

Computer Science Department
 بوساحلا مولع مسق

Searching& Sorting Algorithms
 بیترتلاو ثحبلا تایمزراوخ

Lect. Alaa A. Hashim
 مشاھ نیسحلادبع ءلاع.م

University of Technology

cs.uotechnology.edu.iq

Data	Structure	lectures-	2nd	course	 lecturers:	M.Sc.	Alyaa	Hasan	Z.
2nd	 Class-Computer	Science	

1

	

	

 .Recursion 1 يتاذلا ءاعدتسلاا

 يجمرب بولساو ةيضاير ةقيرط وھو , هسفن ءاعدتسلا () يعرفلا جمانربلا ةيلباق وھ : يتاذلا ءاعدتسلاا
 .راركتلا بولسا مادختسا لدب همادختسا نكمي لاعف

 :لاثم . يتاذلا ءاعدتسلاا مادختساب اھنع ريبعتلا نكمي ةيضايرلا غيصلا نم ديدعلا كانھ

 : يتلااك ايضاير فرعت يتلا ددعلا بورضم ةلاد

Factorial of n à n! = n * (n-1) * (n-2) * (n-3) ... * 1

𝑛!	=	{	 1	 ,	 𝑛	=	0	
𝑛	∗	(𝑛	−	1)!	 ,	 𝑛	>	0	

	

	
 n=0 ساسلاا ءزجلا

 n>0 يئارقتسلاا ءزجلا

Data	Structure	lectures-	2nd	course	 lecturers:	M.Sc.	Alyaa	Hasan	Z.
2nd	 Class-Computer	Science	

2

	

	

// Factorial of n = 1*2*3*...*n

#include <iostream>
using namespace std;
int factorial (int n)
{

If (n > 1)
return n * factorial (n - 1);

else
return 1;

}
int main()
{

int n;
cout<<"Enter a number to find factorial: ";
cin >> n;
cout << "Factorial of " << n <<" = " << factorial(n);
return 0;

}
Enter a number to find factorial: 4
Factorial of 4 = 24

Data	Structure	lectures-	2nd	course	 lecturers:	M.Sc.	Alyaa	Hasan	Z.
2nd	 Class-Computer	Science	

3

	

	

Explanation: How this example works?

Data	Structure	lectures-	2nd	course	 lecturers:	M.Sc.	Alyaa	Hasan	Z.
2nd	 Class-Computer	Science	

4

	

	

factorial()

factorial()

Suppose the user entered 4, which is passed to the function.

1. In the first

The

second

function, test expression inside if statement is true.

statement is executed, which calls the

function and argument passed is num-1which is 3.

2. In the second

The

function, test expression inside if statement is true.

statement is executed, which calls the

third function and argument passed is which is 2.

3. In the third

The

function, test expression inside if statement is true.

statement is executed, which calls the

fourth function and argument passed is which is 1.

4. In the fourth function, test expression inside if statement is false.

The statement is executed, which returns 1 to third function.

5. The third function returns 2 to the second function.

6. The second function returns 6 to the first function.

7. Finally, the first function returns 24 to the function, which is

displayed on the screen.
main() factorial()

factorial() factorial()

factorial() factorial()

factorial() return 1;

num-1 factorial()

return num*factorial(num-1);

factorial()

num-1 factorial()

return num*factorial(num-1);

factorial()

factorial()

return num*factorial(num-1);

factorial()

https://www.programiz.com/cpp-programming/if-else

Data	Structure	lectures-	2nd	course	 lecturers:	M.Sc.	Alyaa	Hasan	Z.
2nd	 Class-Computer	Science	

5

	

	

𝑋	 {	

Examples:
1. How to find the power of 𝑋𝑚?

𝑚=
1	 ,	𝒎	=	0	

𝑥	∗	𝑥𝑚−1	 ,	𝒎	>	0	
	

int power (int x, int m)
{

if (m == 0)
return 1;

else

return x * power(x, (m-1));
}

2. The Fibonacci Sequence is the series of numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

 ادع نيقباسلا نيددعلا عومجمل ايواسم نوكي اھيف ددع يا، ,يشتانوبيف ودرانويل يلاطيلإا تايضايرلا ملاع ىلإ ةبسن يشتانوبيف دادعأ وأ يشتانوبيف ةيلاتتم ،تايضايرلا يف
 1 = يناثلا ددعلاو 0 = لولاا ددعلا

Example:	the	8th	term	is	

the	7th	term	plus	the	6th	term:	

F8 = F7 + F6

https://ar.wikipedia.org/wiki/%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA
https://ar.wikipedia.org/wiki/%D9%84%D9%8A%D9%88%D9%86%D8%A7%D8%B1%D8%AF%D9%88_%D9%81%D9%8A%D8%A8%D9%88%D9%86%D8%A7%D8%AA%D8%B4%D9%8A

Data	Structure	lectures-	2nd	course	 lecturers:	M.Sc.	Alyaa	Hasan	Z.
2nd	 Class-Computer	Science	

6

	

	

int fib(int n)

{

if (n <= 1)

return (n);

return fib(n-1) + fib(n-2);

}

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

1

	

	

1.1 Introduction	to	Graph	

Graph	is	a	nonlinear	data	structure,	it	contains	a	set	of	points	known	as	nodes	(or	
vertices)	and	set	of	links	known	as	edges	(or	Arcs)	which	connects	the	vertices.	

A	graph	is	defined	as	follows:	

Graph	is	a	collection	of	vertices	and	arcs	which	connects	vertices	in	the	graph.	

Graph	is	a	collection	of	nodes	and	edges	which	connects	nodes	in	the	graph.	

Generally,	a	graph	G	is	represented	as	G	=	(V	,	E),	where	V	is	set	of	vertices	and	E	
is	set	of	edges.	

Example	

The	following	is	a	graph	with	5	vertices	and	6	edges.	

This	graph	G	can	be	defined	as	G	=	(V	,	E)	

Where	V	=	{A,B,C,D,E}	and	E	=	{(A,B),(A,C)(A,D),(B,D),(C,D),(B,E),(D,	E)}.	
	
	

	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

2

	

	

	
1.1.1 Graph	Terminology	

We	use	the	following	terms	in	graph	data	structure...	

Vertex:	A	individual	data	element	of	a	graph	is	called	as	Vertex.	Vertex	is	also	
known	as	node.	In	above	example	graph,	A,	B,	C,	D	&	E	are	known	as	vertices.	

Edge:	An	edge	is	a	connecting	link	between	two	vertices.	Edge	is	also	known	as	
Arc.	An	edge	is	represented	as	(startingVertex,	endingVertex).	For	example,	in	
above	graph,	the	link	between	vertices	A	and	B	is	represented	as	(A,B).	In	above	
example	graph,	there	are	7	edges	(i.e.,	(A,B),	(A,C),	(A,D),	(B,D),	(B,E),	(C,D),	
(D,E)).	

Undirected	Graph:	A	graph	with	only	undirected	edges	is	said	to	be	undirected	
graph	as	in	the	above.	

Directed	Graph:	A	graph	with	only	directed	edges	is	said	to	be	directed	graph	
as	in	the	figure	below:	

	
	
	

	
Connected	graph:	A	graph	G	is	called	connected	if	every	two	of	its	vertices	are	
connected.	

Disconnected	graph:	A	graph	that	is	called	not	connected	if	some	of	its	vertices	
is	disconnected.	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

3

	

	

	
1.2 Trees	
A	tree	data	structure	can	be	defined	as	follows...	

A	connected	acyclic	graph	is	called	a	tree.	In	other	words,	tree	is	a	connected	
graph	with	no	cycles	.	

In	 a	 tree	 data	 structure,	 if	 we	 have	N	number	 of	 nodes	 then	 we	 can	 have	 a	
maximum	of	N-1	number	of	links.	

Example	
	
	
	
	
	

	
	

In	a	tree	data	structure,	we	use	the	following	terminology...	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

4

	

	

	
	

1. Root	:	In	a	tree	data	structure,	the	first	node	is	called	as	Root	Node.	Every	
tree	must	have	root	node.	We	can	say	that	root	node	is	the	origin	of	tree	data	
structure.	In	any	tree,	there	must	be	only	one	root	node.	

	
	

	
2. Edge:	In	a	tree	data	structure,	the	connecting	link	between	any	two	nodes	is	
called	as	EDGE.	In	a	tree	with	'N'	number	of	nodes	there	will	be	a	maximum	of	'N-	
1'	number	of	edges.	

	
	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

5

	

	

	
	

3. Parent:	In	a	tree	data	structure,	the	node	which	is	predecessor	of	any	node	is	
called	as	PARENT	NODE.	In	simple	words,	the	node	which	has	branch	from	it	to	
any	other	node	is	called	as	parent	node.	Parent	node	can	also	be	defined	as	"The	
node	which	has	child	/	children".	

	

	
	

4. Child:	In	a	tree	data	structure,	the	node	which	is	descendant	of	any	node	is	
called	as	CHILD	Node.	In	simple	words,	the	node	which	has	a	link	from	its	parent	
node	is	called	as	child	node.	In	a	tree,	any	parent	node	can	have	any	number	of	
child	nodes.	In	a	tree,	all	the	nodes	except	root	are	child	nodes.	

	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

6

	

	

	
	

5. Siblings:	In	a	tree	data	structure,	nodes	which	belong	to	same	Parent	are	
called	as	SIBLINGS.	In	simple	words,	the	nodes	with	same	parent	are	called	as	
Sibling	nodes.	

	
	

	
6. Leaf:	In	a	tree	data	structure,	the	node	which	does	not	have	a	child	is	called	
as	LEAF	Node.	In	simple	words,	a	leaf	is	a	node	with	no	child.	
leaf	node	is	also	called	as	'Terminal'	node.	

	
	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

7

	

	

	
	

7. Degree:	In	a	tree	data	structure,	the	total	number	of	children	of	a	node	is	
called	as	DEGREE	of	that	Node.	In	simple	words,	the	Degree	of	a	node	is	total	
number	of	children	it	has.	The	highest	degree	of	a	node	among	all	the	nodes	in	a	
tree	is	called	as	'Degree	of	Tree'	

	
	

	
8. Level:	In	a	tree	data	structure,	the	root	node	is	said	to	be	at	Level	0	and	the	
children	of	root	node	are	at	Level	1	and	the	children	of	the	nodes	which	are	at	
Level	1	will	be	at	Level	2	and	so	on...	In	simple	words,	in	a	tree	each	step	from	top	
to	bottom	is	called	as	a	Level	and	the	Level	count	starts	with	'0'	and	incremented	
by	one	at	each	level	(Step).	

	
	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

8

	

	

	
	

9. Height:	In	a	tree	data	structure,	the	total	number	of	edges	from	leaf	node	to	a	
particular	node	in	the	longest	path	is	called	as	HEIGHT	of	that	Node.	In	a	tree,	
height	of	the	root	node	is	said	to	be	height	of	the	tree.	In	a	tree,	height	of	all	
leaf	nodes	is	'0'.	

	

	
10. Depth:	In	a	tree	data	structure,	the	total	number	of	edges	from	root	node	to	
a	particular	node	is	called	as	DEPTH	of	that	Node.	In	a	tree,	the	total	number	of	
edges	from	root	node	to	a	leaf	node	in	the	longest	path	is	said	to	be	Depth	of	the	
tree.	In	simple	words,	the	highest	depth	of	any	leaf	node	in	a	tree	is	said	to	be	
depth	of	that	tree.	In	a	tree,	depth	of	the	root	node	is	'0'.	

	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

9

	

	

	
	

11. Path:	In	a	tree	data	structure,	the	sequence	of	Nodes	and	Edges	from	one	
node	to	another	node	is	called	as	PATH	between	that	two	Nodes.	Length	of	a	
Path	is	total	number	of	nodes	in	that	path.	In	below	example	the	path	A	-	B	-	E	-	J	
has	length4.	

	
	

	
12. Sub	Tree	

In	a	tree	data	structure,	each	child	from	a	node	forms	a	subtree	recursively.	
Every	child	node	will	form	a	subtree	on	its	parent	node.	

	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

10

	

	

	
2.1 Binary	Tree	

In	a	normal	 tree,	every	node	can	have	any	number	of	children.	Binary	 tree	 is	a	
special	type	of	tree	data	structure	in	which	every	node	can	have	a	maximum	of	2	
children.	One	is	known	as	left	child	and	the	other	is	known	as	right	child.	

Binary	 Tree:	 is	 a	 tree	 in	 which	 every	 node	 can	 have	 a	 maximum	 of	 two	
children.	

In	a	binary	tree,	every	node	can	have	either	0	children	or	1	child	or	2	children	but	
not	more	than	2	children.	

Example	
	
	
	
	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

11

	

	

	
	

Example	
	
	

	
1. The	Maximum	number	of	nodes	in	any	level	L	

(𝑀𝑎𝑥	𝑁𝑜𝑑𝑒𝑠	𝑖𝑛	𝑎𝑛𝑦	𝑙𝑒𝑣𝑒𝑙	=	2𝐿)	
2. The	maximum	number	of	the	nodes	in	the	binary	tree	(2h+1	−	1)	where	h	

is	 the	 height	 of	 the	 tree	 so	 in	 the	 example	 (23+1	 −	 1=15)	 and	 the	 real	
number	is	 8.	

3. The	number	of	the	leaves	of	the	binary	tree	is	equal	to	
No.	of	leaves=	(no.	of	nodes	which	have	degree	2)+1	
In	the	above	example	3+1=4.	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

12

	

	

	
2.2 Binary	Tree	Representations:	

A	 binary	 tree	 data	 structure	 is	 represented	 using	 two	 methods.	 Those	
methods	are	as	follows...	

	
1. Array	Representation	
2. Linked	List	Representation	
We	use	double	linked	list	to	represent	a	binary	tree.	In	a	double	linked	list,	
every	node	consists	of	three	fields.	First	field	for	storing	left	child	address,	
second	for	storing	actual	data	and	third	for	storing	right	child	address.	
In	this	linked	list	representation,	a	node	has	the	following	structure...	

	
	

	
The	 below	 example	 of	 binary	 tree	 represented	 using	 Linked	 list	
representation	is	shown	as	follows...	

	
	
	

	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

13

	

	

	
	
	
	
	

	
	
	

	
2.3 Binary	Tree	Traversals	

When	we	wanted	to	display	a	binary	tree,	we	need	to	follow	some	order	in	which	
all	the	nodes	of	that	binary	tree	must	be	displayed.	In	any	binary	tree	displaying	
order	of	nodes	depends	on	the	traversal	method.	

Displaying	(or)	visiting	order	of	nodes	in	a	binary	tree	is	called	as	Binary	Tree	
Traversal.	

There	are	three	types	of	binary	tree	traversals.	

1. Pre	-	Order	Traversal	

2. In	-	Order	Traversal	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

14

	

	

	
	

3. Post	-	Order	Traversal	

Consider	the	following	binary	tree…	
	
	

1. Pre	-	Order	Traversal	(root	–	left	Child	–	right	Child)	

In	Pre-Order	 traversal,	 the	 root	node	 is	 visited	before	 left	 child	 and	 right	 child	
nodes.	In	this	traversal,	the	root	node	is	visited	first,	then	its	left	child	and	later	
its	 right	 child.	 This	 pre-order	 traversal	 is	 applicable	 for	 every	 root	 node	 of	 all	
subtrees	in	the	tree.	In	the	above	example	of	binary	tree,	first	we	visit	root	node	
'A'	then	visit	its	left	child	'B'	which	is	a	root	for	D	and	F.	So	we	visit	B's	left	child	
'D'	and	again	D	is	a	root	for	I	and	J.	So	we	visit	D's	 left	child	 'I'	which	is	the	left	
most	 child.	 So	 next	 we	 go	 for	 visiting	 D's	 right	 child	 'J'.	 With	 this	 we	 have	
completed	root,	left	and	right	parts	of	node	D	and	root,	left	parts	of	node	B.	Next	
visit	B's	right	child	'F'.	With	this	we	have	completed	root	and	left	parts	of	node	A.	
So	we	go	for	A's	right	child	'C'	which	is	a	root	node	for	G	and	H.	After	visiting	C,	
we	go	for	its	left	child	'G'	which	is	a	root	for	node	K.	So	next	we	visit	left	of	G,	but	
it	 does	 not	 have	 left	 child	 so	 we	 go	 for	 G's	 right	 child	 'K'.	 With	 this	 we	 have	
completed	node	C's	root	and	left	parts.	Next	visit	C's	right	child	'H'	which	is	the	
right	most	child	in	the	tree.	So	we	stop	the	process.	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

15

	

	

	
	

Pre-Order	Traversal	for	above	example	binary	tree	is	
A	-	B	-	D	-	I	-	J	-	F	-	C	-	G	-	K	–	H	

	
	

	

	
2. In	-	Order	Traversal	(left	Child	-	root	–	right	Child)	

In	In-Order	traversal,	the	root	node	is	visited	between	left	child	and	right	child.	
In	 this	 traversal,	 the	 left	child	node	 is	visited	 first,	 then	the	root	node	 is	visited	
and	later	we	go	for	visiting	right	child	node.	This	in-order	traversal	is	applicable	
for	every	root	node	of	all	subtrees	in	the	tree.	This	is	performed	recursively	for	
all	nodes	in	the	tree.In	the	above	example	of	binary	tree,	first	we	try	to	visit	left	
child	of	root	node	'A',	but	A's	left	child	is	a	root	node	for	left	subtree.	so	we	try	to	
visit	its	(B's)	left	child	'D'	and	again	D	is	a	root	for	subtree	with	nodes	I	and	J.	So	
we	try	to	visit	its	left	child	'I'	and	it	is	the	left	most	child.	So	first	we	visit	'I'	then	
go	 for	 its	 root	 node	 'D'	 and	 later	we	 visit	 D's	 right	 child	 'J'.	With	 this	we	 have	
completed	 the	 left	 part	 of	 node	 B.	 Then	 visit	 'B'	 and	 next	 B's	 right	 child	 'F'	 is	
visited.	With	this	we	have	completed	left	part	of	node	A.	Then	visit	root	node	'A'.	
With	this	we	have	completed	left	and	root	parts	of	node	A.	Then	we	go	for	right	
part	of	the	node	A.	In	right	of	A	again	there	is	a	subtree	with	root	C.	So	go	for	left	
child	of	C	and	again	it	is	a	subtree	with	root	G.	But	G	does	not	have	left	part	so	we	
visit	'G'	and	then	visit	G's	right	child	K.	With	this	we	have	completed	the	left	part	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

16

	

	

	
	

of	node	C.	Then	visit	root	node	 'C'	and	next	visit	C's	right	child	 'H'	which	 is	 the	
right	most	child	in	the	tree	so	we	stop	the	process.	

In-Order	Traversal	for	above	example	of	binary	tree	is	

I	-	D	-	J	-	B	-	F	-	A	-	G	-	K	-	C	–	H	
	

	
3. Post	-	Order	Traversal	(left	Child	–	right	Child	-	root)	

In	Post-Order	traversal,	the	root	node	is	visited	after	left	child	and	right	child.	In	
this	traversal,	left	child	node	is	visited	first,	then	its	right	child	and	then	its	root	
node.	This	is	recursively	performed	until	the	right	most	node	is	visited.	

Post-Order	Traversal	for	above	example	binary	tree	is	
I	-	J	-	D	-	F	-	B	-	K	-	G	-	H	-	C	–	A	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

17

	

	

	
2.4 The	functions	of	the	Binary	tree	
As	we	mentioned	before	that,	the	structure	of	the	tree	consists	of	subtrees	so,	
that	 means	 the	 part	 looks	 like	 the	 all,	 so	 here	 we	 can	 make	 use	 of	 the	
recursion	to	represent	the	functions	of	the	tree.	

	

1. In	-	Order	Traversal	

void	inorder(nodeptr	t)	

{	 if(t!=0)	

{	

inorder(t->l);	

cout<<t->info<<'	';	

inorder(t->r);	

}	

}	

2. Pre	-	Order	Traversal	

void	preorder	(nodeptr&	t)	

{	 if(t!=0)	

{	

cout<<t->info<<'	';	

preorder(t->l);	

preorder(t->r);	

}	

}	

	

3. Post	-	Order	Traversal	

void	postorder(nodeptr	t)	

{	 if(t!=0)	

{	

postorder(t->l);	

postorder(t->r);	

cout<<t->info<<'	';	

}	

}	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

18

	

	

	
	

3.1 Binary	Search	Tree	

Binary	Search	Tree	is	a	binary	tree	in	which	every	node	contains	only	smaller	
values	in	its	left	subtree	and	only	larger	values	in	its	right	subtree.	

	

	
Note:	Every	Binary	Search	Tree	is	a	binary	tree	but	NOT	all	the	Binary	Trees	are	
binary	search	trees.	

Example:	

The	following	tree	is	a	Binary	Search	Tree.	In	this	tree,	left	subtree	of	every	node	
contains	nodes	with	smaller	values	and	right	subtree	of	every	node	contains	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

19

	

	

	
	

larger	values	

	
	

3.2 Insertion	to	BST	

Example:	Draw	the	BST	for	the	following	elements:	

5,9,	7,	3,8,12,	6,	20	

1- Take	(5)	as	a	root.	
2- Take	(9)	as	a	right	child	because	it	is	greater	than	the	root.	

5	

9	

3- The	next	element	(7)	is	greater	than	the	root	so	we	choose	the	right	branch	
since	it	less	than	9	 so	it	will	be	the	left	child	of	 9.	

5	

9	

7	
4- Take	 3	which	it	less	than	 5	put	it	in	the	left	side.	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

20

	

	

	
	

	

	

	
Continue	in	the	same	way	take	the	new	element	and	compare	it	with	the	tree	
started	from	the	root	,	then	we	will	get	the	final	tree	as	below	:	

	

	
	

Example:	draw	the	BST	for	those	elements.	

NOTE:	the	ascii	code	for	A=65.	

D,	B,	F,	A,	C,	E,	G	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

21

	

	

	
	
	
	

	
	
	
	

	

	
Home	work:	Draw	the	BST	for	those	elements.	

1. B,	A,	D,	C,	G,	F,	E	
2. A,	B,	C,	D,	E,	F,	G	

3.3 Deletion	Operation	in	BST	

Deleting	a	node	from	Binary	search	tree	has	following	three	cases...	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

22

	

	

	
	

Case	1:	Deleting	a	Leaf	node	(A	node	with	no	children)	
Case	2:	Deleting	a	node	with	one	child	
Case	3:	Deleting	a	node	with	two	children	

	
Case	1:	Deleting	a	leaf	node	

Step	1:	Find	the	node	to	be	deleted.	
Step	2:	Delete	the	node	and	make	the	father	node	point	to	null.	

	

	

Case	2:	Deleting	a	node	with	one	child:	

Step	1:	Find	the	node	to	be	deleted.	
Step	2:	Create	a	link	between	its	parent	and	child	node.	

	

	

	
Case	3:	Deleting	a	node	with	two	children	

Step	1:	Find	the	node	to	be	deleted.	
Step	2:	find	the	max	node	in	its	left	subtree,	OR	the	min	node	in	its	right	subtree.	

Example:	Delete	node	6	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

23

	

	

	
	

	

	
	
	

OR	
	
	
	
	

	
	
	

Exercise:

Delete the node 15.

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

24

	

	

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

25

	

	

Printing the tree by using of the following:

Data	Structure	lectures-	2nd	course	

2nd	Class	-	Computer	Science	

Lecturer:	M.Sc.	ALYAA	HASAN	

26

	

	

Data	Structure	lectures-	2nd	course	 lecturers:	M.Sc.	Alyaa	Hasan	Z.
2nd	 Class-Computer	Science	

1

	

	

4. Sorting	and	Searching	Algorithms	 بیترتلاو ثحبلا تایمزراوخ 	
4.1 What	is	an	algorithm?	

In	normal	language,	the	algorithm	is	defined	as	a	sequence	of	statements	
which	are	used	to	perform	a	task.	In	computer	science,	an	algorithm	can	be	
defined	as	follows...	

An	algorithm	 is	a	 sequence	of	unambiguous	 instructions	used	 for	 solving	a	
problem,	which	can	be	implemented	(as	a	program)	on	a	computer.	

Algorithms	 are	 used	 to	 convert	 the	 problem	 solution	 into	 step	 by	 step	
statements.	These	statements	can	be	converted	 into	computer	programming	
instructions	which	form	a	program.	This	program	is	executed	by	a	computer	to	
produce	a	solution.	Here,	the	program	takes	required	data	as	input,	processes	
data	 according	 to	 the	 program	 instructions	 and	 finally	 produces	 a	result	as	
shown	in	the	following	figure.	

	

	
Specifications	of	Algorithms	

Every	algorithm	must	satisfy	the	following	specifications...	

1. Input	-	Every	algorithm	must	take	zero	or	more	number	of	input	values	
from	external.	

2. Output	-	Every	algorithm	must	produce	an	output	as	result.	
3. Definiteness	 -	Every	 statement/instruction	 in	 an	 algorithm	must	 be	
clear	and	unambiguous	(only	one	interpretation).	

4. Finiteness	 -	For	all	different	cases,	 the	algorithm	must	produce	result	
within	a	finite	number	of	steps.	

5. Effectiveness	-	Every	instruction	must	be	basic	enough	to	be	carried	out	
and	it	also	must	be	feasible.

Data	Structure	lectures-	2nd	course	 lecturers:	M.Sc.	Alyaa	Hasan	Z.
2nd	 Class-Computer	Science	

2

	

	

 اھذيفنت نكمي يتلاو ، ام

 ةلكشم لحل مدختسُت اھيف

 ؟ةيمزراوخلا يھ ام

)جمانربك(ضومغ لا يتلا تاميلعتلا نم ةلسلس يھ ةيمزراوخلا
 .بوساحلا زاھج ىلع

 هذھ ليوحت نكمي .ةوطخب ةوطخ ةينايب تارابع ىلإ ةلكشملا لح ليوحتل تايمزراوخلا مادختسا متي
 ةبولطملا تانايبلا جمانربلا ذخأي . لحلا جاتنلإ بوساحلا ةطساوب جمانربلا اذھ ذيفنت متي . اجًمانرب لكشت يتلا ةيجمرب تاميلعت ىلإ تارابعلا
 . هلاعا لكشلا يف حضوم امكارًيخأ ةجيتنلا جتنيو جمانربلا تاداشرلإ اًقفو تانايبلا جلاعيو ، تلاخدمك

4.2 Sorting	Algorithms:	 بیترتلا تایمزراوخ 	

Sorting	is	the	process	of	arranging	a	list	of	elements	in	a	particular	order	
(Ascending	or	Descending).	

Why	we	need	sorting?	

1. To	increase	the	efficiency	of	the	search	algorithm	for	an	item	
2. To	simplify	the	processing	of	files	
3. To	solve	the	problem	of	similarity	of	data	restriction	

	

	
Sorting	Algorithms	

	.1	Selection	sort				رايتخلااب بيترتلا
	.2	Insertion	sort					ةفاضلااب بيترتلا
	.3	Bubble	sort								ةعاقفلا بيترت
	.4	Quick	sort								عيرسلا بيترتلا
	.5	Heap	sort									يموكلا بيترتلا

6. Merge	sort	 جمدلا بيترت 	

We	will	explain	three	algorithms	

	.1	Bubble	sort					ةفاضلااب بيترتلا
	.2	Insertion	sort					رايتخلااب بيترتلا
	.3	Quick	sort								عيرسلا بيترتلا

Data	Structure	lectures-	2nd	course	 lecturers:	M.Sc.	Alyaa	Hasan	Z.
2nd	 Class-Computer	Science	

3

	

	

	.1	Bubble	sort						ةعاقفلاب بیترتلا

Void bubbleSort (int data [], int n)
{

int temp;
for (i = 0; i<(n-1); i++) {
for (j = n-1; j< i; --j)

if(data[j] < data [j-1])
{

temp = data [j];
data [j] = data [j-1];

data[j-1] = temp;
}

}

2. Insertion	sort	algorithm	 رایتخلااب بیترتلا

Data	Structure	lectures-	2nd	course	 lecturers:	M.Sc.	Alyaa	Hasan	Z.
2nd	 Class-Computer	Science	

4

	

	

3. Quick	sort	algorithm	 عیرسلا بیترتلا

Void quickSort(int data [], int first, int last)

{

While (last > first)
{

int lower=first; int upper=last;
int bound= data[first];
while (lower< upper)
{

While(data[upper]> bound)
Upper--;

data[lower]=data[upper];
while ((lower< upper) && (data[lower]<= bound))

lower++;
data[upper]= data[lower];

}
data[lower]= bound;
quickSort(data, first, lower-1);
first=lower+1;

}
}

Data	Structure	lectures-	2nd	course	 lecturers:	M.Sc.	Alyaa	Hasan	Z.
2nd	 Class-Computer	Science	

5

	

	

4.3 Searching	Algorithms:	 ثحبلا تایمزراوخ 	

Search	 :	 is	 a	 process	 of	 finding	 a	 value	 in	 a	 list	 of	 values.	 In	 other	 words,	
searching	is	the	process	of	locating	given	value	position	in	a	list	of	values.	

The	search	process	may	be	positive	when	the	required	element	exists	and	may	
be	negative	in	case	that	the	element	is	not	found	in	the	search	list,	the	search	
process	 is	 effective	when	 the	 search	 list	 is	 arranged	 according	 to	 a	 specific	
format.	

Searching	Algorithms	

1. Sequential	 Search	 algorithm	 يلسلستلا ثحبلا ةیمزراوخ

Data	Structure	lectures-	2nd	course	 lecturers:	M.Sc.	Alyaa	Hasan	Z.
2nd	 Class-Computer	Science	

6

	

	

2. Binary	Search	 algorithm	 يئانثلا ثحبلا ةیمزراوخ

int binarySearch(int data[]), int k , int lower , int upper)
{

int pos= -1; int mid;

if (lower <= upper)
{

mid = ((lower + upper)/2);
if k == (data[mid])
{

pos= mid;
return pos;

}

else
{

if (k<data[mid])
binarySearch(data,k,lower,mid-1);

else
binarySearch(data,k,mid+1,upper);

}

} return pos;

}

