 If X is better than CS then 

     CS=X 

 Else 

    Stop= TRUE; 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
35 

 End; 

 End; 

Return (FAIL);                             %open is empty 

End. 

 

Hill Climbing Problems 

Hill climbing may fail due to one or more of the following reasons:- 

 

1. A local maxima : Is a state that is better than all of its neighbors but is not 
better than some other states. 

 
 

 
 

2.  Plateau: Is a flat area of the search space in which a number of states have the same 

best direction in which to move. 

 

 

 

3. A ridge: Is an area of the search space that is higher than surrounding areas, but that 

cannot be traversed by a single move in any direction. 

 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
36 

 

 

 

 

2.2.2 Best-First Search 

       Which 

into a single method. 

The actual operation of the algorithm is very simple. It proceeds in steps, expanding one 

node at each step, until it generates a node that corresponds to a goal state. At each step, it 

picks the most promising of the nodes that have so far been generated but not expanded. It 

generates the successors of the chosen node, applies the heuristic function to them, and adds 

them to the list of open nodes, after checking to see if any of them have been generated 

before. By doing this check, we can guarantee that each node only appears once in the graph, 

although many nodes may point to it as a successors. Then the next step begins. 

For each state f(n) = h(n) where h(n) is the heuristic function that computes the heuristic 

value for each state n. 

 

 

 

 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
37 

For example: 

 

 

 

 

Sol: 

 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
38 

 

 Best-First Search algoritm  

Begin 

Open: = [Initial state];           %initialize 

Closed: = [ ]; 

While open <> [ ] do          %states remain 

Begin 

Remove leftmost state from open, call it X; 

If X = goal then return the path from initial to X 

Else  

   Begin 

Generate children of X; 

 For each child of X do 

 Case 

The child is not on open or closed;  

Begin 

  Assign the child a heuristic value;  

  Add the child to open 

End; 

The child is already on open; 

If the child was reached by a shorter path Then give the state on open the shorter path The 

child is already on closed; 

If the child was reached by a shorter path then 

   Begin 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
39 

   Remove the state from closed;  

  Add the child to open 

End; 

End;                                                       %case 

Put X on closed; 

Re-order states on open by heuristic merit (best leftmost) 

 End; 

Return FAIL                                     %open is empty 

End. 

 

2.2.3 A-search algorithm.  

A algorithm is simply define as a best first search plus specific function. This 

specific function represent the actual distance (levels) between the initial state and 

the current state and is denoted by g(n). A notice will be mentioned here that the 

same steps that are used in the best first search are used in an A algorithm but in 

addition to the g(n) as follow; 

f(n) = h(n) + g(n) where h(n) is the heuristic function that computes the 

heuristic value for each state n, and g(n) is the generation function that 

computes the actual distance (levels) between initial state to current state n. 

 

 

 

 

 

 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
40 

 

Example: 

 

 

 

Find the path from a to k using A-search algorithm 

 

 

 

 

Sol: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
41 

 

2.2.4  algorithm.  

A* algorithm is simply define as a best first search plus specific function. 

This specific function represent the actual distance (levels) between the current 

state and the goal state and is denoted by g(n). 

f(n) = h(n) + g(n) where h(n) is the heuristic function that computes the 

heuristic value for each state n, and g(n) is the generation function that 

computes the actual distance (levels) between current state n to goal state. 

 

 A* Search Algorithm 

Begin 

Open: = [Initial state]; %initialize 

Closed: = [ ]; 

While open <> [ ] do %states remain 

Begin 

Remove leftmost state from open, call it X; 

If X = goal then return the path from initial to X 

Else Begin 

Generate children of X; For each child of X do Begin 

Add the distance between current state to goal state to the heuristic value for each child      

 %make the g(n) 

Case 

The child is not on open or closed; 

Begin 

Assign the child a heuristic value; Add the child to open 

End; 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
42 

The child is already on open; 

If the child was reached by a shorter path Then give the state on open the shorter path The 

child is already on closed; 

If the child was reached by a shorter path then Begin 

Remove the state from closed; Add the child to open 

End; 

End;                      %case 

Put X on closed; 

Re-order states on open by heuristic merit (best leftmost) End; 

Return FAIL %open is empty 

End. 

 

Example: 

 

Find the path from a to k using A*-search algorithm 

 

 

 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
43 

Sol: 

Open Closed 

 

[a] [ ] 

[b4, c3, d5] [a] 

[b4+4, c3+2, d5+2] [a] 

[c5, d7, b8] [a] 

[f5, e4, d7, b8] [a, c5] 

[f5+3, e4+1, d7, b8] [a, c5] 

[e5, d7, f8, b8] [a, c5] 

[h2, k2, d7, f8, b8] [a, c5, e5] 

[h2+2, k2+0, d7, f8, b8] [a, c5, e5] 

[k2, h4, d7, f8, b8] [a, c5, e5] 

 

Stop, the goal ( k) is found 

 

A Comparison between Heuristic Search and Blind Search 
 

 

 Blind Search Heuristic Search 

1 
In term of complexity: it is less 
complex. 

In term of complexity: it is more 
complex. 

 

2 

In term of memory capacity: 

usually need more memory 
capacity. 

In term of memory capacity: usually 

need less memory capacity. 

 

3 

In term of run time consuming: 

usually consumes more run 
time. 

In term of run time consuming: 

usually consumes less run time. 

 

4 

Usually does not find the 

optimal solution path. 

Usually finds the optimal solution 

path or nearly the optimal solution 
path. 

5 
It does not have a guider in 
search behavior. 

It has a guider in search behavior 
(Heuristic Function). 

6 
It is not efficient in game 
playing. 

It is efficient in game playing such as 
Minmax or Alpha-Beta procedures. 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
44 

Using Heuristic in Games 

The sliding-tile puzzle consists of three black tiles, three white tiles, and 

an empty space in the configuration shown in Figure (1). The puzzle has 

two legal moves with associated costs: 

 A tile may move into an adjacent empty location. This has a cost of 1. 

 A tile can hop over one or two other tiles into the empty' position, 

this has a cost equal to the number of tiles jumped over. 

The goal is to have all the white tiles to the left of all the black tiles. The 

position of the blank is not important. 

a. Analyze the state space with respect to complexity and looping. 

b. Propose a heuristic for solving this problem and analyze it. 
 

 

 

 
 the sliding block puzzle 

 

 

The 8-puzzle Problem 

We now evaluate the performance of several different heuristics for 

solving the 8-puzzle.  Shows a start and goal state for the 8- puzzle, along 

with the first three states generated in the search. 

The simplest heuristic counts the tiles out of place in each state when it is 

compared with the goal. This is intuitively appealing, because it would 

seem that, all else being equal; the state that had fewest tiles out of place 

is probably closer to the desired goal and would be the best to examine 

next. However, this heuristic does not use all of the information available 

in a board configuration; because it does not take into account the 

distance the tiles must be moved. 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
45 

A "better" heuristic would sum all the distances by which the tiles are out 

of place, one for each square a tile must be moved to reach its position in 

the goal state. Both of these heuristics can be criticized for failing to 

acknowledge the difficulty of tile reversals. That is, if two tiles are next to 

each other and the goal requires their being in apposite locations, it takes 

(many) more than two moves to put them back in place, as the tiles must 

"go around" each other  
 

 The start state, first moves, and goal state for an example 8-puzzle. 
 

 

 

An 8-puzzle state with a goal and two reversals: 1 and 2, 5 and 6. 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
46 

For the 8-puzzle Grid 

There is one center location. There are 

four corners location. There are four sides 

location. 

Possible Moves 

When the space position is in the center of the grid, possible moves = 4. 

When the space position is in the corner of the grid, possible moves = 2 

When the space position is in the side of the grid, possible moves = 3. 

 

 

the 8-puzzle problem solving with heuristic values 
 

 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
47 

 

 

the 8-puzzle problem solved by A-search algorithm 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
48 

Another Examples of 8-Puzzle Problem 
 

 

 

 

 

 

 

 

 

 



INTELLIGENT SEARCH TECHNIQUES  Rasha M. Mohsin 

 

 
49 

 R I 

A O O 

P L G 

 

A  I 

P R O 

L O G 

 

WORKSHEET 2  

 

 

1. Consider the following 8-puzzle problem then draw the problem state space to find 

the goal using A-search algorithm (or Best first or Hill climbing) then list the solution 

path. 

 

I.S G.S 

 



Intelligent Search Techniques  Rasha M. Mohsin 
 

50 | P a g e  
 
 

 

Tic  Tac  Toe Game 

 

 
 

 

The complexity of the search space is 9! 

9! =9*8*7*  

Therefore it is necessary to implement two conditions: 

1. Problem reduction 

2. Guarantee the solution 

 

 



Intelligent Search Techniques  Rasha M. Mohsin 
 

51 | P a g e  
 
 

 
 

 

 

 

 
 

 

 



Intelligent Search Techniques  Rasha M. Mohsin 
 

52 | P a g e  
 
 

 

 

Part 3:  

 
3. control strategy: 

 
         A control strategy is a plan or method for managing and directing actions or 

processes to achieve specific goals. In the context of computer science and 

artificial intelligence, control strategies are used to guide the decision-making 

process in systems, such as expert systems or inference engines. They help in 

determining the order in which rules or operations are applied to reach a 

conclusion or solve a problem. 

 Backward Chaining: Starts with a goal and works backward to determine if 

the available data support that goal. It's like having the final picture of a 

puzzle and finding the pieces that fit to recreate it. 

 Forward Chaining: Starts with known data and applies rules to derive new 

information until the goal is reached. It's like starting with the pieces of a 

puzzle and putting them together until the picture is complete. 

Backward Chaining: 

 

 



Intelligent Search Techniques  Rasha M. Mohsin 
 

53 | P a g e  
 
 

 

 

 

 
 



Intelligent Search Techniques  Rasha M. Mohsin 
 

54 | P a g e  
 
 

 
 

Classification Program with Backward Chaining (Bird, Beast, Fish) 
# Database 

db_confirm = set() 

db_denied = set() 

 

def confirm(X, Y): 

    if (X, Y) in db_confirm: 

        return True 

    if (X, Y) in db_denied: 

        return False 

    return check(X, Y) 

 

def denied(X, Y): 

    return (X, Y) in db_denied 

 

def check(X, Y): 

    reply = input(f"{X} it {Y}?\n") 

    if reply.lower() == "yes": 

        db_confirm.add((X, Y)) 

        return True 

    else: 

        db_denied.add((X, Y)) 

        return False 



Intelligent Search Techniques  Rasha M. Mohsin 
 

55 | P a g e  
 
 

 

def it_is(category): 

    if category == "bird": 

        return confirm("has", "feathers") and confirm("does", "lay_eggs") 

    elif category == "fish": 

        return confirm("does", "swim") and confirm("has", "fins") 

    elif category == "mammal": 

        return confirm("has", "hair") or confirm("does", "give_milk") 

    elif category == "ungulate": 

        return it_is("mammal") and confirm("has", "hooves") and confirm("does", 

"chew_cud") 

    elif category == "carnivorous": 

        return confirm("has", "pointed_teeth") or confirm("does", "eat_meat") 

    return False 

 

def identify(): 

    if it_is("ungulate"): 

        if confirm("has", "long_neck") and confirm("has", "long_legs") and 

confirm("has", "dark_spots"): 

            return "giraffe" 

        elif confirm("has", "black_strips"): 

            return "zebra" 

    elif it_is("mammal") and it_is("carnivorous"): 

        if confirm("has", "tawny_color"): 

            if confirm("has", "black_spots"): 



Intelligent Search Techniques  Rasha M. Mohsin 
 

56 | P a g e  
 
 

                return "cheetah" 

            elif confirm("has", "black_strips"): 

                return "tiger" 

    elif it_is("bird"): 

        if confirm("does", "fly") and confirm("is", "carnivorous"): 

            if confirm("has", "use_as_national_symbol"): 

                return "eagle" 

        elif not confirm("does", "fly"): 

            if confirm("has", "long_neck") and confirm("has", "long_legs"): 

                return "ostrich" 

            elif confirm("does", "swim") and confirm("has", 

"black_and_white_color"): 

                return "penguin" 

    elif it_is("mammal") and not it_is("carnivorous") and confirm("does", "swim") 

and confirm("has", "huge_size"): 

        return "blue whale" 

    elif not it_is("mammal") and it_is("carnivorous") and confirm("does", "swim") 

and confirm("has", "tentacles"): 

        return "octopus" 

    elif it_is("fish") and confirm("has", "small_size") and confirm("has", 

"use_in_sandwiches"): 

        return "sardine" 

    return "unknown" 

 

def guess_animal(): 



Intelligent Search Techniques  Rasha M. Mohsin 
 

57 | P a g e  
 
 

    animal = identify() 

    print(f"Your animal is a(n) {animal}") 

 

# Example usage 

guess_animal() 

 

 

Classification Program with Forward Chaining (Bird, Beast, Fish)  
 

 

db_confirm = set() 

db_denied = set() 

 

def confirm(X, Y): 

    if (X, Y) in db_confirm: 

        return True 

    if (X, Y) in db_denied: 

        return False 

    return check(X, Y) 

 

def denied(X, Y): 

    return (X, Y) in db_denied 

 

def check(X, Y): 

    reply = input(f"{X} it {Y}?\n") 

    if reply.lower() == "yes": 



Intelligent Search Techniques  Rasha M. Mohsin 
 

58 | P a g e  
 
 

        db_confirm.add((X, Y)) 

        return True 

    else: 

        db_denied.add((X, Y)) 

        return False 

 

def it_is(category): 

    if category == "bird": 

        return confirm("has", "feathers") and confirm("does", "lay_eggs") 

    elif category == "fish": 

        return confirm("does", "swim") and confirm("has", "fins") 

    elif category == "mammal": 

        return confirm("has", "hair") or confirm("does", "give_milk") 

    elif category == "ungulate": 

        return it_is("mammal") and confirm("has", "hooves") and confirm("does", 

"chew_cud") 

    elif category == "carnivorous": 

        return confirm("has", "pointed_teeth") or confirm("does", "eat_meat") 

    return False 

 

def find_animal(): 

    if test1("m"): 

        if test2("m", "c"): 

            if test3("m", "c", "s"): 



Intelligent Search Techniques  Rasha M. Mohsin 
 

59 | P a g e  
 
 

                return "tiger" 

            if test3("m", "c", "n"): 

                return "cheetah" 

        if test2("m", "n"): 

            if test3("m", "n", "l"): 

                return "unknown" 

            if test3("m", "n", "n"): 

                return "blue whale" 

    if test1("n"): 

        if test2("n", "w"): 

            if test3("n", "w", "t"): 

                return "octopus" 

            if test3("n", "w", "n"): 

                return "unknown" 

        if test2("n", "n"): 

            if test3("n", "n", "f"): 

                return "eagle" 

            if test3("n", "n", "n"): 

                return "ostrich" 

    return "unknown" 

 

def test1(X): 

    if X == "m": 

        return it_is("mammal") 



Intelligent Search Techniques  Rasha M. Mohsin 
 

60 | P a g e  
 
 

    return True 

 

def test2(X, Y): 

    if X == "m" and Y == "c": 

        return it_is("carnivorous") 

    if X == "n" and Y == "w": 

        return confirm("does", "swim") 

    return True 

 

def test3(X, Y, Z): 

    if X == "m" and Y == "c" and Z == "s": 

        return confirm("has", "stripes") 

    if X == "n" and Y == "w" and Z == "t": 

        return confirm("has", "tentacles") 

    if X == "n" and Y == "n" and Z == "f": 

        return confirm("does", "fly") 

    return True 

 

def guess_animal(): 

    animal = find_animal() 

    print(f"Your animal is a(n) {animal}") 

 

guess_animal() 


