

4th Class

 2024-2025

Window Programming2

2ة النوافذجبرم

 أ.د. يسرى حسين

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-1

Although menus are an important part of nearly every Windows application, they cannot be

used to handle all types of user responses. For example, it would be difficult to use a menu to

input the time or date. To handle all types of input, Windows provides the dialog box. A dialog

box is a special type of window that provides a flexible means by which the user can interact

with your application. In general, dialog boxes allow the user to select or enter information

that would be difficult or impossible to enter using a menu. In this lecture, you will learn

how to create and manage a dialog box.

Also discussed in this lecture are three of Windows' standard controls. Within a dialog

box, interaction with the user is performed through a control. In a sense, a dialog box is

simply a container that holds various control elements.

As a means of illustrating the dialog box and several controls, a very simple database

application will be developed. The database contains the titles of several books along with the

names of their authors, publishers, and copyright dates. The dialog box created in this lecture

will allow you to select a title and obtain information about it. While the database example is,

necessarily, quite simple, it will give you the flavor of how a real application can effectively

use a dialog box.

Dialog Boxes Use Controls

Windows supports several standard controls, including push buttons, check boxes, radio

buttons, list boxes, edit boxes, combo boxes, scroll bars, and static controls. (Windows also

supports several enhanced controls called common controls, which are discussed later in this

next lecture.) In the course of explaining how to use dialog boxes, the examples in this lecture

illustrate three of these controls: the push button, the list box, and the edit box. In the next

lecture, other controls will be examined.

A push button is a control that the user "pushes on" to activate some response. You have

already been using push buttons in message boxes. For example, the OK button that we have

been using in most message boxes is a push button. A list box displays a list of items from

which the user selects one (or more). List boxes are commonly used to display things such as

file names.

An edit box allows the user to enter a string. Edit boxes provide all necessary text editing

features.

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-2

 Therefore, to input a string, your program simply displays an edit box and waits until the

user has finished typing in the string. Typically, a combo box is a combination of a list box

and an edit box.

It is important to understand that controls both generate messages (when accessed by the

user) and receive messages (from your application). A message generated by a control

indicates what type of interaction the user has had with the control. A message sent to the

control is essentially an instruction to which the control must respond.

Modal vs. Modeless Dialog Boxes

There are two types of dialog boxes: modal and modeless. The most common dialog boxes are

modal. A modal dialog box demands a response from the user before the program will

continue. When a modal dialog box is active, the user cannot refocus input to another part of

the application without first closing the dialog box. More precisely, the owner window of a

modal dialog box is deactivated until the dialog box is closed. (The owner window is usually

the one that activates the dialog box.)

A modeless dialog box does not prevent other parts of the program from being used. That is,

it does not need to be closed before input can be refocused to another part of the program.

The owner window of a modeless dialog box remains active. In essence, modeless dialog

boxes are more independent than modal ones.

We will examine modal dialog boxes first, since they are the most common. A modeless

dialog box example concludes this lecture.

Receiving Dialog Box Messages

A dialog box is a type of window. Events that occur within it are sent to your program using

the same message-passing mechanism that the main window uses. However, dialog box

messages are not sent to your program's main window function. Instead, each dialog box

that you define will need, its own window function, which is generally called a dialog

function or dialog procedure. This function must have this prototype. (Of course, the name

of the function may be anything that you like.)

BOOL CALLBACK DFunc(HWND Hwnd, UINT message, WPARAM wParam,

LPARAM lParam);

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-3

As you can see, a dialog function receives the same parameters as your program's main

window function. However, it differs from the main window function in that it returns a true

or false result. Like your program's main window function, the dialog box window function

will receive many messages. If it processes a message, then it must return true. If it does not

respond to a message, it must return false.

In general, each control within a dialog box will be given its own resource ID. Each time that

control is accessed by the user, a WM_COMMAND message will be sent to the dialog

function, indicating the ID of the control and the type of action the user has taken. The

function will then decode the message and take appropriate actions. This process parallels

the way messages are decoded by your program's main window function.

Activating a Dialog Box

To activate a modal dialog box (that is, to cause it to be displayed) you must call the

DialogBox() API function, whose prototype is shown here:

int DialogBox(HINSTANCE hThisInst, LPCSTR lpName, HWND hwnd,

 DLGPROC lpDFunc);

Here, hThisInst is a handle to the current

 application that is passed to your program in the instance parameter to WinMain(). The

name of the dialog box as defined in the resource file is pointed to by lpName. The handle to

the window that owns the dialog box is passed in hwnd. (This is typically the handle of the

window that calls DialogBox().) The lpDFunc parameter contains a pointer to the dialog

function described in the preceding section. If DialogBox() fails, it returns -1.Otherwise,

the return value is that specified by EndDialog() ,discussed next.

Deactivating a Dialog Box

To deactivate (that is, destroy and remove from the screen) a modal dialog box, use

EndDialog(). It has this prototype: BOOL EndDialog(HWND hdwnd, int nStatus);

Here, hdwnd is the handle to the dialog box and nStatus is a status code returned by the

DialogBox() function. (The value of nStatus may be ignored, if it is not relevant to your

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-4

program.) This function returns nonzero if successful and zero otherwise. (In normal

situations, the function is successful.)

Creating a Simple Dialog Box

To illustrate the basic dialog box concepts, we will begin with a simple dialog box. This

dialog box will contain four push buttons called Author, Publisher, Copyright, and Cancel.

When either the Author, Publisher, or Copyright button is pressed, it will activate a message

box indicating the choice selected. (Later these push buttons will be used to obtain

information from the database. For now, the message boxes are simply placeholders.) The

dialog box will be removed from the screen when the Cancel button is pressed.

The Dialog Box Resource File

A dialog box is another resource that is contained in your program's resource file. Before

developing a program that uses a dialog box, you will need a resource file that specifies one.

Although it is possible to specify the contents of a dialog box using a text editor and enter its

specifications as you do when creating a menu, this is seldom done. Instead, most

programmers use a dialog editor. The main reason for this is that dialog box definitions

involve the positioning of the various controls inside the dialog box, which is best done

interactively. However, since the complete .RC files for the examples in this lecture are

supplied in their text form, you should simply enter them as text. Just remember that when

creating your own dialog boxes, you will want to use a dialog editor.

Dialog boxes are defined within your program's resource file using the DIALOG statement.

Its general form is shown here:

Dialog-name DIALOG [DISCARDABLE] X, Y, Width, Height

 Features

{

 Dialog-items

}

The Dialog-name is the name of the dialog box. The box's upper left corner will be at X, Y and

the box will have the dimensions specified by Width and Height. If the box may be removed

from memory when not in use, then specify it as DISCARDABLE. One or more optional

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-5

features of the dialog box may be specified. As you will see, two of these are the caption and

the style of the box. The Dialog-items are the controls that comprise the dialog box.

The following resource file defines the dialog box that will be used by the first example

program. It includes a menu that is used to activate the dialog box, the menu accelerator keys,

and then the dialog box itself. You should enter it into your computer at this time, calling it

DIALOG.RC.

; Sample dialog box and menu resource file.

#include <windows.h>

#include "dialog.h"

MyMenu MENU

{POPUP "&Dialog" {MENUITEM "&Dialog\tF2", IDM_DIALOG

 MENUITEM "&Exit\tF3", IDM_EXIT }

MENUITEM "&Help", IDM_HELP }

MyMenu ACCELERATORS

 { VK_F2, IDM_DIALOG, VIRTKEY

 VK_F3, IDM_EXIT, VIRTKEY

 VK_F1, IDM_HELP, VIRTKEY }

MyDB DIALOG 10, 10, 210, 110

CAPTION "Books Dialog Box"

STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU

{ DEFPUSHBUTTON "Author", IDD_AUTHOR, 11, 10, 36, 14,

WS_CHILD | WS_VISIBLE | WS_TABSTOP

 PUSHBUTTON "Publisher", IDD_PUBLISHER, 11, 34, 36, 14,

 WS_CHILD | WS_VISIBLE | WS_TABSTOP

 PUSHBUTTON "Copyright", IDD_COPYRIGHT, 11, 58, 36, 14,

WS_CHILD | WS_VISIBLE | WS_TABSTOP

 PUSHBUTTON "Cancel", IDCANCEL, 11, 82, 36, 16

 WS_CHILD | WS_VISIBLE | WS_TABSTOP }

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-6

This defines a dialog box called MyDB that has its upper left corner at location 10, 10. Its width

is 210 and its height is 110. The string after CAPTION becomes the title of the dialog box. The

STYLE statement determines what type of dialog box is created. Some common style values,

including those used in this lecture, are shown in Table 7-1. You can OR together the values

that are appropriate for the style of dialog box that desire. These style values may also be used

by other controls.

Value Meaning

DS_MODALFRAME

Dialog box has a modal frame. This style can be used with either modal or

modeless dialog boxes.

WS_BORDER

Include a border.

WS_CAPTION

Include title bar.

WS_CH1LD

Create as child window.

WS_POPUP

Create as pop-up window.

WS_MAXIMIZEBOX

Include maximize box.

WS_MINIMIZEBOX

Include minimize box.

WS_SYSMENU

Include system menu.

WSJTABSTOP

Control may be tabbed to.

WS_VISIBLE

Box is visible when activated.

Within the MyDB definition are defined four push buttons. The first is the default push button.

This button is automatically highlighted when the dialog box is first displayed. The general

form of a push button declaration is shown here:

PUSHBUTTON "string", PBID, X, Y, Width, Height [, Style]

Here, string is the text that will be shown inside the push button. PDID is the value associated

with the push button. It is this value that is returned to your program when this button is

pushed. The button's upper left corner will be at X, Y and the button will have the dimensions

specified by Width and Height. Style determines the exact nature of the push button. To define a

default push button use the DEFPUSHBUTTON statement. It has the same parameters as the

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-7

regular push buttons.

The header file DIALOG.H, which is also used by the example program, is shown here:

#define IDM_DIALOG 100

#define IDM_EXIT 101

#define IDM_HELP 102

#define IDD_AUTHOR 200

#define IDD_PUBLISHER 201

#define IDD_COPYRIGHT 202 Enter this file now.

The Dialog Box Window Function

As stated earlier, events that occur within a dialog box are passed to the window function

associated with that dialog box and not to your program's main window function. The

following dialog box window function responds to the events that occur within the MyDB

dialog box.

/* A simple dialog function. */

BOOL CALLBACK DialogFunc(HWND hdwnd, UINT message, WPARAM wParam,

LPARAM lParam)

{switch(message)

 { case WM_COMMAND:

 switch(LOWORD(wParam))

 {case IDCANCEL: EndDialog(hdwnd, 0); return 1;

 case IDD_COPYRIGHT: MessageBox(hdwnd, "Copyright", "Copyright",

MB_OK); return 1;

 case IDD_AUTHOR: MessageBox(hdwnd, "Author", "Author", MB_OK); return 1;

 case IDD_PUBLISHER: MessageBox(hdwnd, "Publisher", "Publisher",

MB_OK);return1; }

 } return 0;}

Each time a control within the dialog box is accessed, a WM_COMMAND message is sent

to DialgFunc(), and LOWORD(wParam) contains the ID of the control affected.

DialogFunc() processes the four messages that can be generated by the box. If the user

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-8

presses Cancel, then IDCANCEL is sent, causing the dialog box to be closed using a call to

the API function EndDialog(). (IDCANCEL is a standard ID defined by including

WINDOWS.H.) Pressing either of the other three buttons causes a message box to be

displayed that confirms the selection. As mentioned, these buttons will be used by later

examples to display information from the database.

A First Dialog Box Sample Program

Here is the entire dialog box example. When the program begins execution, only the top-

level menu is displayed on the menu bar. By selecting Dialog, the user causes the dialog

box to be displayed. Once the dialog box is displayed, selecting a push button causes the

appropriate response. A sample screen is shown in Figure 6-2. Notice that the books

database is included in this program, but is not used. It will be used by subsequent examples.

/* Demonstrate a modal dialog box. */

#include <windows.h>

#include <string.h>

#include <stdio.h>

#include "dialog.h"

#define NUMBOOKS 7

LRESULT CALLBACK WindowFunc(HWND, UINT, WPARAM, LPARAM);

BOOL CALLBACK DialogFunc(HWND, UINT, WPARAM, LPARAM);

char szWinName[] = "MyWin"; /* name of window class */ HINSTANCE hInst;

/* books database */

struct booksTag {char title[40];

 unsigned copyright;

 char author[40];

 char publisher[40];

 } books[NUMBOOKS] =

{{"C: The Complete Reference", 1995,"Herbert Schildt", "Osborne/McGraw-Hill"},

{"MFC Programming from the Ground Up", 1996, "Herbert Schildt", "Osborne/McGraw-Hill"},

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-9

{"Java: The Complete Reference", 1997, "Naughton and Schildt", "Osborne/McGraw-Hill"},

{"Design and Evolution of C++", 1994, "Bjarne Stroustrup", "Addison-Wesley"},

{"Inside OLE", 1995, "Kraig Brockschmidt", "Microsoft Press"},

{"HTML Sourcebook", 1996, "lan S. Graham", "John Wiley & Sons"},

{"Standard C++ Library", 1995, "P. J. Plauger", "Prentice-Hall"}};

int WINAPI WinMain(HINSTANCE hThisInst, HINSTANCE hPrevInst, LPSTR IpszArgs, int

nWinMode) {HWND hwnd; MSG msg; WNDCLASSEX wc1; HANDLE hAccel;

wc1.cbSize = sizeof(WNDCLASSEX);wc1.hlnstance = hThisInst;

wc1.lpszClassName = szWinName; wc1.lpfnWndProc = WindowFunc; wc1.style = 0;

wc1.hIcon = LoadIcon(NULL, IDI_APPLICATION);

wc1.hIconSm = LoadIcon(NULL, IDI_WINLOGO);

wc1.hCursor = LoadCursor(NULL, IDC_ARROW); wc1.lpszMenuName = "MyMenu";

wc1.ClsExtra=0; wc1.cbWndExtra=0; wc1.hbrBackground = GetStockObject(WHITE_BRUSH);

if(!RegisterClassEx(&wc1)) return 0;

hwnd=CreateWindow(szWinName, "Demonstrate Dialog Boxes",

wS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT,

CW_USEDEFAULT, CW_USEDEFAULT, HWND_DESKTOP, NULL, hThisInst, NULL);

hInst = hThisInst; /* save the current instance handle */

/* load accelerators */ hAccel = LoadAccelerators (hThisInst, "MyMenu");

/* Display the window. */ ShowWindow(hwnd, nWinMode) ; UpdateWindow(hwnd) ;

while (GetMessage(&msg, NULL, 0, 0))

{ if (!TranslateAccelerator (hwnd, hAccel, &msg))

{TranslateMessage(&msg) ; DispatchMes sage (&msg); }} return msg.wParam; }

/* This function is called by Windows and is passedmessages from the message queue. */

 LRESULT CALLBACK WindowFunc (HWND hwnd, UINT message,

 WPARAM wParam, LPARAM lParam) {int response;

switch (message) { case WM_COMMAND:

switch (LOWORD (wParam)) {

 case IDM_DIALOG: DialogBox(hInst, "MyDB" , hwnd, (DLGPROC) DialogFunc) break;

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-10

 case IDM_EXIT: response=MessageBox(hwnd,"Quit the Program?","Exit",MB_YESNO) ;

 if (response == IDYES) PostQuitMessage (0) ; break;

 case IDM_HELP: MessageBox(hwnd, "No Help", "Help", MB_OK) ; break; } break;

case WM_DESTROY: /* terminate the program */ PostQuitMessage (0) ; break;

default: return DefWindowProc (hwnd, message, wParam, IParam);} return 0; }

/* A simple dialog function. */ BOOL CALLBACK DialogFunc (HWND hdwnd, UINT

message, WPARAM wParam, LPARAM lParam)

{ switch (message) { case WM_COMMAND:

switch (LOWORD (wParam)) { case IDCANCEL: EndDialog(hdwnd, 0) ; return 1 ;

 case IDD_COPYRIGHT: MessageBox (hdwnd, "Copyright", "Copyright", MB_OK); return 1 ;

 case IDD_AUTHOR: MessageBox (hdwnd, "Author", "Author", MB_OK) ;return 1;

 case IDD_PUBLISHER: MessageBox (hdwnd, "Publisher", "Publisher", MB_OK); return 1 ;

 } }return 0 ;}

Notice the global variable hInst. This variable is assigned a copy of the current instance

handle passed to WinMain(). The reason for this variable is that the dialog box needs access

to the current instance handle. However, the dialog box is not created in WinMain().

Instead, it is created in WindowFunc(). Therefore, a copy of the instance parameter must

be made so that it can be accessible outside of WinMain().

Adding a List Box

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-11

To continue exploring dialog boxes, let's add another control to the dialog box defined in

the previous program. One of the most common controls after the push button is the list

box. We will use the list box to display a list of the titles in the database and allow the user

to select the one in which he or she is interested. The L1STBOX statement has this general

form: LISTBOX LBID, X, Y, Width, Height [, Style]

Here, LBID is the value that identifies the list box. The box's upper left corner will be at X,

Y and the box will have the dimensions specified by Width and Height. Style determines the

exact nature of the list box. To add a list box, you must change the dialog box definition in

DIALOG.RC. First, add this list box description to the dialog box definition:

LISTBOX IDD_LB1, 60, 5, 140, 33, LBS_NOTIFY | WS_VISIBLE

| WS_BORDER | WS_VSCROLL | WS_TABSTOP

Second, add this push button to the dialog box definition:

PUSHBUTTON "Select Book", IDD_SELECT, 103, 41, 54, 14, WS_CHILD

| WS_VISIBLE | WS_TABSTOP

After these changes, your dialog box definition should now look like this:

MyDB DIALOG 10, 10, 210, 110 CAPTION "Books Dialog Box" STYLE

DS_MODALFRAME | WS_POPUP |WS_CAPTION | WS_SYSMENU

DEFPUSHBUTTON "Author", IDD_AUTHOR, 11, 10, 36, 14

WS_CHILD | WS_VISIBLE | WS_TABSTOP

PUSHBUTTON "Publisher", IDD_PUBLISHER, 11, 34, 36, 14,

WS_CHILD | WS_VISIBLE | WS_TABSTOP

PUSHBUTTON "Copyright" , IDD_COPYRIGHT, 11, 58, 36, 14,

WS_CHILD| WS_VISIBLE | WS_TABSTOP

PUSHBUTTON "Cancel", IDCANCEL, 11, 82, 36, 16,

WS_CHILD| WS_VISIBLE | WS_TABSTOP

LISTBOX IDD_LB1, 60, 5, 140, 33, LBS_NOTIFY | WS_VISIBLE |WS_VSCROLL |

WS_BORDER |WS_TABSTOP

PUSHBUTTON "Select Book", IDD_SELECT, 103, 41, 54, 14,

WS_CHILD | WS_VISIBLE | WS_TABSTOP}

You will also need to add these macros to DIALOG. H:

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-12

#define IDD_LB1 203

#define IDD_SELECT 204

IDD_LB1 identifies the list box specified in the dialog box definition in the resource file.

IDD_SELECT is the ID value of the Select Book push button.

List Box Basics

When using a list box, you must perform two basic-operations. First, you must initialize the list

box when the dialog box is first displayed. This consists of sending the list box the list that it

will display. (By default, the list box will be empty.) Second, once the list box has been

initialized, your program will need to respond to the user selecting an item from the list. List

boxes generate various types of notification messages. A notification message describes what

type of control event has occurred. (Several of the standard controls generate notification

messages.) For the list box used in the following example, the only notification message we

will use is LBN_DBLCLK. This message is sent when the user has double-clicked on an entry

in the list. This message is contained in HIWORD(wParam) each time a

WM_COMMAND is generated for the list box. (The list box must have the LBS_NOTIFY

style flag included in its definition in order to generate LBN_DBLCLK messages.) Once a

selection has been made, you will need to query the list box to find out which item has been

selected, A list box is a control that receives messages as well as generating them. You can

send a list box several different messages. To send a message to the list box (or any other

control) use the SendDlgItemMessage() API function. Its prototype is shown here:

LONG SendDlgItcmMessage(HWND Hwnd, int ID, UINT IDMsg, WPARAM wParam,

LPARAM lParam);

SendDlgItemMessage() sends the message specified by IDMsg to the control (within the

dialog box) whose ID is specified by ID. The handle of the dialog box is specified in hdwnd.

Any additional information required f the message is specified in wParam and lParam. The

additional informal, if any, varies from message to message. If there is no additional

information to pass to a control, the wParam and the lParam arguments should be zero. The

value returned by SendDlgItemMessage() contains the information requested by IDMsg.

Macro Purpose

LB_ADDSTRING Adds a string (selection) to the list box.

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-13

LB_GETCURSEL

Requests the index of the selected item.

LB_SETCURSEL

Selects an item.

LBJ-'FINDSTRING

Finds a matching entry.

LB_SELECTSTR1NG

Finds a matching entry and selects It.

LB_GE'ITEXT

Obtains the text associated with an Item

Here are a few of the most common messages that you can send to a list box. Let's take a

closer look at these messages.

LB_ADDSTRING adds a string to the list box. That is, the specified string becomes

another selection within the box. The string must be pointed to by lParam. (wParam is

unused by this message.) The value returned by list box is the index of the string in the list.

If an error occurs, LB_ERR is returned.

The LB_GETCURSEL message causes the list box to return the index of the currently

selected item. All list box indexes begin with zero. Both lParam and wParam are unused. If

an error occurs, LB_ERR is returned. If no item is currently selected, then an error results.

You can set the current selection inside a list box using the LB_SETCURSEL command. For

this message, wParam specifies the index of the item to select. lParam is not used. On error,

LB_ERR is returned.

You can find an item in the list that matches a specified prefix using LB_FINDSTRING.

That is, LB_FINDSTRING attempts to match a partial string with an entry in the list box.

wParam specifies the index at which point the search begins and lParam points to the string

that will be matched. If a match is found, the index of the matching item is returned.

Otherwise, LB_ERR is returned. LB_FINDSTRING does not select the item within the list

box.

If you want to find a matching item and select it, use LB_SELECTSTRING. It takes the same

parameters as LB_FINDSTRING but also selects the matching item.

You can obtain the text associated with an item in a list box using LB_GETTEXT. In this

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-14

case, wParam specifies the index of the item and lParam points to the character array that will

receive the null terminated string associated with that index. The length of the string is

returned if successful. LB_ERR is returned on failure.

Initializing the List Box

As mentioned, when a list box is created, it is empty. This means that you will need to

initialize it each time the dialog box that contains it is displayed. This is easy to accomplish

because each time a dialog box is activated, its window function is sent a

WM_INITDIALOG message. Therefore, you will need to add this case to the outer switch

statement in DialogFunc().

case WM_INITDIALOG: /* initialize list box */

 for(i=0; i<NUMBOOKS; i + +)

 SendDlgItemMessage(hdwnd, IDD_LB1,LB_ADDSTRING, 0, (LPARAM)books[i].title);

 /*select first item*/ SendDlgItemMessage(hdwnd, IDD_LB1,LB_SETCURSEL, 0, 0); return 1;

This code loads the list box with the titles of books as defined in the books array. Each string

is added to the list box by calling SendDlgItemMessage() with the LB_ADDSTRING

message. The string to add is pointed to by the lParam parameter. (The type cast to

LPARAM is necessary in this case to convert a pointer into a unsigned integer.) In this

example, each string is added to the list box in the order it is sent. (However, depending on

how you construct the list box, it is possible to have the items displayed in alphabetical

order.) If the number of items you send to a list box exceeds what it can display in its

window, vertical scroll bars will be added automatically.

This code also selects the first item in the list box. When a list box is first created, no item is

selected. While this might be desirable under certain circumstances, it is not in this case.

Most often, you will want to automatically select the first item in a list box as a convenience

to the user.

Processing a Selection

After the list box has been initialized, it is ready for use. There are essentially two ways a

user makes a selection from a list box. First, the user may double-click on an item. This

causes a WM_COMMAND message to be passed to the dialog box's window function. In

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-15

this case, LOWORD(wParam) contains the ID associated with the list box and

HIWORD(wParam) contains the LBN_DBLCLK notification message. Double-clicking

causes your program to be immediately aware of the user's selection. The other way to use a

list box is to simply highlight a selection (either by single-clicking or by using the array

keys to move the highlight). The list box remembers the selection and waits until your

program requests it. Both methods will be demonstrated in the example program.

Once an item has been selected in a list box, you determine which item was chosen by

sending the LB_GETCURSEL message to the list box. The list box then returns the index

of the selected item. Remember, if this message is sent before an item has been selected, the

list box returns LB_ERR. (This is one reason that it is a good idea to select a list box item

when it is initialized.)

To process a list box selection, add these cases to the inner switch inside DialogFunc(). You

will also need to declare a long integer called i and a character array called str inside

DialogFunc(). Your dialog box will now look like that shown in Figure 7-3. Each time a

selection is made because of a double-click or when the user presses the "Select Book" push

button, the currently selected book has its information displayed.

case IDD_LB1: /* process a list box LBN_DBLCLK */

 /* see if user made a selection */

 if(HIWORD(wParam)==LBN_DBLCLK)

 { i = SendDlgltemMessage(hdwnd, IDD_LBl, LB_GETCURSEL, 0, 0); /* get index */

 sprintftstr, "%s\n%s\n%s, %u", books[i] .title, books[i].author, books[i].publisher,

books[i].copyright);

 MessageBox(hdwnd, str, "Selection Made", MB_OK);

 /* get string associated with that index */

 SendDlgltemMessage(hdwnd, IDD_LB1, LB_GETTEXT, i, (LPARAM) str); } return 1;

case IDD_SELECT: /* Select Book button has been pressed */

 i=SendDlgltemMessage(hdwnd, IDD_LB1, LB_GETCURSEL, 0, 0); /* get index */

 sprintf(str, "%s\n%s\n%s, %u", books[i].title, books[i].author, books[i].publisher,

books[i].copyright);

 MessageBox(hdwnd, str, "Selection Made", MB_OK);

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-16

 /* get string associated with that index */

 SendDlgItemMessage (hdwnd, IDD_LB1, LB_GETTEXT, i, (LPARAM) str); return 1;

Notice the code under the IDD_LB1 case. Since the list box can generate several different types

of notification messages, it is necessary to examine the high-order word of wParam to

determine if the user double-clicked on an item. That is, just because the control generates a

notification message does not mean it is a double-click message. (You will want to explore the

other list box notification messages on your own.)

Adding an Edit Box

In this section we will add an edit control to the dialog box. Edit boxes are particularly useful

because they allow users to enter a string of their own choosing. The edit box in this example

will be used to allow the user to enter the title (or part of a title) of a book. If the title is in the

list, then it will t selected and information about the book can be obtained. Although the

addition of an edit box enhances our simple database application, it also serves another

purpose. It will illustrate how two controls can work together.

Before you can use an edit box, you must define one in your resource file for this example,

change MyDB so that it looks like this:

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-17

MyDB DIALOG 10, 10, 210, 110

CAPTION "Books Dialog Box"

STYLE DS_MODALFRAME | WS_POPUP |WS_CAPTION | WS_SYSMENU

{DEFPUSHBUTTON "Author", IDD_AUTHOR, 11, 10, 36, 14

 WS_CHILD | WS_VISIBLE | WS_TABSTOP

PUSHBUTTON "Publisher", IDD_PUBLISHER, 11, 34, 36, 14

 WS_CHILD | WS_VISIBLE | WS_TABSTOP

PUSHBUTTON "Copyright", IDD_COPYRIGHT, 11, 58, 36, 14

 WS_CHILD | WS_VISIBLE | WS_TABSTOP

PUSHBUTTON "Cancel", IDCANCEL, 11, 82, 36, 16,

 WS_CHILD | WS_VISIBLE | WS_TABSTOP

LISTBOX IDD_LB1, 60, 5, 140, 33, LBS_NOTIFY | WS_VISIBLE|

 WS_BORDER |WS_VSCROLL | WS_TABSTOP

PUSHBUTTON "Select Book", IDD_SELECT, 103, 41, 54, 14,

 WS_CHILD | WS_VISIBLE | WS_TABSTOP

EDITTEXT IDD_EB1, 65, 73, 130, 12, ES_LEFT | WS_VISIBLE WS_BORDER |

 ES_AUTOHSCROLL | WS_TAB5TOP

PUSHBUTTON "Title Search", IDD_DONE, 107, 91, 46, 14, WS_CHILD |

 WS_VISIBLE | WS_TABSTOP}

This version adds a push button called Title Search which will be used to tell the program that

you entered the title of a book into the edit box. It also adds the edit box itself. The ID for the

edit box is IDD_EB1. This definition causes a standard edit box to be created.

The EDITTEXT statement has this general form: EDITTEXT EDID, X, Y, Width, Height [.Style]

Here, EDID is the value that identifies the edit box. The box's upper left corner will be at X, Y

and its dimensions are specified by Width and Height. Style determines the exact nature of the

list box. You must also add these macro definitions to DIALOG.H:

#define IDD_EB1 205

#define IDD_DONE 206

Edit boxes recognize many messages and generate several of their own. However, for the

purposes of this example, there is no need for the program to respond to any messages. As you

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-18

will see, edit boxes perform the editing function on their own, independently. No program

interaction is required. Your program simply decides when it wants to obtain the current

contents of the edit box.

To obtain the current contents of the edit box, use the API function GetDlgItemText(). It has

this prototype: UINT GetDlgItemText(HWND hdwnd, int ID, LPSTR lpstr, int Max);

This function causes the edit box to copy the current contents of the box to the string pointed

to by lpstr. The handle of the dialog box is specified by hdwnd. The ID of the edit box is

specified by ID. The maximum number of characters to copy is specified by Max. The function

returns the length of the string..

Although not required by all applications, it is possible to initialize the contents of an edit box

using the SetDlgItemText() function. Its prototype is shown here:

 BOOL SetDlgItemText(HWND hdwnd, int ID, LPSTR lpstr);

This function sets the contents of the edit box to the string pointed to by lpstr. The handle of the

dialog box is specified by hdwnd. The ID of the edit box is specified by ID. The function returns

nonzero if successful or zero on failure.

To add an edit box to the sample program, add this case statement to the inner switch of the

DialogFunc() function. Each time the Title Search button is pressed, the list box is searched

for a title that matches the string that is currently in the edit box. If a match is found, then that

title is selected in the list box. Remember that you only need to enter the first few characters of

the title. The list box will automatically attempt to match them with a title.

case IDD_DONE: /* Title Search button pressed */

 /* get current contents of edit box */ GetDlgItemText (hdwnd, IDD_EB1, str, 80);

/* find a matching string in the list box */

i = SendDlgItemMessage(hdwnd, IDD_LB1, LB_FINDSTRING, 0, (LPARAM) str) ;

if(i != LB_ERR) { /* if match is found */

 /*select the matching title in list box*/

 SendDlgItemMessage(hdwnd, IDD_LB1, LB_SETCURSEL, i, 0);

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-19

 /* get string associated with that index */

 SendDlgItemMessage(hdwnd, IDD_LB1, LB_GETTEXT, i, (LPARAM) str);

 /* update text in edit box */ SetDlgItemText (hdwnd, IDD_EB1, str) ;

else MessageBox (hdwnd, str, "No Title Matching", MB_OK) ; return 1 ;

This code obtains the current contents of the edit box and looks for a match with the strings

inside the list box. If it finds one, it selects the matching item in the list box and then copies the

string from the list box back into the edit box. In this way, the two controls work together,

complementing each other. As you become a more experienced Windows programmer, you will

find that there are often instances in which two or more controls can work together.

You will also need to add this line of code to the INITDIALOG case. It causes the edit box to

be initialized each time the dialog box is activated.

/* initialize the edit box */ SetDlgItemText(hdwnd, IDD_EB1, books[0].title);

In addition to these changes, the code that processes the list box will be enhanced so that it

automatically copies the name of the book selected in the list box into the edit box. These

changes are reflected in the full program listing that follows. You should have no trouble

understanding them.

The Entire Modal Dialog Box Program

The entire modal dialog box sample program that includes push buttons, a list box, and an edit

box, is shown here. Notice that the code associated with the push buttons now displays

information about the title currently selected in the list box.

/* A Complete model dialog box example. */

#include <windows.h>

#include <string.h>

#include <stdio.h>

#include "dialog.h"

#define NUMBOOKS 7

LRESULT CALLBACK WindowFunc(HWND, UINT, WPARAM, LPARAM);

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-20

BOOL CALLBACK DialogFunc(HWND, UINT, WPARAM, LPARAM);

char szWinName[] = "MyWin"; /* name of window class */

HINSTANCE hInst;

/* books database */ struct booksTag {char title[40];

 unsigned copyright;

 char author[40];

 char publisher[40]; } books[NUMBOOKS] =

{{"C: The Complete Reference", 1995,"Herbert Schildt", "Osborne/McGraw-Hill"},

{"MFC Programming from the Ground Up", 1996, "Herbert Schildt", "Osborne/McGraw-Hill"},

{"Java: The Complete Reference", 1997, "Naughton and Schildt", "Osborne/McGraw-Hill"},

{"Design and Evolution of C++", 1994, "Bjarne Stroustrup", "Addison-Wesley"},

{"Inside OLE", 1995, "Kraig Brockschmidt", "Microsoft Press"},

{"HTML Sourcebook", 1996, "lan S. Graham", "John Wiley & Sons"},

{"Standard C++ Library", 1995, "P. J. Plauger", "Prentice-Hall"}};

int WINAPI WinMain(HINSTANCE hThisInst, HINSTANCE hPrevInst, LPSTR IpszArgs, int

nWinMode) {HWND hwnd; MSG msg; WNDCLASSEX wc1; HANDLE hAccel;

wc1.cbSize = sizeof(WNDCLASSEX);wc1.hInstance = hThisInst;

wc1.lpszClassName = szWinName; wc1.lpfnWndProc = WindowFunc; wc1.style = 0;

wc1.hIcon = LoadIcon(NULL, IDI_APPLICATION);

wc1.hIconSm = LoadIcon(NULL, IDI_WINLOGO);

wc1.hCursor = LoadCursor(NULL, IDC_ARROW); wc1.lpszMenuName = "MyMenu";

wc1.ClsExtra=0;wc1.cbWndExtra=0;wc1.hbrBackground = GetStockObject(WHITE_BRUSH);

/* Register the window class. */ if(!RegisterClassEx(&wc1)) return 0;

/* Now that a window class has been registered, a window can be created. */

hwnd = CreateWindow(szWinName, "Demonstrate Dialog Boxes",

WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT,

CW_USEDEFAULT, CW_USEDEFAULT, HWND_DESKTOP, NULL, hThisInst, NULL);

hInst = hThisInst; /* save the current instance handle */

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-21

/* load accelerators */ hAccel = LoadAccelerators (hThisInst, "MyMenu");

/* Display the window. */ ShowWindow(hwnd, nWinMode) ; UpdateWindow(hwnd) ;

while (GetMessage(&msg, NULL, 0, 0))

{ if (!TranslateAccelerator (hwnd, hAccel, &msg)) {TranslateMessage(&msg) ;

 DispatchMes sage (&msg); }} return msg.wParam ;}

/* This function is called by Windows and is passed messages from the message queue. */

 LRESULT CALLBACK WindowFunc (HWND hwnd, UINT message,

 WPARAM wParam, LPARAM lParam) { int response;

switch (message)

{case WM_COMMAND:

 swi tch (LOWORD { wParam))

 {case IDM_DIALOG: DialogBox (hlnst, "MyDB", hwnd, (DLGPROC) DialogFunc) break;

 case IDM_EXIT: response=MessageBox (hwnd,"Quit the Program?","Exit", MB_YESNO) ;

 if (response == IDYES) PostQuitMessage (0) ; break;

 case I DM HELP: MessageBox(hwnd, "No Help", "Help", MB_OK); break;} break;

case WM_DESTROY: /* terminate the program */ PostQuitMessage(0); break;

default :return DefWindowProc(hwnd, message, wParam, lParam); } return 0;}

BOOL CALLBACK DialogFunc(HWND hdwnd, UINT message, WPARAM wParam,

LPARAM lParam){ long i; char str[255];

switch(message) { case WM_COMMAND:

 switch(LOWORD(wParam)){

 case ID_CANCEL: EndDialog(hdwnd, 0); return 1;

 case IDD_COPYRIGHT:

 i = SendDlgItemMessage(hdwnd, IDD_LB1, LB_GETCURSEL, 0, 0); /* get index */

 sprintf(str, "%u", books [i] .copyright) ,;

 MessageBox(hdwnd, str, "Copyright", MB_OK); return 1;

 case IDD_AUTHOR:

 i = SendDlgItemMessage(hdwnd, IDD_LB1,LB_GETCURSEL, 0, 0); /*get index*/

 sprintf(str, "%s", books[i].author);

 MessageBox(hdwnd, str, "Author", MB_OK); return 1;

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-22

 case IDD_PUBLISHER:

 i = SendDlgItemMessage(hdwnd, IDD_LB1,LB_GETCURSEL, 0, 0); /*get index*/

 sprintf(str, "%s", books[i].publisher);

 MessageBox(hdwnd, str, "Publisher", MB_OK); return 1;

 case IDD_DONE: /* Title Search button pressed */

 /* get current contents of edit box */ GetDlgItemText(hdwnd, IDD_EB1, str, 80);

 /*find a matching string in the list box*/

 i=SendDlgItemMessage(hdwnd,IDD_LB1,LB_FINDSTRING,0,(LPARAM) str);

 if(i != LB_ERR) { /* if match is found */

 /*select the matching title in list box*/

 SendDlgItemMessage(hdwnd, IDD_LB1, LB_SETCURSEL, i, 0)

 /* get string associated with that index */

 SendDlgItemMessage(hdwnd, IDD_LB1,LB_GETTEXT, i, (LPARAM) str);

 /* update edit box */ SetDlgItemText(hdwnd, IDD_EB1, str); }

 else MessageBox(hdwnd, str, "No Title Matching", MB_OK); return 1;

case IDD_LB1: /* process a list box LBN_DBLCLK */

 /* see if user made a selection */

 if(HIWORD(wParam)==LBN_DBLCLK) {

i= SendDlgItemMessage (hdwnd, IDD_LB1, LB_GETCURSEL, 0, 0); /* get index */

sprintf(str, "%s\n%s\n%s, %u", books[i].title, books[i].author, books[i].publisher,

books[i].copyright);

MessageBox(hdwnd, str, "Selection Mode", MB_OK);

 /*get string associated with that index*/

 SendDlgItemMessage(hdwnd, IDD_LB1,LB_GETTEXT, i, (LPARAM) str);

 /* update edit box */ SetDlgItemText(hdwnd, IDD_EB1, str); } return 1;

case IDD_SELECT: /* Select book button has been pressed */

i= SendDlgItemMessage (hdwnd, IDD_LB1, LB_GETCURSEL, 0, 0); /* get index */

sprintf(str, "%s\n%s\n%s, %u", books[i].title, books[i].author, books[i].publisher,

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-23

books[i].copyright); MessageBox(hdwnd, str, "Selection Mode", MB_OK);

 /* get string associated with that index */

 SendDlgItemMessage(hdwnd, IDD_LB1,LB_GETTEXT, i, (LPARAM) str);

 /* update edit box */ SetDlgItemText(hdwnd, IDD_EB1, str); } return 1;} break;

case WM_INITDIALOG: /* initialize list box */

 for (i =0; i<NUMBOOKS; i + +)

SendDlgItemMessage(hdwnd, IDD_LB1, LB_ADDSTRING, 0, (LPARAM)books[i].title);

/* select first item */ SendDlgItemMessage(hdwnd, IDD_LB1, LB_SETCURSEL, 0, 0);

/* initialize the edit box */ SetDlgItemText(hdwnd, IDD_EB1, books[0].title);

return 1;} return 0;}

Figure 6-2 shows sample output created by the complete modal dialog box program.

Using a Modeless Dialog Box

To conclude this lecture, the modal dialog box used by the preceding program will be

converted into a modeless dialog box. As you will see, using a modeless dialog box requires

a little more work. The main reason for this is that a modeless dialog box is more

independent than a modal dialog box. Specifically, the rest of your program is still active

when a modeless dialog box is displayed. Also, both it and your application's window

function continue to receive messages. Thus, some additional overhead is required in your

application's message loop to accommodate the modeless dialog box.

To create a modeless dialog box, you do not use DialogBox(). Instead, you must use the

CreateDialog() API function. Its prototype is shown here:

HWND CreateDialog(HINSTANCE hTlnsInst, LPCSTR lpName, HWND hwnd,

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-24

 DLGPROC lp.DFunc);

Here, hThisInst is a handle to the current application that is passed to your program in the

instance parameter to WinMain(). The name of the dialog box as defined in the resource

file is pointed to by lpName. The handle to the owner of the dialog box is passed in hwnd.

(This is typically the handle to the window that calls CreateDialog().) The lpDFunc

parameter contains a pointer to the dialog function. The dialog function is of the same type

as that used for a modal dialog box. CreateDialog() returns a handle to the dialog box. If the

dialog box cannot be created, NULL is returned.

Unlike a modal dialog box, a modeless dialog box is not automatically visible, so you may

need to call ShowWindow() to cause it to be displayed after it has been created. However, if

you add WS_VISIBLE to the dialog box's definition in its resource file, then it will be visible

automatically.

To close a modeless dialog box your program must call DestroyWindow() rather than

EndDialog(). The prototype for DestroyWindow() is shown here:

BOOL DestroyWindow(HWND hwnd);

Here, hwnd is the handle to the window (in this case, dialog box) being closed. The function

returns nonzero if successful and zero on failure.

Since your application's window function will continue receiving messages while a modeless

dialog box is active, you must make a change to your program's message loop. Specifically,

you must add a call to IsDialogMessage(). This function routes dialog box messages to your

modeless dialog box. It has this prototype:

BOOL IsDialogMessage(HWND hdwnd, LPMSG msg)

IN DEPTH: Disabling a Control: Sometimes you will have a control that is not

applicable to all situations. When a control is not applicable it can be (and should be)

disabled. A control that is disabled is displayed in gray and may not be selected. To disable a

control, use the EnableWindow() API function, shown here:

BOOL EnableWindow(HWND hCntl, BOOL How);

Here, hCntl specifies the handle of the window to be affected. (Remember, controls are simply

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-25

specialized windows.) If How is nonzero, then the control is enabled. That is, it is activated. If

How is zero, the control is disabled. The function returns nonzero if the control was already

disabled. It returns zero if the control was previously enabled. To obtain the handle of a

control, use the GetDlgItem() API function. It is shown here:

 HWND GetDlgItem(HWND hDwnd, int ID);

Here, hDwnd is the handle of the dialog box that owns the control. The control ID is passed

in ID. This is the value that you associate with the control in its resource file. The function

returns the handle of the specified control or NULL on failure.

To see how you can use these functions to disable a control, the following fragment disables

the Author push button. In this example hwpb is a handle of type HWND.

 hwpb = GetDlgItem(hdwnd, IDD_AUTHOR); /*get handle of button */

 EnableWindow(hwpb, 0); /* disable it*/

On your own, you might want to try disabling and enabling the other controls used by the

examples in this and later lectures.

Here, hdwnd is the handle of the modeless dialog box and msg is the message obtained from

GetMessage() within your program's message loop. The function returns nonzero if the

message is for the dialog box. It returns zero otherwise. If the message is for the dialog box,

then it is automatically passed to the dialog box function. Therefore, to process modeless

dialog box messages, your program's message loop must look something like this:

while (GetMessage(&msg, NULL, 0, 0)){

 if (! IsDialogMessage (hDlg, &msg)) { /*not dialog box message*/

 if (!TranslateAccelerator (hwnd, hAccel, &msg)) {

 TranslateMessage (&msg) ; /* translate keyboard message */

 DispatchMessage(&msg) ; /* return control to Windows */ }}}

As you can see, the message is processed by the rest of the message loop only if it

is not a dialog box message.

Creating a Modeless Dialog Box

To convert the modal dialog box shown in the preceding example into a modeless one,

surprisingly few changes are needed. The first change that you need to make is to the dialog

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-26

box definition in the DIALOG. RC resource file. Since a modeless dialog box is not

automatically visible, add WS_VISIBLE to the dialog box definition. Also, although not

technically necessary, you can remove the DS_MODALFRAME style, if you like. Since we

have made several changes to DIALOG. RC since the start of the chapter, its final form is

shown here after making these adjustments.

; Sample dialog box and menu resource file.

#include <windows.h>

#include "dialog. h"

MyMenu MENU {

POPUP "&Dialog {MENUITEM "&Dialog\tF2", IDM_DIALOG

 MENUITEM &Exit\tF3", IDM_EXIT}

MENUITEM "&Help", IDM_HELP

MyMenu ACCELERATORS

 {VK_F2, IDM_DIALOG, VIRTKEY

 VK_F3, IDM_EXIT, VIRTKEY

 VK_F1, IDM_HELP, VIRTKEY}

MyDB DIALOG 10, 10, 210, 110 CAPTION "Books Dialog Box"

STYLE WS_POPUP | WS_CAPTION |WS_SYSMENU | WS_VISIBLE

{DEFPUSHBUTTON "Author", IDD_AUTHOR, 11, 10, 36, 14

WS_CHILD | WS_VISIBLE | WS_TABSTOP

 PUSHBUTTON "Publisher", IDD_PUBLISHER, 11, 34, 36, 14,

 WS_CHILD | WS_VISIBLE | WS_TABSTOP

PUSHBUTTON "Copyright", IDD_COPYRIGHT, 11, 58, 36, 14,

WS_CHILD | WS_VISIBLE | WS_TABSTOP

PUSHBUTTON "Cancel", IDCANCEL, 11, 82, 36, 16,

WS_CHILD |WS_VISIBLE | WS_TABSTOP

LISTBOX IDD_LB1, 60, 5, 140, 33, LBS_NOTIFY | WS BORDER |WS_VISIBLE |

 WS_VSCROLL | WS_TABSTOP

PUSHBUTTON "Select Book", IDD_SELECT, 103, 41, 54, 14,

WS_CHILD | WS_VISIBLE | WS_TABSTOP

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-27

EDITTEXT IDD_EB1, 65, 73, 130, 12, ES_LEFT | WS_VISIBLE |WS_BORDER |

 ES_AUTOHSCROLL | WS_TABSTOP

PUSHBUTTON "Title Search", IDD_DONE, 107, 91, 46, 14,

 WS CHILD |I WS_VISIBLE | WS_TABSTOP }

Next, you must make the following changes to the program:

1. Create a global handle called hDlg.

2. Add IsDiaLogMessage() to the message loop.

3. Create the dialog box using CreateDialog() rather than DialogBox().

4. Close the dialog box using DestroyWindow() instead of EndDialog().

The entire listing (which incorporates these changes) for the modeless dialog box example is

shown here. Sample output from this program is shown in Figure 7-4. (You should try this

program on your own to fully understand the difference between modal and modeless dialog

boxes.)

/* A modeless dialog box example. */

#include <windows.h>

#include <string.h>

#include <stdio.h>

#include "dialog.h"

#define NUKBOOKS 7

LRESULT CALLBACK WindowFunc (HWND, UINT, WPARAM, LPARAM) ;

BOOL CALLBACK DialogFunc (HWND, UINT, WPARAM, LPARAM) ;

char szWinName [] = "MyWin" ; /* name of window class */ H INSTANCE hInst;

HWND hDlg =0; /* dialog box handle */

/* books database */

struct booksTag { char title [40] ;

 unsigned copyright;

 char author[40];

 char publisher [40] ; }

books[NUMBOOKS] = {

{"C: The Complete Reference", 1995,"Hebert Schildt", "Osborne/McGraw-Hill"},

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-28

{ "MFC Programming from the Ground Up", 1996, "Herbert Schildt",

"Osborne/McGraw-Hill" },

{"Java:The Complete Reference",1997,"Naughton and Schildt","Osborne/McGraw-Hill " },

{"Design and Evolution of C+ + ", 1994", "Bjarne Stroustrup" , "Addison-Wesley" },

{ Inside OLE" , 1995, "Kraig Brockschmidt" , "Microsoft Press" },

{"HTML Sourcebook", 1996, "lan S. Graham", "John Wiley & Sons" },

{"Standard C++ Library", 1995, "P. J. Plauger", "Prentice-Hall" } };

int WINAPI WinMain(HINSTANCE hThisInst, HINSTANCE hPrevInst,

 LPSTR IpszArgs, int nWinMode)

{HWND hwnd; MSG rnsg; WNDCLASSEX wcl; HANDLE hAccel;

wc1.cbSize = sizeof(WNDCLASSEX);wc1.hInstance = hThisInst;

wc1.lpszClassName = szWinName; wc1.lpfnWndProc = WindowFunc;

wc1.style =0; wc1.hIcon = LoadIcon(NULL, IDI_APPLICATION);

wc1.hIconSm= LoadIcon(NULL, IDI_WINLOGO);

wc1.hCursor = LoadCursor(NULL, IDC_ARROW);lpszMenuName = "MyMenu";

wc1.cbClsExtra = 0; wc1.cbWndExtra = 0;

wc1.hbrBackground = (HBRUSH) GetStockObject(WHITE_BRUSH);

/* Register the window class. */ if(!RegisterClassEx(&wc1)) return 0;

/* Now that a window class has been registered, a window can be created. */

hwnd=CreateWindow(szWinName,"Demonstrate A Modeless Dialog Box",

WS_OVERLAPPEDWINDOW,CW_USEDEFAULT,CW_USEDEFAULT,

CW_USEDEFAULT,CW_USEDEFAULT,HWND_DESKTOP,

NULL, hThisInst, NULL); hInst = hThisInst; /* save the current instance handle */

 /* load accelerators */ hAccel = LoadAccelerators (hThisInst, "MyMenu");

/* Display the window. */ ShowWindiow(hwnd, nWinMode) ; UpdateWindow(hwnd) ;

 while (GetMessage(&msg, NULL, 0, 0))

 {if (! IsDialogMessage (hDlg, &msg))

 {/* is not a dialog message*/ if (!TranslateAccelerator (hwnd, hAccel, &msg))

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-29

 {TranslateMessage(&msg); DispatchMessage(&.msg); } return msg.wParam; }

/* This function is called by Windows NT and is passed messages from the message queue. */

 LRESULT CALLBACK WindowFunc(HWND hwnd, UINT message,

 WPARAM wParam, LPARAM lParam) { int response;

switch(message) { case WM_COMMAND:

 switch(LOWORD(wParam))

 {case IDM_DIALOG: hDlg = CreateDialog(hlnst, "MyDB", hwnd, (DLGPROC)

DialogFunc);break;

 case IDM_EXIT: response = MessageBox(hwnd, "Quit the Program?", "Exit", MB_YESNO);

 if(response == IDYES) PostQuitMessage(0); break;

 case IDM_HELP: MessageBox(hwnd, "No Help", "Help", MB__OK) ; break; } break;

 case WM_DESTROY: /* terminate the program */ PostQuitMessage(0); break;

 default: return DefWindowProc(hwnd, message, wParam, IParam); } return 0;}

/* A simple dialog function. */

BOOL CALLBACK DialogFunc(HWND hdwnd, UINT message, WPARAM wParam,

LPARAM lParam) { long i; char str[255];

switch(message)

{case WM_COMMAND:

 switch(LOWORD(wParam))

 {case IDCANCEL: DestroyWindow(hdwnd); return 1;

 case IDD_COPYRIGHT:

 i = SendDlgltemMessage(hdwnd, IDD_LB1, LB_GETCURSEL, 0, 0);

 sprintf(str,"%u", books[i].copyright);

 MessageBox(hdwnd, str, "Copyright", MB_OK); return 1;

 case IDD_AUTHOR: i = SendDlgltemMessage(hdwnd, IDD_LB1, LB_GETCURSEL, 0, 0);

 sprintf(str, "%s", books[i].author);

 MessageBox(hdwnd, str, "Author", MB_OK); return 1;

 case IDD_PUBLISHER: i=SendDlgltemMessage(hdwnd, IDD_LB1, LB_GETCURSEL, 0, 0);

 sprintftstr, "%s", books[i].publisher);

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-30

 MessageBox(hdwnd, str, "Publisher", MB_OK); return 1;

 case IDD_DONE:/*get current contents of edit box*/ GetDlgItemText(hdwnd, IDD_EB1, str, 80);

 i=SendDlgItemMessage(hdwnd, IDD_LB1, LB_FINDSTRING, 0, (LPARAM) str);

 if(i != LB_ERR) /* if match is found */

 {SendDlgItemMessage(hdwnd,IDD_LB1, LB_SETCURSEL, i,0);

 SendDlgItemMessage(hdwnd,IDD_LB1,LB_GETTEXT, i, (LPARAM) str);

 /*update text in edit box*/ SetDlgltemText(hdwnd, IDD_EB1,str);

 else MessageBox(hdwnd, str, "No Title Matching", MB_OK); return 1;

 case IDD_LB1: /* process a list box LBN_DBLCLK */

 if(HIWORD(wParam)==LBN_DBLCLK) /* see if user made a selection */

 {i=SendDlgltemMessage(hdwnd, IDD_LB1, LB_GETCURSEL, 0, 0); /*get index*/

 sprintf(str, "%s\n%s\n%s, %u",books[i].title, books[i].author,books[i].publisher,

books(i].copyright);

 MessageBox(hdwnd, str, "Selection Made", MB_OK);

 SendDlgItemMessage(hdwnd,IDD_LB1,LB_GETTEXT,i,(LPARAM)str);

 /*update edit box*/ SetDlgItemText(hdwnd, IDD_EBl, str); return 1;

 case IDD_SELECT: /* Select Book button has been pressed */

i = SendDlgltemMessage(hdwnd, IDD_LB1, LB_GETCURSEL, 0, 0); /* get index */

sprintf (str, "%s\n%s\n%s, %u", "books[i].title, books[i].author, books[i].publisher,

books[i].copyright);

MessageBox(hdwnd, str, "Selection Made", MB_OK);

/*get string associated with that index*/

SendDlgItemMessage(hdwnd, IDD_LBl, LB_GETTEXT, i, (LPARAM) str);

/* update edit box */ SetDlgItemText(hdwnd, IDD_EB1, str); return 1;} break;

case WM_INITDIALOG: /* initialize list box */

 for(i = 0; i<NUMBOOKS; i + +)

 SendDlgItemMessage(hdwnd, IDD_LB1,LB_ADDSTRING, 0, (LPARAM)books[i].title);

 /* select first item */ SendDlgItemMessage(hdwnd, IDD_LB1, LB_SETCURSEL, 0, 0);

 /*initialize the edit box*/SetDlgItemText(hdwnd, IDD_EB1, books[0] .title);return 1;}return 0;}

Windows programming2 Class: forth (Software Branch)

Dialog Box

 Chapter 6-31

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-1

This lecture begins with a discussion of the scroll bar and illustrates its use in a short

example program. Although scroll bars offer a bit more of a programming challenge than do

the other standard controls, they are still quite easy to use. Next, check boxes and radio

buttons are discussed. To illustrate the practical use of scroll bars, check boxes, and radio

buttons, a simple countdown timer application is developed. You could use such a program

as a darkroom timer, for example. In the process of developing the countdown timer,

Windows timer interrupts and the WM_TIMER message are explored. The chapter

concludes with a look at Windows static controls.

Scroll Bars

The scroll bar is one of Windows most important controls. Scroll bars exist in two forms.

The first type of scroll bar is an integral part of a normal window or dialog box. These are

called standard scroll bars. The other type of scroll bar exists separately as a control and is

called a scroll bar control. Both types of scroll bars are managed in much the same way.

Activating the Standard Scroll Bars

For a window to include standard scroll bars, you must explicitly request it. For windows

created using CreateWindow(), such as your application's main window, you do this by

including the styles WS_VSCROLL and/or WS_HSCROLL in the style parameter. In the

case of a dialog box, you include the WS_VSCROLL and/or WS_HSCROLL styles in the

dialog box's definition inside its resource file. As expected, the WS_VSCROLL causes a

standard vertical scroll bar to be included and WS_HSCROLL activates a horizontal scroll

bar. After you have added these styles, the window will automatically display the standard

vertical and horizontal scroll bars.

Receiving Scroll Bar Messages

Unlike other controls, a scroll bar control does not generate a WM_COMMAND message.

Instead, scroll bars send either a WM_VSCROLL or a WM_HSCROLL message when

either a vertical or horizontal scroll bar is accessed, respectively. The value of the low-order

word of wParam contains a code that describes the activity. For the standard window

scroll bars, lParam is zero. However, if a scroll bar control generates the message, then

lParam contains its handle.

As mentioned, the value in LOWORD(wParam) specifies what type of scroll bar action has

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-2

taken place. Here are some common scroll bar values:

SB_LINEUP SB_LINEDOWN

SB_PAGEUP SB_PAGEDOWN

SB_LINELEFT SB_LINERIGHT

SB_PAGELEFT SB_PAGERIGHT

SB_THUMBPOSITION SB_THUMBTRACK

For vertical scroll bars, each time the user moves the scroll bar up one position, SB_LINEUP is

sent. Each time the scroll bar is moved down one position, SB_LINEDOWN is sent.

SB_PAGEUP and SB_PAGEDOWN are sent when the scroll bar is moved up or down one

page. For horizontal scroll bars, each time the user moves the scroll bar left one position,

SB_LINELEFT is sent. Each time the scroll bar is moved right one position,

SB_LINERIGHT is sent. SB_PAGELEFT and SB_PAGERIGHT are sent when the scroll

bar is moved left or right one page.

For both types of scroll bars, the SB_THUMBPOSITION value is sent after the slider box

(thumb) of-the scroll bar has been dragged to a new position. The SB_THUMBTRACK

message is also sent when the thumb is dragged to a new position. However, it is sent each time

the thumb passes over a new position. This allows you to "track" the movement of the thumb

before it is released.

When SB_THUMBPOSITION or SB_THUMBTRACK is received, the high-order word of

wParam contains the current slider box position.

SetScrollInfo() and GetScrollInfo()

Scroll bars are, for the most part, manually managed controls. This means that in addition to

responding to scroll bar messages, your program will also need to update various attributes

associated with a scroll bar. For example, your program must update the position of the

slider box manually. Windows contains two functions that help you manage scroll bars.

The first is SetScrollInfo(), which is used to set various attributes associated with a scroll

bar. Its prototype is shown here:

int SetScrollInfo(HWND hwnd, int which, LPSCROLLINFO lpSI, BOOL repaint);

Here, hwnd is the handle that identifies the scroll bar. For window scroll bars, this is the handle

of the window that owns the scroll bar. For scroll bar controls, this is the handle of the scroll

bar itself. The value of which determines which scroll bar is affected. If you arc setting the

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-3

attributes of the vertical window scroll bar, then this parameter must be SB_VERT. If you are

setting the attributes of the horizontal window scroll bar, this value must be SB_HORZ.

However, to set a scroll bar control, this value must be SB_CTL and hwnd must be the handle

of the control. The attributes are set according to the information pointed to by lpSI (discussed

shortly). If repaint is true, then the scroll bar is redrawn. If false, the bar is not redisplayed. The

function returns the position of the slider box.

To obtain the attributes associated with a scroll bar, use GctScroIIInfo(), shown here:

BOOL GetScrollInfo(HWND hwnd, int which, LPSCROLLINFO lpSI);

The hwnd and which parameters are the same as those just described for SetScrollInfo(). The

information obtained by GetScrollInfo() is put into the structure pointed to by lpSI. The

function returns nonzero if successful and zero on failure.

The lpSI parameter of both functions points to a structure of

type SCROLLINFO, which is defined like this:

typedef struct tagSCROLLINFO

{UINT cbSize; /* size of SCROLLINFO */

UINT fMask; /* Operation performed */

int nMin; /* minimum range */

int nMax; /* maximum range */

UINT nPage; /* Page value */

int nPos; /* slider box position */

int nTrackPos; /* current tracking position */ } SCROLLINFO;

Here, cbSize must contain the size of the SCROLLINFO structure. The value or values

contained in fMask determine which of the remaining members are meaningful.

Specifically, when used in a call to SetScrollInfo(), the value in fMask specifies which

scroll bar values will be updated. When used with GctScrollInfo(), the value in fMask

determines which settings will be obtained. fMask must be one or more of these values. (To

combine values, simply OR them together.)

SIF_ALL Same as SIF_PAGE | SIF_POS | SIF_RANGE |

SIF_TRACKPOS.

SIF_DISABLENOSCROLL Scroll bar is disabled rather than removed if its range is

set to zero.

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-4

SIF_P'AGE nPage contains valid information.

SIF_P'OS nPos contains valid information.

SIF_RANGE nMin and nMax contain valid information.

SIF_TRACKPOS nTrackPos contains valid information.

nPage contains the current page setting for proportional scroll bars.

nPos contains the position of the slider box.

nMin and nMax contain the minimum and maximum range of the scroll bar.

nTrackPos contains the current tracking position. The tracking position is the current

position of the slider box while it is being dragged by the user. This value cannot be set.

Working with Scroll Bars

As stated, scroll bars are manually managed controls. This means that your program will

need to update the position of the slider box within the scroll bar each time it is moved. To

do this you will need to assign nPos the value of the new position, assign fMask the value

SIF_POS, and then call SetScrollInfo(). For example, to update the slider box for the

vertical scroll bar, your program will need to execute a sequence like the following:

SCROLLINFO si;

si.cbSize = sizeof(SCROLLINFO) ;

si.fMask = SIF_POS;

si.nPos = newposition;

SetScrollInfo(hwnd, SB_VERT, &si, 1);

The range of the scroll bar determines how many positions there are between one end and

the other. By default, window scroll bars have a range of 0 to 100. However, you can set

their range to meet the needs of your program. Control scroll bars have a default range of 0

to 0, which means that the range needs to be set before the scroll bar control can be used. (A

scroll bar that has a zero range is inactive.)

A Sample Scroll Bar Program

The following program demonstrates both vertical and horizontal standard scroll bars. The

scroll bar program requires the following resource file:

; Demonstrate scroll bars.

#include "scroll. h"

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-5

include <windows.h>

MyMenu MENU {POPUP "&Dialog"{MENUITEM "&Scroll Bars\tF2", IDM_DIALOG

 MENUITEM "&Exit\tF3", IDM_EXIT}

 MENUITEM "&Help", IDM_HELP}

MyMenu ACCELERATORS {VK_F2, IDM_DIALOG, VIRTKEY

 VK_F3, IDM_EXIT, VIRTKEY

 VK_F1, IDM_HELP, VIRTKEY}

MyDB DIALOG 18, 18, 142, 92 CAPTION "Using Scroll Bars"

STYLE DS_MODALFRAME |WS_POPUP |WS_VSCROLL |WS_HSCROLL

|WS_CAPTION | WS_SYSMENU { }

As you can see, the dialog box definition is empty. The scroll bars are added automatically

because of the WS_VSCROLL and WS_HSCROLL style specifications.

You will also need to create this header tile, called SCROLL.H:

#define IDM_DIALOG 100

#define IDM_EXIT 101

#define IDM_HELP 102

The entire scroll bar demonstration program is shown here. The vertical scroll bar responds

to the SB_LINEUP, SB_LINEDOWN, SB_PAGEUP, SB_PAGEDOWN,

SB_THUMBPOSITION, and SB_THUMBTRACK messages by moving the slider box

appropriately. It also displays the current position of the thumb. The position will change as

you move the slider. The horizontal scroll bar only responds to SB_LINELEFT and

SB_LINERIGHT. Its thumb position is also displayed. (On your own, you might try adding

the necessary code to make the horizontal scroll bar respond to other messages.) Notice that

the range of both the horizontal and vertical scroll bar is set when the dialog box receives a

WM_INITDIALOG message. You might want to try changing the range of the scroll-bars

and observing the results. Sample output from the program is shown in Figure 7-1.

One other point: notice that the thumb position of each scroll bar is displayed by outputting

text into the client area of the dialog box using TextOut(). Although a dialog box performs

a special purpose, it is still a window with the same basic characteristics as the main

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-6

window. /* Demonstrate Standard Scroll Bars */

#include <windows.h>

#include <string.h>

#include <stdio.h>

#include "scroll.h"

#define VERTRANGEMAX 200

#define HORZRANGEMAX 50

LRESULT CALLBACK WindowFunc(HWND, UINT, WPARAM, LPAAM);

BOOL CALLBACK DialogFunc(HWND, UINT, WPARAM, LPARAM);

char szWinName[] = "MyWin"; /* name of window class */

HINSTANCE hlnst;

int WINAPI WinMain(HINSTANCE hThisInst, HINSTANCE hPrevInst,LPSTR

 lpszArgs,int nWinMode)

{HWND hwnd; MSG msg; WNDCLASSEX wc1; HANDLE hAccel;

wc1.cbSize=sizeof(WNDCLASSEX);wc1.hInstance=hThisInst;

wc1.lpszClassName=szWinName;wc1.lpfnWndProc=WindowFunc;wc1.style= 0;

wc1.hIcon=LoadIcon(NULL,IDI_APPLICATION);

wc1.hIconSm=LoadIcon(NULL, IDI_WINLOGO);

wc1.hCursor = LoadCursor(NULL, IDC_ARROW); wc1.lpszMenuName="MyMenu";

wc1.cbClsExtra=0;wc1.cbWndExtra=0;

wc1.hbrBackground=GetStockObject(WHITE_BRUSH); if(!RegisterClassEx(&wc1)) return 0;

hwnd = CreateWindow(szWinName,"Managing Scroll Bars",WS_OVERLAPPEDWINDOW,

CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,

HWND_DESKTOP, NULL, hThisInst, NULL);

hInst = hThisInst; /* save the current instance handle */

/* load accelerators */ hAccel = LoadAccelerators(hThisInst, "MyMenu");

ShowWindow(hwnd, nWinMode) ; UpdateWindow(hwnd) ;

while (GetMessage(&msg, NULL, 0, 0))

 {if (! TranslateAccelerator (hwnd, hAccel, &msg))

 {TranslateMessage (&msg) ; /*translate keyboard messages*/

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-7

 DispatchMessage(&msg);/*return control to Windows */}

 }return msg.wParam;}

LRESULT CALLBACK WindowFunc(HWND hwnd, UINT message,

 WPARAM wParam, LPARAM lParam){ int response;

switch(message)

{case WM_COMMAND:

 switch(LOWORD(wParam))

 {case IDM_DIALOG: DialogBox(hInst,"MyDB", hwnd, (DLGPROC) DialogFunc) ; break;

 case IDM_EXIT: response=MessageBox(hwnd,"Quit the Program?","Exit", MB_YESNO);

 if(response == IDYES) PostQuitMessage(0); break;

 case IDM_HELP: MessageBox(hwnd, "Try the Scroll Bar", "Help", MB_OK) break; }break;

 case WM_DESTROY: /* terminate the program */ PostQuitMessage(0);break;

default: return DefWindowProc(hwnd, message, wParam, lParam); } return 0;}

BOOL CALLBACK DialogFunc(HWND hdwnd, UINT message,WPARAM wParam,

LPARAM lParam) {char str[80]; static int vpos = 0;static int hpos= 0; static SCROLLINFO si;

HDC hdc; PAINTSTRUCT paintstruct;

switch(message) {

case WM_COMMAND:

 swi tch(LOWORD(wParam))

 { case IDCANCEL: EndDialog(hdwnd, 0); return 1; }break;

 case WM_INITDIALOG: si.cbSize = sizeof(SCROLLINFO) ; si.fMask = SIF_RANGE;

 si.nMin = 0; si.nMax = VERTRANGEMAX;

 SetScrollInfo(hdwnd, SB_VERT, &si, 1);

 si.nMax = HORZRANGEMAX;

 SetScrollInfo(hdwnd, SB_HORZ, &si, 1); vpos = hpos = 0; return 1;

case WM_PAINT: hdc = BeginPaint(hdwnd, &paintstruct);

 sprintf(str, "Vertical: %d", vpos);

 TextOut(hdc, 1, 1, str, strlen(str));

 sprintf(str, "Horizontal: %d", hpos); TextOut(hdc, 1, 30, str, strlen(str));

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-8

 EndPaint(hdwnd, &paintstruct); return 1;

case WM_VSCROLL:

 switch(LOWORD(wParam))

 {case SB_LINEDOWN: vpos++;

 if(vpos>VERTRANGEMAX) vpos = VERTRANGEMAX; break;

 case SB_LINEUP: vpos- -; if(vpos<0) vpos = 0; break;

 case SB_THUMBPOSITION: vpos = HIWORD(wParam); break;

 case SB_THUMBTRACK: vpos = HIWORD(wParam) break;

 case SB_PAGEDOWN: vpos += 5;

 if(vpos>VERTRANGEMAX) vpos=VERTRANGEMAX; break;

case SB_PAGEUP: vpos -= 5; if(vpos<0) vpos = 0;}

/* update vertical bar position */ si.fMask = SIF_POS; si.nPos = vpos;

 SetScrollInfo(hdwnd, SB_VERT, &si, 1); hdc = GetDC(hdwnd);

 sprintf(str, "Vertical: %d ", vpos); TextOut(hdc, 1, 1, str, strlen(str));

 ReleaseDC(hdwnd, hdc); return 1;,

case WM_HSCROLL: switch(LOWORD(wParam)){/*Try adding the other event

handling code for the horizontal scroll bar, here. */

 case SB_LINERIGHT: hpos++;

 if(hpos>HORZRANGEMAX) hpos=HORZRANGEMAX; break;

case SB_LINELEFT: hpos- -; if(hpos<0) hpos = 0; break;

 case SB_THUMBPOSITION: hpos = HIWORD(wParam); break;

case SB_THUMBTRACK: hpos = HIWORD(wParam) break;}

 /* update horizontal bar position */ si.fMask = SIF_POS; si.nPos = hpos ;

SetScrollInfo(hdwnd, SB_HORZ, &si, 1);hdc = GetDC(hdwnd);

 sprintf(str, "Horizontal-. %d ", hpos); TextOut(hdc, 1, 30, str, strlen(str));

ReleaseDC(hdwnd, hdc); return 1;} return 0;}

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-9

Figure 7-1 output of above program

Using a Scroll Bar Control

A scroll bar control is a stand-alone scroll bar; it is not attached to a window. Scroll bar

controls are handled much like standard scroll bars, but two important differences exist. First,

the range of a scroll bar control must be set because it has a default range of zero. Thus, it is

initially inactive. This differs from standard scroll bars, whose default range is 0 to 100.

The second difference has to do with the meaning of lParam when a scroll bar message is

received. Recall that all scroll bars — standard or control — generate a WM_HSCROLL or

a WM_VSCROLL message, depending upon whether the scroll bar is horizontal or

vertical. When these messages a generated by a standard scroll bar, lParam is always zero.

However, when they are generated by a scroll bar control, the handle of the control is

passed in lParam. In windows that contain both standard and control scroll bars, you will

need to make use of this fact to determine which scroll bar generated the message.

Creating a Scroll Bar Control

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-10

To create a scroll bar control in a dialog box, use the SCROLLBAR statement, which

has this general form: SCROLLBAR SBID, X, Y, Width, Height [Style]

Here, SBID is the value associated with the scroll bar. The scroll bar's upper left corner will

be at X, Y and the scroll bar will have the dimensions specified by Width and Height. Style

determines the exact nature of the scroll bar. Its default style is SBS_HORZ, which creates a

horizontal scroll bar. For a vertical scroll bar, specify the SBS_VERT style. If you want the

scroll bar to be able to receive keyboard focus, include the WS_TABSTOP style.

Demonstrating a Scroll Bar Control

To demonstrate a control scroll bar, one will be added to the preceding; program. First,

change the dialog box definition as shown here. This version adds a vertical scroll bar

control.

MyDB DIALOG 18, 18, 142, 92 CAPTION "Adding a Control Scroll Bar"

STYLE DS_MODALFRAME |WS_POPUP |WS_CAPTION |WS_SYSMENU

 |WS_VSCROLL WS_HSCROLL

{

 SCROLLBAR ID_SB1, 110, 10, 10, 70, SBS_VERT | WS_TABSTOP

}

Then, add this line to SCROLL.H: #define ID_SB1 200

Next, you will need to add the code that handles the control scroll bar. This code must

distinguish between the standard scroll bars and the scroll bar control, since both generate

WM_VSCROLL messages. To do this, just remember that a scroll bar control passes its

handle in lParam. For standard scroll bars, lParam is zero. For example, here is the

SB_LINEDOWN case that distinguishes between the standard scroll bar and the control

scroll bar.

case SB_LINEDOWN:

if((HWND)lParam==GetDlgItem(hdwnd, ID_SBl)

 {/*is control scroll bar*/ cntlpos++;

 if(cntlpos>VERTRANGEMAX) cntlpos = VERTRANGEMAX;}

else {/* is window scroll bar */ vpos++;

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-11

if(vpos>VERTRANGEMAX) vpos = VERTRANGEMAX;}break;

Here, the handle in lParam is compared with the handle of the scroll bar control, as

obtained using GetDIgItem(). If the handles are the same, then the message was

generated by the scroll bar control. If not, then the message came from the standard scroll

bar.

As mentioned in Lecture 7, the GetDIgItem() API function obtains the handle of a control.

Its prototype is: HWND GetDlgItem(HWND hDwnd, int ID);

Here, hDwnd is the handle of the dialog box that owns the control. The control ID is passed

in ID. This is the value you associate with the control in its resource file. The function returns

the handle of the specified control or NULL on failure.

Here is the entire program that includes the vertical scroll bar control. It is the same as the

preceding program except for the following additions: First, DialogFunc() defines the static

variable cntlpos, which holds the position of the control scroll bar. Second, the control scroll

bar is initialized inside WM_INITDIALOG. Third, all the handlers that process

WM_VSCROLL messages determine whether the message came from the standard scroll

bar or the control scroll bar. Finally, code has been added to display the current position of

the control scroll bar.

Sample output is shown in Figure 7-2. On your own, try adding a horizontal control scroll

bar. /* Demonstrate a Control Scroll Bar */

#include<windows.h>

#include<string.h>

#include<stdio.h>

#include"scroll.h"

#define VERTRANGEMAX 200

#define HORZRANGEMAX 50

LRESULT CALLBACK WindowFunc(HWND, UINT, WPARAM, LPARAM);

BOOL CALLBACK DialogFunc(HWND, UINT, WPARAM, LPARAM);

char szWinName[] = "MyWin"; /* name of window class */ HINSTANCE hInst;

int WINAPI WinMain(HINSTANCE hThisInst, HINSTANCE hPrevInst, LPSTR lpszArgs, int

nWinMode) {HWND hwnd; MSG msg; WNDCLASSEX wc1; HANDLE hAcce;

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-12

wc1.cbSize=sizeof(WNDCLASSEX);wc1.hInstance=hThisInst;

wc1.lpszClassName=szWinName; wc1.lpfnWndProc = WindowFunc; wc1.style = 0;

wc1.hIcon = LoadIcon(NULL, IDI_APPLICATION);

wc1.hIconSm = LoadIcon(NULL, IDI_WINLOGO);

wc1.hCursor = LoadCursor(NULL, IDC_ARROW); wc1. lpszMenuNarne = "MyMenu";

wc1.cbClsExtra = 0;wc1.cbWndExtra = 0;

wc1.hbrBackground = GetStockObject (WHITE_BRUSH),; if(!RegisterClassEx(&wc1)) return 0;

hwnd = CreateWindow(szWinName, "Managing Scroll Bars", WS_OVERLAPPEDWINDOW,

CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,

HWND_DESKTOP, NULL, hThisInst, NULL); hInst = hThisInst;

hAccel = LoadAccelerators(hThisInst, "MyMenu");

ShowWindow(hwnd,nWinMode); UpdateWindow(hwnd) ;

while (GetMessage (&msg, NULL, 0, 0))

{if (ITranslateAccelerator (hwnd, hAccel, &msg))

 {TranslateMessage (&msg) ;DispatchMessage (&msg) ;}}return msg.wParam;}

LRESULT CALLBACK WindowFunc(HWND hwnd,UINT message,WPARAM

wParam,LPARAM lParam) {int response;

switch (message)

{case WM_COMMAND:

 switch(LOWORD(wParam))

{case IDM_DIALOG:DialogBox(hInst,"MyDB",hwnd, (DLGPROC) DialogFunc); break;

 case IDM_EXIT: response = MessageBoxfhwnd, "Quit the Program?","Exit" , MB_YESNO) ;

 if (response == IDYES) PostQuitMessage (0); break;

 case IDM_HELP: MessageBox(hwnd, "Try the Scroll Bar", "Help", MB_OK) break;

 }break;

case WM_DESTROY: PostQuitMessage (0),break;

default: return DefWindowProc (hwnd, message, wParam, lParam); } return 0 ;}

BOOL CALLBACK DialogFunc(HWND hdwnd, UINT message,WPARAM wParam,

LPARAM IParam) {char str[80]; static int vpos = 0;static int hpos=0;static int cntlpos=0;

static SCROLLINFO si; HDC hdc; PAINTSTRUCT paintstruct;

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-13

switch(message)

 {case WM_COMMAND:

 switch(LOWORD(wParam)) { case IDCANCEL: EndDialog(hdwnd, 0); return 1; }break;

 case WM_INITDIALOG:

 si.cbSize = sizeof(SCROLLINFO);

 si.fMask = SIF_RANGE;

 si.nMin = 0; si.nMax = VERTRANGEMAX;

/* set range of standard vertical scroll bar */ GetScrollInfo(hdwnd, SB_VERT, &si, 1);

/*set range of scroll bar control*/ SetScrollInfo(GetDlgltem(hdwnd, ID_SBl), SB_CTL, &si, 1)

si.nMax = HORZRANGEMAX;

 /* set range of standard horizontal scroll bar */ SetScrollInfo(hdwnd, SB_HORZ, &si, 1);

 vpos = hpos = cntlpos = 0; return 1;

 case WM_PAINT:

hdc = BeginPaint(hdwnd, kpaintstruct)

sprintf(str, "Vertical: %d", vpos);

TextOut(hdc, 1, 1, str, strlen(str));

sprintf(str, "Horizontal: %d", hpos);

TextOut(hdc, 1, 30, str, strlen(str))

sprintf(str, "Scroll Bar Control: %d ",cntlpos);

 TextOutfhdc, 1, 60, str, strlen(str));

 EndPaint(hdwnd, &paintstruct); return 1;

case WM_VSCROLL: switch(LOWORD(wParam)}

 {case SB_LINEDOWN:

if ((HWND) lParam==GetDlgItem(hdv:nd, ID_SB1))

 {/*is control scroll bar*/cntlpos++; if(cntlpos>VERTRANGEKAX)

 cntlpos = VERTRANGEMAX; }

 else{/* is window scroll bar */ vpos++;

 if(vpos>VERTRANGEMAX) vpos = VERTRANGEMAX; }break;

 case SB_LINEUP:

if((HWND)lParam==GetDlg!tem(hdwnd, ID_SBl))

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-14

 {/*is control scroll bar*/ cntlpos--;

 if(cntlpos<0) cntlpos = 0;}

 else{/* is window scroll bar */ vpos--; if(vpos<0) vpos = 0; }break;

 case SB_THUMBPOSITION:

if((HWND)lParam==GetDlgItern(hdwnd, ID_SB1))

 {/*is control scroll bar */cntlpos = HIWORD(wParam); /* get current position */ }

else{/* is window scroll bar */vpos = HIWORD(wParam); /* get current position */}break;

 case SB_THUMBTRACK:

if((HWND)lParam==GetDlgItem(hdwnd, ID_SB1))

 {/*is control scroll bar*/ cntlpos = HIWORD(wParam); /* get current position */ }

else{/*is window scroll bar*/ vpos = HIWORD(wParam); /* get current position */}break;

 case SB_PAGEDOWN:

 if ((HWND) lP.iram==GetDlgItem(hdwnd, ID_SB1))

 {/*is control scroll bar*/cntlpos + = 5; if(cntlpos>VERTRANGEMAX)

cntlpos=VERTRANGEMAX;}

 else{/*is window scroll bar*/vpos += 5;if(vpos>VERTRANGEMAX)

vpos=VERTRANGEMAX;}break;

 case SB_PAGEUP:

 if((HWND)!Param==GetDlgItem(hdwnd, ID_SB1))

 {/*is control scroll bar */cntlpos -= 5; if(cntlpos<0) cntlpos = 0; }

 else {/* is window scroll bar */vpos -= 5;if(vpos<0) vpos = 0; } break; }

if((HWND)lParam==GetDlgItem(hdwnd, ID_SBl)) {

 /* update control scroll bar position */

 si.fMask = SIF_POS;

 si.nPos = cntlpos;

 SetScrollInfo((HWND)lParam, SB_CTL, &si, 1);

 hdc = GetDC(hdwnd);

 sprintffstr, "Scroll Bar Control: %d ", cntlpos)

 TextOutthdc, 1, 60, str, strlen(str)); ReleaseDC(hdwnd, hdc); }

 else {/*update standard scroll bar position */

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-15

 si.fMask = SIF_POS;

 si.nPos = vpos;

 SetScrollInfo(hdwnd, SB_VERT, &si, 1);

 hdc = GetDC(hdwnd);

 sprintf(str, "Vertical: %d ", vpos);

 TextOut(hdc, 1, 1, str, strlen(str));

 ReleaseDC(hdwnd, hdc);} return 1;

case WM_HSCROLL:

swi tch(LOWORD(wParam)) {

/* Try adding the other event handling code for the horizontal scroll bar, here. */

 case SB_LINERIGHT: hpos++;

 if(hpos>HORZRANGEMAX) hpos = HORZRANGEMAX; break;

case SB_LINELEFT: hpos--; if(hpos<0) hpos = 0; }

/* update horizontal scroll bar position */ si.fMask = SIF_POS;

si.nPos = hpos;

SetScrollInfo(hdwnd, SB_HORZ, &si, 1);

 hdc = GetDC(hdwnd);

 sprintf(str, "Horizontal: %d ", hpos);

 TextOutfhdc, 1, 30, str, strlen(str));

 ReleaseDC(hdwnd, hdc); return 1; }

 return 0;} See in figure 8-2 of output above program

Figure 7-2 Output Program

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-16

Check Boxes

A check box is a control that is used to turn on or off an option. It consists of a small

rectangle which can either contain a check mark or not. A check box has associated with it a

label that describes what option the box represents. If the box contains a check mark, the

box is said to be checked and the option is selected. If the box is empty, the option will be

deselected.

A check box is a control that is typically part of a dialog box and is generally defined within

the dialog box's definition in your program's resource file. To add a check box to a dialog

box definition, use either the CHECKBOX or AUTOCHECKBOX command, which have

these general forms:

CHECKBOX "string", CBID, X, Y, Width, Height [, Style]

AUTOCHECKBOX "string", CBID, X, Y, Width, Height [, Style]

Here, string is the text that will be shown alongside the check box. CBID is the value

associated with the check box. The box's upper left corner will be at X, Y and the box plus

its associated text will have the dimensions specified by Width and Height. Style determines

the exact nature of the check box. If no explicit style is specified, then the check box

defaults to displaying the string on the right and allowing the box to be tabbed to. When a

check box is first created, it is unchecked.

As you know from using Windows NT, check boxes are toggles. Each time you select a

check box, its state changes from checked to unchecked, and vice versa. However, this is not

necessarily accomplished automatically. When you use the CHECKBOX resource

command, you are creating a manual check box, which your program must manage by

checking and unchecking the box each time it is selected. (That is, a manual check box must

be manually toggled by your program.) However, you can have Windows perform this

housekeeping function for you if you create an automatic check box using

AUTOCHECKBOX. When you use an automatic check box, Windows automatically

toggles its state (between checked and not checked) each time it is selected. Since most

applications do not need to manually manage a check box, we will be using only

AUTOCHECKBOX in the examples that follow.

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-17

Obtaining the State of a Check Box

A check box is either checked or unchecked. You can determine the status of a check box by

sending it the message BM_GETCHECK using the SendDlgItemMessage() API function.

(SendDlgItemMessage() is described in Lecture 7.) When sending this message, both

wParam and lParam are zero. The check box returns BST_CHECKED (1) if the box is

checked and BST_UNCHECKED (0) otherwise.

Checking a Check Box

A check box can be checked by your program. To do this, send the check box a

BM_SETCHECK message using SendDlgItemMessage(). In this case, wParam

determines whether the check box will be checked or cleared. If wParam is

BST_CHECKED, the check box is checked. If it is BST_UNCHECKED, the box is cleared.

In both cases, lParam is zero.

As mentioned, manual check boxes will need to be manually checked or cleared by your

program each time they are toggled by the user. However, when using an automatic check

box your program will need to explicitly check or clear a check box during program

initialization only. When you use an automatic check box, the state of the box will be

changed automatically each time it is selected.

Check boxes are cleared (that is, unchecked) each time the dialog box that contains them is

activated. If you want the check boxes to reflect their previous state, then you must initialize

them. The easiest way to do this is to send them the appropriate BM_SETCHECK

messages when the dialog box is created. Remember, each time a dialog box is activated, it

is sent a WM_INITDIALOG message. When this message is received, you can set the state

of the check boxes (and anything else) inside the dialog box.

Check Box Messages

Each time the user clicks on the check box or selects the check box and then presses the space

bar, a WM_COMMAND message is sent to the dialog function and the low-order word of

wParam contains the identifier associated with that check box. If you are using a manual

check box, then you will want to respond to this command by changing the state of the box.

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-18

IN DEPTH The 3-State Check Box

Windows provides an interesting variation of the check box called the 3-state check box.

This check box has three possible states: checked, cleared, or grayed. (When the control is

grayed, it is disabled.) Like its relative, the 3-state check box can be implemented as either

an automatic or manually managed control using the AUTO3STATE and STATE3

resource commands, respectively. Their general forms are shown here:

 STATES "string", ID, X, Y, Width, Height [, Style]

 AUTO3STATE "string1, ID, X, Y, Width, Height I Style]

Here, string is the text that will be shown alongside the check box. ID is the value associated

with the check box. The box's upper left corner will be at X, Y and the box plus its associated

text will have the dimensions specified by Width and Height. Style determines the exact

nature of the check box. If no explicit style is specified, then the check box defaults to

displaying the string on the right and allowing the box to be tabbed to. When a 3-state check

box is first created, it is unchecked.

In response to a BM_GETCHECK message, 3-state check boxes return

BST_UNCHECKED if unchecked, BST_CHECKED if checked, and

BST_INDETERMINATE if grayed. Correspondingly, when setting a 3-statc check box using

BM_SETCHECK, use BST_UNCHECKED to clear it, BST_CHECKED to check it, and

BST_INDETERMINATE to gray it.

Radio Buttons

The next control that we will examine is the radio button. Radio buttons are used to present

mutually exclusive options. A radio button consists of a label and a small circular button. If

the button is empty, then the option is not selected. If the button is filled, then the option is

selected. Windows NT supports two types of radio buttons: manual and automatic. The

manual radio button (like the manual check box) requires that you perform all management

functions. The automatic radio button performs the management functions for you. Because

automatic radio buttons are used almost exclusively, they are the only ones examined here.

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-19

Like other controls, automatic radio buttons are defined in your program's resource file,

within a dialog definition. To create an automatic radio button, use

AUTORADIOBUTTON, which has this general form:

AUTORADIOBUTTON "string", RB1D, X, Y, Width, Height [, Style]

Here, string is the text that will be shown alongside the button. RBID is the value associated

with the radio button. The button's upper left corner will be at X,Yand the button plus its

associated text will have the dimensions specified by Width and Height. Style determines the

exact nature of the radio button. If no explicit style is specified, then the button defaults to

displaying the string on the right and allowing the button to be tabbed to. By default, a radio

button is unchecked.

As stated, radio buttons are generally used to create groups of mutually exclusive options.

When you use automatic radio buttons to create such a group, then Windows automatically

manages the buttons in a mutually exclusive manner. That is, each time the user selects one

button, the previously selected button is turned off. Also, it is not possible for the user to

select more than one button at any one time.

A radio button (even an automatic one) may be set to a known state by your program by

sending it the BM_SETCHECK message using the SendDlgItemMessage()function. The

value of wParam determines whether the button will be checked or cleared. If wParam is

BST_CHECKED, then the button will be checked. If it is BST_UNCHECKED, the box will

be cleared. By default, a radio button is unchecked. You can obtain the status of a radio

button by sending it the BM_GETCHECK message. The button returns BST_CHECKED if

the button is selected and BST_UNCHECKED if it is not.

Generating Timer Messages

Using Windows, it is possible to establish a timer that will interrupt your program at periodic

intervals. Each time the timer goes off, Windows sends a WM_TIMER message to your

program. Using a timer is a good way to "wake up your program" every so often. This is

particularly useful when your program is running as a background task. To start a timer, use

the SetTimer() API function, whose prototype is shown here:

UINT SetTimer(HWND hwnd, UINT ID, UINT wLength, TIMERPROC lpTFunc);

Here, hwnd is the handle of the window that uses the timer. Generally, this window will be

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-20

either your program's main window or a dialog box window. The value of ID specifies a

value that will be associated with this timer. (More than one timer can be active.) The value

of wLength specifies the length of the period, in milliseconds. That is, wLength specifies

how much time there is between interrupts. The function pointed to by lpTFunc is the timer

function that will be called when the timer goes off. However, if the value of lpTFunc is

NULL, then the window function associated with the window specified by hwnd will be

called each time the timer goes off and there is no need to specify a separate timer function.

In this case, when the timer goes off, a WM_TIMER message is put into your program's

message queue and processed like any other message. This is the approach used by the

example that follows. The SetTimer() function returns ID if successful. If the timer cannot

be allocated, zero is returned. If you wish to define a separate timer function, it must be a

callback function that has the following prototype (of course, the name of the function may

be different):

VOID CALLBACK TFunc(HWND hwnd, UINT msg, UINT TimerID, DWORD SysTime);

Here, hwnd will contain the handle of the timer window, msg will contain the message

WM_TIMER, TimerlD will contain the ID of the timer that went off, and SysTime will

contain the current system time.

Once a timer has been started, it continues to interrupt your program until you either

terminate the application or your program executes a call to the KillTimer() API function,

whose prototype is shown here: BOOL KillTimer(HWND hwnd, UINT ID);

Here, hwnd is the window that contains the timer and ID is the value that Identifies that

particular timer. The function returns nonzero if successful and zero on failure.

Each time a WM_TIMER message is generated, the value of wParam contains the ID of the

timer and lParam contains the address of the timer callback function (if it is specified). For

the example that follows, lParam will be NULL.

The Countdown Timer Resource and Header Files

The countdown timer uses the following resource file:

; Demonstrate scroll bars, check boxes, and radio buttons.

#include "cd.h"

#include <windows.h>

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-21

MyMenu MENU{POPUP "&Dialog"{MENUITEM "&Timer\tF2", IDM_DIALOG

 MENUITEM "&Exit\tF3", IDM EXIT}

 MENUITEM "&Help", IDM_HELP}

MyMenu ACCELERATORS {VK_F2, IDM_DIALOG, VIRTKEY

 VK_F3, IDM_EXIT, VIRTKEY

 VK_F1, IDM_HELP, VIRTKEY}

MyDB DIALOG 18, 18, 152, 92 CAPTION "A Countdown Timer"

STYLE DS_MODALFRAME | WS_POPUP | WS_VSCROLL |WS_CAPTICN |

WS_SYSMENU

{PUSHBUTTON "Start", IDD_START, 10, 60, 30, 14, WS_CHILD | WS_VISIBLE |

WS_TABSTOP

 PUSHBUTTON "Cancel", IDCANCEL, 60, 60, 30, 14,WS_CHILD | WS_VISIBLE |

WS_TABSTOP

 AUTOCHECKBOX "Show Countdown", IDD_CB1, 1, 20, 70, 10

 AUTOCHECKBOX "Beep At End", IDD_CB2, 1, 30, 50, 10

 AUTORADIOBUTTON "Minimize", IDD_RB1, 80, 20, 50, 10

 AUTORADIQBUTTON "Maximize", IDD_RB2, 80, 30, 50, 10

 AUTORADIOBUTTON "As-Is", IDD_RB3, 80, 40, 50, 10}

The header file required by the timer program is shown here. Call this file CD.H.

#define IDM_DIALOG 100

#define IDM_EXIT 101

#define IDM_HELP 102

#define IDD_START 300

#define IDD_TIMER 301

#define IDD_CB1 400

#define IDD_CB2 401

#define IDD_RB1 402

#define IDD_RE2 403

#define IDD_RB3 404

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-22

The Countdown Timer Program

The entire countdown timer program is shown here. Sample output from this program is

shown in Figure 7-3. /* A Countdown Timer */

#include <windows.h>

#include <string.h>

#include <stdio.h>

#include "cd.h"

#define VERTRANGEMAX 200

LRESULT CALLBACK WindowFunc(HWND, UINT, WPARAM, LPARAM);

BOOL CALLBACK DialogFunc(HWND, UINT, WPARAM, LPARAM);

char szWinName[] = "MyWin"; /* name of window class */

HINSTANCE hlnst; HWND hwnd;

int WINAPI WinMain(HINSTANCE hThisInst, HINSTANCE hPrevInst,LPSTR IpszArgs, int

nWinMode)

{MSG msg; WNDCLASSEX wc1; HANDLE hAccel;

wc1.cbSize=sizeof(WNDCLASSEX);wc1.hInstance=hThisInst;

wc1.lpszClassName=szWinName; wc1.lpfnWndProc = WindowFunc; wc1.style = 0;

wc1.hIcon = LoadIcon(NULL, IDI_APPLICATION);

wc1.hlconSm= Loadlcon(NULL, IDI_WINLOGO);

wc1.hCursor = LoadCursor(NULL, IDC_ARROW);

wc1.lpszMenuName="MyMenu";wc1.cbClsExtra=0;wc1.cbWndExtra=0;

wc1.hbrBackground= GetStockObject(WHITE_BRUSH); if (!RegisterClassEx(&wc1)) return 0;

hwnd = CreateWindow(szWinName, "Demonstrating Controls",WS_OVERLAPPEDWINDOW,

CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,CW__USEDEFAULT,

HWND_DESKTOP, NULL, hThisInst, NULL); hInst = hThisInst;

/* load accelerators */ hAccel = LoadAccelerators (hThisInst, "MyMenu");

/*Display the window.*/ ShowWindow(hwnd, nWinMode); UpdateWindow(hwnd) ;

while (GetMessagef^msg, NULL, 0, 0))

{if (ITranslateAccelerator (hwnd, hAccel, &msg))

 {TranslateMessage (&msg) ;DispatchMessage (&msg) ;} } return msg.wParam;}

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-23

LRESULT CALLBACK WindowFunc (HWND hwnd, UINT message, WPARAM

wParam,LPARAM lParam) { int response;

 switch (message)

 {case WM_COMMAND:

switch (LOWORD(wParam))

 { case IDM_DIALOG: DialogBox(hInst, "MyDB", hwnd, (DLGPROC) DialogFunc); break;

 case IDM_EXIT: response=MessageBox (hwnd,"Quit the Program?","Exit" , MB_YESNO) ;

 if (response == IDYES) PostQuitMessage (0) ; break;

case IDM_HELP: MessageBox (hwnd, "Try the Timer", "Help", MB_OK) ; break;

 }break;

 case WM_DESTROY: /* terminate the program */ PostQuitMessage (0) ; break;

 default: return DefWindowProc (hwnd, message, wParam, lParam) ; } return 0;}

BOOL CALLBACK DialogFunc (HWND hdwnd, UINT message, WPARAM wParam,

LPARAM lParam) {char str [80] ;static int vpos=0;static SCROLLINFO si;

HDC hdc; PAINTSTRUCT paintstruct ; static int t;

switch(message)

 {case WM_COMMAND:

 switch (LOWORD (wParam))

 {case IDCANCEL: EndDialog (hdwnd, 0) ; return 1;

 case IDD_START: /* start the timer */

 SetTimer (hdwnd, IDD_TIMER, 1000, NULL) ; t = vpos ;

if(SendDlgItemMessage(hdwnd,IDD_RB1,BM_GETCHECK,0,0)==BST_CHECKED)

 ShowWindow(hwnd, SW_MINIMIZE);

 Else if(SendDlgltemMessage(hdwnd,IDD_RB2,BM_GETCHECK,0,0) ==BST_CHECKED)

 ShowWindow(hwnd, SW_MAXIMIZE); return 1;}break;

 case WM_TIMER: if(t==0) {KillTimer(hdwnd, DD_TIMER); /*timer went off*/

 if(SendDlgltemMessage(hdwnd,IDD_CB2,BM_GETCHECK,0,0)==BST_CHECKED)

 MessageBeep (MB_OK) ; MessageBox(hdwnd, "Timer Went Off", "Timer", MB_OK);

 ShowWindow(hwnd, SW_RESTORE); return 1;}

 t- -;/*see if countdown is to be displayed*/

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-24

 if(SendDlgltemMessage(hdwnd,IDD_CB1, BM_GETCHECK, 0, 0) == BST_CHECKED)

 {hdc = GetDC(hdwnd); sprintf(str, "Counting: %d ", t);

 TextOutthdc, 1, 1, str, strlen(str)); ReleaseDC(hdwnd, hdc);return 1;

 case WM_INITDIALOG:

 si.cbSize = sizeof(SCROLLINFO);

 si.fMask = SIF_RANGE;

 si.nMin = 0; si.nMax = VERTRANGEMAX;

 SetScrollInfo(hdwnd, SB_VERT, &si, 1);

 /* check the As-Is radio button */

 SendDlgItemMessage(hdwnd,IDD_RB3,BM_SETCHECK, BST_CHECKED, 0); return 1

 ca se WM_PAINT:

 hdc = BeginPaint(hdwnd, &paintstruct);

 sprintf(str, "Interval: %d", vpos);

 TextOutthdc, 1, 1, str, strlen(str));

 EndPaint (hdwnd, &paintstruct) ,- return 1;

case WM_VSCROLL:

 switch (LOWORD(wParam))

{case SBLINEDOWN: vpos++;

 if(vpos>VERTRANGEMAX) vpos=VERTRANGEMAX; break;

 case SB_LINEUP: vpos--; if(vpos<0) vpos = 0;break;

 case SB_THUMBPOSITION: vpos = HIWORD(wParam); /*get current position*/break;

 case SB_THUMBTRACK: vpos = HIWORD(wParam); /* get current position */break;
case SB_PAGEDOWN: vpos += 5;

 if(vpos>VERTRANGEMAX) vpos=VERTRANGEMAX; break;

case SB_PAGEUP: vpos -= 5; if(vpos<0) vpos = 0; }

 si.fMask = SIF_POS;

 si.nPos = vpos;

 SeCScrollInfoCndwnd, SB_VERT, &si, 1);

 hdc = GetDC(hdwnd);

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-25

 sprintf(str, "Interval: %d ", vpos); TextOutfhdc, 1, 1, str,

strlen(str));

 ReleaseDCM hdwnd, hdc); return 1;} return 0; }

Figure 7-3 Output Count-Down Time Program

A Closer Look at the Countdown Program

To better understand how each control in the countdown program operates, let's take a closer

look at it now. As you can see, the vertical scroll bar is used to set the delay. It uses much of

the same code that was described earlier In this chapter when scroll bars were examined

and no further explanation is needed. However, the code that manages the check boxes and

radio buttons deserves detailed attention.

As mentioned, by default no radio button is checked when they are first created. Thus, the

program must manually select one each time the dialog box is activated. In this example,

each time a WM_INITDIALOG message Is received, the As-Is radio button (IDD_RB3) is

checked using this statement. SendDlgItemMessage(hdwnd, IDD_RB3, BM_SETCHECK,

BST_CHECKED, 0);

To start the timer, the user presses the Start button. This causes the following code to

execute:

case IDD_START:/*start the timer*/ SetTimer(hdwnd, IDD_TIMER,

1000,NULL);t=vpos;

 if(SendDlgltemMessage(hdwnd, IDD_RB1, BM_GETCHECK, 0, 0) ==

BST_CHECKED)

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-26

 Show'Window (hwnd, SW_MINIMIZE) ;

 else if (SendDlgItemMessage (hdwnd,IDD_RB2, BM_GETCHECK, 0, 0) ==

BST_CHECKED)

 ShowWindow(hwnd, SW_MAXIMIZE); return 1;

Here, the timer is set to go off once every second (1,000 milliseconds). The value of the

counter variable t is set to the value determined by the position of the vertical scroll bar. If the

Minimize radio button is checked, the program windows are minimized. If the Maximize

button is checked, the program windows are maximized. Otherwise, the program windows are

left unchanged. Notice that the main window handle, hwnd, rather than the dialog box

handle, hdwnd, is used in the call to ShowWindow(). To minimize or maximize the

program, the main window handle-not the handle of the dialog box—must be used. Also,

notice that hwnd is a global variable in this program.

This allows it to be used inside DialogFunc(). Each time a WM_TIMER message is

received, the.following code executes:

case WM_TIMER: /* timer went off */

 if(t==0) { KillTimer(hdwnd, IDDJTIMER);

 if(SendDlgltemMessage(hdwnd,IDD_CB2, BM_GETCHECK, 0, 0) == BST_CHECKED)

 MessageBeep(MB_OK);

 MessageBox(hdwnd, "Timer Went Off", "Timer", MB_OK);

 ShowWindow(hwnd, SW_RESTORE) ; return 1;} t- -;

/* see if countdown is to be displayed */

if(SendDlgltemMessage(hdwnd,IDD_CB1, BM_GETCHECK, 0, 0) == BST_CHECKED)

 {hdc = GetDC(hdwnd);

 sprintf(str, "Counting: %d ", t) ;

 TextOut(hdc, 1, 1, str, strlen(str));

 ReleaseDC(hdwnd, hdc); } return 1;

If the countdown has reached zero, the timer is killed, a message box informing the user that

the specified time has elapsed is displayed, and the window is restored to its former size, if

necessary. If the Beep At End button Is checked, then the computer's speaker is beeped using

a call to the API function MessageBeep(). If there is still time remaining, then the counter

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-27

variable t is decremented. If the Show Countdown button is checked, then the time

remaining in the countdown is displayed.

MessageBeep() is a function you will probably find useful in other programs that you write.

Its prototype is shown here: BOOL MessageBeep(UINT sound);

Here, sound specifies the type of sound that you want to make. It can be -1, which produces a

standard beep, or one of these built in values:

MB_ICONASTERISK

MB_ICONEXCLAMATION

MB_ICONHAND

MB_ICONQUESTION

MB_OK

MB_OK also produces a standard beep. MessageBeep() returns nonzero if successful or

zero on failure.

As you can see by looking at the program, since automatic check boxes and radio buttons

arc mostly managed by Windows, there is surprisingly little code within the countdown

program that actually deals with these two controls. In fact, the ease of use of check boxes

and radio buttons helps make them two of the most commonly used control elements.

Static Controls

Although none of the standard controls are difficult to use, there is no question that the

static controls are the easiest. The reason for this is simple: a static control is one that

neither receives nor generates any messages. In short, the term static control is just a

formal way of describing something that is simply displayed in a dialog box. Static controls

include CTEXT, RTEXT, and LTEXT, which are static text controls; and GROUPBOX,

which is used to visually group other controls.

The CTEXT control outputs a string that is centered within a predefined area. LTEXT

displays the string left justified. RTEXT outputs the string right justified. The general

forms for these controls are shown here:

CTEXT "text", ID, X, Y, Width, Height [, Style]

RTEXT 'text", ID, X, Y, Width, Height [, Style]

LTEXT "text", ID, X, Y, Width, Height [, Style]

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-28

Here, text is the text that will be displayed. ID is the value associated with the text. The

text will be shown in a box whose upper left corner will be at X, Y and whose dimensions

are specified by Width and Height. Style determines the exact nature of the text box.

Understand that the box itself is not displayed. The box simply defines the space that the

text is allowed to occupy.

The static text controls provide a convenient means of outputting text to a dialog box.

Frequently, static text is used to label other dialog box controls or to provide simple

directions to the user. You will want to experiment with the static text controls on your

own.

A group box is simply a box the surrounds other dialog elements and is generally used to

visually group other items. The box may contain a title. The general form for GROUPBOX

is shown here: GROUPBOX "title", ID, X, Y, Width, Height [, Style]

Here, title is the title to the box. ID is the value associated with the box. The upper left

corner will be at X,Yand its dimensions are specified by Width and Height. Style

determines the exact nature of the group box. Generally, the default setting is sufficient.

To see the effect of a group box, add the following definition to the resource file you

created for the countdown program. GROUPBOX "Display As", 1, 72, 10, 60, 46

After you have added the group box, the dialog box will look like that shown in Figure 7-4.

Remember that although a group box makes the dialog box look different, its function has not been

changed.

Figure 7-4 The Count-Down dialog box that includes a group box static control

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-29

Stand Alone Controls

Although controls are most often used within a dialog box, they may also be free-standing

within the client area of the main window. To create a free-standing control, simply use

the CreateWindow() function, specifying the name of the control class and the style of

control that you desire. The standard control class names are shown here:

BUTTON

COMBOBOX

EDIT

L1STBOX

SCROLLBAR

STATIC

Each of these classes has several style macros associated with it that can be used to

customize the control. However, it is beyond the scope of this book to describe them. A

list of these style macros can be found by examining WINDOWS.H (and its support files)

or by referring to an API reference guide.

The following code creates a free-standing scroll-bar and push button.

hsbwnd = CreateWindow(

"SCROLLBAR", /* name of scroll bar class */

"", /* no title */

SBS_HORZ | WS_CHILD | WS_VISIBLE, /* horizontal scroll bar */

10, 10, /* position */

 120, 20, /* dimensions

hwnd, /* parent window */

NULL, /* no control ID needed for scroll bar */

hThisInst, /* handle of this instance of the program */

NULL /* no additional arguments */

Windows programming2 Class: forth (Software Branch)

More Control (Dialog Box)

--

 Chapter 7-30

hpbwnd = CreateWindow(

"BUTTON", /* name of pushbutton class */

"Push Button", /* text inside button */

BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE, /* pushbutton*/

10, 60, /* position */

90, 30, /* dimensions */

hwnd, /* parent window */

(HWND) 500, /* control ID*/

hThisInst, /* handle of this instance of the program */

NULL /* no additional arguments */);

As the push button shows, when required, the ID associated with a free-standing control is

specified in the ninth parameter to CreateWindow(). As you should recall, this is the

parameter that we used to specify the handle of a menu that overrides the class menu.

However, when creating a control, you use this parameter to specify the control's ID.

When a free-standing control generates a message, it is sent to the parent window. You will

need to add code to handle these messages within the parent's window function.

Windows programming2 Class: forth (Software Branch)

Bitmap

1

A bitmap is a display object that contains a rectangular graphical image. The term

comes from the fact that a bitmap contains a set of bits which defines the image. Since

Windows is a graphics-based operating system, it makes sense that you can include

graphical images as resources in your applications. However, bitmaps have broader

application than simply providing support for graphical resources. As you will see,

bitmaps underlie many of the features that comprise the Windows graphical user

interface. They can also help solve one of the must fundamental programming

problems facing the Windows programmer: repainting a window. Once you gain

mastery over the bitmap you are well on your way to taking charge of many other

aspects of Windows. In addition to bitmaps proper, there are two specialized types:

the icon and the cursor. As you know, an icon represents some resource or object.

The cursor indicates the current mouse position. So far, we have only been using

built-in icons and cursors. Here you will learn to create your own, custom versions of

these items.

Two Types of Bitmaps

There are two general types of bitmaps supported by Windows: device-dependent and

device-independent. Device-dependent bitmaps (DDE) are designed for use with a

specific device. Device-independent bitmaps (DIB) are not tied to a specific device.

Device-dependent bitmaps were initially the only type available in Windows. However,

all versions of Windows since 3.0 have included device-independent bitmaps, too. DIBs

are most valuable when you are creating a bitmap that will be used in environments

other than the one in which it was created. For example, if you want to distribute a

bitmap, a device-independent bitmap is the best way to do this. However, DDEs are still

commonly used when a program needs to create a bitmap for its own, internal use. In

fact, this is the main reason that DDEs remain widely used. Also, Win32 provides

various functions that allow you to convert between DDEs and DIBs, should you need

Windows programming2 Class: forth (Software Branch)

Bitmap

2

to. The organization of a DDB differs from that of a DIB. However, for the purposes of

this chapter, the differences are not important. In fact, the binary format of a bitmap is

seldom significant from the application's perspective because Windows provides high-

level API functions that manage bitmaps,you will seldom need to "get your hands dirty"

with their internals. For the purposes of this chapter, we will be using device-dependent

bitmaps because we will be focusing on bitmaps used by the program that creates them.

Two Ways to Obtain a Bitmap

A bitmap can be obtained two different ways: it may be specified resource or it may be

created dynamically, by your program, resource is a graphical image that is defined

outside your program, but specified in the program's resource file. A dynamic bitmap is

created by your program during its execution. Each type is discussed in this chapter,

beginning with the bitmap resource.

Using a Bitmap Resource

In general, to use a bitmap resource you must follow these three steps:

1. The bitmap must be specified within your program's resource file.

2. The bitmap must be loaded by your program.

3. The bitmap must be selected into a device context.

This section describes the procedures necessary to accomplish these steps.

Creating a Bitmap Resource

Bitmap resources are not like the resources described in the preceding chapters, such as

menus, dialog boxes, and controls. These resources are defined using textual statements

in a resource file. Bitmaps are graphical images that must reside in special, bitmap files.

However, the bitmap must still be referred to in your program's resource file. A bitmap

resource is typically created using an image editor. An image editor will usually be

Windows programming2 Class: forth (Software Branch)

Bitmap

3

supplied with your compiler. It displays an enlarged view of your bitmap. This allows

you easily to construct or alter the image example; a custom bitmap is displayed inside

the Microsoft C++ image editor.

Except for specialized bitmaps, such as icons and cursors, the It bitmap is arbitrary and

under your control. Within reason, you can create bitmaps as large or as small as you

like. To try the example that bitmap must be 256 x 128 pixels. Call your bitmap file

BP.BMP. if you want your program to produce the results shown in the figures in this

chapter, then make your bitmap look like the one shown you have defined your bitmap,

create a resource file called BP.RC that contains this line.

 As you can guess, the BITMAP statement defines a bitmap resource called MyBP that

is contained in the file BP.BMP. The general form of the BITMAP statement is:

BitmapName BITMAP Filename

Here, BitmapName is the name that identifies the bitmap. This name is used by your

program to refer to the bitmap. Filename is the name of the file that contains the bitmap.

Displaying a Bitmap

Once you have created a bitmap and included it in your application's resource file, you

may display it whenever you want in the client area of a window. However, displaying a

bitmap requires a little work on your part. The following discussion explains the proper

procedure.

Before you can use your bitmap, you must load it and store its handle. This can be done

inside WinMain() or when your application's main window receives a WM_CREATE

message. A WM_CREATE message is sent to a window when it is first created, out

before it is visible. WM_CREATE is a good place to perform any initializations that

relate to (and are subordinate to) a window. Since the bitmap resource will be displayed

Windows programming2 Class: forth (Software Branch)

Bitmap

4

within the client area of the main window, it makes sense to load the bitmap when the

window receives the WM_CREATE message. This is the approach that will be used in

this chapter. To load the bitmap, use the LoadBitmap() API function, whose prototype

is shown here:

 HBITMAP LoadBitmap(HINSTANCE hThisInst, LPCSTR lpszName);

The current instance is specified in hThisInst and a pointer to the name of the bitmap as

specified in the resource file is passed in lpszName. The function returns the handle to

the bitmap, or NULL if an error occurs. For example:

HBITMAP hbit; /* handle of bitmap */

/*…...*/

hbit = LoadBitmap(hInst, "MyBP"); /* load bitmap */

This fragment loads a bitmap called MyBP and stores a handle to it in hbit.

When it comes time to display the bitmap, your program must follow these four steps:

1. Obtain the device context so that your program can output to the window.

2. Obtain an equivalent memory device context that will hold the bitmap until it is

displayed. (A bitmap is held in memory until it is copied to your window.)

3. Select the bitmap into the memory device context.

4. Copy the bitmap from the memory device context to the window device context.

This causes the bitmap to be displayed.

To see how the preceding four steps can be implemented, consider the following

fragment. It causes a bitmap to be displayed at two different locations each time a

WM_PAINT message is received.

HOC hdc, memdc; PAINTSTRUCT ps;

case WM_PAINT:

Windows programming2 Class: forth (Software Branch)

Bitmap

5

hdc = BeginPaint(hwnd, &ps); /* get device context */

memdc = CreateCompatibleDC(hdc); /* create compatible DC */

SelectObject(memdc, hbit); /* select bitmap */

/*display image */

BitBlt(hdc,10,10,256,128,memdc,0,0,SRCCOPY);

/* display image */

BitBlt(hdc,300,100,256,128,memdc,0,0,SRCCOPY);

EndPaint(hwnd, &ps); /* release DC */

DeleteDC(memdc); /* free the memory context */ break;

Let's examine this code, step by step.

First, two device context handles are declared, hdc will hold the current window

device context as obtained by BeginPaint(). The other, called memdc, will hold the

device context of the memory that stores the bitmap until it is drawn in the window.

Within the WM_PAINT case, the window device context is obtained. This is

necessary because the bitmap will be displayed in the client area of the window and

no output can occur until your program is granted a device context. Next, a memory

context is created that will hold the bitmap. This memory device context must be

compatible with the window device context. The compatible memory device context

is created using the CreateCompatibleDC() API function. Its prototype is shown

here: HDC CreateCompatibleDC(HDC hdc);

This function returns a handle to a region of memory that is compatible with the

device context of the window, specified by hdc. This memory will be used to

construct an image before it is actually displayed. The function returns NULL if an

error occurs.

Windows programming2 Class: forth (Software Branch)

Bitmap

6

Next, the bitmap must be selected into the memory device context using the

SelectObject() API function. Its prototype is shown here:

HGDIOBJ SelectObject(HDC hdc, HGDIOBJ hObject);

Here, hdc specifies the device context and hObject is the handle of the object

being selected into that context. The function returns the handle of the

previously selected object (if one exists), allowing it to be reselected later,

if desired.

To actually display the bitmap, use the BitBlt() API function. This function copies a

bitmap from one device context to another. Its prototype is shown here:

BOOL BitBlt(HDC HDest, int X, int Y, int Width, int Height, HDC hSource, int

SouceX, int SourceY, DWORD dwHow);

Here, hDcst is the handle of the target device context, and X and Fare the upper left

coordinates at which point the bitmap will be drawn. The width and height of the

destination region are specified in Width and Height. The hSource parameter contains

the handle of the source device context, which in this case will be the memory context

obtained using CreateConipatibleDC(). The SourceX and SourceY parameters specify

the upper left coordinates within the bitmap at which the copy operation will begin.

To begin copying at the upper-left corner of the bitmap, these values must be zero.

The value of dwHow determines how the bit-by-bit contents of the bitmap will be

drawn on the screen. Some of the most common values are shown here:

Macro Effect
DSTINVERT Inverts the bits in the destination bitmap

SRCAND

ANDs bitmap with current destination.

SRCCOPY

Copies bitmap as is, overwriting any preexisting output.

Windows programming2 Class: forth (Software Branch)

Bitmap

7

BitBlt() returns nonzero if successful and zero on failure.

In the example, each call to BitBlt() displays the entire bitmap by copying it to the

client area of the window.

After the bitmap is displayed, both device contexts are released. In this case,

EndPaint() is called to release the device context obtained by calling BeginPaint().

To release the memory device context obtained using CreateCompatibleDC(), you

must use DeleteDC(), which takes as its parameter the handle of the device context

to release. You cannot use ReleaseDC() for this purpose. (Only a device context

obtained through a call to GetDC() can be released using a call to ReleaseDC().)

Deleting a Bitmap

A bitmap is a resource that must be removed before your application ends. To do

this, your program must call DeleteObject() when the bitmap is no longer needed or

when a WM_DESTROY message is received. DeleteObject() has this prototype:

BOOL DeleteObject(HGDIOBJ hObj);

Here, hObj is the handle to the object being deleted. The function returns nonzero if

successful and zero on failure.

The Complete Bitmap Example Program

#include <windows.h>

SRCPA1NT

ORs bitmap with current destination.

 SRCINVERT

XORs bitmap with current destination.

Windows programming2 Class: forth (Software Branch)

Bitmap

8

#include <string.h>

#include <stdio.h>

LRESULT CALLBACK WindowFunc (HWND, UINT, WPARAM, LPARAM);

char szWinName[] = "MyWin"; /* name of window class */

HBITMAP hbit; /* handle of bitmap */

HINSTANCE hlnst; /* handle to this instance */

int WINAPI WinMain(HINSTANCE hThisInst, HINSTANCE hPrevInst,

 LPSTR IpszArgs, int nWinMode)

{HWND hwnd; MSG msg; WNDCLASSEX wcl;

/* Define a window class. */

 wcl.cbSize = sizeof(WNDCLASSEX);

wcl.hInstance = hThisInst; /* handle to this instance */

wcl.lpszClassName = szWinName; /* window class name */

wcl.lpfnWndProc = WindowFunc; /* window function */

wcl.style = 0; /* default style */

wcl.hIcon = LoadIcon(NULL, IDI_APPLICATION); /* standard icon */

wcl.hIconSm = LoadIcon(NULL, IDI_APPLICATION); /* small icon */

wcl.hCursor = LoadCursor(NULL, IDC_ARROW); /*cursor style */

wcl.lpszMenuName = NULL; /* no main menu */

wcl.cbClsExtra = 0; /* no extra */

wcl.cbWndExtra =0; /* information needed */

/* Make the window white. */

 wcl.hbrBackground =(HBRUSH) GetStockObject(WHITE_BRUSH);

/* Register the window class. */

 if(!RegisterClassEx(&wcl)) return 0;

Windows programming2 Class: forth (Software Branch)

Bitmap

9

hlnst = hThisInst; /* save instance handle */

/* Now that a window class has been registered, a window can be created. */

hwnd = CreateWindow(

szWinName, /* name of window class */

"Displaying a Bitmap", /* title */

 WS_OVERLAPPEDWINDOW, /* window style - normal */

 CW_USEDEFAULT, /* X coordinate - let Windows decide */

 CW_USEDEFAULT, /* Y coordinate - let Windows decide */

 CW_USEDEFAULT, /* width - let Windows decide */

 CW_USEDEFAULT, /* height - let Windows decide */

 HWND_DESKTOP, /* no parent window */

 NULL, /* no override of class menu */

hThisInst, /* handle of this instance of the program */

 NULL /* no additional arguments */);

/* Display the window. */ ShowWindow(hwnd, nWinMode);

UpdateWindow(hwnd) ;

/* Create the message loop. */

 while (GetMessage(&msg, NULL, 0, 0))

{TranslateMessage(&msg) ; /* translate keyboard messages */

 DispatchMessage(&msg) ; /* return control to Windows */}

return msg.wParam;}

/* This function is called by Windows and is passed messages from the message

queue. */ LRESULT CALLBACK WindowFunc (HWND hwnd, UINT message,

WPARAM wParam, LPARAM lParam)

{HDC hdc, memdc; PAINTSTRUCT ps;

Windows programming2 Class: forth (Software Branch)

Bitmap

10

switch (message) { case WM_CREATE: /* load the bitmap */

hbit = LoadBitmap (hlnst, "MyBP"); /* load bitmap */ break;

 case WM_PAINT: hdc = BeginPaint (hwnd, &ps); /*get device context */

memdc= CreateCompatibleDC(hdc); /* create compatible DC */

SelectObject(memdc, hbit); /* select bitmap */

BitBlt(hdc,10,10,256,128,memdc, 0, 0, SRCCOPY); /* display image */

BitBlt(hdc,300,100,256,128,memdc, 0, 0, SRCCOPY); /* display image */

EndPaint(hwnd, &ps); /* release DC */

DeleteDC(memdc); /* free the memory context */ break;

 case WM_DESTROY: /* terminate the program */

DeleteObject(hbit); /* remove the bitmap */ PostQuitMessage(0); break;

default: return DefWindowProc(hwnd, message, wParam, lParam);} return 0;}

You might want to experiment with the bitmap program before continuing.

For example, try using different copy options with BitBlt(). Also, try

bitmaps of differing sizes.

In Depth:

XORing an Image to a Window

As explained, BltBlt() can copy the bitmap contained in one device context into

another device context a number of different ways. For example, if you specify

SRCPAINT, the image is ORed with the destination. Using SRSCAND causes the

bitmap to be ANDed with the destination. Perhaps the most interesting way to copy

the contents of one DC to another uses SRCINVERT. This method XORs the source

with the destination. There are two reasons this is particularly valuable.

Windows programming2 Class: forth (Software Branch)

Bitmap

11

First, XORing an image onto a window guarantees that the image will be visible. It

doesn't matter what color or colors the source image or the destination uses; an

XORed image is always visible. Second, XORing an image to the same destination

twice removes the image and restores the destination to its original condition. As you

might guess, XORing is an efficient way to temporarily display and then remove an

image from a window without disturbing its original contents.

To see the effects of XORing animage to a window, insert the following cases into

WindowFunc() in the first bitmap program.

case WM_LBUTTONDOWN: hdc = GetDC(hwnd) ;

rnemdc = CreateCompatibleDC (hdc) ,- /* create compatible DC */

 SelectObjoct (memdc, hbit); /* select bitmap */

/* XOR image onto the window */

BitBlt(hdc, LOWORD (lParam) , HIWORD (lParam) ,256,128,memdc, 0, 0, SRCINVERT);

ReleaseDC(hwnd, hdc); DeleteDC (memdc) ; break;

case WM_LBUTTONUP :hdc = GetDC(hwnd) ;

memdc = CreateCompatibleDC (hdc) ; /* create compatible DC *?

 SelectObject (memdc, hbit); /* select bitmap */

/* XOR image onto the window a second time */

 BitBlt(hdc,LOWORD(lParam) , HIWORD(lParam),256, meradc,0,0, SRCINVERT) ;

ReleaseDC(hwnd, hdc); De1eteDC (memdc) ; break;

The code works like this: Each time the left mouse button is pressed, the

bitmap is XORed to the window starting at the location of the mouse

pointer. This causes an inverted image of the bitmap to be displayed.

When the left mouse pointer is released, the image is XORed a second

time, causing the bitmap to be removed and the previous contents to be

Windows programming2 Class: forth (Software Branch)

Bitmap

12

restored. Be careful not to move the mouse while you are holding down

the left button. If you do, then the second XOR copy will not take place

directly over the top of the first and the original contents of the

window will not be restored.

Creating a Custom Icon and Cursor

To conclude this chapter we will examine the creation and use of custom icons and

cursors. As you know, all Windows NT applications first create a window class, which

defines the attributes of the window, including the shape of the application's icon and

mouse cursor. The handles to the icons and the mouse cursor are stored in the hIcon,

hIconSm, and hCursor fields of the WNDCLASSEX structure. So far, we have been

using the built-in icons and cursors supplied by Windows NT. However, it is possible to

define your own.

Defining Icons and Cursors

To use a custom icon and mouse cursor, you must first define their images,

using an image editor. Remember, you will need to make both a small

and a standard-size icon. Actually, icons come in three sizes: small, standard,

and large. The small icon is 16*16, the standard icon is 32*32, and the

large icon is 48*48. However, the large icon is seldom used. In fact, most

programmers mean the 32*32 icon when they use the term "large icon".

All three sizes of icons are defined within a single icon file. Of course,

you don't need to define the large icon. If one is ever needed, Windows

will automatically enlarge the standard icon. All cursors are the same

size, 32*32.

Windows programming2 Class: forth (Software Branch)

Bitmap

13

For the examples that follow, you should call the file that holds your icons ICON.ICO.

Be sure to create both the 32 x 32 and the 16 x 16 icons. (The 48 * 48 icon is not needed.)

Call the file that holds your cursor CURSOR.CUR.

Once you have defined the icon and cursor images, you will need to add an ICON and a

CURSOR statement to your program's resource file. These statements have these general

forms: IconName ICON filename

 CursorName CURSOR filename

Here, IconName is the name that identifies the icon and CursorName is the name that

identifies the cursor. These names are used by your program to refer to the icon and

cursor. The filename specifies the file that holds the custom icon or cursor.

For the example program, you will need a resource file that contains the following

statements: MyCursor CURSOR CURSOR.CUR

 Mylcon ICON YAHOO.ICO

Loading Your Icons and Cursor

To use your custom icons and cursor, you must load them and assign their handles

to the appropriate fields in the WNDCLASSEX structure before the window class is

registered. To accomplish this you must use the API functions Loadlcon() and

LoadCursor(), which you learned about in Chapter 2. For example, the following

loads the icons identified as Mylcon and the cursor called MyCursor and stores

their handles In the appropriate fields of WNDCLASSEX.

wcl.hIcon=Loadlcon (hThisInst, "Mylcon"); /* standard icon */

wcl.hIconSm = NULL; /* use small icon in Mylcon */

wcl.hCursor = LoadCursor(hThisInst, "MyCursor"); /* load cursor */

Windows programming2 Class: forth (Software Branch)

Bitmap

14

Here, hThisInst is the handle of the current instance of the program. In the

previous programs in this book, these functions have been used to load default icons

and cursors. Here, they will be used to load your custom icons and cursor.

You are probably wondering why hIconSm is assigned NULL. As you should

recall, in previous programs the handle of the small icon is assigned to the hIconSm

field of the WNDCLASSEX structure. However, if this value is NULL, then the

program automatically uses the 16x16 pixel icon defined in the file that holds the

standard icon. Of course, you are free to specify a different icon resource for this

icon, if you like.

A Sample Program that Demonstrates a-Custom Icon and Cursor

The following program uses the custom icons and cursor. The small icon is displayed

in the main window's system menu box and in the program's entry in the task bar.

The standard icon is displayed when you move your program to the desktop. The

cursor will be used when the mouse pointer is over the window. That is, the shape of

the mouse cursor will automatically change to the one defined by your program

when the mouse mow* HI program's window. It will automatically revert to its default

shape when it moves off the program's window.

Remember, before you try to compile this program, you musl define custom icons and

cursor using an image editor and then add UICIM |f to the resource file associated with

the program.

/* Demonstrate custom icons and mouse cursor. */

#include <windows.h>

#include <string.h>

#include <stdio.h>

Windows programming2 Class: forth (Software Branch)

Bitmap

15

LRESULT CALLBACK WindowFunc(HWND, UINT,

WPARAM, LPARAM);

 char szWinName[]="MyWin" ; /* name of window class. */

int WINAPI WinMain(HINSTANCE hThisInst, HINSTANCE

hPrevInst, LPSTR lpszArgs,int nWinMode)

{HWND hwnd; MSG msg;WNDCLASSEX wcl;

wcl.cbSize = sizeof(WNDCLASSEX);wcl.hInstance=hThisInst;

wcl.lpszClassName=szWinName;wcl.lpfnWndProc=WindowFunc;

wcl.style = 0;wcl.hIcon=LoadIcon(hThisInst, "MyIcon");

wcl.hIconSm=NULL;

wcl.hCursor=LoadCursor(hThisInst, "MyCursor");

wcl.lpszMenuName=NULL;wcl.cbClsExtra =0; wcl.cbWndExtra=0;

wcl.hbrBackground=(HBRUSH)GetStockObject(WHITE_BRUSH);

/* Register the window class. */if(!RegisterClassEx(&wcl)) return 0;

hwnd=CreateWindow(szWinName,"Custom Icons and Cursor",

 WS_OVERLAPPEDWINDOW, 10, 20, 300, 400,

 HWND_DESKTOP, NULL, hThisInst, NULL);

ShowWindow (hwnd, nWinMode);UpdateWindow(hwnd);

while (GetMessage(&msg, NULL, 0, 0))

{TranslateMessage(&msg); DispatchMessage(&msg); }

return msg.wParam;}

LRESULT CALLBACK WindowFunc(HWND hwnd, UINT

message, WPARAM wParam, LPARAM lParam)

Windows programming2 Class: forth (Software Branch)

Bitmap

16

{switch(message)

{case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hwnd, message, wParam, lParam); }

return 0;}

Of course, your custom icon may look different. The custom mouse cursor will

appear when you move the mouse over the window. (Try this before continuing.)

One last point about custom icons: When you create custom icons for your

application, you will usually want all sizes of icons to display the same general

image since it is this image that is associated with your program.

