
 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

4th Class 

       2024 - 2025 

Window Programming1 

 1ة النوافذجبرم

 أ.د. يسرى حسين 



 

 

Windows programming1                                               Class: forth (Software Branch)  

 Chapter First: Window Programming Fundamentals 

------------------------------------------------------------------------------------------------------------------------ 

 Chapter 1-1 

 

The Components of a Window 

Before moving on to specific aspects of Windows programming, a few important terms 

need to be defined. Figure 1 shows a standard window with each of its elements pointed 

out.  

All windows have a border that defines the limits of the window and is used to resize the 

window. At the top of the window are several items. On the far left is the system menu icon 

(also called the title bar icon). Clicking on this box causes the system menu to be displayed. 

To the right of the system menu box is the window's title. At the far right are the minimize, 

maximize, and close boxes. The client area is the part of the window in which your program 

activity takes place. Windows may also have horizontal and vertical scroll bars that are used 

to move text through the window. 

 

Figure 1: the element of a standard window 

 

Some Windows  Application Basics 

Before developing the Windows application skeleton, some basic concepts common to 

all Windows programs need to be discussed. 

WinMain() 

All Windows programs begin execution with a call to WinMain(). (Windows programs do 



 

 

Windows programming1                                               Class: forth (Software Branch)  

 Chapter First: Window Programming Fundamentals 

------------------------------------------------------------------------------------------------------------------------ 

 Chapter 1-2 

 

not have a main ( ) function.) WinMain ( ) has some special properties that differentiate it 

from other functions in your application. First, it must be compiled using the WINAPI 

calling convention. (You will also see APIENTRY used. Currently, they both mean the same 

thing.) By default, functions in your C or C++ programs use the C calling convention. 

However, it is possible to compile a function so that it uses a different calling convention. The 

calling convention Windows uses to call WinMain( ) is WINAPI. The return type of 

WinMain( ) should be int. 

The Window Procedure 

All Windows programs must contain a special function that is not called by your program, 

but is called by Windows. This function is generally called the window procedure or window 

function. It is through this function that Windows communicates with your program. The 

window function is called by Windows when it needs to pass a message to your program, the 

window function receives the message in its parameters. All window functions must be 

declared as returning type LRESULT CALLBACK. The type LRESULT is a typdef that 

(.it the time of this writing) is another name for a long integer. The CALLBACK calling 

convention is used with those functions that will be called by Windows. In Windows 

terminology, any function that is called by Windows is referred to as a callback function. 

In addition to receiving the messages sent by Windows, the window function must initiate 

any actions indicated by a message. Typically, a window function's body consists of a switch 

statement that links a special response to each message that the program will respond to. 

Your program need not respond to every message that Windows will send. For messages that 

your program doesn't care about, you can let Windows provide default processing. Since 

there are hundreds of different messages that Windows can generate, it is common for most 

messages simply to be processed by Windows and not your program. 

All messages are 32-bit integer values. Further, all messages are accompanied by any 

additional information that the message requires. 

Window Classes 

When your Windows program first begins execution, it will need to define and register a 

window class. (Here, the word class is not being used its C++ sense. Rather, it means style or 



 

 

Windows programming1                                               Class: forth (Software Branch)  

 Chapter First: Window Programming Fundamentals 

------------------------------------------------------------------------------------------------------------------------ 

 Chapter 1-3 

 

type.) When you register a window class, you are telling Windows about the form and 

function of the window However, registering the window class does not cause a window to 

come into existence. To actually create a window requires additional steps. 

The Message Loop 

As explained earlier, Windows communicates with your program by sending it messages. All 

Windows applications must establish a message loop inside the WinMain() function. This 

loop reads any pending message from the application's message queue and then dispatches 

that message back to Windows, which then calls your program's window function with that 

message as a parameter. This may seem to be an overly complex way of passing messages, 

but it is, nevertheless, the way all Windows programs must function. (Part of the reason for 

this is to return control to Windows so that the scheduler can allocate CPU time as it sees fit 

rather than waiting for your application's time slice to end.) 

Windows Data Types 

As you will soon see, Windows programs do not make extensive use of standard C/C++ data 

types, such as int or char *. Instead, all data types used by Windows have been typdefed 

within the WINDOWS.H file and/or its subordinate files. This file is supplied by Microsoft 

(and any other company that makes a Windows C/C++ compiler) and must be included in 

all Windows programs. Some of the most common types are HANDLE, HWND, UINT, 

BYTE, WORD, DWORD, LONG, BOOL, LPSTR, and LPCSTR. HANDLE is a 32-bit 

integer that is used as a handle. As you will see, there are numerous handle types, but they are 

all the same size as HANDLE. A handle is simply a value that identifies some resource. For 

example, HWND is a 32-bit integer that is used as a window handle. Also, all handle types 

begin with an H. BYTE is an 8-bit unsigned character. WORD is a 16-bit unsigned short 

integer. DWORD is an unsigned long integer. UINT is an unsigned 32-bit integer.  LONG is 

another name for long. BOOL is an integer. This type is used to indicate values that are either 

true or false. LPSTR is a pointer to a string and LPCSTR is a const pointer to a string. 

In addition to the basic types described above, Windows defines several structures. The two that 

are needed by the skeleton program arc MSG and WNDCLASSEX. The MSG structure holds 

a Windows message and WNDCLASSEX is a structure that defines a window class. These 



 

 

Windows programming1                                               Class: forth (Software Branch)  

 Chapter First: Window Programming Fundamentals 

------------------------------------------------------------------------------------------------------------------------ 

 Chapter 1-4 

 

structures will be discussed later in this lecture. 

 

A Windows Skeleton 

Now that the necessary background information has been covered, it is time to develop a 

minimal Windows application. As stated, all Windows programs have certain things in 

common. In this section a skeleton is developed that provides these necessary features. In 

the world of Windows programming, application skeletons are commonly used because 

there is a substantial "price of admission" when creating a Windows program. Unlike DOS 

programs, for example, in which a minimal program is about 5 lines long, a minimal 

Windows program is approximately 50 lines long. A minimal Windows program contains 

two functions: WinMain( ) and the window function. The WinMain() function must 

perform the following general steps: 

1.  Define a window class. 

2.   Register that class with Windows. 

3.   Create a window of that class. 

4.   Display the window. 

5.   Begin running the message loop. 

The window function must respond to all relevant messages. Since the skeleton program 

does nothing but display its window, the only message that it must respond to is the one 

that tells the application that the user has terminated the program. 

Before discussing the specifics, examine the following program, which is a minimal 

Windows skeleton. It creates a standard window that includes a title, a system menu, and 

the standard minimize, maximize, and close boxes. The window is, therefore, capable of 

being minimized, maximized, moved, resized, and closed. 

/* A minimal Windows skeleton. */ 

#include <windows.h> 

LRESULT CALLBACK WindowFunc(HWND, UINT, WPARAM, LPARAM); 



 

 

Windows programming1                                               Class: forth (Software Branch)  

 Chapter First: Window Programming Fundamentals 

------------------------------------------------------------------------------------------------------------------------ 

 Chapter 1-5 

 

char szWinName[] = "MyWin"; /* name of window class */ 

int WINAPI WinMain(HINSTANCE hThisInst, HINSTANCE 

hPrevInst, LPSTR lpszArgs, int nWinMode) 

{HWND hwnd;MSG msg; 

WNDCLASSEX wcl; 

/* Define a window class. */ 

wcl.cbSize = sizeof(WNDCLASSEX); 

wcl.hInstance = hThisInst; /* handle to this instance */ 

wcl.lpszClassName = szWinName; /* window class name */ 

wcl.lpfnWndProc = WindowFunc; /* window function */ 

wcl.style = 0; /* default style */ 

  wcl.hIcon =LoadIcon(NULL, IDI_APPLICATION); /*standard icon*/ 

wcl.hIconSm = LoadIcon(NULL, IDI_WINLOGO); /* small icon */ 

wcl.hCursor = LoadCursor(NULL, IDC_ARROW);/*cursor style*/ 

wcl.lpszMenuName = NULL; /* no menu"*/ 

wcl.cbClsExtra =0; /* no extra */ 

wcl.cbWndExtra = 0; /* information needed */ 

/* Make the window background white. */ 

wcl.hbrBackground = (HBRUSH) GetStockObject(WHITE_BRUSH); 

/*Register the window class.*/ 

if(!RegisterClassEx(&wcl)) return 0; 

/* Now that a window class has been registered, a window can be 

created. */ 

 hwnd = CreateWindow( 

  szWinName, /* name of window class */ 

  "Windows Skeleton", /* title */ 

  WS_OVERLAPPEDWINDOW, /* window style - normal */ 

  CW_USEDEFAULT, /* X coordinate - let Windrows decide */ 

  CW_USEDEFAULT, /* Y coordinate - let Windows decide */ 

  CW_USEDEFAULT, /* width - let Windows decide */ 

  CW_USEDEFAULT, /* height - let Windows decide */ 



 

 

Windows programming1                                               Class: forth (Software Branch)  

 Chapter First: Window Programming Fundamentals 

------------------------------------------------------------------------------------------------------------------------ 

 Chapter 1-6 

 

  HWND_DESKTOP, /* no parent window */ 

  NULL, 

  hThisInst, /* handle of this instance of the program */ 

  NULL /* no additional arguments */ ); 

/* Display the window. */ 

ShowWindow (hwnd, nWinMode); UpdateWindow(hwnd); 

/* create the message loop. */ 

while (GetMessage(&msg, NULL, 0, 0)) 

{TranslateMessage(&msg); /* allow use of keyboard */ 

DispatchMessage(&msg); /* return control to window */}  

return msg.wParam; }/* end of WinMain() */                                 

/* This function is called by Windows and is passed 

messages from the MESSAGE QUEUE */ 

LRESULT CALLBACK WindowFunc (HWND hwnd, UINT message, 

                              WPARAM wParam, LPARAM lParam) 

{switch (message){case WM_DESTROY:/*terminate the  program*/ 

                 PostQuitMessage(0);break; 

default:/* Let Window process any message not specified  in 

the preceding switch statement.*/ 

  return DefWindowProc(hwnd,message,wParam,lParam);}     

return 0;}/* end WinFunc */ 

Let's go through this program step by step. 

First, all Windows program must include the header file WINDOWS.H. As stated, this file 

(along With its support files) contains the API function prototypes and various typed, macro and 

definitions used by Windows. For example, the data types HWND and WNDCLASSEX are 

defined in WINDOWS.H (or its subordinate files). 

The window function used by the program is called WindowFunc( ). It is declared as a 

callback function because this is the function that Windows calls to communicate with the 

program. 



 

 

Windows programming1                                               Class: forth (Software Branch)  

 Chapter First: Window Programming Fundamentals 

------------------------------------------------------------------------------------------------------------------------ 

 Chapter 1-7 

 

As stated, program execution begin with WinMain( ). WinMain() is passed four parameter.  

hThisInst and hPrevInst are handles. hThisInst refers to the current instance of program. 

Remember, Windows is a multitasking system,, so it is possible that more than one instance of your  

program may be running at the same time. For Windows, hPrevInst will always be NULL. 

The IpszArgs parameter is a pointer to a string that holds any command line arguments 

specified when the application was begun. In Windows, the string contains the entire 

command line, including the name of the program itself. The nWinModc parameter 

contains a value that determines how the window will be displayed when your program 

begins execution. 

Inside the function, three variables are created. The hwnd variable will hold the handle to 

the program's window. The msg structure variable will hold window messages and the wc1 

structure variable will be used to define the window class. 

Defining the Window Class 

The first two actions that WinMain( ) takes are to define a window class and then register 

it. A window class is defined by filling in the fields defined by the WNDCLASSEX 

structure.  Its fields are shown here. 

UINT cbSize; /* size of the WNDCLASSEX structure */ 

UINT style; /* type of window */ 

WNDPROC pfnWndProc; /* address to window func */  

int cbClsExtra; /* extra class info */   

int cbhWndExtra; /* extra window info */ 

HINSTANCE hInstance; /* handle of this instance */ 

HICON hIcon; /* handle of standard icon */ 

HICON hIconSm; /* handle of small icon */  

HCURSOR hCursor; /* handle of mouse cursor */  

HBRUSH hbrBackground; /* background color */ 

LPCSTR lpszMenuName; /* name of main menu */ 

LPCSTR lpszClassName; /* name of window class */ 

As you can see by looking at the program, cbSize is assigned'the size of the 

WNDCLASSEX structure. The hInstance member is assigned the current instance handle 



 

 

Windows programming1                                               Class: forth (Software Branch)  

 Chapter First: Window Programming Fundamentals 

------------------------------------------------------------------------------------------------------------------------ 

 Chapter 1-8 

 

as specified by hThisInst. The name of the window class is pointed to by lpszCIassName, 

which points to the string "MyWin" in this case. The address of the window function is 

assigned to lpfnWndProc. In the program, no default style is specified, no extra information 

is needed, and no main menu is specified. While most programs will contain a main menu, 

none is required by the skeleton. (Menus are described in advance lecture.) 

 

All Windows applications need to define a default shape for the mouse cursor and for the 

application's icons. An application can define its own custom version of these resources or it 

may use one of the built-in styles, as the skeleton does. In either case, handles to these 

resources must be assigned to the appropriate members of the WNDCLASSEX structure. To 

see how this is done, let's begin with icons. 

Beginning with version 4, a Windows application has two icons associated with it: one 

standard size and one small. The small icon is used when the application is minimized and it 

is also the icon that is used for the system menu. The standard size icon (also frequently 

called the large icon) is displayed when you move or copy an application to the desktop. 

Standard icons are 32 x 32 bitmaps and small icons are 16x16 bitmaps. The style of each 

icon is loaded by the API function LoadIcon( ), whose prototype is shown here:     HICON 

LoadIcon ( HINSTANCE  hInst,  LPCSTR  lpszName); 

This function returns a handle to an icon. Here, hlnst specifies the handle of the module 

that contains the icon. The icon's name is specified in lpszName. However, to use one of 

the built-in icons, you must use NULL for the first parameter and specify one of the 

following macros for the second.  

Icon Macro Shape 

IDI_APPLICATION Default icon 

IDI_ASTERISK Information icon 

IDI_EXCLAMATION Exclamation point icon 

IDI_HAND Stop sign 

IDI_QUESTION Question mark icon 

IDI_WINLOGO Windows Logo 



 

 

Windows programming1                                               Class: forth (Software Branch)  

 Chapter First: Window Programming Fundamentals 

------------------------------------------------------------------------------------------------------------------------ 

 Chapter 1-9 

 

In the skeleton, IDI_APPLICATION is used for the standard icon and IDI_WINLOGO 

is used for the small icon. 

To load the mouse cursor, use the API LoadCursor() function. This function has the 

following prototype:   HCURSOR LoadCursor(HINSTANCE hlnst, LPCSTR lpszName); 

This function returns a handle to a cursor resource. Here, hlnst specifies the handle of 

the module that contains the mouse cursor, and the name of the mouse cursor is 

specified in lpszName. However, to use one of the built in cursors, you must use NULL 

for the first parameter and specify one of the built-in cursors using its macro for the 

second parameter. Some of the most common built-in cursors are shown here 

Cursor Macro Shape 

IDC_ARROW Default arrow pointer 

IDC_CROSS Cross hairs 

IDC_IBEAM Vertical I-beam 

IDC_WAIT Hourglass 

The background color of the window created by the skeleton is specified as white and a 

handle to this brush is obtained using the API function GetStockObject(). A brush is a 

resource that paints the screen using a predetermined size, color, and pattern. The function 

GetStockObject() is used to obtain a handle to a number of standard display objects, 

including brushes, pens (which draw lines), and character fonts. It has this prototype:   

HGDIOBJ GetStockObject(int object); 

The function returns a handle to the object specified by object. (The type HGDIOBJ is a 

GDI handle.) Here are some of the built-in brushes available to your program: 

Macro Name Background Type 

BLACK_BRUSH Black 

DKGRAY_BRUSH Dark gray 

HOLLOW_BRUSH See through window 

LTGRAY_BRUSH Light gray 

WHITE_BRUSH White 

You may use these macros as parameters to GetStockObject( ) to obtain a brush. 



 

 

Windows programming1                                               Class: forth (Software Branch)  

 Chapter First: Window Programming Fundamentals 

------------------------------------------------------------------------------------------------------------------------ 

 Chapter 1-10 

 

Once the window class has been fully specified, it is registered with Windows using the API 

function RegisterCIassEx( ), whose prototype is shown here.  

                                              ATOM  RegisterCIassEx(CONST WNDCLASSEX *lpWClass); 

The function returns a value that identifies the window class. ATOM is a typcdef that means 

WORD. Each window class is given a unique value. lpWCIass must be the address of a 

WNDCLASSEX structure. 

Creating a Window 

Once a window class has been defined and registered, your application can actually 

create a window of that class using the API function Createindow( ), whose 

prototype is shown here   

HWND CreateWndow ( 

  LPCSTR lpszClassName, /* name of window class */  

  LPCSTR lpszWinName, /* title of window */ 

  DWORD dwStyle, /* type of window */  

  int X, inl Y, /* upper-left coordinates */  

  int Width, int Height, /* dimensions of window */  

  HWND hParent, /* handle of parent window */  

  HMENU hMenu, /* handle of main menu */  

  HINSTANCE hThisInst, /* handle of creator */  

  LPVOID lpszAdditional /* pointer to additional info */ ); 

As you can see by looking at the skeleton program, many of the parameters to 

CreateWindow( ) may be defaulted or specified as NULL. In fact, most often the X, Y, 

Width, and Height parameters will simply use the macro CW_USEDEFAULT, which tells 

Windows to select an appropriate size and location for the window. If the window has no 

parent, which is the case in the skeleton, then hParent can be specified as 

HWND_DESKTOP. (You may also use NULL for this parameter.) If the window does not 

contain a main menu or uses the main menu defined by the window class, then hMenu  



 

 

Windows programming1                                               Class: forth (Software Branch)  

 Chapter First: Window Programming Fundamentals 

------------------------------------------------------------------------------------------------------------------------ 

 Chapter 1-11 

 

must be NULL. (The hMenu parameter has other uses, too.) Also, if no additional 

information is required, as is most often the case, then lpszAdditional is NULL. (The type 

LPVOID is typedefed as void *. Historically, LPVOID stands for long pointer to void.) 

The remaining four parameters must be explicitly set by your program. First, lpszCIassName 

must point to the name of the window class. (This is the name you gave it when it was 

registered.) The title of the window is a string pointed to by lpszWinName. This can be a null 

string, but usually a window will be given a title. The style (or type) of window actually 

created is determined by the value of dwStyle. The macro WS_OVERLAPPED-WINDOW 

specifies a standard window that has a system menu a border, and minimize, maximize, and 

close boxes. While this style of window is the most common, you can construct one to your 

own specifications. To accomplish this, simply OR together the various style macros that 

you want. Some other common styles are shown here 

Style Macro Window Feature 

WS_OVERLAPPED Overlapped window with border 

WS_MAXIMIZEBOX Maximize box 

WS_MINIMIZEBOX Minimize box 

WS_SYSMENU System menu 

WS_HSCROLL Horizontal scroll bar 

WS_VSCROLL Vertical scroll bar 

The hThisInst parameter must contain the current instance handle of the application. 

The CreatcWindow() function returns the handle of the window it creates or NULL 

if the window cannot be created. 

Once the window has been created, it is still not displayed on the screen. To cause the 

window to be displayed, call the ShowWindow( ) API function. This function has the 

following prototype:        BOOL ShowWindow(HWND hwnd, int nHow); 

The handle of the window to display is specified in hwnd. The display mode is 

specified in nHow. The first time the window is displayed, you will want to pass 

WinMain( )'s nWinMode as the nHow parameter. Remember, the value of 

nWinMode determines how the window will be displayed when the program begins 



 

 

Windows programming1                                               Class: forth (Software Branch)  

 Chapter First: Window Programming Fundamentals 

------------------------------------------------------------------------------------------------------------------------ 

 Chapter 1-12 

 

execution. Subsequent calls can display (or remove) the window as necessary. Some 

common values for nHow are shown here: 

Display Macros Effect 

SW_HIDE Removes the window 

SW_MINIMIZE Minimizes the window into an 

icon 

SW_MAXIMIZE Maximizes the window 

SW_RESTORE Returns a Window to normal size 

The ShowWindow( ) function returns the previous display status of the window.  

If the window was displayed, then nonzero is returned. If the window was not displayed, 

zero is returned. 

Although not technically necessary for the skeleton, a call to UpdateWindow( ) is 

included because it is needed by virtually every Windows application that you will 

create. It essentially tells Windows to send a message to your application that the main 

window needs to be updated.  

The Message Loop 

The final part of the skeletal WinMain( ) is the message loop. The message loop is a part of all 

Windows applications. Its purpose is to receive and process messages sent by Windows. 

When an application is running, it is continually being sent messages. These messages are 

stored in the application's message queue until they can be read and processed. Each time 

your application is ready to read another message, it must call the API function 

GetMessage(), which has this prototype: 

BOOL GetMessage(LPMSG msg, HWND hwnd, UINT min, UINT max); 

The message will be received by the structure pointed to by msg. All Windows messages are of 

structure type MSG, shown here. 

/* Message structure   */  

typedef  struct  tagMSG { 

HWND hwnd;   /*  window that  message  is   for   */ 



 

 

Windows programming1                                               Class: forth (Software Branch)  

 Chapter First: Window Programming Fundamentals 

------------------------------------------------------------------------------------------------------------------------ 

 Chapter 1-13 

 

UINT message;   /*  message   */ 

WPARAM wParam;   /*  message-dependent   info   */ 

LPARAM  lParam;   /*  more message-dependent   info   */ 

DWORD  time;   /*   time message  posted   */ 

POINT pt;   /*   X,Y  location  of  mouse   */ }   MSG; 

In MSG, the handle of the window for which the message is intended is contained in hwnd. 

The message itself is contained in message. Additional information relating to each 

message is passed in wParam and lParani. The type WPARAM is a typedef for UINT 

and LPARAM is a typedef for LONG.  The time the message was sent (posted) is specified in 

milliseconds in the time field.  

The pt member will contain the coordinates of the mouse when the message was sent. The 

coordinates are held in a POINT structure which is defined like this: 

typedef struct tagPOINT { 

LONG x, y;  

} POINT; 

If there are no messages in the application's message queue, then a call to GetMessage( ) will 

pass control back lo Windows. 

The hwnd parameter to GetMessage() specifies for which window messages will be obtained. 

It is possible (even likely) that an application will contain several windows and you may only 

want to receive messages for a specific window. If you want to receive nil messages directed at 

your application, this parameter must be NULL. 

The remaining two parameters to GetMessage() specify a range of messages that will be 

received, Generally, you want your application to receive all messages. To accomplish this, 

.specify both min and max as 0, as the skeleton does. 

GetMessage( ) returns zero when the user terminates the program, causing the message loop 

to terminate. Otherwise It returns nonzero. 

Inside the message loop, two functions are called. The first is the API function 

TranslateMessage( ). The function translates virtual key codes generated by Windows into 



 

 

Windows programming1                                               Class: forth (Software Branch)  

 Chapter First: Window Programming Fundamentals 

------------------------------------------------------------------------------------------------------------------------ 

 Chapter 1-14 

 

character messages. (Virtual keys are discussed later in this lecture.) Although It is not necessary 

for all applications, most call TranslateMessage() because It is needed to allow full 

integration of the keyboard into your application program. 

Once the message has been read and translated, it is dispatched back to Windows using the 

DispatchMessage() API function. Windows then holds this message until it can pass it to the 

program's window function. 

Once the message loop terminates, the WinMain() function ends by returning the 

value of msg.wParam to Windows. This value contains the return code generated when 

your program terminates. 

 

 

The Window Function 
The second function in the application skeleton is its window function. In this case the 

function is called WindowFunc(), but it could have any name you like. The window function is 

passed messages by Windows. The first four members of the MSG structure are its parameters. 

For the skeleton, the only parameter that is used is the message itself. However, in the next 

lecture you will learn more about the parameters to this function. 

The skeleton's window function responds to only one message explicitly: WM_DESTROY. 

This message is sent when the user terminates the program. When this message is received, your 

program must execute a call to the API function PostQuitMessagc( ). The argument to this 

function is an exit code that is returned in msg.wParam inside WinMain(). Calling 

PostQuitMessage() causes a WM_QUIT message to be sent to your application, which causes 

GetMessage() to return false, thus stopping your program. 

Any other messages received by WindowFunc() are passed along to Windows via a call to 

DefWindowProc( ), for default processing. This step is necessary because all messages must be 

dealt with in one fashion or another. 



 

 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Second: Application Essentials (Message Box)      

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 2-1 

 

Although the skeleton developed in lecture 2 forms the framework for a Windows program, 

by itself it is useless. To be useful, a program must be capable of performing two 

fundamental operations. First, it must be able to respond to various messages sent by 

Windows. The processing of these messages is at the core of all Windows applications. 

Second, your program must provide some means of outputting information to the user. (That 

is, it must be able to display information on the screen.) Unlike programs that you may have 

written for other operating systems, outputting information to the user is a non-trivial task in 

Windows. In fact, managing output forms a large part of any Windows application. Without 

the ability to process messages and display information, no useful Windows program can 

be written. For this reason, message processing and the basic I/O operations are the subject 

of this lecture. 

Message Boxes 

The easiest way to output information to the screen is to use a message box. As you will 

see, many of the examples in this lecture make use of message boxes. A message box is a 

simple window that displays a message to the user and waits for an acknowledgment. 

Unlike other types of windows that you must create, a message box is a system-defined 

window that you may use. In general, the purpose of a message box is to inform the user 

that some event has taken place. However, it is possible to construct a message box that 

allows the user to select from among a few basic alternatives as a response to the message. 

For example, one common form of message box allows a user to select Abort, Retry, or 

Ignore. 

NOTE:   In the term message box, the word message refers to human-readable text that is 

displayed on the screen. It does not refer to Windows messages which are sent to your 

program's window function. Although the terms sound similar, message boxes and 

messages are two entirely separate concepts. 

To create a message box, use the MessagcBox() API function. Its prototype is shown here: 

int MessageBox(HWND hwnd, LPCSTR lpText, LPCSTR lpCaption, UINT MBType); 



 

 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Second: Application Essentials (Message Box)      

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 2-2 

 

Here, hwnd is the handle to the parent window. The lpText parameter is a pointer to a string 

that will appear inside the message box. The string pointed to by lpCaption is used as the 

title for the box. The value of MBTypc determines the exact nature of the message box, 

including what type of buttons and icons will be present. Some of the most common 

values are shown in Table below. 

VALUE EFFECT 

MB_ABORTRETRYIGNORE Displays Abort, Retry, and ignore push bottom. 

MB_ICONEXCLAMATION Displays Exclamation-point icon. 

MB_ICONHAND Displays a stop sign icon. 

MB_ICONINFORMATION Displays an information icon. 

MB_ICONQUESTION Displays a question mark icon. 

MB_ICONSTOP Displays as MB_ICONHAND. 

MB_OK Displays OK button. 

MB_OKCANCEL Displays OK and Cancel push buttons. 

MB_RETRYCANCEL Displays Retry and Cancel push buttons. 

MB_YESNO Displays Yes and No push buttons. 

MB_YESNOCANCEL Displays Yes, No, and Cancel push buttons. 

These macros are defined by including WINDOWS.H. You can OR together two or more of 

these macros so long as they are not mutually exclusive. MessageBox() returns the user's 

response to the box. The possible return values are shown here: 

Button Pressed Return Value 

Abort IDABORT 

Retry IDRETRY 

Ignore IDIGNORE 

Cancel IDCANCEL 

No IDNO 



 

 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Second: Application Essentials (Message Box)      

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 2-3 

 

Yes IDYES 

Ok IDOK 

Remember, depending upon the value of MBType, only certain buttons will be present. Quite 

often message boxes are simply used to display an item of information and the only 

response offered to the user is the OK button. In these cases, the return value of a message 

box is simply ignored by the program. 

To display a message box, simply call the MessageBox() function. Windows will display it 

at its first opportunity. MessageBox() automatically creates a window and displays your 

message in it. For example, this call to MessageBox( ) 

i=MessageBox(hwnd,"This is Caption", "This is Title", MB_OKCANCEL); 

produce the following message box.  

                                                              

Depending on which button the user presses, i will contain either IDOK or IDCANCEL. 

Message boxes are typically used to notify the user that some event has occurred. However, 

because message boxes are so easy to use, they make excellent debugging tools when you 

need a simple way to output something to the screen. As you will see, examples in this book 

will use a message box whenever a simple means of displaying information is needed. 

Now that we have a means of outputting information, we can move on to processing 

messages. 

Understanding Windows Messages 

As it relates to Windows, a message is a unique 32-bit integer value. Windows communicates 

with your program by sending it messages. Each message corresponds to some event. For 

example, there are messages to indicate that the user has pressed a key, that the mouse has 

moved, or that a window has been resized. 

Although you could, in theory, refer to each message by its numeric value, in practice this 



 

 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Second: Application Essentials (Message Box)      

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 2-4 

 

is seldom done. Instead, there are macro names defined for all Windows messages. 

Typically, you will use the macro name, not the actual integer value, when referring to a 

message. The standard names for the messages are defined by including WINDOWS.H in 

your program. Here are some common Windows message macros: 

WM_CHAR 

 

WM_PAINT 

 

WM_MOVE 

 
WM_CLOSE 

 

WM  LBUTTONUP 

 

WM_LBUTTONDOWN 

 WM_COMMAND 

 

WM_HSCROLL 

 

WM_SIZE 

 Two other values accompany each message and contain information related to it. One of 

these values is of type WPARAM, the other is of type LPARAM. For Windows, both of 

these types translate into 32-bit integers. These values are commonly called wParam and 

lParam, respectively. The contents of wParam and lParam are determined by which 

message is received. They typically hold things like mouse coordinates; the value of a key 

press; or a system-related value, such as window size. As each message is discussed, the 

meaning of the values contained in wParam, and lParam will be described. 

As mentioned in lecture 1, the function that actually processes messages is your program's 

window function. As you should recall, this function is passed four parameters: the handle of 

the window that the message is for, the message itself, wParam, and lParam. 

Sometimes two pieces of information are encoded into the two words that comprise the 

wParam or lParam parameters. To provide easy access to each value, Windows defines two 

macros called LOWORD and HIWORD. 

They return the low-order and high-order words of a long integer, respectively. They are used 

like this:   x = LOWORD (lParam ) ; x = HIWORD (lParam) ; 

You will see these macros in use soon. 

Windows defines a large number of messages. Although it is not possible to examine every 

message, this lecture discusses some of the most common ones. 

Responding to a Keypress 

One of the most common Windows messages is generated when a key is pressed. This message 

is called WM_CHAR. It is important to understand that your application never receives, per se, 

keystrokes directly from the keyboard: Instead, each time a key is pressed, a WM_CHAR 



 

 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Second: Application Essentials (Message Box)      

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 2-5 

 

message is sent to the active window (i.e., the one that currently has input focus). To see how 

this process works, this section extends the skeletal application developed in lecture 2 so that it 

processes keystroke messages. Each time WM_CHAR is sent, wParam contains the ASCII 

value -of the key pressed. LOWORD(lParam) contains the number of times the key has been 

repeated as a result of the key being held down. 

 The bits of HIWORD(lParam) are encoded as shown in Table below. 

Bit Meaning 

15 Set if the key is being released; cleared if the key is being pressed. 

14 Set if the key was pressed before the message was sent; cleared if it was not pressed. 

13 Set if the ALT key is also being pressed; cleared if ALT key is not pressed. 

12 Used by Window. 

11 Used by Window. 

10 Used by Window. 

9 Used by Window. 

8 Set if the key pressed is an extended key provided by enhanced keyboard; cleared 

otherwise. 

7 - 0 Manufacturer-dependent key code (i.e., the scan code)./ 

For our purposes, the only value that is important at this time is wParam, since it holds the key 

that was pressed. However, notice how detailed the information is that Windows supplies about 

the state of the system. Of course, you are free to use as much or as little of this information as 

you like. 

To process a WM_CHAR message, you must add it to the switch statement inside your 

program's window function. For example, here is a program that processes a keystroke by 

displaying the character on the screen using a message box. 

/*Processing WM_CHAR messages.*/ 

#include   <windows.h>  

#nclude   <string.h>  



 

 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Second: Application Essentials (Message Box)      

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 2-6 

 

#include   <stdio.h> 

LRESULT  CALLBACK   WindowFunc(HWND,    UINT,   WPARAM,    

LPARAM); 

char  szWinNarrte [ ]="MyWin";/*name  of  window class*/  

char  str[255]   =   "";   /*   holds   output   string   */ 

int  WINAPI  WinMain(HINSTANCE  hThisInst,   HINSTANCE  hPrevInst,  

LPSTR   lpszArgs,    int   nWinMode)  { HWND  hwnd; MSG msg; WNDCLASSEX wcl; 

/* Define a window class. */ 

wcl.cbSize = sizeof(WNDCLASSEX); 

wcl.hInstance = hThisInst; /* handle to this instance */ 

wcl. lpszClassName= szWinName; /* window class name */ 

wcl.lpfnWndProc = WindowFunc; /* window function */ 

wcl.style = 0; /* default style */ 

wcl.hIcon = LoadIcon(NULL,IDI_APPLICATION);/*standard icon*/ 

wcl.hIconSm = LoadIcon(NULL,IDI_APPLICATION);/*small icon*/ 

wcl.hCursor = LoadCursor(NULL, IDC_ARROW); /*cursor style*/ 

wcl.lpszMenuName = NULL; /* no main menu */ 

wcl.cbClsExtra =0; /* no extra */ 

wcl.cbWndExtra =0; /* information needed */ 

/* Make the window white. */ 

wcl.hbrBackground = GetStockObject(WHITE_BRUSH) ; 

/* Register the window class. */ 

if ( !RegisterClassEx(&wcl) ) return 0; 

/*Now that a window class has been registered,a window can be 

created.*/ 

hwnd = CreateWindow( 

szWinName, /* name of window class */ 

"Processing WM_CHAR Messages", /* title */ 

WS_OVERLAPPEDWINDOW, /* window style - normal */ 

CW_USEDEFAULT, /* X coordinate - let Windows decide */ 



 

 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Second: Application Essentials (Message Box)      

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 2-7 

 

CW_USEDEFAULT, /* Y coordinate - let Windows decide */ 

CW_USEDEFAULT, /* width - let Windows decide */ 

CW_USEDEFAULT, /* height - let Windows decide */ 

HWND_DESKTOP, /* no parent window */ 

NULL, 

hThisInst, /* handle of this instance of the program */ 

NULL /* no additional arguments */ ); 

/*Display the window.*/ ShowWindow(hwnd, nWinMode);  

UpdateWindow(hwnd); 

/* Create the message loop. */ 

while(GetMessage(&msg, NULL, 0, 0)) 

{ TranslateMessage(&msg);/*allow use of keyboard */ 

 DispatchMessage (&msg); /*return control to Windows */ 

}return msg. wParam;} 

/* This function is called by Windows and is passed 

messages from the message queue. */ 

LRESULT CALLBACK WindowFunc(HWND hwnd, UINT message, 

             WPARAM wParam, LPARAM lParam) 

{switch(message){ 

case WM_CHAR: /* process keystroke */ 

sprintf(str, "Character is %c", (char) wParam); 

MessageBox(hwnd, str, "WM_CHAR Received",MB_OK); break; 

case WM_DESTROY: /* terminate the program */             

 PostQuitMessage(O); break; 

default: /* Let Windows process any messages not 

specified in the preceding switch statement. */ 

 return DefWindowProc(hwnd, message, wParam, lParam);} 

return 0;} 

Sample output produced by this program is shown in Figure 2-1. In the 

program, look carefully at these lines of code from WindowFunc( ): 



 

 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Second: Application Essentials (Message Box)      

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 2-8 

 

Figure 2-1: Output Program                

case  WM_CHAR:   /*   process   keystroke   */ 

sprintf(str,    "Character  is   %c",    (char)   wParam);  

MessageBox(hwnd,   str,    "WM_CHAR  Received",   MB_OK); break; 

 

As you can see, the WM_CHAR message has been added to the case statement. When you 

run the program, each time you press a key, a WM_CHAR message is generated and sent 

to WindowFunc( ). Inside the WM_CHAR case, the character received in wParam is 

converted into a string using sprintf() and then displayed using a message box 

 

A Closer Look at Keyboard Messages 

While WM_CHAR is probably the most commonly handled keyboard message, it is not the 

only one. In fact, WM_CHAR is actually a synthetic message that is constructed by the 

TranslateMessage( ) function inside your program's message loop. At the lowest level, 

Windows generates two messages each time you press a key. When a key is pressed, a 

WM_KEYDOWN message is sent. When the key is released, a WM_KEYUP message is 

posted. If possible, a WM_KEYDOWN message is translated into a WM_CHAR message 

by TranslateMessage( ). Thus, unless you include TranslateMessage( ) in your message 

loop, your program will not receive WM_CHAR messages. To prove this to yourself, try 

commenting out the call to TranslateMessage( ) in the preceding program. After doing so, 

it will no longer respond to your keypresses. 

The reason you will seldom use WM_KEYDOWN or WM_KEYUP for character input is that 

the information they contain is in a raw format. For example, the value in  wParam contains the 

virtual key code, not the key's ASCII value. Part of what TranslateMessaage() does is 

transform the virtual key codes into ASCII characters, taking into account the state of the shift 

key, etc. Also, TranslateMessage() also automatically handles auto-repeat. 



 

 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Second: Application Essentials (Message Box)      

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 2-9 

 

A virtual key is a device-independent key code. As you may know, there are keys on nearly all 

computer keyboards that do not correspond to the ASCII character set. The arrow keys and the 

function keys are examples. Each key that can be generated has been assigned a value, which is 

its virtual key code. All of the virtual key codes are defined as macros in the header file 

WINUSER.H. The codes begin with VK_. For example VK_DOWN corresponding key is Down 

Arrow.  

 

 

 

 

Virtual Key Code Corresponding Key 

VK_DOWN Down Arrow 

VK_LEFT Left Arrow 

VK_RIGHT Right Arrow 

VK_UP Up Arrow 

VK_SHIFT Shift 

VK_CONTROL Control 

VK_ESCAPE ESC 

VK_F1 through VK_F24 Function Keys 

VK_HOME HOME 

VK_END END 

VK_INSERT INSERT 

VK_DELETE DELETE 

VK_PRIOR PAGE UP 

VK_NEXT PAGE DN 

VK_A through VK_Z The letters of the alphabet 

VK_0 through VK_9 The digit 0 through 9 



 

 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Second: Application Essentials (Message Box)      

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 2-10 

 

Of course, the non-ASCII keys are not converted. This means that if your program 

wants to handle non-ASCII keypresses it must use WM_KEYDOWN or 

WM_KEYUP (or both). Here is an enhanced version of the preceding program 

that handles both WM_KEYDOWN and WM_CHAR messages. The handler for 

WM_KEYDOWN reports if the key is an arrow, shift, or control key. Sample 

output is shown in Figure 2-2. 

/* Processing WM_KEYDOWN and WM_CHAR messages. */ 

#include <windows.h>  

#include <string.h>  

#include <stdio.h> 

LRESULT CALLBACK WindowFunc(HWND, UINT, WPARAM, LPARAM);  

char szWinName[] = "MyWin"; /* name of window class */ 

char str[255] = ""; /* holds output string */ 

int WINAPI WinMain(HINSTANCE hThisInst, HINSTANCE hPrevInst, 

                                          LPSTR lpszArgs, int nWinMode) 

 {HWND hwnd;  MSG msg; WNDCLASSEX wcl; 

/* Define a window class. */  

wcl.cbSize = sizeof(WNDCLASSEX); 

wcl.hInstance = hThisInst; /* handle to this instance */  

wcl.lpszClassName = szWinName; /* window class name */  

wcl.lpfnWndProc = WindowFunc; /* window function */  

wcl.style = 0; /* default style */ 

wcl.hIcon = LoadIcon(NULL, IDI_APPLICATION); /* standard icon */ 

wcl.hIconSm = LoadIcon(NULL, IDI_APPLICATION); /* small icon */ 

wcl.hCursor = LoadCursor(NULL, IDC_ARROW); /* cursor style */ 

wcl.lpszMenuName = NULL; /* no main menu */ 

wcl.cbClsExtra =0;  /* no extra */ 

wcl.cbWndExtra =0;  /* information needed */ 



 

 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Second: Application Essentials (Message Box)      

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 2-11 

 

/* Make the window white.*/ wcl.hbrBackground = GetStockObject(WHITE_BRUSH); 

/* Register the window class. */  if (!RegisterClassEx(&wcl) )  return 0; 

/*Now that a window class has been registered,  a window can be created. */ 

hwnd = CreateWindow( 

   szWinName, /* name of window class */ 

   "Processing WM_CHAR and WM_KEYDOWN Messages", 

   WS_OVERLAPPEDWINDOW, /* window style - normal */ 

CW_USEDEFAULT, /* X coordinate - let Windows decide */ 

CW_USEDEFAULT, /* Y coordinate - let Windows decide */ 

CW_USEDEFAULT, /* width - let Windows decide */ 

CW_USEDEFAULT, /* height - let Windows decide */ 

HWND_DESKTOP, / * no parent window */ 

NULL, 

hThisInst, /* handle of this instance of the program */ 

NULL /* no additional arguments */ ); 

/* Display the window. */  ShowWindow(hwnd, nWinMode) ; UpdateWindow(hwnd); 

/* Create the message loop. */ 

 while(GetMessage(&msg, NULL, 0, 0)) 

{ TranslateMessage (&msg); /*allow use of keyboard */ 

DispatchMessage (&msg); /* return control to Windows */} return  msg. wParam; } 

/* This function is called by Windows and is passed messages from the message queue*/ 

LRESULT CALLBACK WindowFunc (HWND hwnd, UINT message, 

                                                                      WPARAM wParam, LPARAM lParam) 

 {switch (message) { 

case WM_CHAR: /* process character */ 

sprintf(str, "Character is %c", (char) wParam); 

MessageBox (hwnd, str, "WM_CHAR Received", MB_OK) ; break; 

case WM_KEYDOWN: /* process raw keystroke */  

        switch ( (char) wParam) { case VK_UP: strcpy(str, "Up Arrow"); break; 



 

 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Second: Application Essentials (Message Box)      

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 2-12 

 

                                                                   case VK_DOWN: strcpy(str, "Down Arrow"); break;  

                                                                   case VK_LEFT: strcpy(str, "Left Arrow"); break;   

                                                                    case VK_RIGHT: strcpy(str, "Right Arrow");break ;  

                                                                     case VK_SHIFT: strcpy(str, "Shift"); break;  

                                                                     case VK_CONTROL: strcpy(str, "Control"); break;  

                                                                     default:  strcpy(str, "Other Key"); } 

      MessageBox(hwnd, str, "WM_KEYDOWN Received", MB_OK); break; 

   case WM_DESTROY: /* terminate the program */  

                           PostQuitMessage (0) ; break; 

   default: /* Let Windows process any messages not specified in the preceding switch statement. 

*/ 

        return DefWindowProc(hwnd, message, wParam, lParam); } 

return 0; } 

 

Figure 3-2: Sample output from WM_KEYDOWN program 

 

When you try this program notice one important point: when you press a standard ASCII 

key, such as X, the program will receive two messages: one will be WM_CHAR and the other 

will be WM_KEYDOWN. The reason for this is easy to understand. Each time you press a 

key, a WM_KEYDOWN message is generated. (That is, all keystrokes generate a key down 

message.) If the key is an ASCII key, it is transformed into a WM_CHAR message by 

TranslateMessage( ). 

 



 

 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Second: Application Essentials (Message Box)      

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 2-13 

 

H.W:/  

 Check what are type of keys in keyboard (Virtual key or not ) how can recognize  

 How can obtain code of  virtual key or not virtual key 

 Write sub routine to work as "text editor"  

 Can be different between virtual key or other 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Third: Application Essentials (Outputting Text to a Window)     

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 3 -1 

Outputting Text to a Window 

Although the message box is the easiest means of displaying information, it is obviously not 

suitable for all situations. There is another way for your program to output information: it 

can write directly to the client area of its window. Windows supports both text and graphics 

output. In this section, you will learn the hash s of text output.  Graphics output is 

reserved for later in this lecture. 

The first thing to understand about outputting text to a window is that you cannot use 

the standard C or C++ I/O system. The reason for this is that the standard C/C++ I/O 

functions and operators direct their output to standard output. However, In a Windows 

program, output is directed to a window. To see how text can be writ ten to a window, 

let's begin with an example that  output each character that  you type to the program's 

window, instead of using a message box. Here is a version of WindowFunc() that does 

this, 

LRESULT  CALLBACK   WindowFunc(HWND   hwnd, UINT  message,  

WPARAM  wParam,    LPARAM   lParam) { HDC hdc; static unsigned j=0; 

switch(message) { 

case WM_CHAR: /* process keystroke */ 

   hdc=GetDC(hwnd);  /* get device context */ 

sprintf(str, "%c", (char) wParam); /* stringize character*/ 

TextOut(hdc, j*10, 0, str, strlen(str)); /* output char */ 

j++ /* try commenting-out this line */ 

ReleaseDC(hwnd, hdc); /* release device context */ break; 

case WM_DESTROY: /* terminate the program */             

 PostQuitMessage(O); break; 

default: /* Let Windows process any messages not specified in the preceding switch 

statement. */  return DefWindowProc(hwnd, message, wParam, lParam);} 

return 0;} 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Third: Application Essentials (Outputting Text to a Window)     

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 3 -2 

Look carefully at the code inside the WM_CHAR case. It simply echoes each character 

that you type to the program's window. Compared to using the standard C/C++ I/O function 

or operators, this code probably seems overly complex. The reason for this Windows must 

establish a link between your program and the screen. This link is called a device context 

(DC) and it is acquired by calling  GetDC( ). For now, don't worry about the precise 

definition of a device context. It will be discussed in the next section.  However, once you obtain 

a device context, you may write to the window. At the end of the process, the device context 

is released using ReleaseDC(). Your program must release the device context when it is 

done with it. Although the number of device contexts is limited only by the size of free 

memory, the number is still finite. If your program doesn't release the DC, eventually, the 

available DCs will be exhausted and a subsequent call to GetDC() will fail. Both GctDC( ) 

and ReleaseDC() are API functions. Their prototypes are shown here: 

                                             HDC GetDC(HWND hwnd); 

int ReleaseDC(HWND hwnd, HDC hdc); 

GctDC( ) returns a device context associated with the window whose handle is specified by 

hwnd. The type HDC specifies a handle to a device context. If a device context cannot be 

obtained, the function returns NULL. 

ReleaseDC( ) returns true if the device context was released, false otherwise. The hwnd 

parameter is the handle of the window for which the device context is released. The hdc 

parameter is the handle of device context obtained through the call to GetDC( ). 

The function that actually outputs the character is the API function TextOut( ). Its prototype 

is shown here:         BOOL TextOut(HDC DC, int x, int y, LPCSTR lpstr, int nlength); 

The TextOut( ) function outputs the string pointed to by lpstr at the window 

coordinates specified by x, y. (By default, these coordinates are in terms of pixels.) The 

length of the string is specified in nlength. The TextOut() function returns nonzero if 

successful, zero otherwise. 

In the WindowFunc( ), each time a WM_CHAR message is received, the character that is 

typed by the user is converted, using sprintf(), into a string that is one character long, and 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Third: Application Essentials (Outputting Text to a Window)     

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 3 -3 

then displayed in the window using TextOut( ). The first character is displayed at location 0, 

0. Remember, in a window the upper left corner of the client area is location 0, 0. Window 

coordinates are always relative to the window, not the screen. Therefore, the first character is 

displayed in the upper left corner no matter where the window is physically located on the 

screen. The reason for the variable j is to allow each character to be displayed to the right of 

the preceding character. That is, the second character is displayed at 10, 0, the third at 20, 0, 

and so on. Windows does not support any concept of a text cursor which is automatically 

advanced. Instead, you must explicitly specify where each TextOut( ) string will be written. 

Also, TextOut( ) does not advance to the next line when a newline character is encountered, 

nor does it expand tabs. You must perform all these activities yourself. 

Before moving on, you might want to try one simple experiment: comment out the line of 

code that increments j. This will cause all characters to be displayed at location 0, 0. Next, 

run the program and try typing several characters. Specifically, try typing a W followed by 

an i. Because Windows is a graphics-based system, characters are of different sizes and the 

overwriting of one character by another does not necessarily cause all of the previous 

character to be erased. For example, when you type a W followed by an i, part of the W will 

still be displayed. The fact that characters are proportional also explains why the spacing 

between characters that you type is not even. 

Understand that the method used in this program to output text to a window is quite crude. 

In fact, no real Windows application would use this approach. Later in this lecture, you will 

learn how to manage text output in a more sophisticated fashion. 

No Windows API function will allow output beyond the borders of a window. Output will 

automatically be clipped to prevent the boundaries from being crossed. To confirm this for 

yourself, try typing characters past the border of the window. As you will see, once the right 

edge of the window has been reached, no further characters are displayed. 

At first you might think that using TextOut( ) to output a single character is an inefficient 

application of the function. The fact is that Windows (and Windows in general) does not 

contain a function that simply outputs a character. Instead, Windows performs much of its 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Third: Application Essentials (Outputting Text to a Window)     

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 3 -4 

user interaction through dialog boxes, menus, toolbars, etc. For this reason, it contains only a 

few functions that output text to the client area. Further, you will generally construct output 

in advance and then use TextOut( ) to simply move that output to the screen. 

Here is the entire program that echoes keystrokes to the window. Figure 3-1 shows sample 

output. 

/* Displaying text using TextOut (). */ 

#include <windows.h>  

#include <string.h> 

#include <stdio.h> 

LRESULT CALLBACK WindowFunc(HWND, UINT, WPARAM, LPARAM);  

char szWinName[] = "MyWin"; /* name of window class */  

char str[255] = ""; /* holds output string */ 

int WIMAPI WinMain(HINSTANCE hThisInst, HINSTANCE hPrevInst, 

                                       LPSTR IpszArgs, int nWinMode)  

{HWND hwnd; MSG msg; WNDCLASSEX wc1; 

/* Define a window class. */ 

 wc1.cbSize = sizeof (WNDCLASSEX) ; 

wc1.hInstance = hThisInst; /* handle to this instance */  

wc1.lpszClassName = szWinName; /* window class name */ 

wc1.lpfnWndProc = WindowFunc; /* window function */ 

wc1.style = 0; /* default style */ 

wc1.hIcon = LoadIcon(NULL, IDI_APPLICATION); /* standard icon */ 

wc1.hIconSm = LoadIcon(NULL, IDI_APPLICATION); /* small icon */ 

 wc1.hCursor = LoadCursor(NULL, IDC_ARROW); /* cursor style */ 

wc1.lpszMenuName = NULL; /* no main menu */ 

wc1.cbClsExtra =0;  /* no extra */ 

wc1 .cbWndExtra = 0; /* information needed */ 

/* Make the window white. */wc1.hbrBackground = GetStockObject(WHITE_BRUSH); 

/* Register the window class. */  if(!RegisterClassEx(&wcl))  return 0; 

/* Now that a window class has been registered, a window can be created. */ 

hwnd = CreateWindow( 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Third: Application Essentials (Outputting Text to a Window)     

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 3 -5 

szWinName, /* name of window class */ 

"Display WM_CHAR Messages Using TextOut", /* title */ 

WS_OVERLAPPEDWINDOW, /* window style - normal */ 

CW_USEDEFAULT, /* X coordinate - let Windows decide */ 

CW_USEDEFAULT, /* Y coordinate - let Windows decide */ 

CW_USEDEFAULT, /* width - let Windows decide */ 

CW_USEDEFAULT, /* height - let Windows decide */ 

HWND_ DESKTOP,    /*  no parent window   */ 

NULL, 

hThisInst ,     /*  handle of the instance of the  program  */ 

NULL   /*  no  additional arguments  */ ); 

/* Display the window*/ ShowWindow (hwnd, nWinMode) ; UpdateWindow( hwnd) ; 

/* Create the message   loop.*/ 

while(GetMessage(&msg, NULL, 0, 0)) 

         { TranslateMessage(&msg);/*allow use of keyboard */ 

            DispatchMessage (&msg); /*return control to Windows */ }retur n msg. wParam;} 

/* This function is called by Windows and is passed messages from the message queue. */ 

LRESULT  CALLBACK  WindowFunc(HWND  hwnd,   U1NT  message, 

            WPARAM  wParam,    LPARAM   lParam){ HDC  hdc;  static unsigned  j=0; 

switch (message)  { case WM_CHAR:  /* process  keystroke */ 

                                       hdc=GetDC(hwnd);  /* get device context */ 

                                       sprintf(str, "%c", (char) wParam); /* stringize character*/ 

                                       TextOut(hdc, j*10, 0, str, strlen(str)); /* output char */ 

                                        j++; /* try commenting-out this line */ 

                                        ReleaseDC(hwnd, hdc); /* release device context */ break; 

                                 case WM_DESTROY: /* terminate the program */             

                                        PostQuitMessage(0); break; 

default: /* Let Windows process any messages not specified in the preceding switch 

statement.*/return DefWindowProc(hwnd, message, wParam, lParam);} return 0;} 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Third: Application Essentials (Outputting Text to a Window)     

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 3 -6 

    
Figure 3-1:Sample window produced using TextOut 

Device Contexts 

The program in the previous section had to obtain a device context prior to outputting to the 

window. Also, that device context had to be released prior to the termination of that 

function. It is now time to understand what a device context is. A device context is a 

structure that describes the display environment of a window, including its device driver and 

various display parameters, such as the current type font. As you will see later in this 

lectures, you have substantial control over the display environment of a window. 

Before your application can output information to the client area of the window a device 

context must be obtained. Until this is done, there is no linkage between your program and 

the window relative to output. Since TextOut( ) and other output functions require a handle 

to a device context, this is a self-enforcing rule. 

Processing the WM_PAINT Message 

One of the most important messages that your program will receive is WM_PAINT. This 

message is sent when your program needs to restore the contents of its window. To 

understand why this important, run the program from the previous section and enter a few 

characters. Next, minimize and then restore the window. As you will see, the characters that 

you typed are not displayed after the window is restored. Also, if the window is overwritten 

by another window and then redisplayed, the characters are not redisplayed. The reason for 

this is simple: in general, Windows does not keep a record of what a window contains. 

Instead, it is your program's job to maintain the contents of a window. To help your program 

accomplish this, each time the contents of a window must be redisplayed, your program will 

be sent a WM_PAINT message. (This message will also be sent when your window is first 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Third: Application Essentials (Outputting Text to a Window)     

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 3 -7 

displayed.) Each time your program receives this message it must redisplay the contents of 

the window. 

Before explaining how to respond to a WM_PAINT message it might be useful to explain 

why Windows does not automatically rewrite your window. The answer is short and to the 

point:. In many situations, it is easier for your program, which has intimate knowledge of 

the contents of the window, to rewrite it than it would be for Windows to do so. While the 

merits, of this approach have been much debated by programmers, you should simply accept 

it, because it is unlikely to change. 

The first step to processing a WM_PAINT message is to add it to the switch statement 

inside the window function. For example, here is one way to add a WM_PAINT case to the 

previous program 

case WM_PAINT:   /*  process  a  repaint  request   */ 

hdc  =  BeginPaint(hwnd,  &paintstruct);   /*   get  DC   */ 

TextOut(hdc,    0,    0,    str,    strlen(str)); 

EndPaint(hwnd,   &paintstruct);   /*   release  DC   */ break; 

Let's look at this closely. First, notice that a device context is obtained using a call to 

BeginPaint() instead of GetDC(). For various reasons, when you process a WM_PAINT 

message, you must obtain a device context using BeginPaint(), which has this prototype: 

                                                             HDC BeginPaint(HWND hwnd, PAINTSTRUCT *lpPS); 

BeginPaint( ) returns a device context if successful or NULL on failure. Here, hwnd is the 

handle of the window for which the device context is being obtained. The second parameter 

is a pointer to a structure of type PAINTSTRUCT. On return, the structure pointed to by 

lpPS will contain information that your program can use to repaint the window. 

PAINTSTRUCT is defined like this: 

typedef struct tagPAINTSTRUCT { 

HDC hdc; /* handle to device context */ 

BOOL fErase; /* true if background must be erased */ 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Third: Application Essentials (Outputting Text to a Window)     

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 3 -8 

RECT rcPaint; /* coordinates of region to redraw */ 

BOOL fRestore;  /* reserved */ 

BOOL fIncUpdate; /* reserved */ 

BYTE rgbReserved[32]; /* reserved */ 

} PAINTSTRUCT; 

Here, hdc will contain the device context of the window that needs to be repainted. This DC 

is also returned by the call to BeginPaint( ). fErase will be nonzero if the background of the 

window needs to be erased. However, as long as you specified a background brush when you 

created the window, you can ignore the fErase member. Windows will erase the window for 

you. 

The type RECT is a structure that specifies the upper left and lower right coordinates of a 

rectangular region. This structure is shown here: 

typedef tagRECT { 

LONG left, top; /* upper left */ 

LONG right, bottom; /* lower right */  

} RECT; 

In PAINTSTRUCT, the rcPaint element contains the coordinates of the region of the 

window that needs to be repainted. For now, you will not need to use the contents of 

rcPaint because you can assume that the entire window must be repainted. However, real 

programs that you write will probably need to utilize this information. 

Once the device context has been obtained, output can be written to the window. After the 

window has been repainted, you must release the device context using a call to EndPaint( ), 

which has this prototype:       BOOL EndPaint(HWND hwnd, CONST PAINTSTRUCT  *lpPS); 

EndPaint( ) returns nonzero. (It cannot fail.) Here, hwnd is the handle of the window that 

was repainted. The second parameter is a pointer to the PAINTSTRUCT structure used in 

the call to BeginPaint( ). 

It is critical to understand that a device context obtained using BeginPaint( ) must be 

released only through a call to EndPaint(). Further, BeginPaint( ) must only be used when 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Third: Application Essentials (Outputting Text to a Window)     

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 3 -9 

a WM_PAINT message is being processed. Here is the full program that now processes 

WM_PAINT messages. 

/* Process WM_PAINT Messages */ 

#include <windows.h>  

#include <string.h> 

#include <stdio.h> 

LRESULT CALLBACK WindowFunc(HWND, UINT, WPARAM, LPARAM); 

char szWinName[] = "MyWin"; /* name of window class */ 

char str[255] = "Sample Output"; /* holds output string */ 

int WINAPI WinMain(HINSTANCE hThisInst, HINSTANCE hPrevInst, LPSTR lpszArgs, int  

WinMode) 

{HWND hwnd; MSG msg; WNDCLASSEX wc1; 

/* Define a window class. */  

wc1 .cbSize = sizeof(WNDCLASSEX) ; 

wc1.hlnstance = hThisInst; /* handle to this instance */ 

 wc1 . lpszClassName = szWinName; /* window class name */  

wc1.lpfnWndProc = WindowFunc; /* window function */ 

wc1.style = 0; /* default style */ 

wc1.hIcon= LoadIcon(NULL, IDI_APPLICATION) ; /* standard Icon */ 

 wc1.hIconSm = LoadIcon(NULL, IDI_APPLICATION); /* small icon */ 

wc1.hCursor = LoadCursor(NULL, IDC_ARROW); /* cursor style */ 

wc1.lpszMenuName = NULL; /* no main menu */ 

wc1.cbClsExtra =0;  /* no extra */ 

wc1.cbWndExtra =0;  /* information needed */ 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Third: Application Essentials (Outputting Text to a Window)     

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 3 -10 

/* Make the window white. */ wc1.hbrBackground = GetStockObject(WHITE_BRUSH); 

/* Register the window class. */     if ( '. RegisterClassEx (&wc1) ) return 0 ; 

/* Now that a window class has been registered, a window can be created. */ 

hwnd = CreateWindow( 

szWinName, /* name of window class */  

"Process WM_PAINT Messages", /* title */ 

WS_OVERLAPPEDWINDOW, /* window style - normal */ 

CW_USEDEFAULT, /* X coordinate - let Windows decide */ 

CW_USEDEFAULT, /* Y coordinate - let Windows decide */ 

CW_USEDEFAULT, /* width - let Windows decide */ 

CW_USEDEFAULT, /* height - let Windows decide */ 

HWND_DESKTOP, /* no parent window */ 

NULL, 

hThisInst, /* handle of this instance of the program */ 

NULL /* no additional arguments */ ); 

/* Display the window. */  ShowWindow(hwnd, nWinMode) ;  UpdateWindow(hwnd) ; 

/* Create the message loop. */  

while (GetMessage(&msg, NULL, 0, 0)) 

 {TranslateMessage(&msg); /*allow use of keyboard */  

   DispatchMessaget&msg); /* return control to Windows */ }return msg. wParam;} 

/* This function is called by Windows and is passed messages from the message queue */ 

LRESULT CALLBACK WindowFunc(HWND hwnd, UINT message, WPARAM wParam,  

LPARAM lParam) 

{HDC hdc; static unsigned j = 0; PAINTSTRUCT paintstruct; 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Third: Application Essentials (Outputting Text to a Window)     

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 3 -11 

switch(message) { case WM_CHAR: /* process keystroke */ 

                                hdc = GetDC(hwnd); /* get device context */ 

                                sprintf(str, "%c", (char) wParam); /* stringize character */ 

                                TextOut(hdc, j*10,0, str, strlen(str)); /* output char */ 

                                 j++; /* try commenting-out this line */ 

                                ReleaseDC(hwnd, hdc); /* release device context */ break; 

                             case WM_PAINT: /* process a repaint request */ 

                                 hdc = BeginPaint(hwnd, &paintstruct); /* get DC */ 

                                TextOut(hdc, 0, 0, str, strlen(str)); 

                                EndPaint(hwnd, &paintstruct) ,- /* release DC */ break; 

                           case WM_DESTROY: /* terminate the program */ 

                                PostQuitMessage(O);break;   

        default: /* Let Windows process any messages not specified in the preceding switch 

statement. */return DefWindowProc(hwnd, message, wParam, lParam);} return 0;} 

Before continuing, enter, compile, and run this program. Try typing a few characters and then 

minimizing and restoring the window. As you will see, each time the window is redisplayed, 

the last character you typed is automatically redrawn. The reason that only the last character 

is redisplayed is because str only contains the last character that you typed. You might find it 

fun to alter the program so that it adds each character to a string and then redisplays that 

string each time a WM_PAINT message is received. (You will see one way to do this in the 

next example.) Notice that the global array str is initialized to Sample Output and that this 

is displayed when the program begins execution. The reason for this is that when a window is 

created, a WM_PAINT message is automatically generated. 

While the handling of the WM_PAINT message in this program is quite simple, it must be 

emphasized that most real-world applications will be more complex because most windows 

contain considerably more output. Since it is your program's responsibility to restore the 

window if it is resized or overwritten, you must always provide some mechanism to 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Third: Application Essentials (Outputting Text to a Window)     

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 3 -12 

accomplish this. In real-world programs, this is usually accomplished one of three ways. First, 

your program can regenerate the output by computational means. This is most feasible when 

no user input is used. Second, in some instances, you can keep a record of events and replay 

the events when the window needs to be redrawn. Finally, your program can maintain a 

virtual window that you copy to the window each time it must be redrawn. This is the most 

general method. (The implementation of this approach is described later in this lecture.) 

Which approach is best depends completely upon the application. Most of the examples in 

this book won't bother to redraw the window because doing so typically involves substantial 

additional code which often just muddies the point of an example. However, your programs 

will need to restore their windows in order to be conforming Windows NT applications. 

Generating a WM_PAINT Message 

It is possible for your program to cause a WM_PAINT message to be generated. At first, 

you might wonder why your program would need to generate a WM_PAINT message since 

it seems that it can repaint its window whenever it wants. However, this is a false 

assumption. Remember, updating a window is a costly process in terms of time. Because 

Windows is a multitasking system that might be running other programs that are also 

demanding CPU time, your program should simply tell Windows that it wants to output 

information, but let Windows decide when it is best to actually perform that output. This 

allows Windows to better manage the system and efficiently allocate CPU time to all the 

tasks in the system. Using this approach, your program holds all output until a WM_PAINT 

message is received. 

In the previous example, the WM_PAINT message was received only when the window was 

resized or uncovered. However, if all output is held until a WM_PAINT message is received, 

then to achieve interactive I/O, there must be some way to tell Windows that it needs to send a 

WM_PAINT message to your window whenever output is pending. As expected, Windows 

NT includes such a feature. Thus, when your program has information to output, it simply 

requests that a WM_PA1NT message be sent when Windows is ready to do so. To cause 

Windows to send a WM_PAINT message, your program will call the InvalidateRect( ) API 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Third: Application Essentials (Outputting Text to a Window)     

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 3 -13 

function. Its prototype is shown here:  

BOOL InvalidateRect(HWND hwnd, CONST RECT *lpRect, BOOL bErase); 

Here, hwnd is the handle of the window to which you want to send the WM_PAINT 

message. The RECT structure pointed to by lpRect specifies the coordinates within the 

window that must be redrawn. If this value is NULL then the entire window will be specified. 

If bErase is true, then the background will be erased. If it is zero, then the background is left 

unchanged. The function returns nonzero if successful; it returns zero otherwise. (In general, 

this function will always succeed.) 

When InvalidateRect( ) is called, it tells Windows that the window is invalid and must be 

redrawn. This, in turn, causes Windows to send a WM_PAINT message to the program's 

window function. 

Here is a reworked version of the previous program that routes all output through the 

WM_PAINT message. The code that responds to a WM_CHAR message stores each 

character and then calls InvalidateRect(). In this version of the program, notice that inside 

the WM_CHAR case, each character you type is added to the string str. Thus, each time the 

window is repainted, the entire string containing all the characters you typed is output, not 

just the last character, as was the case with the preceding program. 

/*   A Windows   skeleton  that   routes  output  through the WM_PAINT  message.   */ 

#include <windows.h> 

#include <string.h> 

#include <stdio.h> 

LRESULT  CALLBACK  WindowFunc (HWND,   UINT,   WPARAM,    LPARAM) ; 

char   szWinName [ ]   =   "MyWin" ;    /*   name  of   window  class   */ 

char str[255] ="" ; /* hold output string */ 

int WINAPI WinMain(HINSTANCE  hThisInst,   HINSTANCE hPrevInst, 

        LPSTR   IpszArgs,   int  nWinMode) {HWND hwnd; MSG msg; WNDCLASSEX wc1; 

/* Define a window class. */ 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Third: Application Essentials (Outputting Text to a Window)     

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 3 -14 

wc1.cbSize = sizeof(WNDCLASSEX); 

wc1.hInstance = hThisInst; /* handle to this instance */ 

wc1.lpszClassName = szWinName; /* window class name */ 

 wc1.lpfnWndProc = WindowFunc; /* window function */ 

 wc1.style = 0; /* default style */ 

wc1.hIcon = LoadIcon(NULL, IDI_APPLICATION); /* standard icon*/ 

wc1.hIconSm = LoadIcon(NULL, IDI_APPLICATION); /* small icon*/ 

wc1.hCursor = LoadCursor(NULL, IDC_ARROW); /* cursor style */ 

wc1.lpszMenuName = NULL; /* no main menu */ 

wc1.cbClsExtra = 0; /* no extra */ wc1.cbWndExtra =0; /* information needed */ 

/* Make the window white. */ wc1.hbrBackground = GetStockObject(WHITE_BRUSH); 

/* Register the window class. */ if(!RegisterClassEx(&wc1)) return 0; 

/* Now that a window class has been registered, a window can be created. */ 

hwnd = CreateWindow( 

szWinName, /* name of window class */ 

"Routing Output Through WM_PAINT", /* title */ 

WS_OVERLAPPEDWINDOW, /* window style - normal */ 

CW_USEDEFAULT, /* X coordinate - let Windows decide */ 

CW_USEDEFAULT, /* Y coordinate - let Windows decide */ 

CW_USEDEFAULT, /* width - let Windows decide */ 

CW_USEDEFAULT, /* height - let Windows decide */ 

HWND_DESKTOP, /* no parent window */ 

NULL, 

hThisInst, /* handle of this instance of the program */ 

NULL /* no additional arguments */ ); 

/* Display the window. */ ShowWindow(hwnd, nWinMode);   UpdateWindow(hwnd); 

/* Create the message loop. */ 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Third: Application Essentials (Outputting Text to a Window)     

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 3 -15 

while(GetMessage(&msg, NULL, 0, 0)) 

{ TranslateMessage(&msg); /* allow use of keyboard */ 

DispatchMessage(&msg); /* return control to Windows */} return msg.wParam; } 

LRESULT CALLBACK WindowFunc (HWND hwnd, UINT message, WPARAM wParam, 

LPARAM lParam) {HDC hdc; PAINTSTRUCT paintstruct ; char temp [2] ; 

switch (message) { case WM_CHAR: /* process keystroke */ 

                                                hdc = GetDC (hwnd) ; /* get device context */ 

                                               sprintf (temp, "%c", (char) wParam);/*stringize character */ 

                                               strcat(str, temp); /* add character to string */ 

                                                InvalidateRect (hwnd,NULL,1); /*paint the screen*/ break; 

                        case WM_PAINT: /* process a repaint request */ 

                                                 hdc = BeginPaint (hwnd, &paintstruct) ; /* get DC */ 

                                                TextOut(hdc, 0, 0, str, strlen (str ) ) ,- /* output char */ 

                                                EndPaint (hwnd, &paintstruct ) ; /* release DC */ break; 

                       case WM_DESTROY: /* terminate the program */ 

                                   PostQuitMessage (0) ; break; 

                                  default: 

         /* Let Windows process any message not. specified in the preceding switch  

statement. */return DefWindowProc (hwnd, message, wParam, lParam); } return 0; } 

 

Many Windows applications route all (or most) output to the client area through 

WM_PAINT, for the reasons already stated. However, there is nothing wrong with 

outputting text or graphics as needed. Which method you use will depend on the exact 

nature of each situation. 

 

H.W: How Can return all text in program " text editor " answer by code segment. 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Third: Application Essentials (Outputting Text to a Window)     

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 3 -16 

(In Multi line ) 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Fourth: Application Essentials (Mouse Message)       

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 4-1 

Responding to Mouse Messages 

Since Windows is, to a great extent, a mouse-based operating system, all Windows 

programs should respond to mouse input. Because the mouse is so important, there are 

several different types of mouse messages. The ones discussed in this lecture are: 

WM-LBUTTONDBLCK 

 

WM_LBUTTONUP 
 

WM_LBUTTONDOWN 
 WM_RBUTTONDBLCK 

 

WM_RBUTTONUP 
 

WM_RBUTTONDOWN 
 While most computers use a two-button mouse, Windows is capable of handling a mouse 

with up to three buttons. These buttons are called the left, middle, and right. For the rest of 

this chapter we will only be concerned with the left and right buttons. 

Let's begin with the two most common mouse messages, 

WM_LBUTTONDOWN and WM_RBUTTONDOWN. They are generated when the left 

button and right button are pressed, respectively. 

When either a WM_LBUTTONDOWN or a WM_RBUTTONDOWN message is received, 

the mouse's current X, Y location is specified in LOWORD(LParam) and 

HIWORD(lParam), respectively. The value of wParam contains various pieces of status 

information, which are described in the next section. 

The following program responds to mouse messages. Each time you press a mouse button 

when the program's window contains the mouse cursor, a message will be displayed at the 

current location of the mouse pointer. Figure 5-1 shows sample output from this program. 

/* Process Mouse Messages. */ 

#include <windows.h> 

#include <string.h> 

#include <stdio.h> 

LRESULT CALLBACK WindowFunc(HWND, UINT, WPARAM, LPARAM);  

char szWinName[]= "MyWin"; /* name of window class */ 

char str[255] = ""; /* holds output string */ 

int WINAPI WinMain(INSTANCE hThisInst, HINSTANCE hPrevInst,  

LPSTR lpszArgs, int nWinMode) { HWND hwnd; MSG msg; WNDCLASSEX wc1; 

/* Define a window class. */  



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Fourth: Application Essentials (Mouse Message)       

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 4-2 

wc1.cbSize = sizeof (WNDCLASSEX) ; 

  wc1.hInstance= hThisInst, /* handle to this_instance */ 

wc1.lpszClassName = szWinName; /* window class name */ 

wc1.lpfnWndProc = WindowFunc; /* window function */ 

wc1.style = 0; /* default style */ 

wc1.hIcon = LoadIcon(NULL, IDI_APPLICATION); /* standard icon */ 

wc1.hIconSm = LoadIcon(NULL, IDI_APPLICATION); /* small icon */ 

wc1.hCursor = LoadCursor(NULL, IDC_ARROW); /* cursor style */ 

wc1.lpszMenuName = NULL; /* no main menu */ 

wc1.cbClsExtra =0;  /* no extra */ 

wc1 .cbWndExtra = 0; /* information needed */ 

/* Make the window white. */ wc1.hbrBackground = GetStockObject(WHITE_BRUSH); 

/* Register the window class. */ if(!RegisterClassEx(&wcl))  return 0; 

/* Now that a window class has been registered, a window can be created. */ 

hwnd = CreateWindow( 

  szWinName, /* name of window class */ 

  "Display WM_CHAR Messages Using TextOut", /* title */ 

  WS_OVERLAPPEDWINDOW, /* window style - normal */ 

   CW_USEDEFAULT, /* X coordinate - let Windows decide */ 

CW_USEDEFAULT, /* Y coordinate - let Windows decide */ 

CW_USEDEFAULT, /* width - let Windows decide */ 

CW_USEDEFAULT, /* height - let Windows decide */ 

HWND_DESKTOP,    /*  no parent window   */ 

NULL, 

hThisInst ,     /*  handle of the instance of the  program  */ 

NULL   /*  no  additional arguments  */ ); 

/* Display the window*/ ShowWindow (hwnd, nWinMode) ; UpdateWindow( hwnd) ; 

/* Create the message   loop.*/ 

while(GetMessage(&msg, NULL, 0, 0)) 

         { TranslateMessage(&msg);/*allow use of keyboard */ 

            DispatchMessage (&msg); /*return control to Windows */  }retur n msg. wParam;} 

/* This function is called by Windows and is passed messages from the message queue. */ 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Fourth: Application Essentials (Mouse Message)       

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 4-3 

LRESULT  CALLBACK  WindowFunc(HWND  hwnd,   U1NT  message, 

                             WPARAM  wParam,    LPARAM   lParam){ HDC hdc; 

switch(message) {  case WM_RBUTTONDOWN: /* process right button */ 

                  hdc = GetDC(hwnd); /* get DC * / 

                  sprintf(str, "Right button is down at %d, %d", LOWORD(lParam), HIWORD(lParam));   

TextOut(hdc,LOWORD(lParam),HIWORD(lParam),str,strlen(str));  ReleaseDC(hwnd, hdc);break; 

               case WM_LBUTTONDOWN: /* process left button */ 

               hdc = GetDC(hwnd); /* get DC */  

              sprintf(str, "Left button is down at %d, %d", LOWORD(lParam), HIWORD(lParam)); 

              TextOut(hdc, LOWORD(lParam), HIWORD(lParam), str, strlen(str)); 

           ReleaseDC(hwnd, hdc); /* Release DC */ break; 

       case WM_DESTROY: /*terminate the program*/ PostQuitMessage(0); break;  

                    default: return DefWindowProc(hwnd, message, wParam, IParam); } return 0;} 

                                        

Figure 4-1: Sample output from the mouse message program 

A Closer Look at Mouse Messages 

For all of the mouse messages described in this lecture, the meaning of lParam and 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Fourth: Application Essentials (Mouse Message)       

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 4-4 

wParam is the same. As described earlier, the value of lParam contains the coordinates of 

the mouse when the message was generated. The value of wParam supplies information 

about the state of the mouse and keyboard. It may contain any combination of the following 

values: 

MK_CONTROL 

MK_SHIFT 

MK_MBUTTON 

MK_RBUTION 

MK_LBUTTON 

If the control key is pressed when a mouse button is pressed, then wParam will contain 

MK_CONTROL. If the shift key is pressed when a mouse button is pressed, then wParam will 

contain MK_SHIFT. If the right button is down when the left button is pressed, then wParam 

will contain MK_RBUTTON. If the left button is down when the right button is pressed, then 

wParam will contain MK_LBUTTON. If the middle button (if it exists) is down when one of 

the other buttons is pressed, then wParam will contain MK_MBUTTON. Before moving on, 

you might want to try experimenting with these messages. 

Using Button Up Messages 

When a mouse button is clicked, your program actually receives two messages. The first 

is a button down message, such as WM_LBUTTONDOWN, when the button is pressed. 

The second is a button up message, when the button is released. The button up messages 

for the left and right buttons are called WM_LBUTTONUP and WM_RBU TTONUP. 

For some applications, when selecting an item, it is better to process button-up, rather than 

button-down messages. This gives the user a chance to change his or her mind after the mouse 

button has been pressed. 

Responding to a Double-Click 

While it is easy to respond to a single-click, handling double-clicks requires a bit more work. 

First, you must enable your program to receive double-click messages. By default, double-click 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Fourth: Application Essentials (Mouse Message)       

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 4-5 

messages are not sent to your program. Second, you will need to add message response code for 

the double-click message to which you want to respond. 

To allow your program to receive double-click messages, you will need, to specify 

CS_DBLCLKS in the style member of the WNDCLASSEX structure prior to registering the 

window class. That is, you must use a line of code like that shown here:   

wc1.style = CS_DBLCLKS; /* allow double-clicks */ 

After you have enabled double-clicks, your program can receive these double-click messages: 

WM_LBUTTONDBLCLK and WM_RBUTTONDBLCLK. The contents of the lParam and 

wParam parameters are the same as for the other mouse messages. 

As you know, a double-click is two presses of a mouse button in quick succession. You can 

obtain and/or set the time interval within which two presses of a mouse button must occur in 

order for a double-click message to be generated. To obtain the double-click interval, use the 

API function GetDoubleClickTime() , whose prototype is shown here:    UINT 

GetDoubleClickTime( void ); 

This function returns the interval of time (specified in milliseconds). To set the double-click 

interval, use SetDoubleClickTime( ). Its prototype is shown here: 

BOOL SetDoubleClickTime (  UINT interval ); 

Here, interval specifies the number of milliseconds within which two presses of a mouse 

button must occur in order for a double-click to be generated. If you specify zero, then the 

default double-click time is used. (The default interval is approximately half a second.) 

The function returns nonzero if successful and zero on failure. 

The following program responds to double-click messages. It also demonstrates the use 

of GetDoubleClickTime( ) and SetDoubleClickTime( ). Each time you press the up 

arrow key, the double-click interval is increased. Each time you press the down arrow, 

the interval is decreased. Each time you double-click either the right or left mouse button, 

a message box that reports the current double-click interval is displayed. Since the 

double-click interval is a system-wide setting, changes to it will affect all other programs 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Fourth: Application Essentials (Mouse Message)       

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 4-6 

in the system. For this reason, when the program begins, it saves the current double-click 

interval. When the program ends, the original interval is restored. In general, if your 

program changes a system-wide setting, it should be restored before the program ends. 

Sample output is shown in This Program Below   

/* Respond to double clicks and control the double-click interval */. 

#include <windows.h>  

#include <string.h> 

#include <stdio.h> 

LRESULT CALLBACK WindowFunc(HWND, UINT, WPARAM, LPARAM);  

char szWinName[]="MyWin"; /*name of window class*/  char str[255]=""; /*holds output string */ 

UINT OrgDblClkTime; /* holds original double-click interval. */ 

int WIMAPI WinMain(HINSTANCE hThisInst, HINSTANCE hPrevInst, 

                                 LPSTR lpszArgs, int nWinMode) {HWND hwnd; MSG msg; WNDCLASSEX wc1; 

/* Define a window class. */ wc1.cbSize = sizeof (WNDCLASSEX) ; 

wc1.hInstance = hThisInst; /* handle to this instance */  

wc1.lpszClassName = szWinName; /* window class name */ 

wc1.lpfnWndProc = WindowFunc; /* window function */ 

wc1.style = CS_DBLCLKS; /* enable double clicks */ 

wc1.hIcon = LoadIcon(NULL, IDI_APPLICATION); /* standard icon */ 

wc1.hIconSm = LoadIcon(NULL, IDI_APPLICATION); /* small icon */ 

 wc1.hCursor = LoadCursor(NULL, IDC_ARROW); /* cursor style */ 

wc1.lpszMenuName = NULL; /* no main menu */ 

wc1.cbClsExtra =0;  /* no extra */ 

wc1 .cbWndExtra = 0; /* information needed */ 

/* Make the window white. */ wc1.hbrBackground = GetStockObject(WHITE_BRUSH); 

/* Register the window class. */ if(!RegisterClassEx(&wcl))  return 0; 

/* Now that a window class has been registered, a window can be created. */ 

hwnd = CreateWindow( 

szWinName, /* name of window class */ 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Fourth: Application Essentials (Mouse Message)       

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 4-7 

"Display WM_CHAR Messages Using TextOut", /* title */ 

WS_OVERLAPPEDWINDOW, /* window style - normal */ 

CW_USEDEFAULT, /* X coordinate - let Windows decide */ 

CW_USEDEFAULT, /* Y coordinate - let Windows decide */ 

CW_USEDEFAULT, /* width - let Windows decide */ 

CW_USEDEFAULT, /* height - let Windows decide */ 

HWND_DESKTOP,    /*  no parent window   */ 

NULL, 

hThisInst ,     /*  handle of the instance of the  program  */ 

NULL   /*  no  additional arguments  */ ); 

/* save original double-click time interval */ OrgDblClkTime=GetDoubleClickTime( ); 

/* Display the window*/ ShowWindow (hwnd, nWinMode) ; UpdateWindow( hwnd) ; 

/* Create the message   loop.*/ 

while(GetMessage(&msg, NULL, 0, 0)) 

         { TranslateMessage(&msg);/*allow use of keyboard */ 

            DispatchMessage (&msg); /*return control to Windows */    }retur n msg. wParam;} 

/* This function is called by Windows and is passed messages from the message queue. */ 

LRESULT  CALLBACK  WindowFunc(HWND  hwnd,   U1NT  message, 

                             WPARAM  wParam,    LPARAM   lParam) { HDC  hdc;   UINT interval; 

switch(message) { case WM_KEYDOWN: 

if{(char)wParam==VK_UP) {/*increase interval*/ interval = GetDoubleClickTime();  

                                                                            interval + = 100; SetDoubleClickTime(interval) ;} 

if((char)wParam == VK_DOWN) { /* decrease interval */  

                                                               interval = GetDoubleClickTime();  

                                                               interval -= 100;  

                                                               if(interval < 0) interval = 0;  

                                                               SetDoubleClickTime(interval); } 

    sprintf(str, "New interval is %u milliseconds",interval); 

      MessageBox(hwnd, str, "Setting Double-Click Interval", MB_OK); break; 

        case WM_RBUTTONDOWN:/*process right button*/ 

                  hdc=GetDC(hwnd); /* get DC */  

              sprintf(str,"Right button is down at %d, %d",LOWORD(lParam), HIWORD(lParam)); 



 
 

Windows programming1                                               Class: forth (Software Branch) 

 Chapter Fourth: Application Essentials (Mouse Message)       

----------------------------------------------------------------------------------------------------------------------- 

 Chapter 4-8 

TextOut(hdc,LOWORD(lParam),HIWORD(lParam),str,strlen(str));ReleaseDC(hwnd,hdc);break; 

     case WM_LBUTTONDOWN: /* process left button */ hdc=GetDC(hwnd); /* get DC */  

sprintf(str,"Left button is down at %d, %d",LOWORD(1Param),HIWORD(lParam)); 

TextOut(hdc, LOWORD(IParam), HIWORD(IParam), str, strlen(str) ) ; 

ReleaseDC(hwnd, hdc); /* Release DC */break; 

     case WM_LBUTTONDBLCLK: /* process   l e f t   button  double-click*/ 

interval   = GetDoubleClickTime ();    

sprintf(str,"Left ButtonXnlnterval  is %u milliseconds",   interval); 

MessageBox(hwnd, str, "DoubleClick", MB_OK); break; 

    case WM_RBUTTONDBLCLK:   /*process   right  button  double-click*/ 

interval   =  GetDoubleClickTime (); 

sprintf(str,   "Right Button\nlnterval  is %u milliseconds",   interval); 

MessageBoxfhwnd,   str,    "Double Click",   MB_OK); break; 

  case WM_DESTROY: /* terminate the program */ 

SetDoubleClickTime(OrgDblClkTime); /*restore interval*/ PostQuitMessage(0);break;                  

          default:  return DefWindowProc(hwnd, message, wParam, IParam); } return 0;} 

 

Output that leave the students But your carefully this program bellow have many errors correct this 

error and find what resultants obtain of this program below …!?  

 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-1 

   This lesson begins our exploration of Windows 's user interface components. If you are 

learning to program Windows for the first time, it is important to understand that your 

application will most often communicate with the user through one or more predefined 

interface components. There are several different types of these supported by Windows. This 

lecture introduces the most fundamental: the menu. Virtually any program you write will 

use one. As you will see, the basic style of the menu is predefined. You need only supply the 

specific information that relates to your application. Because of their importance, Windows 

provides extensive support for menus and the topic of menus is a large one. This lesson 

describes the fundamentals. Later, the advanced features are covered. 

This lecture also introduces the resource. A resource is, essentially, an object defined outside 

your program but used by your program. Icons, cursors, menus, and bitmaps are common 

resources. Resources are a crucial part of nearly all Windows applications. 

Menus Basics 

The most common element of control within a Windows program is the menu. Windows 

supports three general types: 

 The menu bar (or main menu) 

 Pop-up submenus 

 Floating, stand-alone pop-up menus 

In a Windows application, the menu bar is displayed across the top of the window. This is 

frequently called the main menu. The menu bar is your application's top-level menu. 

Submenus descend from the menu bar and are displayed as pop-up menus. (You should be 

accustomed to this approach because it is used by virtually all Windows programs.) Floating 

pop-up menus are free-standing pop-up menus which are typically activated by pressing the 

right mouse button. In this lecture, we will explore the first two types: the menu bar and pop-

up submenus. Floating menus are described in a later lesson. 

It is actually quite easy to add a menu bar to your program's main window. To do so involves 

just these three steps: 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-2 

1. Define the form of the menu in a resource file. 

2. Load the menu when your program creates its main window. 

3. Process menu selections. 

 

In the remainder of this chapter, you will see how to implement these stops. 

Since the first step is to define a menu in a resource file, it is necessary to explain resources 

and resource files. 

Resources 

Windows defines several common types of objects as resources. As mentioned at the 

beginning of this lesson, resources are, essentially, objects that are used by your program, 

but are defined outside your program. A menu is one type of resource. A resource is created 

separately from your program, but is added to the .EXE file when your program is linked. 

Resources are contained in resource files, which have the extension .RC. For small projects, 

the name of the resource file is often the same as that of your program's .EXE file. For 

example, if your program is called PROG.EXE, then its resource file will typically be called 

PROG.RC. Of course, you can call a resource file by any name you please as long as it has 

the .RC extension. 

Depending on the resource, some are text-based and you create them using a 

standard text editor. Text resources are typically defined within the resource 

file. Others, such as icons, are most easily generated using a resource editor, 

but they still must be referred to in the RC file that is associated with your 

application. The example resource files in this lecture are simply text files 

because menus are text-based resources. 

Resource files do not contain C or C++ statements. Instead, resource files consist of special 

resource statements. In the course of this lecture, the resource commands needed to support 

menus are discussed. Others are described as needed throughout this lectures. 

Compiling .RC files 

Resource files are not used directly by your program. Instead, they must be converted into a 

linkable format. Once you have created a .RC file, you compile it into a .RES file using a 

resource compiler. (Often, the resource compiler is called RC.EXE, but this varies.) Exactly 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-3 

how you compile a resource file will depend on what compiler you are using. Also, some 

integrated development environments handle this phase for you. For example, both 

Microsoft Visual C++ and Borland C++ compile and incorporate resource files 

automatically. In any event, the output of the resource compiler will be a .RES file and it is 

this file that is linked with your program to build the final Windows application. 

Creating a Simple Menu 

Menus are defined within a resource file by using the MENU resource statement. All 

menu definitions have this general form: 

MenuName MENU [options] 

{ 

menu items 

 } 

Here, MenuName is the name of the menu. (It may also be an integer value identifying the 

menu, but all examples in this lecture will use the name when referring to the menu.) The 

keyword MENU tells the resource compiler that a menu is being created. There are only a 

few options that apply to Windows programs. They are shown here: 

Option Meaning 

DISCARDABLE 

 
Menu may be removed from memory when no longer needed 

CHARACTERISTICS 

info 

 

Application-specific information, which is specified as a LONG value in info. 

LANGUAGE lang, 

sub-lang 

 

The language used by the resource is specified by lang and sub-lang. This is 

used by internationalized menus. The valid language identifiers are found in 

the header file WIN.H. 

VERSION ver Application-defined version number is specified in ver. 

Most simple applications do not require the use of any options and simply use the default 

settings. 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-4 

There are two types of items that can be used to define the menu: MENUITEMs and 

POPUPs. A MENUITEM specifies a final selection. A POPUP specifies a pop-up 

submenu, which may contain other MENUITEMs or POPUPs. The general form of these 

two statements is shown here: 

MENUITEM "ItemName". MenulD [, Options] 

POPUP "PopupName" [, Options] 

Here, ItemiName is the name of the menu selection, such as "Help" or "Save". MenuID is a 

unique integer associated with a menu item that will be sent to your application when a 

selection is made. Typically, these values are defined as macros inside a header file that is 

included in both your application code and its resource file. PopupName is the name of the 

pop-up menu. For both cases, the values for Options (defined by including WINDOWS.H) 

are shown in Table below. 

Here is a simple menu that will be used by subsequent example programs. You should enter 

it at this time. Call the file MENU.RC. 

Option Meaning 

CHECKED A check mark is displayed next to the name. (Not 

applicable to top-level menus.) 

 

GRAYED 

 

The name is shown in gray and may not be selected. 

 

HELP 

 

May be associated with a help selection. Applies to 

MENUITEMs only. 

 

INACTIVE 

 

The option may not be selected. 

 

MENUBARBREAK 

 

For menu bar, causes the item to be put on a new line. 

For pop-up menus, causes the item to be put in a 

different column. In this case, the item is separated 

using a bar. 

 

MENUBREAK 

 

Same as MENUBARBREAK except that no separator 

bar is used. 

 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-5 

SEPARATOR 

 

Creates an empty menu item that acts as a separator. 

Applies to MENUITEMs only. 

 

; Sample menu resource file. 

 # include "menu.h" 

MyMenu MENU  

{POPUP "&File" {MENUITEM "&Open", IDM_OPEN 

                           MENUITEM "&Close", IDM_CLOSE 

                           MENUITEM "&Exit", IDM_EXIT} 

  POPUP "&Options" {MENUITEM "&Colors", IDM_COLORS 

                                 POPUP "&Priority" {MENUITEM "&Low", IDM_LOW 

                                                                      MENUITEM "&High", IDM_HIGH} 

                                MENUITEM "&Fonts", IDM_FONT 

                                       MENUITEM "&Resolution" , IDM_RESOLUTION}  

  MENUITEM "&Help", IDM_HELP} 

This menu, called MyMenu, contains three top-level menu bar options: File, Options, and 

Help. The File and Options entries contain pop-up submenus. The Priority option activates 

a pop-up submenu of its own. Notice that options that activate submenus do not have menu 

ID values associated with them. Only actual menu items have ID numbers. In this menu, all 

menu ID values are specified as macros beginning with IDM. (These macros are defined in 

the header file MENU.H.) The names you give these values are arbitrary. 

An & in an item's name causes the key that it precedes to become the shortcut key 

associated with that option. That is; once that menu is active, pressing that key causes that 

menu item to be selected. It doesn't have to be the first key in the name, but it should be 

unless a conflict with another name exists. 

NOTE:   You can embed comments into a resource file on a line-by-line basis by beginning 

them with a semicolon, as the first line of the resource file shows. You may also use C and 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-6 

C++ style comments. 

The MENU.H header file, which is included in MENU.RC, contains the macro definitions of 

the menu ID values. It is shown here. Enter it at this time. 

                                              #define IDM_OPEN                 100  

                                              #define IDM_CLOSE               101 

#define IDM_EXIT                        102 

#define IDM_COLORS                        103 

#define IDM_LOW                        104 

#define IDM_HIGH                        105 

#define IDM_FONT                106 

#define IDM_RESOLUTION                107 

#define IDM_HELP                        108 

This file defines the menu ID values that will be returned when the various menu items are 

selected. This tile will also be included in the program that uses the menu. Remember, the 

actual names and values you give the menu items are arbitrary, but each value must be 

unique. The valid range for ID values is 0 through 65,565. 

Including a Menu in Your Program 

Once you have created a menu, the easiest way to include that menu in a program is by 

specifying its name when you create the window's class. Specifically, you assign 

lpszMenuName a pointer to a string that contains the name of the menu. For example, to 

use the menu MyMeun, you would use this line when defining the window's class:   

wcl.lpszMenuName =   "MyMenu";   /* main  menu */ 

Now MyMenu is the default main menu for all windows of its class. This means that all 

windows of this type will have the menu defined by MyMenu. (As you will see, you can 

override this class menu, if you like.) 

Responding to Menu Selections 

Each time the user makes a menu selection, your program's window function is sent a 

WM_COMMAND command message. When that message is received, the value of 

LOWORD(wParam) contains the menu item's ID value. That is, LOWORD(wParam) 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-7 

contains the value you associated with the item when you defined the menu in its .RC file. 

Since WM_COMMAND is sent whenever a menu item is selected and the value 

associated with that item is contained in LOWORD(wParam), you will need to use a 

nested switch statement to determine which item was selected. For example, this 

fragment responds to a selection made from MyMenu: 

switch(message) {case WM_COMMAND: 

                    switch(LOWORD(wParam)){ 

                  case IDM_OPEN: MessageBox(hwnd, "Open File", "Open", MB_OK);break; 

                       case IDM_CLOSE:     MessageBox(hwnd, "Close File", "Close", MB_OK);break; 

                       case IDM_EXIT: 

                response = MessageBox(hwnd, "Quit the Program?", "Exit", MB_YESNO); 

                if(response == IDYES) PostQuitMessage(0);break; 

                 case IDM_COLORS:      MessageBox(hwnd, "Set Colors", "Colors", MBJ3K);break; 

                 case IDM_LOW:      MessageBox(hwnd, "Low", "Priority", MB_OK);break; 

                 case IDM_HIGH:     MessageBox(hwnd, "High", "Priority", MB_OK);break; 

                       case IDM_RESOLUTION:  

                                  MessageBox(hwnd, "Resolution Options", "Resolution", MB_OK);break; 

                     case  IDM_FONT: 

                                 MessageBox(hwnd,   "Font Options",    "Fonts",   MB_OK);break; 

        case   IDM_HELP: 

                     MessageBox(hwnd,    "No  Help",    "Help",   MB_OK);break; } break; 

For the sake of illustration, the response to each selection simply displays an acknowledgment 

of that selection on the screen. Of course, in a real application, the response to menu selections 

will perform the specified operations. 

A Sample Menu Program 

Here is a program that demonstrates the previously defined menu. Sample output from the 

program is shown in Figure 5-2. 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-8 

/* Demonstrate menus. */ 

#tinclude <windows.h> 

#include <string.h> 

#nclude  <stdio.h> 

#include  "menu.h" 

LRESULT CALLBACK WindowFunc(HWND, UINT, WPARAM, LPARAM); 

char szWinName[] = "MyWin"; /* name of window class */ 

int WINAPI WinMain(HINSTANCE hThisInst, HINSTANCE hPrevInst, LPSTR lpszArgs, int 

nWinMode) { HWND hwnd;  MSG msg; WNDCLASSEX wc1; 

/* Define a window class. */ wc1.cbSize = sizeof(WNDCLASSEX); 

wc1.hlnstance = hThisInst; wc1.lpszClassName = szWinName;  

wc1.lpfnWndProc = WindowFunc; wc1.style = 0; 

wc1.hIcon = LoadIcon(NULL, IDI_APPLICATION); 

 wc1.hIconSm = LoadIcon(NULL, IDI_WINLOGO);  

wc1.hCursor = LoadCursor(NULL, IDC_ARROW);  wc1.lpszMenuName = "MyMenu"; 

wc1.cbClsExtra = 0; wc1.cbWndExtra =0;  

wc1.hbrBackground = (HBRUSH) GetStockObject(WHITE_BRUSH); 

 if(!RegisterClassEx(&wcl)) return 0; 

hwnd = CreateWindow (szWinName, "Introducing Menus", WS_OVERLAPPEDWINDOW, 

CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, 

HWND_DESKTOP,NULL, hThisInst, NULL ); 

/* Display the window. */  ShowWindow(hwnd, nWinMode); UpdateWindow(hwnd); 

 while(GetMessage(&msg, NULL, 0, 0)) 

{TranslateMessage(&msg); DispatchMessage(&msg);} return msg.wParam; } 

/* This function is called by Windows NT and is passed messages from the message queue. */ 

LRESULT CALLBACK WindowFunc(HWND hwnd, UINT message,                               

WPARAM wParam, LPARAM lParam)  { int response; 

switch(message) { case WM_COMMAND: 

   switch(LOWORD(wParam))  



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-9 

         { case IDM_OPEN: MessageBox(hwnd, "Open File", "Open", MB_OK); break; 

case IDM_CLOSE: MessageBox(hwnd, "Close File", "Close", MB_OK); break;  

case IDM_EXIT:  

       response = MessageBox(hwnd, "Quit the Program?", "Exit", MB_YESNO); 

    if(response == IDYES) PostQuitMessage(0); break; 

  case IDM_COLORS:  

              MessageBox(hwnd,   "Set Colors",   "Colors",   MB_OK); break; 

              case IDM_LOW: MessageBox(hwnd, "Low", "Priority", MB_OK); break; 

         case IDM_HIGH: MessageBox(hwnd, "High", "Priority",MB_OK);break; 

case IDM_RESOLUTION: MessageBox(hwnd,"Resolution Options","Resolution", 

MB_OK);break;  

         case IDM_FONT:  MessageBox(hwnd,   "Font Options",   "Fonts",MB_OK);break; 

         case   IDM_HELP:   MessageBox(hwnd,  "No  Help",    "Help", MB_OK);break;  break; 

case WM_DESTROY: /* terminate the program */ PostQuitMessage(0); break;  

default: return DefWindowProc(hwnd, message, wParam, lParam); } return 0;} 

 

Figure 5.2: output of below program 

In Depth: Using MessageBox() Responses 

In the example menu program, when the user selects Exit, the following code sequence is 

executed: 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-10 

case   IDM_EXIT: 

response   =  MessageBox(hwnd,    "Quit   the  Program?", "Exit",    MB_YESNO); 

if(response  ==   IDYES)   PostQuitMessage( 0 ) ; break; 

As you can see, it contains two buttons: Yes and No. As discussed in Chapter (message box), a message 

box will return the user's response. In this case, it means that MessageBox( ) will return either IDYES 

or IDNO. If the user's response is IDYES, then the program terminates. Otherwise, it continues 

execution. 

This is an example of a situation in which a message box is used to allow the user to select between two 

courses of action. As you begin to write your own Windows programs, keep in mind that the message 

box is useful in any situation in which the user must choose between a small number of choices. 

Adding Menu Accelerator Keys 

There is one feature of Windows that is commonly used in conjunction with a menu. This feature 

is the accelerator key. Accelerator keys are special keystrokes that you define which, when 

pressed, automatically select a menu option even though the menu in which that option resides 

is not displayed. Put differently, you can select an item directly by pressing an accelerator key, 

bypassing the menu entirely. The term accelerator key is an accurate description because 

pressing one is generally a faster way to select a menu item than first activating its menu and 

then selecting the item. 

To define accelerator keys relative to a menu, you must add an accelerator key table to your 

resource file. An accelerator table has this general form: 

TableNamee ACCELERATORS [acccl-options] { 

Keyl, MenuID1 [, type] [options] 

Key2, MenuID2 [, type] [options] 

Key3, MenuID3 [, type] [options] 

. 

. 

KeyN, MenuIDN [, type] [options] } 

Here, Tublename is the name of the accelerator table. An ACCELERATORS statement can have 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-11 

the same options as those described for MENU. If needed, they are specified by accel-options. 

However, most applications simply use the default settings. 

Inside the accelerator table, Key is the keystroke that selects the item and MenuID is the ID 

value associated with the desired item. The type specifies whether the key is a standard key (the 

default) or a virtual key. The options may be one of the following macros: NOINVERT, ALT, 

SHIFT, and CONTROL. NOINVERT prevents the selected menu item from being highlighted 

when its accelerator key is pressed. ALT specifies an ALT key. SHIFT specifies a SHIFT key. 

CONTROL specifies a CTRL key. 

The value of Key will be either a quoted character, an ASCII integer value corresponding to a 

key, or a virtual key code. If a quoted character is used, then it is assumed to be an ASCII 

character. If it is an integer value, then you must tell the resource compiler explicitly that this is 

an ASCII character by specifying type as ASCII. If it is a virtual key, then type must be 

VIRTKEY. 

If the key is an uppercase quoted character then its corresponding menu item will be selected if 

it is pressed while holding down the SHIFT key. If it is a lowercase character, then its menu item 

will be selected if the key is pressed by itself. If the key is specified as a lowercase character and 

ALT is specified as an option, then pressing ALT and the character will select the item. (If the 

key is uppercase and ALT is specified, then you must press SHIFF and ALT to select the item.) 

Finally, if you want the user to press CTRL and the character to select an item, precede the key  

with a ^. 

As explained in lecture 4, a virtual key is a system-independent code for a variety of keys. To 

use a virtual key as an accelerator, simply specify its macro for the key and specify VIRTKEY 

for its type. You may also specify ALT, SHIFT, or CONTROL to achieve the desired key 

combination. 

Here are some examples: 

"A", IDM_x                       ; select by pressing Shift-A 

"a", IDM_x "                     ; select by pressing a 

"^a", IDM_x "                   ; select by pressing Ctrl-a 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-12 

"a", IDM_x, ALT             ; select by pressing Alt-a 

VK_F2, IDM_x                 ; select by pressing F2 

VK_F2, IDM_x, SHIFT   ; select by pressing Shift-F2 

Here is the MENU.RC resource file that also contains accelerator key definitions for MyMenu. 

;   Sample menu resource file and accelerators.  

# include <windows.h> 

# include   "menu.h" 

MyMenu MENU 

 {POPUP   "&File" {MENUITEM   "&Open\tF2",   IDM_OPEN 

                              MENUITEM   "&Close\tF3",   IDM_CLOSE 

                              MENUITEM   "&Exit \t Ctrl-X",    IDM_EXIT} 

 POPUP   "^Options" {MENUITEM   "&Colors\t Ctrl-C", IDM_COLORS 

                                     POPUP   "&Priority"  

                                                               {MENUITEM "&Low\tF4", IDM_LOW  

                                                              MENUITEM"&High\tF5", IDM_HIGH} 

                                                                       MENUITEM "&Fonts\t Ctrl-F", IDM_FONT 

                                                                       MENUITEM "&Resolution\t Ctrl-R", 

IDM_RESOLUTION}  

MENUITEM "&Help", IDM_HELP} 

; Define menu accelerators 

MyMenu ACCELERATORS  

{  VK_F2, IDM_OPEN, VIRTKEY 

 VK_F3, IDM_CLOSE, VIRTKEY 

"^X", IDM_EXIT 

"^C", IDM_COLORS  

VK_F4, IDM_LOW, VIRTKEY 

VK_F5, IDM_HIGH, VIRTKEY 

"^F", IDM_FONT 

"^R", IDM_RESOLUTION 

VK_F1, IDM_HELP, VIRTKEY } 

Notice that the menu definition has been enhanced to display which accelerator key selects 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-13 

which option. Each item is separated from its accelerator key using a tab. The header file 

WINDOWS.H is included because it defines the virtual key macros. 

Loading the Accelerator Table 

Even though the accelerators are contained in the same resource file as the menu, they must be 

loaded separately using another API function called LoadAccelerators( ), whose prototype is 

shown here:        HACCEL LoadAccelerators (HlNSTANCE Thislnst, LPCSTR Name); 

where Thislnst is the instance handle of the application and Name is the name of the 

accelerator table. The function returns a handle to the accelerator table or NULL if the table 

cannot be loaded. 

You must call LoadAccelerators( ) soon after the window is created. For example, this shows 

how to load the MyMenu accelerator table: 

HACCEL hAccel; 

hAccel = LoadAccelerators(hThisInst, "MyMenu"); 

The value of hAccel will be used later to help process accelerator keys. 

Translating Accelerator Keys 

Although the LoadAccelerators() function loads the accelerator table, your program still 

cannot process accelerator keys until you add another API function to the message loop. This 

function is called TranslateAcceIerator( ) and its prototype is shown here: 

int TransIateAccclerator(HWND hwnd, HACCEL hAccel, LPMSG lpMess); 

Here, hwnd is the handle of the window for which accelerator keys will be translated. hAcccl is 

the handle to the accelerator table that will be used. This is the handle returned by 

LoadAccelerators(). Finally, lpMess is a pointer to the message. The 

TrauslateAcceIerator() function returns true if an accelerator key was pressed and false 

otherwise. 

TranslateAcccIerator() translates an accelerator keystroke into its corresponding 

WM_COMMAND message and sends that message to the window. In this message, the 

value of LOWORD(wParam) will contain the ID associated with the accelerator key. 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-14 

Thus, to your program, the WM_COMMAND message will appear to have been generated 

by a menu selection. 

Since TranslateAccelerator( ) sends a WM_COMMAND message whenever an 

accelerator key is pressed, your program must not execute TranslateMessage( ) or 

DispatchMessagc() when such a translation takes place. When using 

TranslateAccelcrator( ), your message loop should look like this: while(GetMessage(&msg, 

NULL, 0, 0))  

              {if(!TranslateAccelerator(hwnd, hAccel, &msg))  

                                     {TranslateMessage(&msg); /*allow use of keyboard */ 

                                 DispatchMessage(&msg); /*return control to Windows*/}} 

Trying Accelerator Keys 

To try using accelerators, substitute the following version of WinMain( ) into the 

preceding application and add the accelerator table to your resource file. 

/* Process accelerator keys. */ 

#include <windows.h> 

#include <string.h> 

#include <stdio.h> 

#include "menu.h" 

LRESULT CALLBACK WindowFunc(HWND, UINT, WPARAM, LPARAM);  

char szWinName[ ] = "MyWin"; /* name of window class */ 

int WINAPI WinMain(HINSTANCE hThisInst, HINSTANCE hPrevInst, LPSTR IpszArgs, int 

nWinMode)  {HWND hwnd; MSG msg; WNDCLASSEX wc1; HACCEL hAccel; 

wc1.cbSize = sizeof(WNDCLASSEX); wc1 .hInstance = hThisInst; 

wc1 .lpszClassName = szWinName; wc1. lpfnWndProc = WindowFunc; wc1. style =0; 

wc1.hIcon = LoadIcon(NULL, IDI_APPLICATION) ;  

wc1.hlconSm = LoadIcon (NULL, IDI_WINLOGO) ; 

wc1.hCursor = LoadCursor (NULL, IDC_ARROW) ; 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-15 

wc1. lpszMenuName = "MyMenu"; wc1 .cbClsExtra =0; wc1 .cbWndExtra = 0;  

wc1.hbrBackground = GetStockObject (WHITE_BRUSH) ; 

if ( !RegisterClassEx (&wc1) ) return 0 ; 

hwnd = CreateWindow (szWinName,"Adding Accelerator Keys",  

WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT,  

CW_USEDEFAULT, CW_USEDEFAULT,HWND_DESKTOP,NULL, hThisInst, NULL  ); 

/* load the keyboard accelerators */  hAccel = LoadAccelerators (hThisInst, "MyMenu") 

/*Display the window.*/  ShowWindow (hwnd, nWinMode) ;  UpdateWindow(hwnd) ; 

while(GetMessage(&msg, NULL, 0, 0)){if ( ! TranslateAccelerator (hwnd,' hAccel,. &msg) )  

  {TranslateMessage(&msg); DispatchMessage(&msg)}} return msg. wParam; } 

In Depth:    A   Closer Look at WM_COMMAND 

As you know, each time you make a menu selection or press an accelerator key, a 

WM_COMMAND message is sent and the value in LOWORD(wParam) contains the 

ID of the menu item selected or the accelerator key pressed. However, using only the 

value in LOWORD(wParam) it is not possible to determine which event occurred. In 

most situations, it doesn't matter whether the user actually made a menu selection or just 

pressed an accelerator key. But in those situations in which it does, you can find out 

because Windows provides this information in the high-order word of wParam. If the 

value in HIWORD(wParam) is 0, then the user has made a menu selection. If this 

value is 1, then the user pressed an accelerator key. For example, try substituting the 

following fragment into the menu program. It reports whether the Open option was 

selected using the menu or by pressing an accelerator key. 

case IDM_OPEN: 

if(HIWORD(wParam))  

             MessageBox(hwnd, "Open File via Accelerator", "Open", MB_OK);  

          Else  

                   MessageBox(hwnd, "Open File via Menu Selection", "Open", MB_OK); 

 break;                                                    



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-16 

The value of IParam for WM_COMMAND messages generated by menu selections or 

accelerator keys is unused and always contains NULL. 

As you will see in the next lecture, a WM_COMMAND is also generated n when the user 

interacts with various types of controls. In this case, the meanings of lParam and wParam 

are somewhat different. For example, the value of lParam will contain the handle of the 

control. 

Non-Menu Accelerator Keys 

Although keyboard accelerators are most commonly used to provide a fast means of 

selecting menu items, they are not limited to this role. For example, you can define an 

accelerator key for which there is no corresponding menu item. You might use such a key to 

activate a keyboard macro or to initiate some frequently used option. To define a non-menu 

accelerator key, simply add it to the accelerator table, assigning it a unique ID value. 

As an example, let's add a non-menu accelerator key to the menu program,| The key will be 

CTRL-T and each time it is pressed, the current time and date are displayed in a message box. 

The standard ANSI C time and date functions are used to obtain the current time and date. 

To begin, change the key table so that it looks like this: 

MyMenu ACCELERATORS {VK_F2, IDM_OPEN, VIRTKEY 

                                                  VK_F3, IDM_CLOSE, VIRTKEY 

                                                 "^X", IDM_EXIT 

                                                 "^C", IDM_COLORS 

                                                  VK_F4, IDM_LOW, VIRTKEY 

                                                  VK_F5, IDM_HIGH, VIRTKEY 

                                                 "^R", IDM_RESOLUTION 

                                                "^F", IDM_FONT 

                                                 VK_F1, IDM_KELP, VIRTKEY 

                                               "^T", IDM_TIME} 

Next, add this line to MENU.H:    

              #define IDM_TIME  500 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-17 

Finally, substitute this version of WindowFunc() into the menu program You will also 

need to include the TIME.H header file. 

LRESULT CALLBACK WindowFunc(HWND hwnd, UINT message, WPARAM wParam, 

LPARAM lParam)  

  {int response; struct tm *tod; time_t t; char str [80]; 

switch(message) {case WM_COMMAND:  

                                             switch(LOWORD(wParam)) 

{case  IDM_OPEN:   MessageBox(hwnd,    "Open File",    "Open",   MB_OK);break; 

  case IDM_CLOSE:  MessageBox(hwnd,   "Close File",   "Close",   MB_OK);break; 

  case  IDM_EXIT: response = MessageBox(hwnd, "Quit the Program?", "Exit", MB_YESNO); 

                           if(response  ==   IDYES)   PostQuitMessage(0); break; 

 case IDM_COLORS:  MessageBox(hwnd,   "Set Colors",   "Colors",   MB_OK);break; 

 case  IDM_LOW:   MessageBox(hwnd,    "Low",    "Priority",   MB_OK);break; 

case  IDM_HIGH:   MessageBox(hwnd,    "High",    "Priority",   MB_OK);break; 

case  IDM_RESOLUTION:   MessageBox(hwnd,    "Resolution Options", "Resolution", 

MB_OK);break; 

case IDMJFONT:  MessageBox(hwnd,   "Font Options",   "Fonts",   MB_OK); break; 

case IDM_TIME: /* show time */  

                                t = time(NULL);  

                                tod = localtime(&t); 

                                strcpyfstr, asctime(tod)); 

                       str(strlen(str)-1] = '\0'; /* remove /r/n */ 

                       MessageBox(hwnd, str, "Time and Date", MB_OK); break; 

 case IDM_HELP: MessageBox(hwnd, "No Help", "Help", MB_OK); break;  

}break; 

                                case WM_DESTROY:  PostQuitMessage(0); break;  

                               default:  return DefWindowProc(hwnd, message, wParam, lParam);} return 0; } 

 

When you run this program, each time you press CTRL-T, you will see a message box similar to the 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-18 

following: 

 

 

Overriding the Class Menu 

In the preceding programs, the main menu has been specified in the lpszMenuName member 

of the WNDCLASSEX structure. As mentioned, this specifies a class menu that will be used by 

all windows that are created of its class. This is the way most main menus are specified for 

simple applications. However, there is another way to specify a main menu that uses the 

CreateWindow( ) function. As you may recall from Lecture 2, CreateWindow( ) is defined 

like this: 

HWND CreateWindow ( 

LPCSTR lpClassName, /* name of window class */ 

LPCSTR lpWinName, /* title of window */ 

DWORD dwStyle, /* type of window */ 

int X, int Y, /* upper-left coordinates */ 

int Width, int Height, /* dimensions of window */ 

HWND hParent, /* handle of parent window */ 

HMENU hMenu, /* handle of main menu */ 

HINSTANCE hThisInst, /* handle of creator */ 

LPVOID lpszAdditional /* pointer to additional info */   ); 

Notice the hMenu parameter. It can be used to specify a main menu for the window being 

created. In the preceding programs, this parameter has been specified as NULL. When hMenu 

is NULL, the class menu is used. However, if it contains the handle to a menu, then that menu 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-19 

will be used as the main menu for the window being created. In this case, the menu specified 

by hMenu overrides the class menu. Although simple applications, such as those shown in this 

book, do not need to override the class menu, there can be times when this is beneficial. For 

example, you might want to define a generic window class which your application will tailor 

to specific needs. 

To specify a main menu using CreateWindow( ), you need a handle to the menu. The easiest 

way to obtain one is by calling the LoadMenu( ) API function, shown here: 

HMENU LoadMenu(HINSTANCE hInst, LPCSTR lpName); 

Here, hInst is the instance handle of your application. A pointer to the name of the menu is 

passed in lpName. LoadMenu( ) returns a handle to the menu if successful or NULL on 

failure. Once you have obtained a handle to a menu, it can be used as the hMenu parameter 

to CreateWindow( ). 

When you load a menu using LoadMenu( ) you are creating an object that allocates 

memory. This memory must be released before your program ends. If the menu is linked 

to a window, then this is done automatically. However, when it is not, then you must free 

it explicitly. This is accomplished using the DestroyMenu( ) API function. Its prototype 

is shown here:            BOOL DestroyMenu(HMENU hMenu); 

Here, hMenu is the handle of the menu being destroyed. The function returns nonzero if 

successful and zero on failure. As stated, you will not need to use DestroyMenu( ) if the 

menu you load is linked to a window. 

An Example that Overrides the Class Menu 

To illustrate how the class menu can be overridden, let's modify the preceding menu 

program. To do so, add a second menu, called PlaceHolder, to the MENU.RC file, as 

shown here. ; Define two menus .  

#include <windows.h>  

#include "menu.h" 

; Placeholder class menu. 

PlaceHoIder MENU 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-20 

{POPUP "&File" 

{MENUITEM "&Exit\t Ctrl-X", IDM_EXIT} 

MENUITEM "&Help", IDM_HELP} 

; Menu used by CreateWindow. 

 MyMenu MENU 

    {POPUP "&File"{MENUITEM "&Open\t F2", IDM_OPEN 

                                   MENUITEM "&Close\t F3", IDM_CLOSE 

                                   MENUITEM "&Exit\t Ctrl-X", IDM_EXIT } 

POPUP "&Options" {MENUITEM "&Colors\t Ctrl-C", IDM_COLORS 

                                   POPUP "&Priority"{MENUITEM "&Low\t F4", IDM_LOW  

                                                                    MENUITEM "&High\tF5", IDM_HIGH} 

                                         MENUITEM "&Font\t Ctrl-F", IDM_FONT 

                                         MENUITEM "&Resolution\t Ctrl-R", IDM_RESOLUTION } 

    MENUITEM "&Help", IDM_HELP} 

;   Define menu accelerators  

MyMenu ACCELERATORS {VK_F2,    IDM_OPEN,    VIRTKEY 

VK_F3, IDM_CLOSE, VIRTKEY 

"^X", IDM_EXIT 

"^C", IDM_COLORS 

VK_F4, IDM_LOW, VIRTKEY 

VK_F5, IDM_HIGH, VIRTKEY 

"^F", IDM_FONT 

"^R", IDM_RESOLUTION 

VK_F1, IDM_HELP, VIRTKEY 

"^T", IDM_TIME } 

The PlaceHoIder menu will be used as the class menu. That is, it will be assigned to the 

lpszMemuName member of WNDCLASSEX. MyMenu will be loaded separately and its 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-21 

handle will be used in the hMenu parameter of CreateWindow( ). Thus, MyMenu will 

override PlaceHoIder. 

The contents of MENU.H are shown here. They are unchanged from the original version except 

for the addition of IDM_TIME, from the previous section. 

#define IDM_OPEN        100 

#define IDM_CLOSE               101 

#define IDM_EXIT                        102 

#define IDM_COLORS                        103 

#define IDM_LOW                        104 

#define IDM_HIGH                        105 

#define IDM_FONT                106 

#define IDM_RESOLUTION             107 

#define IDM_HELP                        108 

#define IDM_TIME                                   500 

Here is the complete program that overrides the class menu. This program incorporates all of 

the features discussed in this lecture. Since we have made so many changes to the menu 

program throughout the course of this chapter, the entire program is shown here for your 

convenience.  

/* Overriding the class menu. */ 

#include <windows.h>  

#include <string.h> 

#include <stdio.h>  

#include <time.h> 

#include "menu.h" 

LRESULT CALLBACK WindowFunc(HWND, UINT, WPARAM, LPARAM); 

 char szWinName[ ] = "MyWin"; /* name of window class */ 

int WINAPI WinMain(HINSTANCE hThislnst, HINSTANCE hPrevInst, LPSTR lpszArgs,  int 

nWinMode){HWND hwnd;MSG  msg; WNDCLASSEX wcl;HACCEL hAccel; HMENU hmenu; 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-22 

wc1.cbSize = sizeof(WNDCLASSEX); wc1.hlnstance = hThisInst;  

wc1.lpszClassName = szWinName; wc1.lpfnWndProc = WindowFunc; wc1.style = 0;  

wc1.hlcon = LoadIcon(NULL, IDI_APPLICATION); 

wc1.hIconSm = LoadIcon (NULL, IDI_WINLOGO );  

wcl.hCursor = LoadCursor(NULL, IDC_ARROW);wc1.lpszMenuName = "PlaceHolder"; 

wc1.cbClsExtra =0;wc1.cbWndExtra =0; 

wc1.hbrBackground=GetStockObject(WH1TE_BRUSH); if(IRegisterClassEx(&wc1)) return 0; 

/* load main menu manually */ hmenu = LoadMenu(hThisInst, "MyMenu"); 

/* Now that a window class has been registered, a window can be created. */ 

hwnd = CreateWindow(szWinName, "Using an Alternative Menu",  

WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT,  

CW_USEDEFAULT, CW_USEDEFAULT, HWND_DESKTOP, hmenu, hThisInst, NULL   ); 

/* load the keyboard accelerators */ hAccel = LoadAccelerators (hThisInst, "MyMenu"); 

/* Display the window. */  ShowWindow (hwnd, nWinMode);   UpdateWindow(hwnd) ; 

while (GetMessage(&msg, NULL, 0, 0)) 

  {if ( !TranslateAccelerator (hwnd, hAccel, &msg) )  

        {TranslateMessage(&msg) ; DispatchMessage(&msg) ; } } return msg.wParam;   } 

/*This function is called by Windows and is passed messages from the message queue. */ 

LRESULT CALLBACK WindowFunc(HWND hwnd, UINT message,                                     

                                                                       WPARAM wParam, LPARAM lParam)  

{int response;struct tm *tod;t i me_t t;char str[80]; 

switch(message)  

{case WM_COMMAND: 

switch(LOWORD(wParam)} { 

case IDM_OPEN: MessageBox(hwnd, "Open File", "Open", MB_OK);break; 

 case IDM_CLOSE: MessageBox(hwnd, "Close File", "Close", MB_OK);break; 

 case IDM_EXIT: 

  response = MessageBox(hwnd, "Quit the Program?","Exit", MB_YESNO); 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-23 

     if(response == IDYES) PostQuitMessage(O); break;  

case IEM_COLORS: MessageBox(hwnd, "Set Colors", "Colors", MB_OK);break; 

case IDM_LOW: MessageBox(hwnd, "Low", "Priority", MB_OK);break; 

case IDM_HIGH: MessageBox (hwnd, "High", "Priority", MB_OK) ;break; 

case IDM_RESOLUTION: MessageBox( hwnd, "Resolution Options","Resolution", 

MB_OK);  break; 

                   case IDM_FONT: MessageBox(hwnd, "Font Options", "Fonts", KB_QK);break; 

case IDM__TIME: /* show time */ t = time(NULL); 

    tod = localtime(&t); strcpy(str, asctime(tod)); 

    str[strlen(str)-1] = '\0'; /* remove /r/n */ 

    MessageBox(hwnd, str, "Time and Date", MB_OK); break;  

case IDM_HELP: MessageBox (hwnd, "No Help", "Help", MB_OK) ;break;}break; 

case WM_DESTROY: /* terminate the program */ PostQuitMessage(0); break;  

default:  return DefWindowProc(hwnd, message, wParam, IParam); }return 0; } 

Pay special attention to the code inside WinMain(). It creates a window class that specifies 

PlaceHoIder as its class menu. However, before a window is actually created, MyMenu is 

loaded and its handle is used in the call to CreateWindow( ). This causes the class menu to 

be overridden and MyMenu to be displayed. You might want to experiment with this 

program a little. For example, since the class menu is being overridden, there is no reason to 

specify one at all. To prove this, assign lpszMenuName the value NULL. The operation of 

the program is unaffected. 

In this example, both MyMenu and PlaceHoIder contain menus that can be processed by 

the same window function. That is, they both use the same set of menu IDs. (Of course, 

PlaceHoIder only contains two selections.) This allows either menu to work in the preceding 

program. Although you are not restricted in the form or structure of an overriding menu, you 

must always make sure that whatever menu you use, your window function contains the 

proper code to respond to it. 

   One last point: since MyMenu is linked to the window created by CreateWindow(), it is 

destroyed automatically when the program terminates. There is no need to call 



 
 

Windows programming1                                               Class: forth (Software Branch)  

Chapter Fifth: introducing Menus     

------------------------------------------------------------------------------------------------------------------------ 

 Chapter.5-24 

DestroyMenu( ). 

 

REMEMBER:   It is usually easier to specify the main menu using WNDCLASSEX 

rather than CreateWindow(). This is the approach used by the rest of the programs in this 

lesson. 

 

Q: How window recognize in menu that selection manually or used 

accelerator keys. 

Q:  deference step in create menu and accelerator in program. 

Q: give top deference between load menu and load accelerator . 

Q  what types  of methods to including menu in program explain by details. 


