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Problem in AI (Problem state space, Search space and 
Problem solving) 
 

Search In AI: 

Search is an important aspect of AI. Search can be defined as a problem-

solving technique that enumerates a problem space from an initial position in 

search of a goal position (or solution). 

 

The manner in which the problem space is searched is defined by the 

search algorithm or strategy. As search strategies offer different ways to 

enumerate the search space. Ideally, the search algorithm selected is one 

whose characteristics match that of the problem at hand. 

 

State Space Search in AI: 

The state space search is a collection of several states with appropriate 

connections (links) between them. Any problem can be represented as such a 

space search to be solved by applying some rules with technical strategy 

according to the suitable intelligent search algorithm. 

 

To provide a formal description of a problem must do the following 

operations: 

 

1. Define space search (state space) that contains all possible states.  

2. Specify one or more states within that space that describe possible situations 

from which the problem‐solving process may start. These states are called the 

initial states.  

3. Specify a set of rules that describe the actions available.  

4. Specify one or more states that would be acceptable as solutions ‘to the 

problem. These states are called goal states.  

5. Determine a suitable search strategy to reach the goal. 

 

To successfully design and implement search algorithms, a programmer must 

be able to analyze and predict their behavior.  

 

Questions that need to be answered include:  

 

• Is the problem solver guaranteed to find a solution?  

• Will the problem solver always terminate, or can it become caught in an 

infinite loop?  



3 

 

• When a solution is found, is it guaranteed to be optimal?  

• What is the complexity of the search process in terms of time usage? 

Memory usage?  

• How can the interpreter most effectively reduce search complexity? 

• How can an interpreter be designed to most effectively utilize a 

representation language? 

 

A first part presents a set of definitions and concepts that lay the foundations 

for the search procedure into which induction is mapped. The second part 

presents an alternative approach that has been taken to induction as a search 

procedure and finally the third part presents the version space as a general 

methodology to implement induction as a search procedure.  

If the search procedure contains the principles of the above three 

requirement parts, then the search algorithm can give a guarantee to get an 

optimal solution for the current problem. 

 

Some common terms in the searching issues 

 

State:  

State is a representation that an agent can find itself in. 

 

State Space: 

A state space is a graph whose nodes are the set of all states, and whose links 

are actions that take the agent from one state into another. 

 

Search Tree:  

A search tree is a tree in which the root node is the start state and has a 

reachable set of children. 

 

Search Node:  

A search node is a node in the search tree. 

 

Goal:   

A goal is a state that the agent is trying to reach. 

 

Action:  

An action is something that the agent can choose to do. 

 

Branching Factor:  

The branching factor in a search tree is the number of actions available to the 
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agent. 

 

Example: Describe and give an example for the Travelling Salesman Problem 

(TSP) as a state space?  

 

Solution: 

Given an undirected weighted graph, we should find a shortest tour (a shortest 

path in which every node (city) is visited exactly once, except that the initial 

and terminal nodes are the same). 

Figure below shows an example of such a graph and its optimal solution. A, 

B, etc., are cities and the numbers associated with the links are the distances 

between the cities. 
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AI production system components (Knowledge base, 
Inference engine, Working memory and User Interface) 
 

AI production system components:  
 

AI production system (also called a rule-based system) is a system based on 

IF… THEN… rules and consisting of following components: 

 

1. The knowledge base (production rules): is condition-action pair presented 

in the following form “IF condition THEN action”, and it represents as a 

single chunk of problem-solving knowledge. The condition part of the rule is 

a pattern that determines when the rule may be applied to a problem. The 

action part defines the associated problem-solving step. 

2. The inference engine (control structure): It implements search allowing the 

AI system to move towards a goal within the set of rules. The inference engine 

also called a control structure, an interpreter or a recognize-act cycle. 

3.The working memory: It contains a description of the current state of the 

problem-solving. 

4. User Interface: A user interface is the method by which the AI production 

system interacts with a user. These can be through dialog boxes, command 

prompts, forms, or other input methods. Some AI systems interact with other 

computer applications, and do not interact directly with a human. In these 

cases, the AI system will have an interaction mechanism for transactions with 

the other application, and will not have a user interface. 

 

The following diagram show the AI production system components: 
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AI production system types: 
There are three broad kinds of production system: forward, backward 

chaining, and rule cycle systems.  

In a forward chaining system, you start with the initial facts, and keep using 

the rules to draw new conclusions (or take certain actions) given those facts.  

In a backward chaining system, you start with some hypothesis (or goal) you 

are trying to prove, and keep looking for rules that would allow you to 

conclude that hypothesis, perhaps setting new subgoals to prove as you go.  

Forward chaining systems are primarily data-driven, while backward chaining 

systems are goal-driven.  

The Rule Cycle (Hybrid method) refers to the repetitive process by which a 

rule-based system evaluates, selects, and applies rules until a specified goal is 

achieved or no further rules can be applied. 

 

1. Forward Chaining 

Definition:  

Forward chaining is a data-driven approach used in rule-based systems 

where the inference engine starts with the available data and applies rules to 

extract more data until a goal is reached. 

 

Process:  

Start with Initial Facts: Begin with a set of known facts. 

Apply Rules: Evaluate which rules can be applied based on these facts. 

Infer New Facts: Apply the rules to infer new facts. 

Repeat: Continue applying rules and inferring new facts until the desired 

goal or conclusion is reached, or no more rules can be applied. 

 

Example: 

In a medical diagnosis system: 

 

Initial fact: The patient has a fever. 

Rule 1: IF a patient has a fever AND a cough THEN the patient may have 

the flu. 

Rule 2: IF a patient may have the flu THEN suggest a flu test. 

The system infers that since the patient has a fever and cough, they may 

have the flu and therefore suggests a flu test. 
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2. Backward Chaining 

Definition: 

Backward chaining is a goal-driven approach where the inference engine 

starts with the goal and works backward to determine which facts and rules 

support the goal. 

 

Process: 

Start with Goal: Begin with a specific goal or hypothesis. 

Find Supporting Rules: Determine which rules could lead to the goal. 

Check Facts: Verify if the conditions of these rules are satisfied by existing 

facts. 

Work Backwards: Continue working backwards, checking conditions and 

sub-goals, until the initial facts support the goal, or no more rules apply. 

 

Example: 

In a troubleshooting system: 

 

Goal: Determine if the network issue is due to a disconnected cable. 

Rule: IF the network is down AND the cable is disconnected THEN the 

issue is a disconnected cable. 

Fact: The network is down. 

The system works backward to check if the cable is disconnected, leading to 

the conclusion about the network issue. 

 

3. Rule Cycle Systems 

 

Definition: 

A rule cycle system is a rule-based system that continuously evaluates and 

applies rules in a cyclic manner until a goal is achieved or no further rules 

can be applied. 

 

Process: 

Match: Identify which rules are applicable based on current facts. 

Conflict Resolution: Select one rule to apply from the set of applicable rules. 

Execute: Apply the selected rule, updating the system's working memory. 

Repeat or Terminate: Check if the goal is achieved or if further rules can be 

applied. Repeat the cycle if necessary. 
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Example: 

In a home automation system: 

 

Initial fact: The room temperature is high. 

Rule 1: IF the room temperature is high THEN turn on the air conditioner. 

Rule 2: IF the air conditioner is on AND the room temperature drops THEN 

turn off the air conditioner. 

The system cycles through matching, selecting, and applying rules to maintain 

the desired room temperature. 

 

 

Forward Chaining System:  
 

In a forward chaining system, the facts in the system are represented in a 

working memory which is continually updated. Rules in the system represent 

possible actions to take when specified conditions hold on items in the 

working memory - they are sometimes called condition-action rules. The 

conditions are usually patterns that must match items in the working memory, 

while the actions usually involve adding or deleting items from the working 

memory. 

 

The control structure will control the application of the rules, given the 

working memory, thus controlling the system's activity. It is based on a cycle 

of activity sometimes known as a recognize-act cycle. The system first checks 

to find all the rules whose conditions hold, given the current state of working 

memory. It then selects one and performs the actions in the action part of the 

rule. The selection of a rule to fire is based on fixed strategies, known as 

conflict resolution strategies.  

 

The actions will result in a new working memory, and the cycle begins 

again. This cycle will be repeated until either no rules fire, or some specified 

goal state is satisfied. Rule-based systems vary greatly in their details and 

syntax, so the following examples are only illustrative. 

 

First we'll look at a very simple set of rules: 

1.  IF lecturing(X) AND marking-practicals(X) THEN ADD 

(overworked(X)) 

2.  IF month(february) THEN ADD (lecturing(john)) 

3.  IF month(february) THEN ADD (marking-practicals(john)) 

4.  IF overworked(X) OR slept-badly(X) THEN ADD (bad-mood(X)) 
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5.  IF bad-mood(X) THEN DELET (happy(X)) 

6.  IF lecturing(X) THEN DELET (researching(X)) 

 

Let us assume that initially we have a working memory with the following 

facts: 

month(february) 

happy(john) 

researching(john) 

 

Production system will first go through all the rules checking which ones 

apply given the current working memory. Rules 2 and 3 both apply, so the 

system has to choose between them, using its conflict resolution strategies.  

Let us say that rule 2 is chosen. So, lecturing(john) is added to the working 

memory, which is now: 

 

lecturing(john) 

month(february) 

happy(john) 

researching(john) 

 

Now the cycle begins again. This time rule 3 and rule 6 have their 

preconditions satisfied. Lets say rule 3 is chosen and fires, so marking-

practicals(john) is added to the working memory.  

 

On the third cycle rule 1 fires, so, with X bound to john, overworked 

(john) is added to working memory which is now: 

 

overworked(john) 

marking-practicals(john) 

lecturing(john) 

month(february) 

happy(john) 

researching(john) 

 

Now rules 4 and 6 can apply. Suppose rule 4 fires, and bad-mood(john) is 

added to the working memory. 

And in the next cycle rule 5 is chosen and fires, with happy(john) removed 

from the working memory. 

Finally, rule 6 will fire, and researching(john) will be removed from working 

memory, to leave: 
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bad-mood(john) 

overworked(john) 

marking-practicals(john) 

lecturing(john) 

month(february) 

 

The five facts in the working memory imply that there is a person called 

“john” that works as lecturing and marking-practical at the same time in the 

February month and this cause an overworked load and thus he has a bad-

mood state.   

 

Forward Chaining Algorithm (Data-driven search algorithm) 

 

1. Begins with a pattern (a problem description) added to the working 

memory. 

2. The control structure compares matching of the pattern with IF part of rules 

in the production rules. 

3. Firing a rule, its THEN part is added to the working memory and the process 

continues. 

4. Search stops when the goal is found. 

 

Example1: Suppose you have the following production rules: 

1. IF John is a student THEN John enjoys student’s life 

2. IF John enjoys student’s life  

        THEN John meets friends AND John participates in university’s events 

3. IF John meets friends THEN John needs money 

4. IF John needs money THEN John has a job 

5. IF John meets friends AND John participates in university’s events   

    THEN John has little free time 

6. IF John has little free time AND John has a job  

        THEN John is not successful in studies  

                  AND John does not receive scholarship 

 

Trace the Forward Chaining Algorithm using the given production rules to get 

the goal “John does not receive scholarship” from the start sentence that is 

“John is a student”. Show the contents of the Working Memory and the 

Conflict Set (i.e., all the rules that match the facts in the Working Memory) 

and the Rule Fired (i.e., select one member of conflict set to execute).   
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Note: You can rewrite all the sentences to atomic sentences (for example; 

John is a student become as john_is_a_student) or you can only write them as 

letters (for example; John is a student will be A and John enjoys student’s life 

is B and so on). 

 

Solution: 

At the first, we can assume that each sentence just as a letter, so the production 

rules will become as follows:  

 

  

 
The tracing for this algorithm using the given production rules will be shown 

as follows: 
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Then there are 8 facts which must to be found to reach to the goal I=“John 

does not receive scholarship” and are: 

1- A=John is a student. 

2- B=John enjoys student’s life. 

3- C=John meets friends. 

4- D=John participates in university’s events. 

5- G=John has little free time. 

6- E=John needs money. 

7- F=John has a job. 

8- H=John is not successful in studies. 

The production rules that are used to get these facts are {1,2,3,5,4,6}. 

 

Example2: Suppose you have the following production rules: 

 

 

Write the Forward Chaining Algorithm and then trace this algorithm using the 

given production rules to verify the goal through the start fact. Draw AND/OR 

graph for the tracing of this algorithm.  

 

Solution: 

Forward Chaining Algorithm (Data-driven search algo.): 

1. Begins with a pattern (a problem description) added to the working 

memory. 

2. The control structure compares matching of the pattern with IF part of rules 

in the production rules. 

3. Firing a rule, its THEN part is added to the working memory and the process 

continues. 

4. Search stops when the goal is found. 
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The tracing for this algorithm using the given production rules will be shown 

as follows: 

 

 
 

The AND/OR graph for this tracing is shown as follows:  
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Example3: Trace the Forward Chaining Algorithm using the following 

production rules to sorting a string cbaca to aabcc. 

Production rules: 

 

 

1. IF ba THEN ab 

2. IF ca THEN ac 

3. IF cb THEN bc 

 

Solution: 
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/* A prolog program that applies the concept of forward chaining system in animal classification. */ 
 

domains 

       s=symbol 

database 

       have_found(s) 

       db_confirm(s,s) 

       db_denied(s,s) 

predicates 

       guess_animal 

       find_animal 

       test1(s) 

       test2(s,s) 

       test3(s,s,s) 

       test4(s,s,s,s) 

       it_is(s) 

       confirm(s,s) 

       remember(s,s,s) 

       check_if(s,s) 

clauses 

guess_animal:- 

       find_animal, 

       have_found(X),write("Your animal is a(n)",X),!. 

 

find_animal:- 

       test1(X),test2(X,Y),test3(X,Y,Z),test4(X,Y,Z,_),!. 

find_animal. 

                  

test1(m):- 

       it_is(mammal),!. 

test1(n). 

 

test2(m,c):- 

       it_is(carnivorous),!. 

test2(m,n). 

test2(n,w):- 

       confirm(does,swim),!. 

test2(n,n). 

 

test3(m,c,s):- 

        confirm(has,stripes), 

        asserta(have_found(tiger)),!. 

test3(m,c,n):- 

        asserta(have_found(cheetah)). 

test3(m,c,l):- 

        not(confirm(does,swim)),not(confirm(does,fly)),!. 
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test3(m,n,n):- 

        asserta(have_found(blue_whale)). 

test3(n,n,f):- 

        confirm(does,fly),asserta(have_found(eagle)),!. 

%test3(n,n,n):- 

        %asserta(have_found(ostrich)). 

test3(n,w,t):- 

        confirm(has,tentacles),asserta(have_found(octopus)),!.  

test3(n,w,n). 

 

test4(m,n,l,s):- 

        confirm(has,stripes),asserta(have_found(zebra)),!. 

test4(m,n,l,n):- 

        assert(have_found(giraffe)),!. 

test4(n,w,n,f):- 

        confirm(has,feather),asserta(have_found(penguin)),!. 

test4(n,w,n,n):- 

        asserta(have_found(sardine)),!. 

test4(n,n,n,n):- 

        retractall(_),write("Sorry,your animal is unknown\n"). 

 

it_is(mammal):-%لبون  
      confirm(has,hair),!.%ْشَعر 

it_is(mammal):-%لبون 
      confirm(does,give_milk).%يعطي الحَلِيب 
it_is(ungulate):-%ذو حوافر 
      it_is(mammal),%لبون 
      confirm(has,hooves),% حوافر 

      confirm(does,chew_cud),!.%مجتر           

it_is(carnivorous):- 

      confirm(has,pointed_teeth),!.%اسنان حادة 
it_is(carnivorous):-% آكل اللحوم 
      confirm(does,eat_meat),!.% ياكل اللحم 
it_is(bird):-%ِطَائر 

      confirm(has,feathers),%رِيش 

      confirm(does,lay_egges),!.% يبيض 
 

confirm(X,Y):-db_confirm(X,Y),!. 

confirm(X,Y):-not(db_denied(X,Y)),!,check_if(X,Y). 

 

check_if(X,Y):-write(X),write(" it "),write(Y),nl, 

              readln(Reply),remember(X,Y,Reply). 

 

remember(X,Y,yes):-asserta(db_confirm(X,Y)). 

remember(X,Y,no):-asserta(db_denied(X,Y)),fail. 
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goal: 

    guess_animal. 

/*has it hair 

yes 

has it pointed_teeth 

yes 

has it stripes 

yes 

Your animal is a(n)tiger 

--- 

has it hair 

no 

does it give_milk 

yes 

has it pointed_teeth 

no 

does it eat_meat 

no 

Your animal is a(n)blue_whale 

----- 

has it hair 

yes 

has it pointed_teeth 

no 

does it eat_meat 

no 

Your animal is a(n)blue_whale yes 

---- 

has it hair 

no 

does it give_milk 

no 

does it swim 

no 

does it fly 

yes 

Your animal is a(n)eagle yes 

*/ 
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Backward Chaining System 
So far, we have looked at how rule-based systems can be used to draw new 

conclusions from existing data, adding these conclusions to a working 

memory. This approach is most useful when you know all the initial facts, but 

don't have much idea what the conclusion might be. 

 

If you do know what the conclusion might be, or have some specific 

hypothesis to test, forward chaining systems may be inefficient. You could 

keep on forward chaining until no more rules apply or you have added your 

hypothesis to the working memory. But in the process the system is likely to 

do a lot of irrelevant work, adding uninteresting conclusions to working 

memory. For example, suppose we are interested in whether john is in a bad-

mood.  

We could repeatedly fire rules, updating the working memory, 

checking each time whether (bad-mood john) is in the new working memory. 

But maybe we had a whole batch of rules for drawing conclusions about what 

happens when I'm lecturing, or what happens in February - we really don't 

care about this, so would rather only have to draw the conclusions that are 

relevant to the goal. 

 

This can be done by backward chaining from the goal state (or on some 

hypothesized state that we are interested in). 

This is essentially what Prolog does, so it should be fairly familiar to you by 

now. Given a goal state to try and prove (e.g., bad-mood(john)) the system will 

first check to see if the goal matches the initial facts given. If it does, then that 

goal succeeds. If it doesn't the system will look for rules whose conclusions 

(previously referred to as actions) match the goal.  

 

One such rule will be chosen, and the system will then try to prove any 

facts in the preconditions of the rule using the same procedure, setting these 

as new goals to prove. Note that a backward chaining system does NOT need 

to update a working memory. Instead, it needs to keep track of what goals it 

needs to prove to prove its main hypothesis. 

 

In principle we can use the same set of rules for both forward and 

backward chaining. However, in practice we may choose to write the rules 

slightly differently if we are going to be using them for backward chaining. In 

backward chaining we are concerned with matching the conclusion of a rule 

against some goal that we are trying to prove. So the 'then' part of the rule is 

usually not expressed as an action to take (e.g., add/delete), but as a state 
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which will be true if the premises are true. 

 

So, suppose we have the following rules: 

 
1.  IF lecturing(X) AND marking-practicals(X) THEN overworked(X) 

2.  IF month(february) THEN lecturing(john) 

3.  IF month(february) THEN marking-practicals(john) 

4.  IF overworked(X) THEN bad-mood(X) 

5. IF slept-badly(X) THEN bad-mood(X) 

 

And there is only one initial fact in the worked memory is: month(february), and 

we're trying to prove bad-mood(john) 
 

First we check whether the goal state (bad-mood(john)) is in the initial facts in 

the working memory. As it isn't there, we will add the goal to working memory 

and then we try matching it against the conclusions of the rules in the 

Production Rules.  

It matches rules 4 and 5. Let us assume that rule 4 is chosen first - it 

will try to prove overworked(john). Rule 1 can be used, and the system will try 

to prove lecturing(john) and marking-practicals(john). Trying to prove the first 

goal, it will match rule 2 and try to prove month(february). This is a fact in the 

working memory. We still have to prove marking-practicals(john). Rule 3 can be 

used, try to prove month(february). This is a fact in the working memory and 

in this place we have proved the original goal bad-mood(john). 

 

One way of implementing this basic mechanism is to use a stack of 

goals still to satisfy. You should repeatedly pop a goal of the stack, and try 

and prove it. If its in the set of initial facts then its proved. If it matches a rule 

which has a set of preconditions then the goals in the precondition are pushed 

onto the stack. Of course, this doesn't tell us what to do when there are several 

rules which may be used to prove a goal. 

 

 If we were using Prolog to implement this kind of algorithm we might 

rely on its backtracking mechanism - it'll try one rule, and if that results in 

failure it will go back and try the other. However, if we use a programming 

language without a built in search procedure we need to decide explicitly what 

to do. One good approach is to use an agenda, where each item on the agenda 

represents one alternative path in the search for a solution.  

The system should try expanding each item on the agenda, 

systematically trying all possibilities until it finds a solution (or fails to). The 

particular method used for selecting items off the agenda determines the 
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search strategy - in other words, determines how you decide on which options 

to try, in what order, when solving your problem. We'll go into this in much 

more detail in the section on search. 

 

Backward Chaining Algorithm (Goal-driven search algorithm) 

 

1. A goal (a pattern) is added to the working memory. 

2. The control structure compares matching of the pattern with THEN part of 

rules in the production rules. 

3. Firing a rule, its IF part is added to the working memory and the process 

continues. 

4. Search stops when facts on problem are found. 

 

 

Example: Suppose you have the following production rules: 

 

Write the Backward Chaining Algorithm and then trace this algorithm using 

the given production rules to verify the start fact through the goal. Draw 

AND/OR graph for the tracing of this algorithm.  

 

Solution: 

Backward Chaining Algorithm (Goal-driven search algo.): 

1. A goal (a pattern) is added to the working memory. 

2. The control structure compares matching of the pattern with THEN part of 

rules in the production rules. 

3. Firing a rule, its IF part is added to the working memory and the process 

continues. 

4. Search stops when facts on problem are found. 

 

The tracing for this algorithm using the given production rules will be shown 

as follows: 
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The AND/OR graph for this tracing is shown as follows:  
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/* A prolog program that applies the concept of Backward chaining system in animal classification. */ 

                  

domains 

      i=integer 

      s=symbol. 

      f1=db_confirm(s,s). 

      list_f1=f1*. 

      f2=db_denied(s,s). 

      list_f2=f2*. 

database 

      db_confirm(s,s) 

      db_denied(s,s) 

predicates 

      identify(s) 

      it_is(s) 

      confirm(s,s) 

      remember(s,s,s) 

      check_if(s,s) 

      guess_animal. 

      get_confirm(f1) 

      get_denied(f2) 

      n_confirm. 

      n_denied. 

      length(list_f1,i). 

      length(list_f2,i). 

      print_list(list_f1). 

      print_list(list_f2) 

       

clauses 

identify(giraffe):-% زَرافة 

      it_is(ungulate),%ذو حوافر 
      confirm(has,long_neck),% عنق طويل 

      confirm(has,long_legs),%سيقان طويلة 

      confirm(has,dark_spots),!.%بقع داكنة 
identify(zebra):-%حمار وحشي 

      it_is(ungulate),%ذو حوافر 
      confirm(has,black_stripes),!.%خطوط سوداء       

identify(cheetah):-%فهد 
      it_is(mammal),%لبون 
      it_is(carnivorous),% آكل اللحوم 
      confirm(has,tawny_color),% لون أسمر مصفر 
      confirm(has,black_spots),!.%بقع داكنة 
identify(triger):- 

      it_is(mammal),%لبون 
      it_is(carnivorous),% آكل اللحوم 
      confirm(has,tawny_color),% لون أسمر مصفر 
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      confirm(has,black_strips),!.%بقع داكنة 
identify(eagle):-%نسَْر 
      it_is(bird),% ِطَائر 

      confirm(does,fly),% َيطير , يحلق 
      it_is(carnivorous),% آكل اللحوم 
      confirm(has,use_as_national_symbol),!.% يستعمل احيانا كرمز وطني 
                

it_is(mammal):-%لبون  
      confirm(has,hair),!.%ْشَعر 

it_is(mammal):-%لبون 
      confirm(does,give_milk).%يعطي الحَلِيب 
it_is(ungulate):-%ذو حوافر 
      it_is(mammal),%لبون 
      confirm(has,hooves),% حوافر 

      confirm(does,chew_cud),!.%مجتر           

it_is(carnivorous):- 

      confirm(has,pointed_teeth),!.%اسنان حادة 
it_is(carnivorous):-% آكل اللحوم 
      confirm(does,eat_meat),!.% ياكل اللحم 
it_is(bird):-%ِطَائر 

      confirm(has,feathers),%رِيش 

      confirm(does,lay_egges),!.% يبيض 
       

confirm(X,Y):- 

      db_confirm(X,Y),!. 

confirm(X,Y):- 

      not(db_denied(X,Y)),!,check_if(X,Y). 

 

check_if(X,Y):- 

      write(X),write(" it "),write(Y),nl, 

      readln(Reply),remember(X,Y,Reply). 

 

remember(X,Y,yes):-assert(db_confirm(X,Y)). 

remember(X,Y,no):-assert(db_denied(X,Y)),fail.       

                 

guess_animal:- 

       identify(X),write("Your animal is a(n)",X),nl,nl, 

       n_confirm, 

       n_denied,!.  

guess_animal:- 

       write("Sorry,your animal is unknown"),nl. 

        

get_confirm(db_confirm(X,Y)):-db_confirm(X,Y). 

get_denied(db_denied(X,Y)):-db_denied(X,Y). 

 

n_confirm:- 
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       findall(S,get_confirm(S),L), 

       write("DataBase for correct replies are:\n"), 

       print_list(L), 

       length(L,X), 

       write("Number of correct replies=",X),nl. 

 

n_denied:- 

       findall(S,get_denied(S),L), 

       write("DataBase for uncorrect replies are:\n"), 

       print_list(L), 

       length(L,X), 

       write("Number of uncorrect replies=",X),nl. 

        

length([],0):-!. 

length([_|T],X):- 

  length(T,X1), 

  X=X1+1.        

              

print_list([]):-!. 

print_list([H|T]):- 

     write(H),nl, 

     print_list(T). 

 

goal:guess_animal. 

 

/* 

has it hair 

no 

does it give_milk 

no 

has it feathers 

yes 

does it lay_egges 

yes 

does it fly 

yes 

has it pointed_teeth 

no 

does it eat_meat 

yes 

has it use_as_national_symbol 

yes 

Your animal is a(n)eagle 

 

DataBase for correct replies are: 

db_confirm("has","feathers") 
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db_confirm("does","lay_egges") 

db_confirm("does","fly") 

db_confirm("does","eat_meat") 

db_confirm("has","use_as_national_symbol") 

Number of correct replies=5 

DataBase for uncorrect replies are: 

db_denied("has","hair") 

db_denied("does","give_milk") 

db_denied("has","pointed_teeth") 

Number of uncorrect replies=3 

yes 

*/ 

%------------------------------------------- 
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Determining the control strategy for some problems 

Whether you use forward or backward chaining to solve a problem depends 

on the properties of your rule set and initial facts. So, we must understand the 

comparison between forward or backward reasoning. 

 

Forwards vs. Backwards Reasoning 

 

Forward chaining is the best choice if: 

 

1- All the facts are provided with the problem statement; or  

2- There are many possible goals, and a smaller number of patterns of 

data; or 

3- There isn't any sensible way to guess what the goal is at the beginning 

of the consultation. 

Backward chaining is the best choice if: 

1- The goal is given in the problem statement; or 

2- The system has been built so that it asks for pieces of data rather than 

expecting all the facts to be presented to it. 
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Path Building Using Forward Chaining  
Forward chaining is a method used in rule-based systems to derive conclusions from a 

given set of facts by repeatedly applying inference rules. It is data-driven and starts with 

the initial facts, applying rules to generate new facts until a specific goal is reached. This 

method is especially useful for pathfinding problems, such as navigating a maze or 

finding routes in a network. 

 

Detailed Process of Forward Chaining for Path Building 

 
1. Initialization 

Start with a set of known facts about the environment (e.g., connections between nodes in 

a graph). 

Define the goal state that needs to be reached. 

2. Inference Rules 

Define rules that describe how new facts can be inferred from existing facts. In the 

context of pathfinding, these rules will typically describe how to move from one node to 

another if certain conditions are met. 

3. Iterative Application of Rules 

Continuously apply the rules to the known facts to infer new facts. 

Update the set of known facts with each iteration. 

4. Termination 

The process terminates when the goal state is inferred (i.e., when a path to the goal is 

found) or when no more new facts can be inferred. 

 

Example: There are three routes in the shape below. We can use forward chaining for 

building a path form a to g.  There are three main movements. The movements are from 

(a to d and g), (a to c and g), and (a to b and g). Each moving is consisted of two 

movements: 

 

 Moving from     a   t o    d 

 Moving from     d   t o    g 

 Moving from     a   t o    c 

 Moving from     c   t o    g 

 Moving from     a   t o    b 

 Moving from     b   t o    g 
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/* A prolog program that applies the concept of Path Building Using Forward Chaining. */ 

 

predicates 

    run(char,char). 

    find_rout (char,char). 

    path(char,char). 

    write_rout. 

database 

    rout(char,char). 

clauses 

    run(_,_):-retractall(_),fail.  

    run(S,E):-find_rout(S,E),fail. 

    run(_,_):-write_rout. 

             
    find_rout(S,E):-path(S,E),asserta(rout(S,E)),!. 

    find_rout(S,E):-path(S,M), % Here the cut(!) should be active in case If you want 

only one solution.   

              find_rout(M,E), asserta(rout(S,M)). 

      
    write_rout:-rout(S,E), 

             write("\nSearching from     ", S,"   t o   ",E),   

             nl,fail. 

    write_rout. 

     

    path('a','b').                    

    path('a','c'). 

    path('a','d'). 

    path('b','g'). 

    path('c','g'). 

    path('d','g'). 

 
/*goal: 

                run('a','g'). 

    Searching from     a   t o   d 

    Searching from     d   t o   g 

    Searching from     a   t o   c 

    Searching from     c   t o   g 

    Searching from     a   t o   b 

    Searching from     b   t o   g 

    yes*/ 
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Exercise: There are three routes in the shape below. Write a prolog program (Using a database concept) 

to move from (a to d and g), (a to c and g), and (a to b and g). For example, take this goal: run('a','g'). 

The output will be as follows: 

 

 Moving from     a   t o    d 

 Moving from     d   t o    g 

 Moving from     a   t o    c 

 Moving from     c   t o    g 

 Moving from     a   t o    b 

 Moving from     b   t o    g 

 

 

You can benefit from the manual tracing for the above program as in the figure below: 
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Path Building Using Backward Chaining 

Backward chaining is a method used to find paths or achieve goals by starting from the 

goal and working backward to identify the necessary conditions. 

 Detailed Process of Backward Chaining for Path Building: 

1. Define the Goal: Clearly state the desired outcome (e.g., reaching a location). 

2. Identify Rules: List the conditions or rules that lead to the goal. 

3. Start with the Goal: Ask what must be true to achieve this goal. 

4. Work Backward: For each condition, determine the previous states or actions 

needed to satisfy those conditions. 

5. Construct the Path: Build a sequence of actions from the starting point to the 

goal based on the identified conditions. 

6. Verify the Path: Ensure that each step logically leads to the next and satisfies the 

goal. 

Example: There are three routes in the shape below. We can use backward chaining for 

building a path form a to g.  There are three main movements. The movements are from 

(g to d and a), (g to c and a), and (g to b and a). Each moving is consisted of two 

movements: 

 

      Searching from     g   t o   d 

      Searching from     d   t o   a 

      Searching from     g   t o   c 

      Searching from     c   t o   a 

      Searching from     g   t o   b 

      Searching from     b   t o   a 
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 /* A prolog program that applies the concept of Path Building Using Backward Chaining. */ 

 

 

predicates 

    run(char,char). 

    find_rout (char,char). 

    path(char,char). 

    write_rout. 

database 

    rout (char,char). 

clauses 

    run(_,_):- retractall(_),fail. 

    run(S,E):-find_rout(S,E),fail. 

    run(_,_):- write_rout. 

         

    find_rout(S,E):-path(S,E),asserta(rout(S,E)). 

    find_rout(S,E):-path(M,E), %Here the cut(!) should be active in case If you want 

only one solution. 

           find_rout(S,M), asserta(rout(M,E)). 

      

    write_rout:-rout(S,E), 

           write(" \nSearching from     ", E,"   t o   ",S), 

           nl,fail. 

    write_rout. 

 

     path('a','b').                                             

     path('a','c'). 

     path('a','d'). 

     path('b','g'). 

     path('c','g'). 

     path('d','g'). 

     

/*goal: 

               run('a','g'). 

      Searching from     g   t o   d 

      Searching from     d   t o   a 

      Searching from     g   t o   c 

      Searching from     c   t o   a 

      Searching from     g   t o   b 

      Searching from     b   t o   a 

     Yes */ 
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Uninformed Search (Blind Search) 
 

1-Breadth – First – Search 
In breadth –first search, when a state is examined, all of its siblings are 

examined before any of its children. The space is searched level-by-level, 

proceeding all the way across one level before doing down to the next level. 
 

 
 

 

Breadth – first – search Algorithm 

Begin 

Open: = [start]; 

Closed: = [ ]; 

While open ≠ [ ] do 

Begin 

Remove left most state from open, call it x; 

If x is a goal the return (success) 

Else 

Begin 

Generate children of x; 

Put x on closed; 

Eliminate children of x on open or closed; 

Put remaining children on right end of open 

End   

End 

Return (failure) 

End. 
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Example: 
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 /* A prolog program that applies the concept of breadth first search. */ 
 

domains 

     c=char. 

     l=c*.     

predicates 

    breadth(l,l,c). 

    difference(l,l,l). 

    append(l,l,l).  

    member(c,l). 

    print(l,l). 

    path(c,c).  

clauses  

    breadth([],_,_):-!,write("Goal is not found "). 

    breadth([G|T_Open],Closed,G):-   

            !,print([G|T_Open],Closed),write("Goal is found "),nl.  

    breadth([H|T_Open],Closed,G):-  

           print([H|T_Open],Closed), 

           findall(X,path(H,X),Children), 

           append(Closed,[H],Closed1), 

           difference(Children,T_Open,Children1), 

           difference(Children1,Closed1,Children2), 

           append(T_Open,Children2,Open1),%Put remaining children on rigth of Open. 

           breadth(Open1,Closed1,G). 

         

    difference([],_,[]):- !.  

    difference([H|T],Z,[H|T1]):-                                    

           not(member(H,Z)),!, 

           difference(T,Z,T1). 

    difference([_|T],Z,T1):-                                       

           difference(T,Z,T1). 

 

    member(H,[H|_]):-!. 

    member(H,[_|T]):-            

           member(H,T).  

                  

    append([],L,L):-!. 

    append([H|T],L,[H|M]):- 
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           append(T,L,M). 

       

    print(Open,Closed):- 

           write("Open=",Open,"       ","Closed=",Closed),nl. 

 

    path('a','b').                                                                               

    path('a','c'). 

    path('a','d'). 

    path('b','e'). 

    path('b','c').  

    path('d','c'). 

    path('d','f'). 

    path('c','g'). 

 

/*goal:breadth(['a'],[],'f'). 

   Open=['a']                Closed=[] 

   Open=['b','c','d']       Closed=['a'] 

   Open=['c','d','e']       Closed=['a','b'] 

   Open=['d','e','g']       Closed=['a','b','c'] 

   Open=['e','g','f']       Closed=['a','b','c','d'] 

   Open=['g','f']           Closed=['a','b','c','d','e'] 

   Open=['f']               Closed=['a','b','c','d','e','g'] 

   Goal is found      */ 
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2-Depth – first – search 
In depth – first – search, when a state is examined, all of its children 

and their descendants are examined before any of its siblings. Depth – first 

search goes deeper in to the search space whenever this is possible only when 

no further descendants of a state cam found owe its 

 
 

Depth – first – search Algorithm 
Begin 

Open: = [start]; 

Closed: = [ ]; 

While open ≠ [ ] do 

Remove leftmost state from open, call it x; 

If x is a goal then return (success) 

Else begin 

Generate children of x; 

Put x on closed; 

Eliminate children of x on open or closed; put remaining children on 

left end of open end 

End; 

Return (failure) 

End. 
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/* A prolog program that applies the concept of depth first search. */ 
 

%Depth first search program 
domains 

     c=char. 

     l=c*.     

predicates 

    depth(l,l,c). 

    difference(l,l,l). 

    append(l,l,l).  

    member(c,l). 

    print(l,l). 

    path(c,c).  

clauses  

    depth([],_,_):-!,write("Goal is not found "). 

 

    depth([G|T_Open],Closed,G):-!,print([G|T_Open],Closed),write("Goal is found "),nl.  

    depth([H|T_Open],Closed,G):-  

           print([H|T_Open],Closed),%Print Open & Closed. 

           findall(X,path(H,X),Children),%Find children of H. 

           append(Closed,[H],Closed1),%Put H in Closed. 

           difference(Children,T_Open,Children1),%Ignore children of H if already on Open or  

           difference(Children1,Closed1,Children2),%Closed 

           append(Children2,T_Open,Open1),%Put remaining children on left of Open. 

           depth(Open1,Closed1,G). 

       

    difference([],_,[]):- !.  

    difference([H|T],Z,[H|T1]):-                                    

           not(member(H,Z)),!, 

           difference(T,Z,T1). 

    difference([_|T],Z,T1):-                                       

           difference(T,Z,T1). 

     

    member(H,[H|_]):-!. 

    member(H,[_|T]):-            

           member(H,T).  

                  

    append([],L,L):-!. 

    append([H|T],L,[H|M]):- 
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           append(T,L,M). 

       

    print(Open,Closed):- 

           write("Open=",Open,"       ","Closed=",Closed),nl. 

     

    path('a','b').                                                                           

    path('a','c'). 

    path('a','d'). 

    path('b','e'). 

    path('b','c').  

    path('d','c'). 

    path('d','f'). 

    path('c','g'). 

/* 

goal:depth(['a'],[],'f'). 

Open=['a']       Closed=[] 

Open=['b','c','d']       Closed=['a'] 

Open=['e','c','d']       Closed=['a','b'] 

Open=['c','d']       Closed=['a','b','e'] 

Open=['g','d']       Closed=['a','b','e','c'] 

Open=['d']       Closed=['a','b','e','c','g'] 

Open=['f']       Closed=['a','b','e','c','g','d'] 

Goal is found  */ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

Problem Reduction Using AND/OR Graphs 

 
AND/OR graphs are a suitable representation for problems that can be 

naturally decomposed into mutually independent subproblems.  Examples of 

such problems include route finding, symbolic integration, game playing, 

theorem proving, etc. The AND/OR graph representation relies on  the 

decomposition  of problems  into  subproblems. Decomposition  into  

subproblems  is  advantageous  if  the  subproblems  are mutually independent,  

and can therefore be solved  independently  of  each  other. Let us illustrate 

this with an example.  Consider  the problem  of finding a route  in a  road 

map  between  two given  cities,  as  shown  in Figure (1) below: 
 

 

 

The problem could, of course, be formulated as path finding in a state space.  

The corresponding state space would look just like the map:  the nodes  in the  

state  space  correspond  to cities, the arcs  correspond  to direct  connections  

between  cities,  arc  costs  correspond to distances  between  cities. However, 

let us construct another representation of this problem, based on a natural 

decomposition of the problem. 

In the map of Figure above, there is also a river. Let us  assume  that  there are  

only  two bridges  at which  the  river can  be  crossed,  one  bridge  at city f 

and the  other  at  city  g. Obviously,  our  route  will have  to  include  one  of  

the  bridges; so it  will  have to  go  through f  or  through g. We have, then, 

two major alternatives: 

To find a path between a and  z, find either 

(1)  A path from a to z via  f,  or 
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(2) A path from  a to z via g. 

Each of these two alternative problems can now be decomposed as follows: 

(1)  To find a path from a to z via  f: 

       1.1 Find a path from a to  f,  and 

       1.2 Find a path from  f  to z. 

(2) To find a path from a  to z via  g: 

       2.1 Find a path from a  to g, and 

       2.2 Find a path from g to z. 

The decomposition can be pictured as an AND/OR graph as in the figure (2) 

below: 

 

Notice the curved arcs which indicate the AND relationship between  

subproblems.  Of course, the graph  in Figure  above  is  only the top part of  

a coresponding AND/OR  tree. Further decomposition of subproblems  could 

be based  on the introduction of additional  intermediate cities. 

In principle,  a node  can  issue  both AND-related  arcs  and OR-related  arcs.  

We will, however, assume  that each  node  has  either  only AND  successors  

or only OR successors.  Each AND/OR graph can be transformed into this 

form by introducing auxiliary OR nodes if necessary.  Then, a node  that only 

issues AND  arcs  is  called  an AND  node;  a node  that only  issues  OR arcs  

is  called  an OR node. In the  state-space  representation,  a  solution  to the  

problem  was  a  path  in the  state  space while   in  the  AND/OR  

representation,  the solution has to include all  the  subproblems  of an AND  

node.  

For  the  shortest  route  problem  of Figure  (1),  an  AND/OR graph  including  

a cost  function  can  be  defined  as  follows: 
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1- OR nodes  are  of  the  form  X-Z, meaning:  find  a  shortest  path  from  

X to Z.  

2- AND  nodes  are  of the  form X-Z via Y meaning:  find a  shortest  path  

from X to Z under  the  constraint  that  the path  goes  through  Y. 

3- A  node X-Z  is a goal  node  (primitive  problem)  if X and  Z  are  

directly connected  in the map. 

4- The  cost  of each  goal  node  X-Z is  the  given  road  distance  between  

X and Z. 

5- The costs of all other (non-terminal) nodes are 0. 

The cost of a solution graph  is the sum of  the costs  of all the nodes  in  the 

solution  graph  (in our case,  this  is  just the sum  over  the  terminal nodes).  

Figure (3) below shows the best solution tree with a cost equal to 9. This  tree  

corresponds  to the path  [a,b,d,f,i,z]. This path  can  be reconstructed  from 

the solution  tree by  visiting  all  the  leaves  in this  tree  in the left-to-right 

order. 
 

The second route form a-z via g will cost 12.  
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Example: In the figure (a) below,  there  are  costs  attached  to arcs. The  cost  

of a  solution  graph  as  the  sum  of all  the  arc  costs  in  the graph.   
 

 
Find all the solution graphs and then determine the solution graph with the 

minimum cost. 

Solution: 

As we are  normally  interested  in  the minimum  cost,  the  solution  graph 

in Figure (c) below  will be  preferred because it has summation cost equal to 

8 and figure (b) is ignored because it has summation cost equal to 9. 
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AND/OR Graphs with Heuristic Estimates   
The basic  search  procedures  of the previous  section  search  AND/OR  

graphs systematically  and  exhaustively,  without any  heuristic  guidance.  

For complex problems  such  procedures  are  too inefficient due  to the 

combinatorial  complexity  of  the  search  space. The algorithm that using of 

heuristic guidance in AND/OR graph called AO* algorithm. For a node N in 

the search tree,  H(N) will denote  its  estimated  difficulty. For a  tip node  N 

of the  current  search  tree,  H(N)  is  simply  h(N)  . On the  other hand,  for 

an  interior node  of the search  tree we  do not have  to use  function  h directly 

because  we already  have some  additional  information about such  a node;  

that  is,  we  already  know  its  successors.  For an interior OR node N we 

approximate its difficulty as: 

 
where  cost(N,Ni)  is  the cost  of the arc  from N to Ni,. The minimization  

rule  in this  formula  is  justified by  the  fact  that, to solve  N, we  just  have  

to solve  one  of its  successors. 

The difficulty of an AND  node N is approximated  by: 

 
The two above functions are explained explicitly in the Figure (4) below: 

 
 

 

In practice, another measure, F, defined in terms of H, instead of the     H-

values. Let a  node  M be  the predecessor  of N in the search  tree, and  the  

cost  of the arc  from M to N be  cost(M,N),  then  we define: 
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Example: Given the previous graph in Figure (a), that is: 

 

 

 

Expand the initial search tree (A) using AO* algorithm. 
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Solution: The initial search tree (A) will be expanded to produce four trees 

B, C, D, and E respectively as follows:  
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Constraint Satisfaction Problems 

 
Constraint satisfaction problem (or CSP) is defined by a set of variables, 

X1,X2, …, Xn, and a set of constraints, C1,C2, …, Cm. Each variable Xi has 

a nonempty domain Di of possible values. Each constraint Ci involves some 

subset of the variables and specifies the allowable combinations of values for 

that subset. A state of the problem is defined by an assignment of values to 

some or all of the variables, {Xi = vi , Xj = vj ,…}. An assignment that does 

not violate any constraints is called a consistent or legal assignment. A 

complete assignment is one in which every variable is mentioned, and a 

solution to a CSP is a complete assignment that satisfies all the constraints. 

Some CSPs also require a solution that maximizes an objective function. 

Example: Consider the following map. The task is to color the map using the 

four colors Red, Blue, Yellow, and Green, such that no two adjacent regions 

take the same color.  
 

 

 

 

 

 

1.  Formulate this problem as a CSP. Clearly state the variables, domains, 

and constraints.  

2.  Describe the topology of the constraint graph.  

3.  Color the map and Show the steps.  

 

 

 

 

 

 

 

Solution: 
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1.  The formulation of the problem as a CSP will be as follows: 

a.  Variables={X1,X2,X3,X4,X5,X6} 

b.  Domain={Red,Blue,Yellow,Green} 

c. Constraints=adjacent regions must have different colors. 

                                e.g.X1≠X2,X1≠X5,X1≠X6,X1≠X3, X2≠X4… 

d.  Solutions are assignments satisfying all constraints. 

2.  Constraint graph:  

 

 

 
 

 

3.  The steps of the algorithm is shown as follows:  
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Prolog Program for the Map Coloring Problem 
 

A simple Prolog program that demonstrates the use of Constraint Satisfaction Problems 

(CSP) to solve a color problem. In this example, the problem is to color a map of four 

regions (A, B, C, D) such that no two adjacent regions have the same color. We'll use three 

colors: red, green, and blue. 

 

 

% Define the colors available 

color(red). 

color(green). 

color(blue). 

 

% Define the constraints 

different(red, green). 

different(red, blue). 

different(green, red). 

different(green, blue). 

different(blue, red). 

different(blue, green). 

 

% Define the CSP for the map coloring problem 

     coloring(A, B, C, D) :- 

                    color(A), color(B), color(C), color(D), 

                    different(A, B), % A is adjacent to B 

                    different(A, C), % A is adjacent to C 

                    different(B, C), % B is adjacent to C 

                    different(B, D), % B is adjacent to D 

                    different(C, D). % C is adjacent to D 
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% Query to find a solution: 

                   coloring(A, B, C, D). 

 

Explanation: 

 

1. Colors Definition: 

   - We define the available colors using the `color/1` predicate. 

 

2. Constraints Definition: 

   - We define the `different/2` predicate to ensure that two colors are different. 

 

3. CSP Definition: 

   - The `coloring/4` predicate defines the map coloring problem. It assigns a color to each 

region (A, B, C, D) and applies the constraints to ensure no two adjacent regions share the 

same color. 

 

4. Query: 

   - The query: coloring(A, B, C, D). % finds a solution to the problem, if one exists. 

 

The Prolog interpreter will return the possible colorings for the regions that satisfy the 

constraints. For example: 

 

A = red, 

B = green, 

C = blue, 

D = red. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quick review for prolog programs (database and compound objects) 
 

Database: 

 

Example1: 

1- Assert predicate: 

• assert(X) or assertz(X) :Adds a new fact to the database. Term is asserted 

as the last fact with the same key predicate. 

✓ For example;  

domains 

s=string. 

ls=s*. 

database 

person(s) 

predicates 

list_preson(ls) 

clauses 

list_preson(L):-  

 assert(person ("Ali")), 

 assert(person ("Zaki")), 

 assert(person ("Suha")), 

 findall(X,person(X),L). 

 

goal: list_preson(L). 

%L=["Ali","Zaki","Suha"] 

 

•  asserta(X) :Same as assert, but adds a fact X at the beginning of the 

database. 

✓ For example;  
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domains 

s=string. 

ls=s*. 

database 

person(s) 

predicates 

list_preson(ls) 

clauses 

list_preson(L):-  

 asserta(person ("Ali")), 

 asserta(person ("Zaki")), 

 asserta(person ("Suha")), 

 findall(X,person(X),L). 

 

goal: list_preson(L).  %L=["Suha","Zaki","Ali"] 

 

     2-    Retract predicate: 

• retract(X): Removes a fact X from the database. 

✓ For example; 

domains 

s=string. 

ls=s*. 

database 

person(s) 

predicates 

list_preson(ls) 

clauses 

list_preson(L):-  

 assert(person ("Ali")), 

 assert(person ("Zaki")), 

 assert(person ("Suha")), 

 retract(person ("Zaki")), 

 findall(X,person(X),L). 

 

goal: list_preson(L). 

%L=["Ali","Suha"] 

• retractall(X): Removes all facts from the database for which the head 

unifies   with X. 

✓ For example; 

domains 

s=string. 

ls=s*. 

database 

person(s) 

predicates 

list_preson(ls) 
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clauses 

list_preson(L):-  

 assert(person ("Ali")), 

 assert(person ("Zaki")), 

 assert(person ("Suha")), 

 retractall(person (_)),% retractall(_), 

 findall(X,person(X),L). 

 

goal: list_preson(L). 

%L=[] 

 

 

 

 

 

 

Example2: Insert the following facts to a database then put them in a list. The facts are: 

f(1). 

f(2). 

f(3). 

Solution: 

domains 

 i=integer 

 f=f(i). 

 lf=f*. 

database 

 f(i). 

predicates 

 run(lf). 

 g(f). 

 test 

clauses 

 test:- 

 assertz(f(1)), 

 assertz(f(2)), 

 assertz(f(3)). 

  

g(f(X)):-f(X). 

run(L):-test, 

       findall(S,g(S),L). 

      

goal: 

   run(X).  %X=[f(1),f(2),f(3)] 

 

 

 



53 

 

Example3: Use a database concept to perform the following goal:  

Goal:  run("He bought 7 oranges  their total  weight 1.5 kg"). 

And give the following output: 

String=   He      length=   2 

String=   bought      length=   6 

String=   oranges      length=   7 

String=   their      length=   5 

String=   total      length=   5 

String=   weight      length=   6 

String=   kg      length=   2               

  

 

 

 

 

 

 

 

Solution: 

database 

db_string(String,integer) 

predicates 

split_tokens(string) 

run(string) 

print_string 

clauses 

run(S):-retractall(_), 

  split_tokens(S), 

  print_string. 

     

split_tokens(S):- 

   fronttoken(S,W,R), 

   isname(W),!,str_len(W,N), 

   assert(db_string(W,N)), 

   split_tokens(R). 

split_tokens(S):- 

   fronttoken(S,_,R),!,split_tokens(R). 

split_tokens(""). 

  

print_string:- 

db_string(S,N),write("String=   ",S,"      length=   ",N),nl,fail. 

print_string. 

 

goal  

    run("He bought 7 oranges  their total  weight 1.5 kg"). 

/*String=   He      length=   2 
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String=   bought      length=   6 

String=   oranges      length=   7 

String=   their      length=   5 

String=   total      length=   5 

String=   weight      length=   6 

String=   kg      length=   2 

yes         

 */ 

 

 

 

 

 

 

 

 

 

      Compound objects 

 

Example1: 
domains 

   predecessor=parent(father,son);child(string). 

   father=father(string). 

   son=son(predecessor). 

predicates 

  father(string,string). 

  grandfather(predecessor). 

clauses 

  father("Ali","Zaki"). 

  father("Zaki","Suha").   

   

  grandfather(parent(X,son(parent(Y,son(Z))))):- 

    father(X1,Y1), 

    father(Y1,Z1), 

    X=father(X1), 

    Y=father(Y1), 

    Z=child(Z1). 

         

goal: 

    grandfather(X). 

    %X=parent(father("Ali"),son(parent(father("Zaki"),son(child("Suha"))))) 
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Example2: 
domains 

st=s(symbol,integer) 

l=st* 

predicates 

member(st,l) 

clauses                  

member(s(A,_),[s(A,_)|_]):-!. 

member(X,[_|T]):- 

        member(X,T).  

                   

goal 

   member(s(a,5),[s(c,5),s(a,3),s(d,6)]).%yes 

 

 

 

 

 

 

 

Example3: 
domains 

st=s(symbol,integer) 

l=st* 

predicates 

member(st,l,integer,integer) 

clauses                         

                         

member(s(A,_),[s(A,_)|_],N,N):-!. 

member(X,[_|T],N1,N):- 

        N2=N1+1,member(X,T,N2,N). 

                                   

goal 

% member(s(a,5),[s(c,5),s(a,3),s(d,6)],1,N).%N=2 

member(s(a,5),[s(c,5),s(g,3),s(d,6),s(a,7)],1,N).%N=4 

%member(s(a,2),[s(a,5),s(g,3),s(d,6),s(c,7)],1,N).%N=1 

%member(s(f,2),[s(a,5),s(g,3),s(d,6),s(c,7)],1,N).%No Solution 

 

Example4: 
domains 

st=s(symbol,integer) 

l=st* 

predicates 

member(st,l,st) 

clauses                  
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member(s(A,_),[s(A,X)|_],s(A,X)):- !. 

member(X,[_|T],Z):- 

        member(X,T,Z). 

      

goal 

   member(s(a,5),[s(c,5),s(a,3),s(d,6)],X).%X=s("a",3) 

   %member(s(a,3),[s(c,5),s(a,5),s(d,6)],X).%X=s("a",5) 

   %member(s(d,1),[s(c,5),s(a,5),s(d,6)],X).%X=s("d",6) 

   %member(s(c,1),[s(c,5),s(a,5),s(d,6)],X).%X=s("c",5)  

 

 

Example5: 
domains 

st=s(symbol,integer) 

l=st* 

i=integer 

predicates 

del(st,l,l) 

clauses                         

del(s(A,_),[s(A,_)|L],L):-!. 

del(X,[H|T],[H|Z]):- 

   del(X,T,Z).  

goal: 

%del(s(g,9),[s(a,5),s(g,3),s(d,6),s(c,7)],X).%X=[s("a",5),s("d",6),s("c",7)] 

 

 

Example7: 
domains 

st=s(symbol,integer) 

l=st* 

predicates 

difference(l,l,l) 

member(st,l) 

clauses 

difference([],_,[]):-!.  

difference([H|T],Z,[H|T1]):-                                    

                      not(member(H,Z)),!, 

                      difference(T,Z,T1). 

                   

difference([_|T],X,Y):- 

  difference(T,X,Y). 

 

member(s(A,_),[s(A,_)|_]):-!. 

member(X,[_|T]):- 

        member(X,T). 

         



57 

 

goal         

 difference([s(k,3),s(a,0),s(f,2),s(b,6)],[s(d,10),s(b,8),s(a,5),s(g,9)],X). 

 % X=[s("k",3),s("f",2)] 
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