

University of Technology

 الجامعة التكنولوجية

Computer Science Department

 قسم علوم الحاسوب

 Software Security

 امن البرمجيات

Assist Prof: Dr. Ayad Hazim

 م م.د اياد حاز.ا

cs.uotechnology.edu.iq

 class Computer & cyber security branch nd2ecurity Software S

2

Software Security

Second level / second semester

Software and System Security Principles

1. Authentication

2. Access Rights

3. Confidentiality, Integrity, and Availability

4. Isolation

5. Least Privilege

6. Compartmentalization

7. Threat Model

8. Bug versus Vulnerability. .

Attack Vectors

1. Denial of Service (DoS)

2. Information Leakage

3. Confused Deputy

4. Privilege Escalation

5. Control-Flow Hijacking

6. Code Injection

7. Code Reuse

Defense Strategies

1. Software Verification

2. Language-based Security

3. Testing

• Manual Testing

• Sanitizers

• Fuzzing

• Symbolic Execution

4. Mitigations

• Data Execution Prevention (DEP)/WˆX 86

• Address Space Layout Randomization (ASLR)

• Stack integrity

• Safe Exception Handling (SEH)

• Fortify Source

• Control-Flow Integrity

• Code Pointer Integrity

• Sandboxing and Software-based Fault Isolation

Software Security Principles, Policies, and Protection, Mathias Payer, July 2021, v0.37

 class Computer & cyber security branch nd2ecurity Software S

3

Section One: Software and System Security Principles

Computer software, also called software, is a set of instructions and

documentation that tells a computer what to do or how to perform a task.

Software includes all different programs on a computer, such as applications

and the operating system.

• Applications are programs that are designed to perform a specific

operation, such as a game or a word processor.

• The operating system (e.g. Mac OS, Microsoft Windows, Android and

various Linux distributions) is a type of software that is used as a

platform for running the applications, and controls all user interface

tools including display and the keyboard.

The word software was first used in the late 1960s to emphasize on its

difference from computer hardware, which can be physically observed by the

user. Software is a set of instructions that the computer follows. The word

firmware usually refers to a piece of software that directly controls a piece of

hardware. The firmware for a CD drive or a modem are examples of firmware

implementation.

Software security refers to a set of practices that help protect software

applications and digital solutions from attackers. Developers incorporate

these techniques into the software development life cycle and testing

processes. As a result, companies can ensure their digital solutions remain

secure and are able to function in the event of a malicious attack.

Software Security Important: Secure software development is incredibly

important because there are always people out there who seek to exploit

business data. As businesses become more reliant on software, these

programs must remain safe and secure. With strong software security

protocols in place, you can prevent attackers from stealing potentially

 class Computer & cyber security branch nd2ecurity Software S

4

sensitive information such as credit card numbers and trade secrets, and build

trust among users. The theft of critical data can be catastrophic for customers

and businesses alike. Malicious actors can abuse sensitive information and

even steal users’ identities. Additionally, companies can face legal penalties

in the event of a data breach and suffer reputational harm.

Businesses can work to protect critical data by implementing software

security techniques into their development life cycles. Applying security

techniques enables organizations to proactively identify system

vulnerabilities and better protect their software.

Authentication

Authentication is a fundamental aspect of software security, ensuring that

only authorized users or systems can access the software and its resources.

It involves verifying the identity of a user, device, or other entity before

granting access to the system. Here are the key components and methods of

authentication in software security:

1. Password-Based Authentication

Strength and Complexity: Users are required to create strong

passwords that combine uppercase and lowercase letters, numbers, and

special characters to resist brute-force attacks.

2. Multi-Factor Authentication (MFA)

• Something You Know: This is usually a password or PIN.

• Something You Have: A physical token, smartphone, or a one-time

password (OTP) generated by an authenticator app.

• Something You Are: Biometric authentication, such as fingerprint,

facial recognition, or iris scanning.

• MFA adds an additional layer of security by requiring two or more

forms of authentication.

 class Computer & cyber security branch nd2ecurity Software S

5

Access Rights

Access control policies are a fundamental component of software

development that governs the permissions and restrictions placed on users

accessing a system or its resources. These policies define the rules and

guidelines for granting or denying access to different functionalities, data, or

areas within the software. There are several types of access control policies

that can be implemented in software development to manage and enforce

access to resources. These policies determine how permissions are granted or

denied based on various factors, such as user roles, attributes, or predefined

security levels.

1. Role-Based Access Control (RBAC). In RBAC, access rights are

assigned to users based on their roles within the system. For example,

an administrator may have full access to all functionalities, while a

regular user may only have access to specific features.

2. Attribute-Based Access Control (ABAC) is another type of access

control policy that considers additional attributes or characteristics of

 class Computer & cyber security branch nd2ecurity Software S

6

users when granting or denying access. These attributes can include

user location, time of access, device used, or any other relevant

information.

Confidentiality, Integrity, and Availability

Confidentiality, Integrity, and Availability (CIA) are the three core principles

of information security, often referred to as the CIA triad. These principles

form the foundation for designing and evaluating the security of systems,

data, and processes. Here’s a detailed overview of each component:

 class Computer & cyber security branch nd2ecurity Software S

7

1. Confidentiality

• Definition: Confidentiality ensures that sensitive information is

accessed only by authorized individuals or systems and is protected

from unauthorized disclosure.

• Purpose: To protect information from being disclosed to unauthorized

parties, thereby preventing breaches of privacy and security.

• Key Concepts and Practices:

o Encryption

o Access Controls

• Examples of Confidentiality Breaches:

o Data Leaks: Sensitive information, like personal data or trade

secrets, being exposed due to inadequate access controls.

o Unauthorized Access: Hackers gaining access to confidential

information through phishing, malware, or other attack vectors.

2. Integrity

• Definition: Integrity ensures that data is accurate, consistent, and has

not been tampered with or altered by unauthorized parties.

• Purpose: To maintain the trustworthiness and accuracy of

information, ensuring that it remains unchanged from its original state

unless properly authorized.

• Key Concepts and Practices:

o Checksums and Hashing: Using checksums or cryptographic

hashing (e.g., SHA-256) to detect alterations in data. Any

changes to the data will result in a different hash value.

o Digital Signatures: Applying digital signatures to data to verify

its origin and ensure it has not been modified during

transmission.

• Examples of Integrity Breaches:

 class Computer & cyber security branch nd2ecurity Software S

8

o Data Tampering: Unauthorized modification of data, such as

altering financial records, which can lead to fraud or

misinformation.

o Man-in-the-Middle Attacks: Attackers intercepting and

altering data during transmission, potentially compromising the

integrity of communication.

3. Availability

• Definition: Availability ensures that information and systems are

accessible and usable when needed by authorized users.

• Purpose: To ensure that systems and data are available to users in a

timely manner, supporting the continuity of business operations.

• Key Concepts and Practices:

o Redundancy: Implementing redundant systems, such as

backup servers, failover clusters, and data backups, to ensure

continuous availability even if a component fails.

o Load Balancing: Distributing workloads across multiple

systems or servers to prevent overload and ensure that resources

are available even under heavy usage.

• Examples of Availability Breaches:

o DDoS Attacks: Overloading a system with traffic to make it

unavailable to legitimate users.

o Hardware Failures: System crashes or server outages leading

to unavailability of critical services.

 class Computer & cyber security branch nd2ecurity Software S

9

Isolation

Isolation in software security refers to the practice of separating different

components, processes, or data within a system to enhance security. By

isolating these elements, potential security risks are contained, preventing

them from spreading to other parts of the system. Isolation is a key strategy

in reducing the attack surface and minimizing the impact of security

breaches. Here’s a Types of Isolation in software security:

1. Process Isolation: Ensuring that each process runs in its own memory

space, separate from other processes. This prevents one process from

accessing or interfering with the memory of another.

2. Virtualization: Each Virtual Machines VM runs its own operating

system instance, isolated from other VMs on the same physical host.

Hypervisors manage the isolation between VMs.

3. Network Isolation: Dividing a network into smaller, isolated

segments or zones to control traffic flow and limit the spread of

potential attacks. For example, isolating the internal network from the

public-facing network.

4. Privilege Isolation: Principle of Least Privilege (PoLP), users and

processes are granted the minimum level of access rights necessary to

perform their tasks, ensuring that higher-privileged functions are

isolated from lower-privileged ones.

5. Database Isolation: Ensuring that data from different users or tenants

is kept separate, especially in multi-tenant environments like cloud

services.

6. Code Isolation:

o Module Isolation: Structuring code into isolated modules or

components with well-defined interfaces, limiting the impact of

vulnerabilities within a single module.

 class Computer & cyber security branch nd2ecurity Software S

10

o Micro services: A software architecture where applications are

built as a collection of loosely coupled, independently

deployable services, each running in its own isolated

environment.

o Benefits: Enhances maintainability and security by containing

vulnerabilities within specific components.

Least Privilege

The Principle of Least Privilege (PoLP) is a fundamental concept in software

security that advocates for granting users, systems, and processes the

minimum level of access or privileges necessary to perform their required

tasks. By limiting access rights, the potential attack surface is reduced,

minimizing the risk of accidental or intentional misuse of privileges.

The goal is Least Privilege to reduce security risks by limiting the potential

damage that could result from security breaches or errors. This minimizes the

opportunities for malicious actors or malware to exploit elevated privileges.

 Implementation Least Privilege in Different Contexts

• User Accounts:

o Regular users should have access only to the files, applications,

and systems needed for their job. Administrative privileges

should be restricted to a few trusted individuals who need them

to perform specific tasks.

• System Processes:

o System services and applications should run under dedicated

service accounts with minimal privileges, rather than under

accounts with full administrative rights.

• Applications:

o Applications should request only the permissions necessary to

perform their functions. For example, a messaging app should

 class Computer & cyber security branch nd2ecurity Software S

11

not require access to the device’s camera unless it supports

video calling.

• Network Access:

o Network resources should be segmented, and access should be

restricted based on the principle of least privilege, ensuring that

users or systems can only access the parts of the network they

need.

Compartmentalization

Compartmentalization in software security refers to the practice of dividing

a system into distinct, isolated sections or compartments, each with specific

functions, data, and access controls. The purpose is to limit the impact of a

security breach by ensuring that if one compartment is compromised, the

others remain unaffected. This approach enhances security by reducing the

attack surface and containing potential threats. Examples of

Compartmentalization in Practice

• Military and Government Systems:

o Sensitive information in military and government systems is

often compartmentalized based on classification levels (e.g.,

 class Computer & cyber security branch nd2ecurity Software S

12

Confidential, Secret, Top Secret), with strict access controls and

isolation between compartments.

• Cloud Environments:

o In cloud computing, multitenant architectures use

compartmentalization to ensure that each tenant’s data and

applications are isolated from others, protecting against cross-

tenant data breaches.

• Web Applications:

o Web applications often compartmentalize user sessions,

isolating them from each other to prevent session hijacking and

cross-site attacks.

Threat Model

A Threat Model in software security is a structured approach used to identify,

evaluate, and address potential threats that could harm a software system.

The purpose of threat modeling is to understand the security risks to a system,

prioritize those risks, and develop strategies to mitigate them. This process is

 class Computer & cyber security branch nd2ecurity Software S

13

crucial in building secure software, as it helps in anticipating and countering

potential attacks before they occur.

 Threat modeling is the process of systematically identifying security threats

and vulnerabilities, assessing their potential impact, and planning mitigations

to protect the system.

The primary goal is to improve the security posture of a system by

proactively identifying and addressing potential threats, ensuring that

security is integrated throughout the software development lifecycle. Key

Components of Threat Modeling

• Assets: The valuable components of the system that need protection,

such as data.

• Threats: Potential actions or events that could compromise the

confidentiality, integrity, or availability of assets.

• Vulnerabilities: Weaknesses or flaws in the system that could be

exploited by a threat to cause harm.

• Attack Vectors: The paths or methods that attackers use to exploit

vulnerabilities and carry out threats.

• Mitigations: The security controls or countermeasures implemented

to reduce or eliminate the risks posed by threats.

 class Computer & cyber security branch nd2ecurity Software S

14

Bug versus Vulnerability

In software security, "bug" and "vulnerability" are terms that refer to different

aspects of software flaws. While they are related, they have distinct meanings

and implications.

1. Bug

• Definition: A bug is a flaw, mistake, or unintended behavior in the

software's code that causes the software to operate incorrectly or

produce unexpected results. Bugs can arise from errors in logic,

incorrect assumptions, or programming mistakes.

• Scope: Bugs can affect the functionality, performance, or usability of

software. They are not necessarily security-related and may not have

any impact on the security of the system.

• Examples:

o A calculation error in a financial application that leads to

incorrect results.

o A typo in a user interface string that displays incorrect

information to the user.

o A crash in a software program due to improper memory

management.

2. Vulnerability

• Definition: A vulnerability is a specific type of bug or flaw in software

that can be exploited by an attacker to compromise the security of the

system. Vulnerabilities create opportunities for unauthorized access,

data breaches, or other malicious activities.

• Scope: Vulnerabilities directly impact the confidentiality, integrity, or

availability of a system. They can be exploited to perform actions that

should not be possible, such as gaining unauthorized access, executing

arbitrary code, or causing a denial of service.

 class Computer & cyber security branch nd2ecurity Software S

15

• Examples:

o A buffer overflow vulnerability that allows an attacker to

execute arbitrary code on a system.

o An SQL injection vulnerability that enables an attacker to

manipulate a database.

o An authentication bypass vulnerability that lets an attacker

access a system without proper credentials.

 class Computer & cyber security branch nd2ecurity Software S

16

Section two: Attack Vectors

An attack vector, or threat vector, is a way for attackers to enter a network

or system. Common attack vectors include social engineering attacks,

credential theft, vulnerability exploits, and insufficient protection

against insider threats.

 Suppose a security firm is tasked with guarding a rare painting that hangs

in a museum. There are several ways that a thief could enter and exit the

museum — front doors, back doors, elevators, and windows. A thief could

enter the museum in some other way too, perhaps by posing as a member

of the museum's staff. All of these methods represent attack vectors, and

the security firm may try to eliminate them by placing security guards at

all doors, putting locks on windows, and regularly screening museum staff

to confirm their identity.

Similarly, digital systems all have areas attackers can use as entry points.

Because modern computing systems and application environments are so

complex, closing off all attack vectors is typically not possible. But strong

security practices and safeguards can eliminate most attack vectors,

making it far more difficult for attackers to find and use them.

Denial of Service (DoS)

A denial-of-service (DoS) attack occurs when legitimate users are unable

to access information systems, devices, or other network resources due to

the actions of a malicious cyber threat actor. Services affected may

include email, websites, online accounts (e.g., banking), or other services

that rely on the affected computer or network.

A denial-of-service condition is accomplished by flooding the targeted

host or network with traffic until the target cannot respond or simply

https://www.cloudflare.com/learning/security/threats/social-engineering-attack/
https://www.cloudflare.com/learning/access-management/what-is-an-insider-threat/

 class Computer & cyber security branch nd2ecurity Software S

17

crashes, preventing access for legitimate users. DoS attacks can cost an

organization both time and money while their resources and services are

inaccessible.

Information Leakage

Information leakage is the sharing of sensitive information with

unauthorized parties. The leakage can be either;

1. Accidental, such as an employee sharing confidential

information with an external party via email, or malicious, such as

the exfiltration of data through phishing scams.

2. Regardless of the intent, however, the information shared is

valuable to hackers and can be used to execute attacks on your

organization’s infrastructure, services or applications.

While information leaks originate from within an organization, data

breaches are a result of actions that take place from unauthorized users

from outside of the organization. Encryption, implementing security

https://panorays.com/blog/5-best-practices-for-protecting-sensitive-information/
https://panorays.com/blog/employee-attack-likelihood-the-hidden-indicator-nobody-talks-about/
https://panorays.com/blog/employee-attack-likelihood-the-hidden-indicator-nobody-talks-about/
https://panorays.com/blog/the-5-most-notable-third-party-data-breaches-of-2021-so-far/
https://panorays.com/blog/the-5-most-notable-third-party-data-breaches-of-2021-so-far/
https://panorays.com/blog/what-are-information-security-controls/

 class Computer & cyber security branch nd2ecurity Software S

18

controls and classifying sensitive data are all strategies organizations use

to prevent data loss. In addition, many organizations have various data

leak prevention strategies and technology in place to defend against data

breaches.

Confused Deputy

The "Confused Deputy" problem is a security issue that arises when a

program (the "deputy") is tricked into performing actions on behalf of an

attacker with more privileges than the attacker should have. This problem

often occurs in systems where one program (the deputy) performs tasks

on behalf of another program or user, and the deputy is tricked into

executing actions it would not normally perform.

Here’s a simplified example of how the Confused Deputy problem might

manifest:

1. Scenario: Imagine a web application that allows users to upload files.

The application processes these files on behalf of users, using a server-

side script with permissions to read and write files in a specific

directory.

https://panorays.com/blog/what-are-information-security-controls/
https://panorays.com/blog/data-leak-prevention/
https://panorays.com/blog/data-leak-prevention/

 class Computer & cyber security branch nd2ecurity Software S

19

2. Exploitation: An attacker might upload a file with a name that

includes a path traversal attack (e.g., ../sensitive_file.txt). The

application’s script, operating with the server’s higher privileges,

might process this file and inadvertently read or write to sensitive files

outside the intended directory.

3. Result: The attacker successfully accesses or modifies sensitive files

by exploiting the higher privileges of the server-side script.

Privilege Escalation

Privilege escalation is a type of security vulnerability where an attacker

gains elevated access to resources or permissions beyond what they are

normally authorized to have. This can occur through various methods,

leading to unauthorized access to sensitive data, system control, or

administrative functions. Privilege escalation can be categorized into two

main types:

Vertical privilege escalation occurs when a user with lower-level

permissions gains access to higher-level privileges or administrative rights.

For example:

• Exploiting Vulnerabilities: Attackers might exploit software

vulnerabilities to gain administrative access. For instance,

 class Computer & cyber security branch nd2ecurity Software S

20

vulnerability in an application might allow a user to execute

commands with root privileges.

• Weak Authentication: Weak or misconfigured authentication

mechanisms can allow an attacker to impersonate an administrative

user and gain elevated access.

• Misconfigured Permissions: Incorrectly configured file or directory

permissions can enable a user to access or modify files they shouldn't.

 Horizontal privilege escalation happens when a user gains access to

resources or permissions of another user with the same level of privilege. For

example:

• Session Fixation: An attacker might hijack a user’s session to access

resources that the user can access, even though the attacker shouldn't

have access to those resources.

• Insecure APIs: APIs that do not enforce proper access controls may

allow an attacker to perform actions intended for other users with

similar permissions.

 class Computer & cyber security branch nd2ecurity Software S

21

Control-Flow Hijacking

Control-flow hijacking is a type of security vulnerability that allows an

attacker to alter the flow of execution in a program. This usually involves

redirecting the program's execution to a location of the attacker’s

choosing. It's often used to exploit software vulnerabilities such as buffer

overflows, where an attacker can overwrite parts of memory and redirect

the execution flow to execute malicious code.

Here are some common types of control-flow hijacking techniques:

1. Buffer Overflow Attacks: By overwriting a buffer, an attacker can

alter the return address on the stack, redirecting the program’s

execution to their own code.

2. Return-Oriented Programming (ROP): An attacker uses existing

code snippets (gadgets) that end in return instructions to execute

malicious code without injecting new code into the process.

3. Jump-Oriented Programming (JOP): Similar to ROP but uses jump

instructions instead of return instructions to build a chain of gadgets

for malicious purposes.

4. Code Injection Attacks: Injecting malicious code into the process’s

memory space and redirecting execution to it.

5. Function Pointer Overwriting: Manipulating function pointers to

redirect the program's execution to malicious code.

 class Computer & cyber security branch nd2ecurity Software S

22

Code Injection

Code injection is a type of security vulnerability where an attacker is able to

insert or "inject" malicious code into a program or system. This injected code

is then executed by the system, leading to unauthorized actions or

compromise. Code injection attacks can affect various types of applications

and systems, including web applications, databases, and even local software.

Common Types of Code Injection

1. SQL Injection: An attacker inserts malicious SQL queries into a form

input or URL parameter to manipulate or gain unauthorized access to

a database.

2. Cross-Site Scripting (XSS): Malicious scripts are injected into web

pages viewed by other users, potentially leading to session hijacking,

data theft, or other malicious actions.

 class Computer & cyber security branch nd2ecurity Software S

23

3. Command Injection: Malicious commands are injected into an

application's input fields, which are then executed by the server's

command-line interface.

4. Code Injection in Programming Languages: Attacks that exploit

weaknesses in how programming languages handle code execution,

such as JavaScript eval(), PHP eval(), or Python exec().

5. Script Injection: Similar to XSS but more broadly involves injecting

scripts into any environment where the script might be executed.

Code Reuse

A code reuse attack is a type of security exploit where an attacker leverages

existing code within a program or system to perform malicious actions.

Instead of injecting new code, the attacker reuses legitimate code already

present in the program, often to bypass security mechanisms. These attacks

are typically sophisticated and require an understanding of the program's

structure and available code snippets.

Common Types of Code Reuse Attacks

 class Computer & cyber security branch nd2ecurity Software S

24

1. Return-Oriented Programming (ROP): An attacker uses sequences

of instructions (gadgets) ending in return instructions to build a chain

of operations that perform malicious actions. This technique is used to

exploit vulnerabilities like buffer overflows, where the attacker

manipulates the program's control flow to execute their chosen

sequence of gadgets.

2. Jump-Oriented Programming (JOP): Similar to ROP, but instead of

return instructions, JOP relies on jump instructions to control the

execution flow. JOP can be used to bypass security defenses by

exploiting existing code that uses jump instructions.

3. Call-Oriented Programming (COP): This technique involves

chaining together existing code that contains call instructions. By

manipulating these calls, an attacker can execute a series of operations

in a controlled manner.

 class Computer & cyber security branch nd2ecurity Software S

25

Characteristics of Code Reuse Attacks

• No Code Injection: These attacks do not require injecting new code

into the memory but instead exploit existing code, which can be harder

to detect and mitigate.

• Bypassing Security Mechanisms: Code reuse attacks can bypass

security measures like Data Execution Prevention (DEP) or Address

Space Layout Randomization (ASLR) by avoiding the need to execute

injected code.

• Exploitation of Code Patterns: Attackers exploit predictable patterns

or behaviors in the existing code to achieve their goals.

 class Computer & cyber security branch nd2ecurity Software S

26

 Section three: Defense Strategies

A 'Defense Strategy' in the context of Computer Science refers to the

systematic approach of layering defenses to enhance effectiveness and reduce

costs in protecting against cyber-attacks. It involves implementing controls

to mitigate potential impacts and improve decision-making for responding to

attacks.

Defense strategies in software security aim to protect applications and

systems from various types of attacks and vulnerabilities. A multi-layered

approach is often used to ensure comprehensive protection. Here are some

key defense strategies:

Software Verification

Software verification is a crucial process in ensuring that software systems

meet their specified requirements and function correctly. It involves various

techniques and methods to confirm that the software behaves as intended and

is free of critical errors.

Software verification Ensure that software requirements are clear, complete,

and feasible before development begins. Verify that each requirement is

addressed by corresponding design elements and test cases.

Static Code Analysis: Use tools to analyze source code without executing it.

This helps in identifying potential issues such as coding standards violations,

security vulnerabilities, and other defects.

Dynamic Verification: Test individual components or units of code in

isolation to ensure they work correctly. Test the interactions between

integrated components or systems to identify issues related to their

interaction. Verify the complete and integrated system against the

requirements. This includes functional testing, performance testing, and

security testing.

Verification Techniques

 class Computer & cyber security branch nd2ecurity Software S

27

• Model-Based Verification: Create and analyze models of the

software to verify that it meets its requirements and behaves correctly.

• Formal Specification: Use formal methods to specify and reason

about software behavior mathematically.

• Simulation and Emulation: Test software in a simulated or emulated

environment to verify its behavior under controlled conditions.

Language-based Security

Language-based security focuses on using programming languages and

formal methods to enhance the security of software systems. This

approach involves designing languages and language features that help

prevent security vulnerabilities, such as buffer overflows or injection

attacks. Here are some key concepts:

1. Type Systems: Strong type systems can help catch errors at compile

time, preventing many common vulnerabilities. For example,

languages like Rust use ownership and borrowing to manage memory

safely.

 class Computer & cyber security branch nd2ecurity Software S

28

2. Formal Verification: This involves mathematically proving that a

program adheres to its specification and is free from certain types of

errors. Languages designed with formal verification in mind, such as

Ada or Coq, can ensure higher levels of reliability and security.

3. Safe Programming Constructs: Languages can provide constructs

that limit the kinds of operations that can be performed, reducing the

risk of errors. For instance, languages like Java and C# provide

automatic garbage collection to avoid memory leaks and dangling

pointers.

4. Secure Language Design: Some languages are designed with security

as a primary concern. For example, languages like Haskell and Scala

have features that support functional programming, which can make it

easier to reason about and ensure the security of code.

5. Security-focused Libraries and Frameworks: Many modern

languages come with libraries and frameworks designed to prevent

common security issues, like SQL injection or cross-site scripting

(XSS).

Testing

 class Computer & cyber security branch nd2ecurity Software S

29

In the context of software testing, a defense strategy involves

incorporating various practices and methodologies to safeguard the

software from defects, vulnerabilities, and performance issues.

Manual Testing

Manual software testing involves a tester manually executing test cases

without the use of automated tools. The goal is to identify bugs or issues

in the software by simulating the end-user experience. Here’s a basic

outline of how it typically works:

1. Test Planning: Define the scope and objectives of testing. Create a

test plan that outlines what to test, how to test, and the resources

required.

2. Test Case Design: Develop detailed test cases based on the software

requirements and specifications. Each test case should have clear steps,

expected results, and conditions.

3. Test Execution: Manually execute the test cases on the software

application. This involves navigating through the application, entering

data, and verifying that the software behaves as expected.

4. Defect Reporting: When issues or bugs are found, document them in

a defect tracking system. Include details such as steps to reproduce,

expected vs. actual results, and severity.

5. Test Closure: Once testing is complete, review and analyze the

results. Ensure all critical issues are resolved and finalize testing

documentation.

6. Regression Testing: After fixes are applied, retest the affected areas

to ensure that the changes didn’t introduce new issues.

The below diagram lists the steps in the manual testing process:

 class Computer & cyber security branch nd2ecurity Software S

30

1. Requirement Analysis: Study the software project documentation,

guides, and Application Under Test (AUT). Analyze the requirements

from SRS.

2. Test Plan Creation: Create a test plan covering all the requirements.

3. Test Case Creation: Design the test cases that cover all the

requirements described in the documentation.

4. Test Case Execution: Review and baseline the test cases with the

team lead and client. Execute the test cases on the application under

test.

5. Defect Logging: Detect the bugs, log and report them to the

developers.

6. Defect Fix and Re-verification: When bugs are fixed, again execute

the failing test cases to verify they pass.

 class Computer & cyber security branch nd2ecurity Software S

31

Sanitizers

Sanitizers are tools designed to detect various types of bugs in programs,

often related to memory safety and undefined behavior. They work by

instrumenting the code to check for common issues during runtime. Some

common types of sanitizers include:

• AddressSanitizer (ASan): Detects memory errors such as buffer

overflows, use-after-free, and memory leaks.

• MemorySanitizer (MSan): Identifies uninitialized memory reads.

• ThreadSanitizer (TSan): Finds data races and threading issues.

• UndefinedBehaviorSanitizer (UBSan): Catches undefined

behaviors, such as integer overflows or invalid operations.

 class Computer & cyber security branch nd2ecurity Software S

32

Fuzzing

Fuzzing is an automated testing technique that involves sending a large

volume of random or semi-random inputs to a program to uncover

vulnerabilities or crashes. It works by generating a wide range of inputs

to test how the software handles unexpected or malformed data. Fuzzing

can be categorized into different types:

• Mutation-Based Fuzzing: Modifies existing inputs or seeds to

generate new test cases.

• Generation-Based Fuzzing: Creates inputs from scratch based on

input formats or protocols.

• Coverage-Guided Fuzzing: Uses feedback from the program's

execution to guide the generation of more effective test inputs.

 class Computer & cyber security branch nd2ecurity Software S

33

Symbolic Execution

Symbolic execution is a technique used to analyze a program by exploring

different execution paths based on symbolic values rather than concrete

inputs. It involves:

• Path Exploration: The symbolic execution engine explores possible

execution paths of the program, which can lead to discovering hidden

bugs and vulnerabilities.

• Constraint Solving: The system generates constraints based on the

symbolic inputs and solves them to find possible values that would

lead to different execution paths.

• Error Detection: Identifies potential issues by analyzing the

constraints and the symbolic execution paths.

 class Computer & cyber security branch nd2ecurity Software S

34

 Section four: Mitigations

In software security, mitigations are techniques and practices used to

reduce the risk of vulnerabilities and attacks. Here’s a more

comprehensive list of common mitigations:

1. Input Validation and Sanitization:

2. Output Encoding:

3. Authentication and Authorization:

4. Least Privilege Principle:

5. Secure Coding Practices:

6. Regular Updates and Patching:

7. Error Handling and Logging:

8. Encryption:

9. Security Testing and Code Reviews:

10. Threat Modeling:

11. Data Execution Prevention (DEP) and Address Space Layout

Randomization (ASLR):

12. Sandboxing and Isolation:

13. Control-Flow Integrity (CFI):

14. Code Pointer Integrity (CPI):

15. Safe Exception Handling (SEH):

16. Fortify Source:

17. Secure Software Development Lifecycle (SDLC):

Data Execution Prevention (DEP)/WˆX 86

Data Execution Prevention (DEP) and WˆX (Write XOR Execute) are

security features designed to prevent certain types of exploits by

controlling the execution of code and manipulation of memory.

 class Computer & cyber security branch nd2ecurity Software S

35

Data Execution Prevention (DEP)

• Definition: DEP is a security feature that prevents code from being

executed in specific regions of memory that are intended only for data.

This helps to protect against attacks where malicious code is injected

into data regions and then executed.

• Functionality: It marks certain areas of memory as non-executable,

which means that even if an attacker manages to insert code into these

areas, it cannot be executed. Only designated executable memory

regions, such as those containing the application code, are allowed to

execute instructions.

• Implementation: DEP can be implemented at both the hardware and

software levels. Hardware-based DEP relies on features provided by

modern CPUs, while software-based DEP can be enforced by the

operating system.

WˆX (Write XOR Execute)

• Definition: WˆX stands for "Write XOR Execute," which is a principle

related to memory protection. It enforces that memory regions can

either be writable or executable, but not both at the same time.

• Functionality: This principle ensures that if a memory region is

writable (i.e., data can be written to it), it cannot be executed as code.

Conversely, if a memory region is executable, it cannot be written to.

This prevents attackers from injecting and then executing code in the

same memory region.

• Implementation: WˆX is implemented through memory protection

mechanisms provided by the operating system and hardware. It is

closely related to DEP and helps in mitigating certain types of attacks

that exploit memory vulnerabilities.

 class Computer & cyber security branch nd2ecurity Software S

36

Together, DEP and WˆX help to mitigate risks associated with buffer

overflow attacks and other exploits that rely on executing arbitrary code

from non-executable regions of memory.

Address Space Layout Randomization (ASLR)

Address Space Layout Randomization (ASLR) is a security technique

used to protect systems from certain types of attacks by randomizing the

memory layout of a process. Here’s a detailed overview:

Address Space Layout Randomization (ASLR)

• Definition: ASLR is a security feature that randomizes the memory

addresses used by system and application processes, including the

locations of executable code, libraries, heap, and stack.

• Functionality:

o Randomization: By randomizing memory addresses, ASLR

makes it more difficult for attackers to predict where specific

code or data is located in memory. This is particularly useful in

preventing attacks that rely on knowing the location of specific

functions or buffers.

 class Computer & cyber security branch nd2ecurity Software S

37

o Mitigation: ASLR helps mitigate several types of exploits,

including buffer overflows and return-oriented programming

(ROP) attacks, which often require knowledge of specific

memory addresses to be effective.

• Implementation:

o Kernel-Level: The operating system kernel is responsible for

implementing ASLR. It modifies the base addresses of various

memory segments each time a process is started.

o User-Level: ASLR can also be applied to user-space

applications, randomizing the base addresses of executable and

shared library code.

• Configuration:

o Granularity: The degree of randomization can vary, with some

systems offering fine-grained control over how different

memory regions are randomized.

o Operating System Support: Modern operating systems,

including Windows, Linux, and macOS, support ASLR.

Configuration options may vary, and administrators can

typically enable or adjust ASLR settings through system

configuration or security policies.

• Effectiveness:

o Enhanced Security: ASLR enhances security by making it

harder for attackers to exploit vulnerabilities that rely on

predictable memory layouts.

o Combined with Other Mitigations: ASLR is most effective

when used in conjunction with other security measures, such as

Data Execution Prevention (DEP) and Control-Flow Integrity

(CFI).

 class Computer & cyber security branch nd2ecurity Software S

38

Overall, ASLR adds a layer of defense by complicating the attacker's ability

to guess memory addresses, thereby reducing the likelihood of successful

exploits based on predictable memory layouts.

Stack integrity

Stack Integrity is a security mechanism aimed at protecting the stack

memory from corruption, particularly from attacks like buffer overflows.

Here’s an overview of what it involves:

Stack Integrity

Definition: Stack integrity refers to techniques and mechanisms designed to

ensure that the data on the stack remains uncorrupted and that the stack is

protected against malicious attacks. The stack is used for managing function

calls, local variables, and return addresses.

Key Techniques:

Stack Canaries:

A stack canary (or stack guard) is a known value placed on the stack between

the buffer and the return address. When a function is called, a canary value

is placed on the stack. If an attacker attempts to exploit a buffer overflow

 class Computer & cyber security branch nd2ecurity Software S

39

and overwrite the return address, they would also need to overwrite the

canary. Before returning from the function, the program checks if the

canary value has been altered. If it has, the program detects the tampering

and typically terminates, preventing further exploitation.

Stack Smashing Protection (SSP):

SSP is a broader term for techniques designed to prevent stack buffer

overflows from compromising control flow. It includes methods like stack

canaries and other mechanisms to detect and mitigate stack-based buffer

overflow attacks.

Non-Executable Stack:

Marking the stack as non-executable prevents code from being run from the

stack. This is part of Data Execution Prevention (DEP). Ensures that even

if an attacker manages to inject code into the stack, it cannot be executed.

Control Flow Integrity (CFI):

While not specific to the stack, CFI helps ensure that the program’s control

flow adheres to legitimate paths. Protects against attacks that try to divert

execution to malicious code, including those that could exploit stack

vulnerabilities.

Effectiveness:

Mitigation of Buffer Overflows: Stack integrity mechanisms, particularly

stack canaries, are effective at mitigating buffer overflow attacks by detecting

and preventing attempts to overwrite critical stack data.

Combined Measures: For enhanced protection, stack integrity should be

used in conjunction with other security features like ASLR, DEP, and secure

coding practices.

 class Computer & cyber security branch nd2ecurity Software S

40

Safe Exception Handling (SEH)

Safe Exception Handling (SEH) is a technique designed to enhance the

security and reliability of software by managing exceptions in a way that

mitigates potential vulnerabilities. Here’s a detailed overview:

Safe Exception Handling (SEH)

Safe Exception Handling (SEH) involves implementing mechanisms to

handle exceptions (unexpected errors or events during program execution) in

a secure manner. The goal is to prevent attackers from exploiting

vulnerabilities in the exception handling process to gain control over the

application.

Key Concepts:

1. Exception Handling:

▪ Exception handling is a programming construct used to detect and

manage runtime errors. It involves using try-catch blocks (or equivalent

constructs) to handle exceptions gracefully. When an error occurs, the

program transfers control to a predefined exception handler that can log

the error, clean up resources, and prevent the application from crashing.

2. SEH Mechanisms:

 class Computer & cyber security branch nd2ecurity Software S

41

▪ Exception Handlers: Secure exception handlers are designed to handle

exceptions in a way that minimizes the risk of exploitation. They should

not expose sensitive information or allow attackers to control the flow

of execution.

▪ SEH Protection: Modern operating systems and compilers implement

protections to prevent exploitation of vulnerabilities in exception

handling. For example, Microsoft Windows includes SEHOP (SEH

Overwrite Protection), which helps protect against attacks that exploit

the SEH mechanism.

3. SEH Overwrite Protection (SEHOP):

SEHOP is a security feature in Windows that protects against attacks

that exploit the exception handling mechanism by overwriting exception

handler pointers. SEHOP ensures that the exception handling pointers

are not tampered with, making it more difficult for attackers to redirect

execution flow through malicious exception handlers.

4. Stack Frame Integrity:

 Stack frame integrity mechanisms ensure that the stack, where exception

handling information is stored, is protected against corruption. Techniques

like stack canaries and integrity checks can help prevent attacks that attempt

to exploit stack-based vulnerabilities to bypass exception handling.

• Effectiveness:

1. Mitigation of Exploits: SEH and SEHOP are effective at mitigating

attacks that exploit vulnerabilities in exception handling, such as

those that involve manipulating exception handler pointers or

corrupting stack frames.

2. Combined Measures: For enhanced security, SEH should be used in

conjunction with other security measures like ASLR, DEP, and stack

integrity techniques.

 class Computer & cyber security branch nd2ecurity Software S

42

Fortify Source

Fortify Source refers to techniques and tools used to improve the security of

software by enhancing the source code with additional checks and

protections. This term is often associated with practices and tools that help

identify and mitigate common vulnerabilities during the development

process. Here's a detailed overview:

Fortify Source involves applying security enhancements and checks to the

source code during the development phase to identify and address potential

vulnerabilities before the code is compiled and deployed.

• Key Concepts:

1. Static Code Analysis:

Static code analysis involves examining the source code without executing it

to detect potential security issues, such as buffer overflows, SQL injection,

and other vulnerabilities. Tools like Fortify Static Code Analyzer,

SonarQube, and Checkmarx can analyze source code for common security

flaws and provide recommendations for remediation.

2. Compiler-Based Protections:

 class Computer & cyber security branch nd2ecurity Software S

43

Many modern compilers offer options to fortify source code by adding

runtime checks and protections that can help detect vulnerabilities.

Microsoft Visual Studio: Provides options like /GS to enable stack

protection and /SAFESEH for safe exception handling.

3. Secure Coding Standards:

Adhering to secure coding standards helps prevent common programming

errors that can lead to vulnerabilities. Standards like those from OWASP or

CERT provide guidelines for writing secure code.

Examples include input validation, proper error handling, and avoiding

unsafe functions.

4. Code Reviews:

Regular code reviews involve manual inspection of the source code by

developers or security experts to identify and address security issues. Code

reviews can be complemented by automated tools and static analysis to

ensure comprehensive coverage of potential vulnerabilities.

• Effectiveness:

1. Early Detection: Fortify Source techniques help detect vulnerabilities

early in the development process, reducing the risk of security issues

reaching production.

2. Enhanced Security Posture: By incorporating security checks and

following best practices, developers can build more secure applications

and reduce the likelihood of security breaches.

 class Computer & cyber security branch nd2ecurity Software S

44

Control-Flow Integrity

Control-Flow Integrity (CFI) is a security technique designed to protect the

control flow of a program from being altered by attackers. By ensuring that

the program executes only through legitimate paths, CFI helps to prevent

exploits that rely on redirecting execution to malicious code. Here's an in-

depth look at CFI:

Control-Flow Integrity (CFI)

Control-Flow Integrity is a security mechanism that enforces that the

execution of a program adheres strictly to its intended control flow. This

means that the program should only follow paths that are defined by its

legitimate control flow graph, preventing unauthorized redirection of

execution.

• Key Concepts:

1. Control Flow Graph (CFG):

A control flow graph is a representation of all possible execution paths of a

program. It shows how control moves between different instructions or

functions. CFI uses the CFG to verify that the program’s execution follows

only the legitimate paths defined in this graph.

2. Indirect Control Flow:

 class Computer & cyber security branch nd2ecurity Software S

45

Indirect control flow refers to scenarios where execution jumps to a target

address determined at runtime, such as through function pointers, virtual

table pointers, or return addresses. CFI focuses on protecting indirect control

flow by ensuring that jumps or calls only target valid, intended locations.

3. Instrumentation and Checks:

CFI typically involves instrumenting the program to include additional

checks that validate control flow at runtime. These checks ensure that

function calls, returns, and jumps adhere to the legitimate control flow paths

defined by the CFG.

4. Types of CFI:

▪ Basic CFI: Ensures that indirect control transfers (e.g., function calls

through pointers) are made to legitimate addresses as defined in the CFG.

▪ Advanced CFI: Includes more granular checks, such as verifying the

integrity of return addresses and preventing more sophisticated attacks like

return-oriented programming (ROP).

• Effectiveness:

1. Mitigation of Exploits: CFI is effective at mitigating various types of

exploits, including buffer overflows, format string vulnerabilities, and

return-oriented programming attacks, by ensuring that execution cannot be

diverted to malicious code.

2. Complementary Measures: For maximum security, CFI should be used

in conjunction with other security features like Data Execution Prevention

(DEP), Address Space Layout Randomization (ASLR), and stack

integrity.

• Challenges:

1. Performance Overhead: Implementing CFI can introduce performance

overhead due to the additional runtime checks and instrumentation.

2. Complexity: More advanced forms of CFI may require additional

complexity in program analysis and implementation.

 class Computer & cyber security branch nd2ecurity Software S

46

Code Pointer Integrity

Code Pointer Integrity (CPI) is a security technique designed to protect the

integrity of pointers used to control the execution of code in a program. By

ensuring that code pointers (such as function pointers) are not tampered with,

CPI helps to prevent attacks that exploit vulnerabilities related to code

execution.

Code Pointer Integrity (CPI)

Code Pointer Integrity is a security mechanism that ensures the pointers used

to control the execution of code (e.g., function pointers, vtable pointers) point

to legitimate and expected locations. This prevents attackers from redirecting

execution to malicious code.

• Key Concepts:

Code Pointers:

Code pointers are pointers that refer to executable code or functions within a

program. They are used for dynamic function calls, callbacks, and other

 class Computer & cyber security branch nd2ecurity Software S

47

forms of indirect code execution. Function pointers, virtual table pointers

(vtable), and jump tables.

Pointer Tampering:

Pointer tampering refers to attacks that modify code pointers to redirect

execution to arbitrary or malicious code. This can be achieved through

techniques like buffer overflows or format string vulnerabilities. CPI aims to

detect and prevent such tampering by ensuring that code pointers are only set

to valid and expected addresses.

Integrity Checks:

CPI involves implementing checks to validate the integrity of code pointers

during runtime.

These checks can verify that pointers have not been altered from their

legitimate values and can prevent unauthorized modifications.

1. Implementation Methods:

▪ Randomization: Using techniques like Address Space Layout

Randomization (ASLR) to randomize the locations of code pointers,

making it harder for attackers to predict and exploit them.

▪ Pointer Authentication: Some modern CPUs support pointer

authentication, which adds a cryptographic signature to pointers to

verify their authenticity and integrity.

▪ Compiler and Runtime Protections: Compilers and runtime

environments can include additional checks and protections for code

pointers. For example, certain compilers provide options to enhance

code pointer protection.

• Effectiveness:

1. Mitigation of Exploits: CPI helps mitigate various types of

attacks that rely on tampering with code pointers, such as

function pointer attacks, vtable corruption, and return-oriented

programming (ROP) attacks.

 class Computer & cyber security branch nd2ecurity Software S

48

2. Complementary Measures: CPI should be used in conjunction

with other security features like Control-Flow Integrity (CFI),

Data Execution Prevention (DEP), and Address Space Layout

Randomization (ASLR) for comprehensive protection.

• Challenges:

1. Performance Overhead: Implementing CPI can introduce

performance overhead due to the additional integrity checks and

runtime protections.

2. Complexity: Ensuring comprehensive protection of code

pointers requires careful analysis and integration into the

development and runtime environments.

Sandboxing and Software-based Fault Isolation

Sandboxing and Software-Based Fault Isolation (SFI) are security

techniques designed to contain and isolate potentially untrusted or

vulnerable code, preventing it from affecting other parts of the system.

Here’s a detailed overview of each:

 class Computer & cyber security branch nd2ecurity Software S

49

Sandboxing is a security practice where applications or processes are

executed in a restricted environment (sandbox) that limits their access to

system resources and other applications. This containment prevents

potentially malicious or faulty code from causing harm to the rest of the

system.

1. Isolation:

▪ Definition: Sandboxes provide isolation between the application and the

host system, restricting the application’s ability to access files, network

resources, and system functions.

▪ Functionality: By isolating an application within a sandbox, even if the

application is compromised, the damage is contained within the sandbox

environment.

2. Controlled Access:

▪ Definition: Sandboxes control and monitor the application’s interactions

with the operating system and other applications.

▪ Functionality: This control ensures that the application only has access to

resources it is explicitly allowed to use, reducing the risk of exploitation.

3. Types of Sandboxes:

▪ Process Sandboxing: Runs applications in separate processes with

restricted permissions. For example, web browsers often use process

sandboxing to isolate tabs and plugins.

▪ Containerization: Uses containers (e.g., Docker) to encapsulate

applications and their dependencies, providing an isolated environment for

execution.

▪ Virtual Machines: Provides a more comprehensive form of isolation by

running applications in a separate virtualized operating system instance.

• Implementation:

1. Operating System Support: Many modern operating systems support

sandboxing natively. For example, Windows has built-in features like

 class Computer & cyber security branch nd2ecurity Software S

50

Windows Defender Application Guard, and macOS uses app sandboxing

for applications from the App Store.

2. Security Tools: Tools and frameworks like AppArmor, SELinux, and

various container technologies provide sandboxing capabilities.

• Effectiveness:

1. Containment: Sandboxing effectively contains potential threats,

preventing them from affecting the host system or accessing sensitive data.

2. Mitigation of Zero-Day Exploits: By isolating untrusted code, sandboxes

can mitigate the impact of zero-day exploits and other vulnerabilities.

Software-Based Fault Isolation (SFI)

• Definition: Software-Based Fault Isolation is a technique that isolates the

execution of potentially untrusted or faulty code within a process to

prevent it from interfering with the rest of the system. Unlike hardware-

based isolation, SFI relies on software mechanisms to enforce isolation.

• Key Concepts:

1. Memory Protection:

▪ Definition: SFI enforces memory protection by ensuring that code can

only access and modify specific regions of memory.

▪ Functionality: This prevents untrusted code from accessing or modifying

memory locations outside its allocated region.

2. Runtime Checks:

▪ Definition: SFI often includes runtime checks to validate that memory

accesses and control transfers are within permitted regions.

▪ Functionality: These checks help ensure that even if code is

compromised, it cannot perform unauthorized actions.

3. Instruction-level Isolation:

▪ Definition: SFI can use instruction-level techniques to ensure that only

safe operations are performed.

 class Computer & cyber security branch nd2ecurity Software S

51

▪ Functionality: For example, instructions that could lead to unsafe memory

accesses might be restricted or altered to enforce isolation.

• Implementation:

1. Compiler Support: Some compilers and runtime environments include

support for SFI. For example, Google’s NaCl (Native Client) and the more

recent WebAssembly use SFI principles to ensure safe execution of

untrusted code.

2. Security Models: SFI is often used in conjunction with other security

models, such as sandboxing, to provide layered protection.

• Effectiveness:

1. Fault Containment: SFI helps in containing faults and preventing them

from propagating or causing widespread damage.

2. Security Enhancement: By ensuring that code operates within a

controlled environment, SFI enhances the security of systems running

potentially untrusted code.

 class Computer & cyber security branch nd2ecurity Software S

52

