

University of Technology
 الجامعة التكنولوجية

Computer Science Department

 قسم علوم الحاسوب

Intelligent Search Techniques

 الذكية البحث تتقنيا

Assist. Prof. Dr. Suhad Malallah Kadhem
 كاظم الله مال سهاد .د.م.أ

cs.uotechnology.edu.iq

Search Algorithms

What is Search?

Search is an important aspect of AI. Search can be defined as a problem-solving

technique that enumerates a problem space from an initial position in search of

a goal position (or solution). The manner in which the problem space is

searched is defined by the search algorithm or strategy. As search strategies

offer different ways to enumerate the search space. Ideally, the search algorithm

selected is one whose characteristics match that of the problem at hand.

State Space Search

The state space search is a collection of several states with appropriate

connections (links) between them. Any problem can be represented as such a

space search to be solved by applying some rules with technical strategy

according to the suitable intelligent search algorithm.

To provide a formal description of a problem must do the following:

1. Define search space that contains all states.

2. Specify one or more states within that space that describe possible

situations from which the problem‐solving process may start. These states

are called the initial states.

3. Specify a set of rules that describe the actions (operators, possible moves,

rules.) available.

4. Specify one or more states that would be acceptable as solutions to the

problem. These states are called goal states.

5. Determine the inference technique to reach the goal.

To successfully design and implement search algorithms, a programmer must be

able to analyze and predict their behavior. Questions that need to be answered

include:

 Is the problem solver guaranteed to find a solution?

 Will the problem solver always terminate, or can it become caught in an

infinite loop?

 When a solution is found, is it guaranteed to be optimal?

 What is the complexity of the search process in terms of time usage?

Memory usage?

 How can the interpreter most effectively reduce search complexity?

 How can an interpreter be designed to most effectively utilize a

representation language?

To get a suitable answer to these questions, the search can be structured into

three parts.

A first part presents a set of definitions and concepts that lay the foundations for

the search procedure into which induction is mapped. The second part presents

an alternative approach that has been taken to induction as a search procedure

and finally the third part presents the version space as a general methodology to

implement induction as a search procedure.

If the search procedure contains the principles of the above three requirement

parts, then the search algorithm can give a guarantee to get an optimal solution

for the current problem.

Some common terms in the searching issues

Search Tree: is a tree in which the root node is the start state and has a

reachable set of children.

Search Node: is a node in the search tree.

Goal: is a state that an agent is trying to reach.

Action: is something that an agent can choose to do.

Branching Factor: The branching factor in a search tree is the number of

actions available to the agent.

Search Technique Types

Usually, types of intelligent search are classified into three classes; Blind,

Heuristic and Random search.

Blind Search is a technique to find the goal without any additional information

that helps to infer the goal, with this type there is no consideration with process

time or memory capacity. In the other side, the Heuristic Search always has an

evaluating function called the heuristic function which guides and controls the

behavior of the search algorithm to reach the goal with minimum cost, time and

memory space. While Random Search is a special type of search in which it

begins with the initial population that is generated randomly and the search

algorithm will be the responsible for generating the new population bases on

some operations according to a special type function called fitness function.

Blind Search

The blind search strategies (also called uninformed search) don't have any

additional information about states beyond that provided in the problem

definition. All they can do is generate successors and distinguish a goal state

from a non-goal state.

Thus blind search strategies have not any previous information about the goal

nor the simple paths lead to it. However blind search is not bad since more

problems or applications need it to be solved; in other words, there are some

problems give good solutions if they are solved by using depth or breadth-first

search.

This type of search takes all nodes of a tree in a specific order until it reaches to

goal. The order can be in breadth and the strategy will be called breadth-first

search, or in depth and the strategy will be called depth-first search.

Breadth – First – Search

 In breadth-first search, when a state is examined, all of its siblings are

examined before any of its children. The space is searched level-by-level,

proceeding all the way across one level before doing down to the next level.

Breadth – First – Search Algorithm

Begin

Open: = [start];

Closed: = [];

While open ≠[] do

Begin

Remove left most state from open, call it x;

If x is a goal the return (success)

Else

Begin

Generate children of x;

Put x on closed;

Eliminate children of x on open or closed;

Put remaining children on right end of open

End

End

Return (failure)

End.

For Example

Goal: U

Depth – First – Search

In a depth-first search, when a state is examined, all of its children and their

descendants are examined before any of its siblings. The depth-first search goes

deeper into the search space whenever this is possible only when no further

descendants of a state can found owe it.

Depth – First –

Search Algorithm

Begin

Open: = [start];

Closed: = [];

While open ≠ [] do

Remove leftmost state

from open, call it x;

If x is a goal then

return (success)

Else

begin

Generate children of

x;

Put x on closed;

Eliminate children of

x on open or closed;

put remaining

children on left end of

open end

End;

Return (failure)

End.

For Example

Goal: U

Informed Search (Heuristic Search)
 A heuristic is a method that might not always find the best solution but is

guaranteed to find a good solution in reasonable time. By sacrificing

completeness it increases efficiency. Heuristic search is useful in solving

problems which:-

 • Could not be solved any other way.

 • Solution takes an infinite time or very long time to compute.

 • Heuristic search methods generate and test algorithms, from these methods

are:-

1- Hill Climbing.

2- Best-First Search.

3- A algorithm.

4- A* algorithm.

1) Hill Climbing

 The idea here is that, you don’t keep the big list of states around. You

just keep track of the one state you are considering, and the path that got you

there from the initial state. At every state you choose the state leads you closer

to the goal (according to the heuristic estimate), and continue from there.

 The name “Hill Climbing” comes from the idea that you are trying to find

the top of a hill, and you go in the direction that is up from wherever you are.

This technique often works, but since it only uses local information.

For Example:

1- Searches for R with local maxima

The

Solution path (A C3 G4 N5 R4)

2- Searches for R with local minima

The

Solution path (A D1 H1 O6 R4)

Hill Climbing Algorithm

Begin
Cs=start state;
Open=*start+;
Stop=false;
Path=*start+;
While (not stop) do
,
if (cs=goal) then
return (path);
generate all children of cs and put it into open
if (open=*+) then
stop=true
else
,
x:= cs;
for each state in open do
,
compute the heuristic value of y (h(y));
if y is better than x then
x=y
-
if x is better than cs then
cs=x
else
stop =true;
-

-
return failure;
-end

Hill Climbing Problems

 Hill climbing may fail due to one or more of the following reasons:-

1- A local maxima: Is a state that is better than all of its neighbors but is not

better than some other states.

2- A Plateau: Is a flat area of the search space in which a number of states have

the same best value, on plateau it’s not possible to determine the best direction

in which to move.

3- A ridge: Is

an area of the search space that is higher than surrounding areas, but that cannot

be traversed by a single move in any one direction.

2) Best-First-Search

Best-First-search is a way of combining the advantages of both depth‐first

and breadth‐first search into a single method.

The actual operation of the algorithm is very simple. It proceeds in steps,

expanding one node at each step, until it generates a node that corresponds to a

goal state. At each step, it picks the most promising of the nodes that have so far

been generated but not expanded. It generates the successors of the chosen

node, applies the heuristic function to them, and adds them to the list of open

nodes, after checking to see if any of them have been generated before. By

doing this check, we can guarantee that each node only appears once in the

graph, although many nodes may point to it as a successors. Then the next step

begins.

 In Best-First search, the search space is evaluated according to a heuristic

function. Nodes yet to be evaluated are kept on an OPEN list and those that

have already been evaluated are stored on a CLOSED list. The OPEN list is

represented as a priority queue, such that unvisited nodes can be queued in order

of their evaluation function. The evaluation function f(n) is made from only the

heuristic function (h(n)) as: f (n) = h(n) .

Best-First-Search Algorithm

{

Open:=[start];

Closed:=[];

While open ≠[] do

{

Remove the leftmost from open, call it x;

If x= goal then

Return the path from start to x

Else

{

Generate children of x;

For each child of x do

Do case

The child is not already on open or closed;

{

assign a heuristic value to the child state ;

Add the child state to open;

}

The child is already on open:

If the child was reached along a shorter path than the state currently on open

then give the state on open this shorter path value.

The child is already on closed:

If the child was reached along a shorter path than the state currently on open

then

{

Give the state on closed this shorter path value

Move this state from closed to open

}

}

Put x on closed;

Re-order state on open according to heuristic (best value first)

}

Return (failure);

}

For Example

Open Closed

[A5] []

[D3,B4,C5] [A5]

[C2,B4,I5] [A5,D3]

[F3,B4,I5] [A5,D3,C2]

[B4,I5] [A5,D3,C2,F3]

[C1,E3,I5] [A5,D3,C2,F3,B4]

[E3,I5] [A5,D3,C1,F3,B4]

[G0,I5] [A5,D3,C1,F3,B4,E3]

 [A5,D3,C1,F3,B4,E3,G0]

The goal is found &the resulted path is:

 A0 D4 C2 F4 B5 E4 G1 =20

3) A - Search Algorithm

A algorithm is simply define as a best first search plus specific function.

This specific function represent the actual distance (levels) between the initial

state and the current state and is denoted by g(n). A notice will be mentioned

here that the same steps that are used in the best first search are used in an A

algorithm but in addition to the g(n) as follow;

F(n) = h(n) + g(n) , where:

h(n):- is a heuristic estimate of the distance from state n to the goal.

g(n):- Measures the actual length of path from any state (n) to the start state.

For Example

Op

en

Close

d

[A5

]

[]

[D4

,B5

,C6

]

[A5]

[C4

,B5

,I7]

[A5,D

4]

[B5

,F6,

I7]

[A5,D

4,C4]

[C3

,E5

,F6,

I7]

[A5,D

4,B5]

[E5

,F6,

I7]

[A5,D

4,B5,

C3]

[G3

,F6,

I7]

[A5,D

4,B5,

C3,E5

]

 [A5,D

4,B5,

C3,E5

,G3]

The goal is found &the resulted path is:

 A0 D4 B5 C2 E4 G1 =16

4) A‐Star Search Algorithm

 A* algorithm is simply define as a best first search plus

specific function. This specific function represents the actual distance

(levels) between the current state and the goal state and is denoted by

h(n). It evaluates nodes by combining g(n), the cost to reach the node, and h(n)

, the cost to get from the node to the goal:

f(n) = g(n) + h(n).

Where

 g(n):- gives the path cost from the start node to node n

 h(n):- is the estimated cost of the cheapest path from n to the goal.

 We have f (n) = estimated cost of the cheapest solution through n.

Thus, if we are trying to find the cheapest solution, a reasonable thing to

try first is the node with the lowest value of g(n) + h(n). It turns out that

this strategy is more than just reasonable: provided that the heuristic

function h(n) satisfies certain conditions, A* search is both complete

and optimal.

For Example

Open Closed

*A5+ *+

*B7,D8,C10+ *A+
*D8,E10,C10+ *A,B7+

*E10,C10,I15+ *A,B7,D8+
*G10,C10,I15+ *A,B7,D8,E10+

 *A,B7,D8,E10,G10+

The goal is found &the resulted path is:

 A0 B5 D4 E4 G1 =14

A* Algorithm Properties

1) Admissibility

Admissibility means that h(n) is less than or equal to the cost of the minimal

path from n to the goal.

The solution path is admissible if it satisfies the two following conditions:

1- h(n) ≤ h*(n)

2- g(n) ≥ g*(n)

2) Consistency (Monotonicity)

Consistency means y the difference between the heuristic of a state and the

heuristic of its descendent is less than or equal the cost between them, and the

heuristic of the goal equal zero. In other words,

1- h(ni)-h(nj) ≤ cost(ni,nj).

2- h(goal) = 0.

3) Informedness

For two A* heuristics h1 and h2 , if h1(n) ≤ h2(n), for all states n in the search

space, heuristic h2 is said to be more informed than h1.

Traveling Salesman Problem (TSP)

The TSP concept depends on finding a path for a specified number of

cities (visiting all cities only once and returning to the city that started with)

where the distance of the path is optimized by finding the shortest path with

minimized cost.

Example: The below figure shows a full connected graph, (A,B,C,etc) are cites

and the numbers associated with the links are the distances between the cities.

Starting at A, find the shortest path through all the cities, visiting each city

exactly once returning to A.

“An instance of traveling Salesman Problem”

The complexity of exhaustive search in the traveling Salesman is (N-1)! , where

N is the No. of cities in the graph. There are several techniques that reduce the

search complexity:

1- Branch and Bound Algorithm: Generate one path at a time, keeping track

of the best circuit so far. Use the best circuit so far as a bound of future branches

of the search. Figure below illustrate branch and bound algorithm.

A B C D E A= 375

A B C E D A= 425

A B D C E A= 474 ……………………

2- Nearest Neighbor Heuristic: At each stage of the circuit, go to the nearest

unvisited city. This strategy reduces the complexity to N, so it is highly

efficient, but it is not guaranteed to find the shortest path, as the following

example:

Cost of nearest

neighbor path is A E D B C

A=550

Is not the shortest path,

the comparatively

high cost of arc (C, A) defeated the heuristic.

Complex Search Space and Problem Solving Approach

1- 8-puzzle Problem

To summarize:

1. Operations on states generate children of the state currently under

examination.

2. Each new state is checked to see whether it has occurred before (is on either

open or closed), thereby preventing loops.

3. Each state n is given an I value equal to the sum of its depth in the search

space g(n) and a heuristic estimate of its distance to a goal h(n). The h value

guides search toward heuristically promising states while the g value

prevents search from persisting indefinitely on a fruitless path.

4. States on open are sorted by their f values. By keeping all states on open until

they are examined or a goal is found, the algorithm recovers from dead ends.

5. As an implementation point, the algorithm's efficiency can be improved

through maintenance of the open and closed lists, perhaps as heaps or leftist

trees.

After implementation of A algorithm, the Open and Closed is shown as follows:

open closed

[a4] []

[c4,b6,d6] [a4]

[e5,f5,b6,d6,g6] [c4, a4]

[f5,b6,d6,g6,h6,i7] [e5, c4, a4]

[j5,b6,d6,g6,h6,i7,k7] [f5 e5, c4, a4]

[l5, b6,d6,g6,h6,i7,k7] [j5, f5 e5, c4, a4]

[m5, b6,d6,g6,h6,i7,k7,n7] [l5, j5, f5 e5, c4, a4]

 [m5,l5, j5, f5 e5, c4, a4]

Success, m=goal!!

Example: Consider 8-puzzle problem with start state is shown as follows:

2 8 3

1 6 4
7 5

And the goal state is:

1 2 3

8 4
7 6 5

Assume the heuristic is calculated as following: h (n) = -(number of tiles out of

place)

Draw the path to get the goal using Hill Climbing search algorithm?

Answer

Example: Consider the 3-puzzle problem, which is a simpler version of the 8-

puzzle where the board is 2 × 2 and there are three tiles, numbered 1, 2, and 3.

there are four moves: move the blank up, right, down, and left. The cost of each

move is 1. Consider this start state:

Draw the entire non-repeating state space for this problem, labeling nodes and

arcs clearly?

Answer

Example

Assume the start state and the goal state are:

Are the goal is found using Depth First Search algorithm? If not explain why?

Answer

The goal cannot found using Depth First Search algorithm because there is an

infinite loop as shown below:

2- Tic – Tac – Toe Game

The complexity of the search space is 9!

9! =9*8*7*…………………….*1

Therefore it is necessary to implement two conditions:

 1- Problem reduction

2- Guarantee the solution

Using Heuristic in Games

1- Minimax Search Algorithm

 The minimax algorithm is a useful method for simple two-player games. It

is a method for selecting the best move given an alternating game where each

player opposes the other working toward a mutually exclusive goal. Each player

knows the moves that are possible given a current game state, so for each move,

all subsequent moves can be discovered.

 The minimax algorithm assumes two players are represented as MAX and

MIN. The leaf node values of the tree are filled bottom-up with the evaluated

values. The nodes that belong to the MAX player receive the maximun value of

its children. The nodes for the MIN player will select the minimun value of its

children. The minimax algorithm performs three tasks:

1- Construct tree (depth-bound)

2- Compute evaluation leaves

3- Propagate upwards (min/max)

Example: Perform the MiniMax algorithm on the figure below.

Solution:

AND/OR Graph Algorithm
An and–or tree is a graphical representation of the reduction of problems (or

goals) to conjunctions and disjunctions of subproblems (or subgoals).

 Nodes represent sub problems.

 And links represent sub problem decompositions.

 OR links represent alternative solutions.

 Start node is initial problem.

 Terminal nodes are solved sub problems.

Solution graph

 It is an AND/OR sub graph such that:

1. It contains the start node

2. All it terminal nodes (nodes with no successors) are solved primitive

problems

3. If it contains an AND node L, it must contain the entire group of AND

links that leads to children of L.

 The cost of a solution graph is the sum cost of it arcs.

Example1:

Example2:

Control strategies:

A state space may be searched in either of the two directions:

 From an initial state toward a goal state.

 From a goal state back to an initial state.

 In data driven search (also called forward chaining) we begin with the

given facts (initial state) of the problem and applies legal moves (rules0

to produce new facts (states) that lead toa goal.

 In goal driven search (also called backward chaining) we focus on a goal,

find the rules that can produce that goal, and chain backward through

successive rules and subgoals to the given facts (initial state) of the

problem.

The selection is depend upon:

 Branching factor of rule application in both directions(how many new

states are generated).

 Availability of data.

 Ease of determining potential goal.

Example

Given the facts A,B,C,E,G and H, and the following rules:

F Ʌ B → Z

C Ʌ D → F

A → D

prove Z using backward chaining:

the goal is proved

the corresponded inference chain is:

prove Z using forward chaining:

un used used

Z

F

t

C D
A

t

t

R3

t

A D

C
F

B
Z

R2
R1

A A

B B

C C

E E

G G

H H

D D

F F

Z

The goal is proved

the corresponded inference chain is:

Example

Use backward chaining to prove anything provable from the following facts and

rules:

R1: a(X):-b(X).

R2: b(X):-c(X),d(X).

R3: d(X):-e, f(X).

R4: c(X):- g(X).

g(2). f(5). g(5). e.

H.W/ Using B.W & F.W chaining to reasoning that the goal (Z) is true

or not.

a(1). b(1). c(3). c(1). d(1). e.
r(X):-a(X),b(X).

z(X):-e, not (f),not(b(3)),w(X).

w(Y):-c(Y),d(X),not (a(3)),r(Y).

R3 A D

C
F

B
Z

R2
R1

a(X)

f(X)
t

c(X) d(X)

g(2) g(5)

b(X)

t and X=5

e

f(5)

g(X)

Expert Systems

What are expert systems?

Expert systems are computer programs that are constructed to do the kinds of

activities that human experts can do such as design, compose, plan, diagnose,

interpret, summarize, audit, give advice.

What is Expert System Architecture and Components?

The architecture of the expert system consists of several components as shown

in figure below:

1-User

Interface

The user interacts with the expert system through a user interface that makes

access more comfortable for the human and hides much of the system

complexity. The interface styles include questions and answers, menu driver,

natural languages, or graphics interfaces.

2-Explanation Processor

The explanation part allows the program to explain its reasoning to the user.

These explanations include justifications for the system's conclusion (HOW

queries), explanation of why the system needs a particular piece of data (WHY

queries).

3-Knowledge Base

The heart of the expert system contains the problem solving knowledge (which

defined as an original collection of processed information) of the particular

applications, this knowledge is represented in several ways such as if‐then rules

form.

4-Inference Engine

The inference engine applies the knowledge to the solution of actual problems.

It’s the interpreter for the knowledge base. The inference engine performs the

recognize act control cycle. The inference engine consists of the following

components: ‐

1. Rule interpreter.

2. Scheduler

3. HOW process

4. WHY process

5. Knowledge base interface.

5-Working Memory

It is a part of memory used for matching rules and calculation. When the work

is finished this memory will be raised.

