
Robotics and Planning

2023-2024

Computer Science-Artificial

Intelligence/BSc. Course

By:
Prof Dr Alia Karim Abdulhassan

1

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

1.1 ARTIFICIAL INTELLIGENCE

 AI for short, can be thought of as the science of making machines act intelligently.

 AI defined it as “the study of ideas that enable computers to be intelligent,”

AI is the attempt to get the computer to do things that, for the moment, people are better at.”

AI robotics is the application of AI techniques to robots. More specifically, AI robotics is the

consideration of topic areas traditionally covered by AI for application to robotics:

✓ learning,

✓ planning,

✓ reasoning,

✓ problem solving,

✓ knowledge representation,

✓ and computer vision.

The word “robot” came into the popular consciousness on January 25, 1921, Capek called the

workers robots, a term derived from the Czech word “robota,” which is loosely translated as menial

laborer. The term robot workers implied that the artificial creatures were strictly meant to be

servants to free “real” people from any type of labor but were too lowly to merit respect.

The shift from robots as human-like servants constructed from biological parts to human-like

servants made up of mechanical parts was probably due to science fiction.

Meanwhile, computers were becoming commonplace in industry and accounting, gaining a

reputation of being literal minded. Industrial automation confirmed this reputation as robot arms

were installed that would go through the motions of assembling parts, even if there were no parts.

Eventually, the term robot took on nuances of factory automation, mindless and good only for

well-defined repetitious work.

 The shift from human-like mechanical creatures to whatever physical form gets the job done is

based on good engineering design principles. While robots are mechanical, they do not have to be

anthropomorphic or even animal-like in appearance.

Examples :

robot which delivers hospital meals to patients to permit nurses to spend more time with patients,

looks like a cart, not a nurse. Even robots that are based on animals, termed biomimetic robots,

may duplicate biological principles but not resemble the animal.

the hexapod robot, has curved springs for legs and the legs rotate, yet the unusual legs duplicate

the springiness of a cockroach’s legs, just as curved blades used by amputee runners, such as Oskar

Pistorius, duplicate the springiness of human knees.

In artificial intelligence, an agent is an entity, a “something,” that can sense its surroundings and

take actions that change the environment. Note that an agent is situated in an external world, that

the agent is interesting because it effects change on its surroundings rather than solely observes

and modifies only itself internally. The working definition of a robot as being able to effect change

2

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

in its environment is at odds with the popular press, which uses the term “robot” synonymously

with remote capabilities. For example, a sensor swallowed by a person, that passively collects

measurements as it passes through the body, may be called a robot even though there is no action.

1.2 INTELLIGENT AGENT

A robot is a special type of agent; it is physically situated in the “real world” while a software

agent is situated in a virtual world defined by the World Wide Web, simulation, or confines of a

software system. Not all robots are physically situated agents; factory robots, such as welding

robots, blindly execute preprogrammed motions and thus do not meet the criterion of sensing their

surroundings.

But being a physically situated agent is not sufficient as a definition of an intelligent robot. A

thermometer can be considered a physically situated agent; after all, a thermometer senses

temperature and acts through a circuit to modify the environment.

 Fortunately, artificial intelligence makes a further distinction, specifying an intelligent agent,

versus just an agent, as a system that perceives its environment and takes actions which maximize

its chances of success.

1.3 INTELLIGENT ROBOT

An intelligent robot is a physically situated intelligent agent.

Robots are physically situated agents that consist of five major components:

 effectors, perception, control, communications, and power.

Effectors are the appendages of the robot that move or move it, such as legs, arms, necks, and

wrists. Effectors enable a robot to act on the environment. The major effectors in a ground robot

are the wheels, tracks, or legs that give it navigational mobility.

 A new spate of work in robotics is centered on robot manipulators, essentially robot hands and

arms.

Perception is the set of sensors and sensing that provide a robot with the equivalent of eyes, ears,

nose, smell, and touch. perception generally requires both a sensor, the device that collects a

signal, and algorithms to interpret the signal. Perception is how a robot senses the environment.

Control is analogous to the central nervous system, where a computer processor(s) provides inner

and outer loop control of the robot. The control component contains the computations that allow

an intelligent robot to maximize its chances of success.

Communication is how a robot interacts with other agents, if only the robot operator. Animals use

bird and whale songs, displays of color and posture to communicate, while humans use natural

language, gestures, proxemics, and other mechanisms to communicate with each other.

Power enables the other functions; it duplicates the role of food and the digestive system in

animals.

3

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

1.4 The Kinds of Robots

UNMANNED VEHICLES:

Intelligent robots can be used on the ground, in the air, or in water. If they function outdoors, they

are commonly called unmanned vehicles or unmanned systems rather than robots. Despite there

being only three modalities ground, air, and water there are at least seven abbreviations for robot

platforms according to modality, size, and user community.

UNMANNED GROUND VEHICLES (UGV) Robots that operate on the ground may be called

mobile robots or unmanned ground vehicles (UGV), though UGV appears to becoming the term

used for all ground robots.

UGV will be used for the superset of ground robots.

- Humanoid or anthropomorphic robots have been popularized in movies but exist largely in

research labs. The Honda P3, Sony Asimo, and Aldebaran Nao robots are examples of

humanoid robots.

- Mobile robots are nonanthropomorphic, with the iRobot Roomba® and the National

Aeronautics and Space Administration’s Mars Exploratory Rovers as examples.

- Motes are miniature robots. Motes often do not have effectors for mobility, leading many

roboticists to refer to them as unattended ground sensors.

- Small or micro UAVs (MAV), which are generally less than two meters in any characteristic

dimension, for example, wing span, rotor blade length, or fuselage. “Micro”, where micro

meant less than 18 cm, the point at which the aerodynamic flight properties radically

changed. Since the proliferation of UAVs for tactical military operations in Iraq and

Afghanistan, micro tends to connote any UAV that is easy to pack and carry.

 UNMANNED MARINE VEHICLES : Robots that operate on or under water are called unmanned

marine vehicles.

UNMANNED SURFACE VEHICLE : If the robot works on the surface and acts like a boat, it is

called an unmanned surface vehicle (USV), where “surface” refers to the surface of the water.

UNMANNED UNDERWATER VEHICLE If the robot submerges, then it might be called an

unmanned underwater vehicle (UUV), though it is more common to refer to it by subcategory.

- AUTONOMOUS UNDERWATER VEHICLE autonomous underwater vehicle (AUV),

where the underwater robot is “free swimming,” that is, it is not tethered and is not in

constant communication with an operator.

- REMOTELY OPERATED VEHICLE remotely operated vehicle (ROV), where the

underwater robot is tethered so that it can be controlled in realtime.

1.5 Robot applications

To date, robots have been used to for four reasons: to replace or substitute for humans, to allow

humans to project themselves into a remote environment, to assist humans, and to amuse.

4

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

1) THE 3 DS Robots are often touted as a replacement for humans, captured by the well-worn

joke that robots are good for the 3 Ds: jobs that are dirty, dull, or dangerous.

2) REMOTE PRESENCE Intelligent robots do not have to replace a human because robots

can be of tremendous benefit in allowing humans to project themselves into a remote

environment in order to provide a remote presence.

3) An exciting new application of intelligent robots has been to assist humans. Robot

assistants for eldercare, rehabilitation, and nursing is an emerging area, given an aging

population.

4) The fourth application of robotics has been entertainment. Robot programming methods

are being adopted by the videogame and graphics communities to create more realistic

characters and avatars.

1.6 Artificial Intelligence Robotics:

 Divides the field into seven main areas:

✓ Knowledge representation.

An important, is how the robot represents its world, its task, and itself. AI robotics explores the

tension between the symbolic world representations that are easy for computers to create optimal

paths through versus the direct perception used by animals that work directly from perception.

✓ Understanding natural language

 Natural language is deceptively challenging, apart from the issue of recognizing words which is

now being done by commercial products such as Siri® and Alexa®. AI robotics explores the

implicit and explicit communication needed for comfortable social interaction with robot

✓ Learning

Imagine a robot that could be programmed by just watching a human, or that a robot could learn

by just repeatedly trying trying a new task by itself. Or that a robot experimented with a task

through trial and error to generate a new solution. AI robotics is a study of the diffierent types of

learning and how learning can be applied to different functions.

✓ Planning and problem solving

 Intelligence is associated with the ability to plan actions needed to accomplish a goal and solve

problems when those plans fail. AI robotics relies on planning and problem solving to cope with

the unpredictability of the real world.

✓ Inference

Inference is generating an answer when there is not complete information. Consider a planetary

rover looking at a dark region on the ground. Its range finder is broken and all it has left is its

camera and a fine AI system. The rover will need to use inference either to actively or passively

disambiguate what the dark region is (e.g., kick a rock at the dark area versus reason that there is

nothing nearby that could create that shadow). AI robotics techniques are increasingly engaging in

inference.

5

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

✓ Search

In AI terms, search means efficiently examining a knowledge representation of a problem (called

a “search space”) to find the answer. Data mining or Big Data is a form of search. AI robotics uses

search algorithms in generating optimal solutions in navigation or searching a knowledge

representation.

✓ Vision

Vision is possibly the most valuable sense humans have. AI researchers have pursued creating

vision systems both to improve robotic actions and to supplement other work in general machine

intelligence. AI robotics relies heavily on computer vision to interpret video data and also the

RGB-D cameras, such as Microsoft’s Kinect®.

Exercises

Exercise 1.1 What is an intelligent robot?

Exercise 1.2 A thermometer is a physically situated agent but not an intelligent agent. Name four

other physically situated agents that are not intelligent agents. Exercise 1.3 What are the three

modalities of autonomous systems? Does one modality require more intelligence than the other

two?

Exercise 1.4 What are the five components common to all intelligent robots? How do these

correspond to parts of an animal?

Exercise 1.5 What are the four different categories in which intelligent robots have been used?

Exercise 1.6 Describe the seven areas of artificial intelligence in your own words and tell how they

contribute to an intelligent robot.

Exercise 1.7 Discuss why robot applications demand more from AI than for playing chess or

Jeopardy. Use your understanding of intelligent robots to give at least two reasons why this is true

for each of the four applications of robots (replace, project, assist, amuse).

Exercise 1.8 Search the World Wide Web for applications and manufacturers of intelligent robots

and make a list with at least 10 different entries.

Exercise 1.9 Look at the Scientific American Frontiers episode “Robots Alive!” Although this is

an old episode, it is an excellent introduction as to how the different areas of AI contribute to

intelligent robots. In particular, watch the “schedule a meeting” and “clean the room” competitions,

and describe the role that each of the seven areas of AI play a role in the robots.

Exercise 1.10 Watch the movie Robot and Frank. Discuss how the robot uses each of the different

areas of AI.

REFRENCE:

Introduction to AI robotics by Robin R. Morphy 2nd Edition 2019.

1

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Intelligent Planning

Introduction

The word ‘planning’ informally refers to the generation of the sequence of actions

to solve a complex problem. For instance, consider the problem of placing the

furniture in your new-built house, so that you can fully utilize the available free

space for common use and the rooms look beautiful.

An analysis of the problem reveals that there exist many possible alternative

solutions to the problem. But finding even a single solution is not so easy.

first AI robot, Shakey reportedly got its name because it was top heavy; as it rolled

forward, the TV antenna would wobble and shake.

Shakey was the quintessential hierarchical system: SENSE, then PLAN, then ACT.

It investigated the idea of a general problem solver in planning and problem

solving, captured within the Strips algorithm, that would enable Shakey to reason

and to plan a path.

Job of planner: generate a goal to achieve, and then construct a plan to achieve it

from the current state. Must define representations of:

Actions: generate successor state descriptions by defining preconditions and effects

 States: data structure describing current situation

 Goals: what is to be achieved

 Plans: solution is a sequence of actions

Many AI Planners in History:Well-known AI Planners are:

STRIPS (Fikes and Nilsson, 1971): theorem- proving system.

ABSTRIPS (Sacerdoti, 1974): added hierarchy of abstractions

HACKER (Sussman, 1975): use library of procedures to plan.

NOAH (Sacerdoti, 1975): problem decomposition and plan reordering

STRIPS : STRIPS (STanford Research Institute Problem Solver): a restrictive way

to express states, actions and goals, but leads to more efficiency

States: conjunctions of ground, function-free, and positive literals,

2

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

such as At(Home) ^ Have(Banana)

Goals: conjunctions of literals, may contain variables (existential), hence goal may

represent more than one state

E.g. At(x) ^ Sells(x, Bananas)

Actions: preconditions that must hold before execution and the effects after

execution

STRIPS Action Schema

An action schema includes:

action name & parameter list (variables)

precondition: a conjunction of function-free positive literals. Any variables in it

must also appear in parameter list

effect: a conjunction of function-free literals (positive or negative)

add-list: positive literals

delete-list: negative literals

Example: Action: Buy (x) Precondition: At (p), Sells (p, x) Effect: Have(x)

Planning with If-Add-Delete Operators

We consider the problem of blocks world, where a number of blocks are to be

stacked to a desired order from a given initial order. The initial and the goal state of

the problem is given similar to fig. 2 and.3. To solve this type of problem, we have

to define a few operators using the if-add-delete structures, to be presented shortly.

3

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

We can try to solve the above problem by the following sequencing of operators.

Rule 2 is applied to the initial problem state with an instantiation of X =A and Y =B

to generate state S1 (fig.4). Then we apply Rule 3 with an instantiation of X =B and

Z =A to generate state S2. Next Rule 3 is applied once again to state S2 with an

instantiation of X =C and Z =B to yield the goal state. Generating the goal from the

given initial state by application of a sequence of operators causes expansion of

many intermediate states. So, forward reasoning is not appropriate for such

problems. Let us try to explore the problem through backward reasoning.

4

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Least Commitment Planning

The schemes of planning, described above, determine a list of sequence of operators,

by a forward or backward reasoning in the state-space. When the number of blocks

in the ‘Blocks world problem’ is large, determining the complete order of the

sequence of operators is difficult by the proposed scheme.

 An alternative approach for planning is to determine ‘approximate

(partial) sequence of operators for each goal’ separately and defer the ordering of

their steps later. Such planning is referred to as least commitment planning . In the

literature of AI this is also called non-linear planning.

 We now explain why it is called so. Since we delay in committing the order of

operator in the partial plan of a sub-goal, it is called the least commitment planning.

Further, the partial plan for each sub-goal is generated in parallel, unlike the previous

state-space reasoning method for planning. It may be recollected that in the state-

space approach, only after satisfying a sub-goal, the next sub-goal is considered for

satisfaction. Thus in contrast to the state-space approach for linear planning, the

current approach is termed non-linear planning.

Operator Sequence in Partially Ordered Plans

Suppose realization of a goal requires 5 steps (sub-goals), denoted by operators, G1,

G2, G3, G4 and G5 respectively. Let the order of the steps be represented by a graph

like that in fig.10. Here the firm line (__) denotes exact ordering, while dotted line

(--) denotes the ‘least committed’ dependence relations (constraints) between two

operators. Thus the above plan is an order of partially planned operators. The

partially ordered plans for the problem of fig.10 are listed below:

{G1, G2, G3, G4, G5}

{G1, G3, G2, G4, G5} and

{G1, G3, G4, G2, G5}

We now have to select which of the above three partially ordered plans

leads to a complete plan for the goal or the sub-goal. So, in the least commitment

planning we first search in the space of partially ordered plans and then select the

correct complete plan among those plans.

5

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Realizing Least Commitment Plans

For realizing a least commitment plan we require one or more of the following

operations:

a) Step Addition: This stands for the generation of a partially ordered plan for one

sub-goal.

b) Promotion: This constrains one step to come before another in a partially ordered

plan.

c) Declobbering: Suppose state S1 negated (deleted) some precondition

of state S3. So, add S2 such that S2 follows S1 and S3 follows S2, where S2 reasserts

the negated pre-conditions of S3.

d) Simple Assignment: Instantiate a variable to ensure precondition

of a step.

e) Separation: Instantiation of variables is sometimes not done intentionally to keep

the size of the plan manageable.

The following example of the well-known ‘blocks world’ problem,

discussed earlier, will best illustrate the above definitions. Remember the

problem was enlisted as follows:

Given: On (A,B) ∧ Clear (C) ∧ Clear(A) ∧ On(C, Table) ∧ On(B, Table).

Find a plan for: On (B, A) ∧ On(C, B).

To start solving the problem, we first generate partial plans to achieve On (B, A) and

On (C, B) separately.

The goal On (A,B) may be generated by the following rule: If X is clear and Y is

clear then put X on Y. Here the pre-conditions Clear (A) and On (B, Table) are

available in the in initial problem state. So, the partial plan for goal: On (B, A) can

be constructed. The partial plan for this goal is presented in fig11. To satisfy On (C,

B) we need to generate its predecessor (see fig. 12).

6

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

It may be noted that Clear (B) is a pre-condition of both the goals On(C,B) and On

(B,A), but the process of generating On (C,B) deletes Clear (B). This posts an

additional constraint that state S2 should follow state S1. We denoted it by a dotted

line (constraint link) in fig13. Now to satisfy the pre-conditions of S1 and S2, we

need to add new steps. Note that Clear (A) and On (B, Table) in both the states S1

and S2 are satisfied. So, we need to satisfy Clear (B) only in state S2 and S1. To

satisfy Clear (B) in S1 and S2, we employ the following rule:

If On (X,Y) ∧ Clear (X)

Add: On (X, Table) ∧ Clear (Y)

Delete: On(X,Y).

7

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

So, by backward reasoning, we generate the new state, vide fig14.

We now have three partially ordered steps in our plan with one initial and one goal

condition. These five partially ordered plans are presented below in a column

structure.

Plan 1: If Clear (C) ∧ Clear (B) ∧ On (B, Table)

Add: On (C,B)

Delete: Clear (B)

Plan 2: If Clear (A) ∧ Clear (B) ∧ On (B, Table)

Add: On (B,A)

Delete: Clear (A)

Plan 3: If On (A,B) ∧ Clear (A)

8

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Add: On (A, Table) ∧ Clear (B)

Delete: On (A,B)

Plan 4: If Nil

Add: On (A,B) ∧ Clear (C) ∧ Clear (A)∧ On (C, Table) ∧

On (B, Table)

Delete: Nil

Plan 5: If On (B,A) ∧ On (C,B)

(goal) Add: Nil

Delete: Nil

The complete order of the plans that maintain satisfiability of the preconditions of

each partial plan is given by

plan 4 < plan 3 < plan 2 < plan 1 < plan 5

where plan j < plan k means plan j is to be executed prior to plan k.

In the above scheme for ordering a list of partially ordered plans, we demonstrated

only two steps: addition of steps and promotion by adding constraints. Let us now

illustrate the principle of declobbering. Suppose, we choose the totally ordered plan

as follows:

plan 4 < plan 3 < plan 1 < plan j < plan 2 < plan 5

where plan j will declobber the pre-condition (Clear (B)) of plan 2, which was

clobbered by plan 1. The necessary steps in plan j are presented below:

Plan j: If On (C,B) ∧ Clear (C)

Add: On (C, Table), Clear (B)

Delete: On (C, B)

The incorporation of plan j between plan 1 and plan 2 serves the purpose of

declobbering, but On (C,B) being deleted by plan j has to be executed later. Thus

plan 1 has to be inserted again between plan 2 and plan 5.

The new total order of the plans thus becomes:

plan 4 < plan 3 < plan 1 < plan j < plan 2 < plan 1 < plan 5

9

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

This undoubtedly is bad planning and the reader may think that declobbering has no

justification. But sometimes it is useful and the only approach to refine a plan.

The operations of least commitment planning we described so far include the first

three. The operation of instantiating variables to ensure preconditions of a step is

also clear from our previous examples. But the last operation of intentionally

deferring a non-instantiation variable is useful in planning. For example assume that

there are two more blocks D and E on the table. In that case, instead of putting A on

table in plan 3, we could put it on D and E as well; see our objective in plan 3 is to

Clear (B). So, we employ the following rule to generate plan 3:

Rule: If On (X, Y) ∧ Clear (X) ∧ Clear (Z)

Add: On (X, Z) ∧ Clear (Y)

Delete: On (X, Y)

In the last rule Z could be a table or block D or E. We do not want to explicitly set

the value of Z, because it is no longer required by other partial plans till now. Thus

plan 3 could be:

Plan 3: If On (A,B) ∧ Clear (A) ∧ Clear (Z)

Add: On (A,Z) ∧ Clear (B)

Delete: On (A,B)

In this example the instantiation of Z is no longer required. However if

Z is required to be instantiated later, we will then do it. It may be noted that the main

benefit of deferring instantiation of variables is to keep the size of generated partial

plans within limits.

Hierarchical Task Network Planning

The hierarchical task network planning, also called hierarchical planning, is

employed in complex decision making systems. It generates a relatively abstract

ordering of steps to realize the goal and then each abstract step is realized with

simpler plans. A hierarchical planning scheme looks somewhat like a tree structure,

where the steps at the higher level of the tree represent more abstract and complex

tasks. Let us, for example, consider the plan for ‘writing a book’. We, following the

ABSTRIPS approach first break the plan into three linear abstract plans:

10

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

i) get current books and journals,

ii) study them and

iii) get pen and paper and write. Each abstract plan is then realized

by the children under it in a sequentially ordered fashion, denoted by the

dotted arrow (− −→) segment.

Fig15 describes such a plan for ‘writing a book’. The steps in fig.15 are simple and

thus need no elaboration. The planning scheme in the present context takes care of

the plan at a given level of the tree only before looking at the details in the next

hierarchical level. Such a plan is often referred to as length-first search.

In the illustrative scheme of a hierarchical plan (fig15) we demonstrated only the

feasible solution; but in situations we cannot guarantee the feasibility at the current

level, unless we explored at lower levels, So we may generate alternative abstract

plans.

11

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

In fig16, we describe such a plan, where the small dark rectangle denotes a primitive

plan at a given level and the large rectangle (Υ) denotes a sequential ordering of the

primitive plans at a level. Let us assume that each level we select only one valid plan

out of a possible number of b plans, i.e., the branching factor is b. Further, let the

12

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

length of a selected plan at each layer be s. Thus, for executing such a plan, we need

to consider a total of P plans [7], where

On the other hand, if we try to solve it by a linear planner it has to generate as many

as

bs + (bs)2 + (bs)3 +…+ (bs) d-1

= O (bs)d.

Further for linear ordering of these plans, we require a significant amount of search

among these plans. The total search complexity for linear ordering will be O (bs)2d.

On the other hand, in a hierarchical plan, at each level, we select 1 out of b plans.

So, the time required to eliminate inconsistent plans is O (b) and the time required

to find a linear ordering at each level is O (s). So, if there are d levels, the ordering

time of plans is O (s .d). Now, we can compare the ordering time of a hierarchical

13

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

planner with respect to a linear planner. The factor of improvement of a hierarchical

planner with respect to a linear planner can be given by

 {(b s)2d - (s d) / (s d) } =(b2 d s2 d –1 / d) –1.

Exercises

1. Given the following initial and the goal state for the Blocks world

problem. Construct a set of operators (Rules) and hence generate a plan to

reach the goal state from the initial state.

Initial State: On (C, A),

Clear (C),

On (B, Table) ,

Clear (B).

Goal State: On (B, A),

On (C, B).

2. Realize the above plan by the least commitment planning.

3. Design a hierarchical plan for the construction of a house building. Clearly mark

at least two sub-plans, which cannot be realized at the next level of the tree.

Reference

Amit Konar , 'Artificial intelligence and Behavioral and Cognitive Modeling of the

Human Brain',2000 by CRC Press LLC.

1

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Robotics as Integrated System

The real robot is some mechanical device (“mechanism”) that moves around in the

environment, and, in doing so, physically interacts with this environment. This

interaction involves the exchange of physical energy, in some form or another. Both

the robot mechanism and the environment can be the “cause” of the physical

interaction through “Actuation”, or experience the “effect” of the interaction, which

can be measured through “Sensing”.

Robotics develop man-made mechanical devices that can move by themselves,

whose motion must be modelled, planned, sensed, actuated and controlled, and

whose motion behavior can be influenced by “programming”. Robots are called

“intelligent” if they succeed in moving in safe interaction with an unstructured

environment, while autonomously achieving their specified tasks.

This definition implies that a device can only be called a “robot” if it contains a

movable mechanism, influenced by sensing, planning, actuation and control

components. It does not imply that a minimum number of these components must

be implemented in software, or be changeable by the “consumer” who uses the

device; for example, the motion behaviour can have been hard-wired into the

device by the manufacturer.

2

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

robotics and automation includes “dumb” robots such as: metal and woodworking

machines, “intelligent” washing machines, dish washers and pool cleaning robots,

etc. These examples all have sensing, planning and control, but often not in

individually separated components.

For example, the sensing and planning behaviour of the pool cleaning robot have

been integrated into the mechanical design of the device, by the intelligence of the

human developer.

Robotics is, to a very large extent, all about system integration, achieving a task by

an actuated mechanical device, via an “intelligent” integration of components,

many of which it shares with other domains, such as systems and control, computer

science, character animation, machine design, computer vision, artificial

intelligence, cognitive science, biomechanics, etc. In addition, the boundaries of

robotics cannot be clearly defined, since

 also its “core” ideas, concepts and algorithms are being applied in an ever

increasing number of “external” applications, and, vice versa, core technology

from other domains (vision, biology, cognitive science or biomechanics, for

example) are becoming crucial components in more and more modern robotic

systems.

Sensing and actuation are the physical ports through which the “Controller” of the

robot determines the interaction of its mechanical body with the physical world. As

mentioned already before, the controller can, in one extreme, consist of software

only, but in the other extreme everything can also be implemented in hardware.

Within the Controller component, several sub-activities are often identified:

Modelling. The input-output relationships of all control components can (but need

not) be derived from information that is stored in a model. This model can have

many forms: analytical formulas, empirical look-up tables, fuzzy rules, neural

networks, etc.

 “model” is to be understood with its minimal semantics: “any information that is

used to determine or influence the input-output relationships of components in the

Controller.”

The other components discussed below can all have models inside. A “System

model” can be used to tie multiple components together, but it is clear that not all

robots use a System model. The “Sensing model” and “Actuation model” contain

the information with which to transform raw physical data into task-dependent

information for the controller, and vice versa.

3

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Planning. This is the activity that predicts the outcome of potential actions, and

selects the “best” one. Almost by definition, planning can only be done on the basis

of some sort of model.

Regulation. This component processes the outputs of the sensing and planning

components, to generate an actuation set point. Again, this regulation activity could

or could not rely on some sort of (system) model.

The term “control” is often used instead of “regulation”, but it is impossible to

clearly identify the domains that use one term or the other.

Scales in robotic systems

The above-mentioned “components” description of a robotic system is to be

complemented by a “scale” description, i.e., the following system scales have a

large influence on the specific content of the planning, sensing, modeling and

control components at one particular scale.

Mechanical scale. The physical volume of the robot determines to a large extent

the limites of what can be done with it. Roughly speaking, a large-scale robot (such

as an autonomous container crane or a space shuttle) has different capabilities and

control problems than a macro robot (such as an industrial robot arm), a desktop

robot (such as those “sumo” robots popular with hobbyists), or milli micro or nano

robots.

Spatial scale. There are large differences between robots that act in 1D, 2D, 3D, or

6D (three positions and three orientations).

Time scale. There are large differences between robots that must react within

hours, seconds, milliseconds, or microseconds.

Power density scale. A robot must be actuated in order to move, but actuators need

space as well as energy, so the ratio between both determines some capabilities of

the robot.

System complexity scale. The complexity of a robot system increases with the

number of interactions between independent sub-systems, and the control

components must adapt to this complexity.

Computational complexity scale. Robot controllers are inevitably running on real-

world computing hardware, so they are constrained by the available number of

computations, the available communication bandwidth, and the available

memory storage.

Obviously, these scale parameters never apply completely independently to the

same system. For example, a system that must react at microseconds time scale can

4

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

not be of macro mechanical scale or involve a high number of communication

interactions with subsystems.

Background sensitivity

robotics has, roughly speaking, two faces:

(i) the mathematical and engineering face, which is quite “standardized”

in the sense that a large consensus exists about the tools and theories to use

(“systems theory”), and

(ii) the AI face, which is rather poorly standardized, not because of a lack

of interest or research efforts, but because of the inherent complexity of

“intelligent behaviour.”

Sensors Most robots of today are nearly deaf and blind. Sensors can provide some

limited feedback to the robot so it can do its job. Compared to the senses and abilities

of even the simplest living things, robots have a very long way to go.

The sensor sends information, in the form of electronic signals back to the controller.

Sensors also give the robot controller information about its surroundings and lets it

know the exact position of the arm, or the state of the world around it.

Sight, sound, touch, taste, and smell are the kinds of information we get from our

world.

Robots can be designed and programmed to get specific information that is beyond

what our 5 senses can tell us. For instance, a robot sensor might "see" in the dark,

detect tiny amounts of invisible radiation or measure movement that is too small or

fast for the human eye to see. Here are some things sensors are used for:

Physical Property Technology

Contact Bump, Switch

Distance Ultrasound, Radar, Infra Red

Light Level Photo Cells, Cameras

Sound Level microphones

Strain Strain Gauges

Rotation Encoders

Magnetism Compasses

Smell Chemical

5

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Temperature Thermal, Infra Red

Inclination Inclinometers, Gyroscope

Pressure Pressure Gauges

Altitude Altimeters

Sensors can be made simple and complex, depending on how much information

needs to be stored. A switch is a simple on/off sensor used for turning the robot on

and off. A human retina is a complex sensor that uses more than a hundred million

photosensitive elements (rods and cones). Sensors provide information to the robots

brain, which can be treated in various ways.

1

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Definitions

robot

A versatile mechanical device equipped with actuators and sensors under

the control of a computing system. Russell and Norvig define it as "an

active, artificial agent whose environment is the physical world."

task planner

A program that converts task-level specifications into manipulator-level

specifications. The task planner must have a description of the objects

being manipulated, the task environment, the robot, and the initial and

desired final states of the environment. The output should be a robot

program that converts the initial state into the desired final state.

effector

The bits the robot does stuff with. That is, arms, legs, hands, feet. An end-

effector is a functional device attached to the end of a robot arm (e.g.,

grippers).

actuator

A device that converts software commands into physical motion, typically

electric motors or hydraulic or pneumatic cylinders.

degree of freedom

A dimension along which the robot can move itself or some part of itself.

Free objects in 3-space have 6 degrees of freedom, three for position and

three for orientation.

sensors

Devices that monitor the environment. There are contact sensors (touch

and force), and non-contact (e.g., sonar).

sonar

Sensing system that works by measuring the time of flight of a sound pulse

to be generated, reach an object, and be reflected back to the sensor. Wide

angle but reasonably accurate in depth (the wide angle is the disadvantage).

infrared

Very accurate angular resolution system but terrible in depth measurement.

2

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

landmark

An easily recognizable, unique element of the environment that the robot

can use to get its bearings.

Task Planning

By virtue of their versatility, robots can be difficult to program, especially for

tasks requiring complex motions involving sensory feedback. In order to simplify

programming, task-level languages exist that specify actions in terms of their

effects on objects.

Example: pin A programmer should be able to specify that the robot should put a

pin in a hole, without telling it what sequence of operators to use, or having to

think about its sensory or motor operators.

Task planning is divided into three phases: modeling, task specification, and

manipulator program synthesis.

There are three approaches to specifying the model state:

1. Using a CAD system to draw the positions of the objects in the desired

configuration.

2. Using the robot itself to specify its configurations and to locate the object

features.

3. Using symbolic spatial relationships between object features (such as

(face1 against face2). This is the most common method, but must be

converted into numerical form to be used.

Motion Planning

The fundamental problem in robotics is deciding what motions the robot should

perform in order to achieve a goal arrangement of physical objects. This turns out

to be an extremely hard problem.

Motion Planning Definitions

basic motion planning problem

Let A be a single rigid object (the robot) moving in a Euclidean space W,

called the workspace, represented as Rn (where n = 2 or 3). Let B1, ..., Bq

be fixed rigid objects distributed in W. These are called obstacles.

Assume that the geometry of A, and the geometries and locations of the

Bi's are accurately known. Assume also that no kinematic constraints limit

the motions of A (so that A is a free-flying object).

3

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Given an initial position and orientation and a goal position and orientation

of A in W, the problem is to generate a path t specifying a continuous

sequence of positions and orientations of A avoiding contact with the Bi's.

(Basically, given a robot, a bunch of objects, a start state and a goal state,

find a path for the robot to reach the goal state.)

configuration of object A

A specification of the position of every point in the object, relative to a

fixed frame of reference. To specify the configuration of a rigid object A,

it is enough to specify the position and orientation of the frame FA with

respect to FW. The subset of W occupied by A at configuration q is denoted

by A(q).

configuration space of object A

The space C of all configurations of A. The idea is to represent the robot

as a point and thus reduce the motion planning problem to planning for a

point.

dimension of C

The dimension of a configuration space is the number of independent

parameters required to represent it as Rm. This is 3 for 2-D, and 6 for 3-D.

Distance between configurations

The distance between configurations q and q' should decrease and tend to

zero when the regions A(q) and A(q') get closer and tend to coincide.

Path

A path from a configuration qinit to configuration qgoal is a continuous map

t : [0,1] -> C with t(0) = qinit and t(1) = qgoal.

free-flying object

An object for which, in the absence of any obstacles, any path is feasible.

4

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

C-obstacle

An obstacle mapped into configuration space. Every obstacle Bi is mapped

to the following region in the workspace called the C-obstacle: CBi = { q

in C : A(q) intersected with Bi != empty set }.

C-obstacle region

The union of all the C-obstacles.

Free space

All of the configuration space less the C-obstacle region, called Cfree. A

configuration in Cfree is called a free configuration and a free path is a path where

t maps to Cfree instead of to C. A semi-free path maps to the closure of

Cfree.

Configuration Space

For a robot with k degrees of freedom, the state or configuration of the robot can be

described by k real values. These values can be considered as a point p in a k-

dimensional configuration space of the robot.

Uncertainty

A robot may have little or no prior knowledge about its workspace. The more

incomplete the knowledge, the less important the role of planning. A more typical

situation is when there are errors in robot control and in the initial models, but these

errors are contained within bounded regions.

http://www.electronicsteacher.com/robotics/what-is-robotics.php

1

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Mobile Robot Motion Planning

 Introduction
 Motion planning, refers to the ability of a robot to plan its own motions.
The basic motion planning problem is stated as follows :

Given an initial configuration and a desired final configuration of the robot, find a
path starting at the initial configuration and terminating at the final configuration,
while avoiding collisions with obstacles. It is assumed that the geometry and location
of the obstacles are completely known.

 A consistent model for individual and relational behaviors is required to
provide a systematic methodology for behavior synthesis and analysis.
Particularly convenient to model relational behaviors, where more than one
teammate is involved .

Mobile Robot
 Robot manipulators (first and for most the popular stationary robot arms)
work fine for instance in assembly applications in factories. However,
mobile robots offer some very important advantages, for instance:

Reach Mobile robots are necessary if the problem the robot should solve is
not restricted to some sufficiently small area.

Flexibility If the position of the problem to be solved is not static, the mobile
robot has the ability to pursue it.

 A mobile robot has to generate a navigational plan in a given environment
between predefined starting and goal points. The robot environment
includes many obstacles and thus finding the shortest path without touching
the obstacles in many cases is an extremely complex problem. The

2

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

complexity of the problem increases further, when the obstacles are
dynamic.

 The basic problem of a mobile robot is that of navigation moving from one
place to another by a coordination of planning, sensing and control. In any
navigation scheme the desire is to reach a destination without getting lost or
crashing into anything. Simply the navigation problem is to find a path from
start (S) to target (G) and traverse it without collision. Navigation may be
decomposed into three sub-tasks:

Subtask1:

mapping and modeling the environment; this concerns the
representation of free space; the workspace through which
a robot is to move amongst a number of obstacles.

Subtask2: path planning; this constitutes the core of the planner, it
concerns the computation (i.e. searching) within
predetermined criteria, of near optimal or even an optimal
paths for a robot to navigate throughout its environment.

Subtask3: path following and collision avoidance; path following in
the case of single robot motion. For multiple robot motion
path following and coordination.

The relationship between these subtasks is shown in figure (1).

3

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Subtask1: environment

map and modeling

Subtask2: Path planning

Subtask3: Path following

Collision avoidance Motion Control

Sensors

Figure1 Mobile robot motion planning basic problem

4

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Motion Planning
 The process of generating a sequence of actions that has to be performed
in order for a robot to move through its environment (also called workspace,
see figure (2-2)) autonomously and without collisions is called motion
planning.

Figure 2: A simple workspace with two obstacles and an enclosing
workspace boundary.

5

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

 The space in which the motion problem “lives” will be defined as the
workspace (world), W, for which there are two possible choices :

1) A two-dimensional (2D) workspace in which 2RW = (R denotes
the set of real numbers and

2) Three-dimensional (3D) workspace, in which 3RW = .

 Generally the workspace contains two entities:

1- Obstacles: Portions of the workspace that are “permanently “ occupied,
for example, as in the walls of a building.

2- Robots: Geometric bodies that behave according to a motion strategy.

 Basic motion planning problem (single robot motion planning problem)
assumes that the robot is the only moving object in the workspace around
stationary obstacles. This problem can be solved by merely constructing a
geometric path.

 If the case where several robots move independently in the same
workspace among stationary obstacles the resulting problem is called the
multiple robot path-planning problem .

 In order to organize the various facets of motion planning in a coherent
framework, the basic concepts to motion planning will be exposed in detail.

6

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Configuration Space and Point Robot
 instead of handling a complex geometrical representation of a robot in the
Euclidean representation of the workspace, the robot could be treated as a
point in its Configuration space (C-space).

 The configuration has as many dimensions as the robot has degrees of
freedom (DoF). For example robot of three DoFs has two for translation and
one for rotation. Rotation invariant robot is symmetric in its z-axis and C-
space will be two dimensional, in fact, we say that an obstacle in the
workspace “grows” with size of robot in the C- space of the robot.

 The underlying concept is to represent the real-world robot as a point in
an appropriate space, and to map obstacles into this same space. Then, the
space contains a concise representation of the robot's geometrical constraints
on motion, and a motion planner needs only to consider the path of the
single point, which represents the robot. In figure (3) the configuration q of

a rotation invariant robot A specifies the exact position and orientation of A

relative to a fixed reference frame. Therefore, the C-space of A is the set of
all possible configurations of A . Obstacles are mapped into C-space by
determining which configurations of the robot produce collisions with an
obstacle; these configurations are deemed forbidden. Let)(qA denote the

location of sA' particles when A is in configuration q . A C-space obstacle

(or “C-obstacle") associated with a physical obstacle B is defined as

)1.2(})({ −−−−−−−−== BqACqCB

The complement of the C-obstacles is termed the “free space”:

)2.2(\ −−−−−−−−−−= CBCC
free

Motion plans are constructed in
free

C (see figure (3)) .

7

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

 The Notion of Path

 A path of A from the configuration
init

q to the configuration
goal

q is a

continuos map:

goal
qand

init
q

with

C
free

==

→= −−−−−−−−−−−−

)1()0(

]1,0[)3.2(





init
q and

goal
q are the initial and goal configurations of the path,

respectively. In order to match intuition of the path, the distance between
two configurations

init
q and

goal
q should decrease and tend toward zero

when the regions)(
init

qA and)(
goal

qA get closer and tend to coincide. A

simple distance function that satisfies this condition is defined for two
dimension workspace:

Figure 3: Configuration space for rotation invariant robot

Cfree

8

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

)4.2()()(max),(−−−−−−−−−−−


=
goal

qa
init

qa
Aagoal

q
init

qd

 .'xand xdenotes the Euclidean distance between any two points 'xx− Where

If the path does not touch the obstacles it is called free path. Paths that touch the
obstacles are called semi-free paths.

Methods for Motion Planning
 There exist a large number of methods for solving motion planning
problem for single and multiple mobile robots. Despite many external
deference’s, the methods are based on few different general approaches.
These approaches will be described in the next subsections.

Single robot motion planning

 To date, motion planning approaches for single robot can be classified into
three categories:

1) Skeleton (Roadmaps);

2) Cell decomposition;

3) Potential field;

 1) In the skeleton approach, the free space is represented by a network of
one-dimensional (1-D) paths called a Roadmap. There are many different
roadmap methods, but one thing they all have in common is that they try to
convert the free space of the workspace into a graph representation (a

9

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

roadmap). A collision-free path can now be constructed (if one exists) by
connecting the start position and destination to the roadmap.

 The roadmap method called visibility graph constructs a shortest path, but it
is only semi-free path. In the visibility graph method, all pairs of vertices of
the obstacles in the workspace are connected. A connection between a pair
of vertices is called an edge and all edges

form a possible path segment on an optimal path. In figure (2-4 a) the thick
path segment and the dotted thick lines from S to G constitute a path.

 The method called voronoi diagram, on the other hand, maximizes the
distance between robot and obstacles. In the voronoi diagram method, a
path is constructed by connecting S and G with the roadmap, which consists
of positions that are on a maximum distance from the obstacles and
workspace boundary (figure 4 b).

 2) In the cell-decomposition methods the free space of the workspace is
decomposed into a set of cells. The cells must be simple so that a path easily
can be planned through each cell (a suitable cell is typically a convex
polygon). A channel of free cells (i.e., a sequence of contiguous cells) is
subsequently constructed starting with the cell, which contains the current
position of the robot, and ending with the cell that contains its destination.

10

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Finally, a path can be planned from the start position through the channel to
the destination .

Cell decomposition is further divided into exact and approximate cell
decompositions figure (5).

 Exact cell decomposition methods decompose the free space into cells whose
union is exactly the free space. Exact methods are more mathematically
involved and are complete i.e. they are guaranteed to find path whenever
exits and return failure otherwise.

 Approximate cell decomposition produces cells of predefined shape (e.g.
rectangloids) whose union is strictly included in the free space. Approximate
methods involve recursive simple computation, so they are much easier to
implement than exact methods but are incomplete since they may fail to find a

free path if one exists.

 (a) (b)

Figure 4: Roadmap method a) visibility graph method b) voronoi graph method

11

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

3) In the potential-field approach, a scalar potential function that has

 high values near obstacles and the global minimum at the goal is

 constructed. In this case the robot moves in the direction of the

 negative gradient of the potential.

 Most methods for motion planning can be derived from these approaches or

hybrids of these approaches .

 The motion planning approach called cell decomposition method is quite

attractive. It allows generation of collision-free paths (whereas, e.g., visibility graph

only guarantees semi-free paths). Moreover it is practical (compared to, e.g., voronoi

diagram which appears more difficult to implement) and it takes global knowledge

into consideration (unlike potential field).

Cell decomposition methods have the following main steps :

1) Represent the free space as collection of cells.

2) Generate the connectivity graph representing the adjacency relation

between cells.

Figure 5: Cell decompositions methods (a)The Exact method cell decomposition

method (b) The approximate cell decomposition method.

 (a) ((b)

12

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

3) Search the connectivity graph for a sequence of adjacent cells connecting

the initial to the goal cell.

4) Transform the sequence of cells (if one has been produced) into a path.

Each cell represents a connected region of free space.

 Multi Robot Motion Planning
 All motion planning methods for single robot motion planning are
applicable to multiple robot motion planning but with modification.

According to the way the multiple robots are treated the multi-robot motion
planning approaches are often categorized as centralized and decoupled .

Centralized approaches treat the separate robots as one composite system,
and typically perform the planning in a composite configuration space,
formed by combining the configuration spaces of the individual robots.

Decoupled approaches first generate paths for the separate robots more or less
independently, and then consider the interactions between the robots (with
respect to the generated paths). Decoupled is more less computation
complexity than the centralized approaches.

 Online and Off-line Motion Planning

 An alternative way of classifying motion-planning methods is to say
whether they are on-line or off –line. On-line planning is performed in real
time, i.e., at the same time the robot is moving, and is exceptionally useful
when the environment is not known. Off-line planning is performed before
any robot motion and is not useful unless the workspace is known. Table (1)
lists the differeances between on-line and off line methods.

 Complete and Sound Methods

13

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

 Almost all motion planning methods can be characterized along the
following:

Complete: A method is said to be complete if it guaranteed to find a

 collision-free path if one exists; otherwise return failure.

Sound: if it guarantees that all its solutions are correct (i.e., collision

 free).

1

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Mobile Robot Motion Planning

 Introduction
 Motion planning, refers to the ability of a robot to plan its own motions.
The basic motion planning problem is stated as follows :

Given an initial configuration and a desired final configuration of the robot, find a
path starting at the initial configuration and terminating at the final configuration,
while avoiding collisions with obstacles. It is assumed that the geometry and location
of the obstacles are completely known.

 A consistent model for individual and relational behaviors is required to
provide a systematic methodology for behavior synthesis and analysis.
Particularly convenient to model relational behaviors, where more than one
teammate is involved .

Mobile Robot
 Robot manipulators (first and for most the popular stationary robot arms)
work fine for instance in assembly applications in factories. However,
mobile robots offer some very important advantages, for instance:

Reach Mobile robots are necessary if the problem the robot should solve is
not restricted to some sufficiently small area.

Flexibility If the position of the problem to be solved is not static, the mobile
robot has the ability to pursue it.

 A mobile robot has to generate a navigational plan in a given environment
between predefined starting and goal points. The robot environment
includes many obstacles and thus finding the shortest path without touching
the obstacles in many cases is an extremely complex problem. The
complexity of the problem increases further, when the obstacles are
dynamic.

2

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

 The basic problem of a mobile robot is that of navigation moving from one
place to another by a coordination of planning, sensing and control. In any
navigation scheme the desire is to reach a destination without getting lost or
crashing into anything. Simply the navigation problem is to find a path from
start (S) to target (G) and traverse it without collision. Navigation may be
decomposed into three sub-tasks:

Subtask1:

mapping and modeling the environment; this concerns the
representation of free space; the workspace through which
a robot is to move amongst a number of obstacles.

Subtask2: path planning; this constitutes the core of the planner, it
concerns the computation (i.e. searching) within
predetermined criteria, of near optimal or even an optimal
paths for a robot to navigate throughout its environment.

Subtask3: path following and collision avoidance; path following in
the case of single robot motion. For multiple robot motion
path following and coordination.

The relationship between these subtasks is shown in figure (1).

3

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Subtask1: environment

map and modeling

Subtask2: Path planning

Subtask3: Path following

Collision avoidance Motion Control

Sensors

Figure1 Mobile robot motion planning basic problem

4

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Motion Planning
 The process of generating a sequence of actions that has to be performed
in order for a robot to move through its environment (also called workspace,
see figure (2-2)) autonomously and without collisions is called motion
planning.

Figure 2: A simple workspace with two obstacles and an enclosing
workspace boundary.

5

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

 The space in which the motion problem “lives” will be defined as the
workspace (world), W, for which there are two possible choices :

1) A two-dimensional (2D) workspace in which 2RW = (R denotes
the set of real numbers and

2) Three-dimensional (3D) workspace, in which 3RW = .

 Generally the workspace contains two entities:

1- Obstacles: Portions of the workspace that are “permanently “ occupied,
for example, as in the walls of a building.

2- Robots: Geometric bodies that behave according to a motion strategy.

 Basic motion planning problem (single robot motion planning problem)
assumes that the robot is the only moving object in the workspace around
stationary obstacles. This problem can be solved by merely constructing a
geometric path.

 If the case where several robots move independently in the same
workspace among stationary obstacles the resulting problem is called the
multiple robot path-planning problem .

 In order to organize the various facets of motion planning in a coherent
framework, the basic concepts to motion planning will be exposed in detail.

6

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Configuration Space and Point Robot
 instead of handling a complex geometrical representation of a robot in the
Euclidean representation of the workspace, the robot could be treated as a
point in its Configuration space (C-space).

 The configuration has as many dimensions as the robot has degrees of
freedom (DoF). For example robot of three DoFs has two for translation and
one for rotation. Rotation invariant robot is symmetric in its z-axis and C-
space will be two dimensional, in fact, we say that an obstacle in the
workspace “grows” with size of robot in the C- space of the robot.

 The underlying concept is to represent the real-world robot as a point in
an appropriate space, and to map obstacles into this same space. Then, the
space contains a concise representation of the robot's geometrical constraints
on motion, and a motion planner needs only to consider the path of the
single point, which represents the robot. In figure (3) the configuration q of

a rotation invariant robot A specifies the exact position and orientation of A

relative to a fixed reference frame. Therefore, the C-space of A is the set of
all possible configurations of A . Obstacles are mapped into C-space by
determining which configurations of the robot produce collisions with an
obstacle; these configurations are deemed forbidden. Let)(qA denote the

location of sA' particles when A is in configuration q . A C-space obstacle

(or “C-obstacle") associated with a physical obstacle B is defined as

)1.2(})({ −−−−−−−−== BqACqCB

The complement of the C-obstacles is termed the “free space”:

)2.2(\ −−−−−−−−−−= CBCC
free

Motion plans are constructed in
free

C (see figure (3)) .

7

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

 The Notion of Path

 A path of A from the configuration
init

q to the configuration
goal

q is a

continuos map:

goal
qand

init
q

with

C
free

==

→= −−−−−−−−−−−−

)1()0(

]1,0[)3.2(





init
q and

goal
q are the initial and goal configurations of the path,

respectively. In order to match intuition of the path, the distance between
two configurations

init
q and

goal
q should decrease and tend toward zero

when the regions)(
init

qA and)(
goal

qA get closer and tend to coincide. A

simple distance function that satisfies this condition is defined for two
dimension workspace:

Figure 3: Configuration space for rotation invariant robot

Cfree

8

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

)4.2()()(max),(−−−−−−−−−−−


=
goal

qa
init

qa
Aagoal

q
init

qd

 .'xand xdenotes the Euclidean distance between any two points 'xx− Where

If the path does not touch the obstacles it is called free path. Paths that touch the
obstacles are called semi-free paths.

Methods for Motion Planning
 There exist a large number of methods for solving motion planning
problem for single and multiple mobile robots. Despite many external
deference’s, the methods are based on few different general approaches.
These approaches will be described in the next subsections.

Single robot motion planning

 To date, motion planning approaches for single robot can be classified into
three categories:

1) Skeleton (Roadmaps);

2) Cell decomposition;

3) Potential field;

 1) In the skeleton approach, the free space is represented by a network of
one-dimensional (1-D) paths called a Roadmap. There are many different
roadmap methods, but one thing they all have in common is that they try to
convert the free space of the workspace into a graph representation (a

9

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

roadmap). A collision-free path can now be constructed (if one exists) by
connecting the start position and destination to the roadmap.

 The roadmap method called visibility graph constructs a shortest path, but it
is only semi-free path. In the visibility graph method, all pairs of vertices of
the obstacles in the workspace are connected. A connection between a pair
of vertices is called an edge and all edges

form a possible path segment on an optimal path. In figure (2-4 a) the thick
path segment and the dotted thick lines from S to G constitute a path.

 The method called voronoi diagram, on the other hand, maximizes the
distance between robot and obstacles. In the voronoi diagram method, a
path is constructed by connecting S and G with the roadmap, which consists
of positions that are on a maximum distance from the obstacles and
workspace boundary (figure 4 b).

 2) In the cell-decomposition methods the free space of the workspace is
decomposed into a set of cells. The cells must be simple so that a path easily
can be planned through each cell (a suitable cell is typically a convex
polygon). A channel of free cells (i.e., a sequence of contiguous cells) is
subsequently constructed starting with the cell, which contains the current
position of the robot, and ending with the cell that contains its destination.

10

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Finally, a path can be planned from the start position through the channel to
the destination .

Cell decomposition is further divided into exact and approximate cell
decompositions figure (5).

 Exact cell decomposition methods decompose the free space into cells whose
union is exactly the free space. Exact methods are more mathematically
involved and are complete i.e. they are guaranteed to find path whenever
exits and return failure otherwise.

 Approximate cell decomposition produces cells of predefined shape (e.g.
rectangloids) whose union is strictly included in the free space. Approximate
methods involve recursive simple computation, so they are much easier to
implement than exact methods but are incomplete since they may fail to find a

free path if one exists.

 (a) (b)

Figure 4: Roadmap method a) visibility graph method b) voronoi graph method

11

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

3) In the potential-field approach, a scalar potential function that has

 high values near obstacles and the global minimum at the goal is

 constructed. In this case the robot moves in the direction of the

 negative gradient of the potential.

 Most methods for motion planning can be derived from these approaches or

hybrids of these approaches .

 The motion planning approach called cell decomposition method is quite

attractive. It allows generation of collision-free paths (whereas, e.g., visibility graph

only guarantees semi-free paths). Moreover it is practical (compared to, e.g., voronoi

diagram which appears more difficult to implement) and it takes global knowledge

into consideration (unlike potential field).

Cell decomposition methods have the following main steps :

1) Represent the free space as collection of cells.

2) Generate the connectivity graph representing the adjacency relation

between cells.

Figure 5: Cell decompositions methods (a)The Exact method cell decomposition

method (b) The approximate cell decomposition method.

 (a) ((b)

12

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

3) Search the connectivity graph for a sequence of adjacent cells connecting

the initial to the goal cell.

4) Transform the sequence of cells (if one has been produced) into a path.

Each cell represents a connected region of free space.

 Multi Robot Motion Planning
 All motion planning methods for single robot motion planning are
applicable to multiple robot motion planning but with modification.

According to the way the multiple robots are treated the multi-robot motion
planning approaches are often categorized as centralized and decoupled .

Centralized approaches treat the separate robots as one composite system,
and typically perform the planning in a composite configuration space,
formed by combining the configuration spaces of the individual robots.

Decoupled approaches first generate paths for the separate robots more or less
independently, and then consider the interactions between the robots (with
respect to the generated paths). Decoupled is more less computation
complexity than the centralized approaches.

 Online and Off-line Motion Planning

 An alternative way of classifying motion-planning methods is to say
whether they are on-line or off –line. On-line planning is performed in real
time, i.e., at the same time the robot is moving, and is exceptionally useful
when the environment is not known. Off-line planning is performed before
any robot motion and is not useful unless the workspace is known. Table (1)
lists the differeances between on-line and off line methods.

 Complete and Sound Methods

13

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

 Almost all motion planning methods can be characterized along the
following:

Complete: A method is said to be complete if it guaranteed to find a

 collision-free path if one exists; otherwise return failure.

Sound: if it guarantees that all its solutions are correct (i.e., collision

 free).

1

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Visibility Graph Path Planning

 Create a Visibility Graph:

 – Nodes are start point, goal point, vertices of obstacles

 – Connect all nodes which are “visible”

– straight line un-obstructed path between any 2 nodes

– Includes all edges of polygonal obstacles

• Use A* to search for path from start to goal

• Start, goal, vertices of obstacles are graph nodes

• Edges are “visible” connections between nodes, including obstacle edges

Visibility graph algorithm

In algorithm Given the grown set of vertices. A visibility graph is an undirected

graph G = (V, E) where the V is the set of vertices of the grown obstacles plus the

start and goal points, and E is a set of edges consisting of all polygonal obstacle

boundary edges, or an edge between any 2 vertices in V that lies entirely in free

space except for its endpoints. Intuitively, if you place yourself at a vertex, you create

an edge to any other vertex you can see (i.e. is visible).

A simple algorithm to compute G is the following. Assume all N vertices of the G

are connected. This forms N·(N−1)/2 edges. Now, check each edge to see if it

intersects (excepting its endpoints) any of the grown obstacle edges in the graph If

so, reject this edge. The remaining edges (including the grown obstacle edges) are

the edges of the visibility graph.

Algorithm visibility graph

Input: s(start point, goal point, vertices of obstacles)

Output: visibility graph G𝑣𝑖𝑠(S),

initialize g=(V, E) //where v all vertices of polygon(obstacles) and E=0: edges

2

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

For all vertices v𝜖V

 do W←visible vertices (v,S)

for every vertex in w𝜖 W, add the arc (v,w) to E

Return G

• The shortest path in distance can be found by searching the Graph G using a

shortest path search (Dijkstra’s Algorithm) or other heuristic search method.

Algorithm shortest path(S, Pstart,Pgoal)

Input: a set S of disjoint polygonal obstacles, and two points Pstart and Pgoal in the

free space.

Output: the shortest collision free path connecting Pstart and Pgoal.

1. Gvis= visibility graph(S{Pstart,Pgoal}).

2. Assign each arc (v,w) in Gvis a weight , which is the Euclidean length of the

segment vw.

3. Use Dijkstra’s algorithm to compute a shortest path between Pstart and Pgoal in

G.

• Polygonal robot:

Every grown obstacle has edges from the original obstacle and edges from the robot.

These edges occur in order of the obstacle edge’s outward facing normals and the

inward facing normal of the robot. By sorting these normal, you can construct the

boundary of the grown obstacle.

Reference : Planning Algorithms, S. Lavalle, Cambridge U. Press, 2006. http://planning.cs.uiuc.edu/).

3

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

VGRAPH: Grown Obstacles

• VGRAPH algorithm assumes point robot

• What if robot has mass, size?

• Solution: expand each obstacle by size of the robot

 – create Grown Obstacle Set

• This effectively “shrinks” the robot back to a point

• Graph search of the VGRAPH will now find shortest path if one exists using

grown obstacle set

4

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

VGRAPH Summary

• Guaranteed to give shortest path in 2D

• Path is dangerously close to obstacles

– no room for error

• Does not scale well to 3D. Shortest path in 3D is not via vertices:

• Growing obstacles is difficult in 3D

Voronoi Diagrams

The Voronoi diagram itself is named after Greogry Voronoi who was a German

mathematician. In 1908, Voronoi formalized the n dimensional case for the concept

by which we now know as Voronoi diagrams.

In short, a voronoi diagram records information about the distances between sets of

points in any dimensional space. For path planning, voronoi tends to be used in two

dimensional space, where sets of points all lie within a plane.

 As seen from the figure above, a plane is divided into cells so that each cell contains

exactly one site. For every point in the cell, the Euclidean distance of the point to

the site within the cell, must be smaller than the distance of that point to any other

site in the plane. If this rule is followed across the entire plane, then the boundaries

of the cells, known as Voronoi edges, will represent points equidistance from the

nearest 2 sites. The point where multiple boundaries meet, called a voronoi vertex,

is equidistance from its 3 nearest sites.

5

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Let P = {p1, p2, . . . , pn} be a pi, to be the set of points in any dimensional space),

which we call sites. Define V(pi), the Voronoi cell for q in the plane that are closer

to pi than to any other site. That is, the Voronoi cell for pi is defined to be:

Voronoi edges: Each point on an edge of the Voronoi diagram is equidistant from

its two nearest neighbors pi and pj. Thus, there is a circle centered at such a point

such that pi and pj lie on this circle, and no other site is interior to the circle.

Voronoi vertices: It follows that the vertex at which three Voronoi cells V(pi),

V(pj), and V(pk) intersect, called a Voronoi vertex is equidistant from all sites.

Thus it is the center of the circle passing through these sites, and this circle

contains no other sites in its interior.

Degree: If we make the general position assumption that no four sites are ocircular,

then the vertices of the Voronoi diagram all have degree three. Points that have

equal distance to the two closest obstacles

6

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Reference:

Lecture Notes CMSC 754 (www.math.gatech.edu/~randall/AlgsF06/mount.pdf)
Blaer, Paul. “Robot Path Planning Using Generalized Voronoi Diagrams”
http://www.cs.columbia.edu/~pblaer/projects/path_planner/voronoi.html

1

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Cell decomposition methods

In the cell-decomposition methods the free space of the workspace is
decomposed into a set of cells. The cells must be simple so that a path easily
can be planned through each cell (a suitable cell is typically a convex
polygon). A channel of free cells (i.e., a sequence of contiguous cells) is
subsequently constructed starting with the cell, which contains the current
position of the robot, and ending with the cell that contains its destination.
Finally, a path can be planned from the start position through the channel to
the destination

Cell decomposition is further divided into exact and approximate cell
decompositions figure (5).

 Exact cell decomposition methods decompose the free space into cells whose
union is exactly the free space. Exact methods are more mathematically
involved and are complete i.e. they are guaranteed to find path whenever
exits and return failure otherwise.

 Approximate cell decomposition produces cells of predefined shape (e.g.
rectangloids) whose union is strictly included in the free space. Approximate
methods involve recursive simple computation, so they are much easier to

implement than exact methods but are incomplete since they may fail to find
a free path if one exists.

Cell decomposition methods have the following main steps :

1) Represent the free space as collection of cells.

2) Generate the connectivity graph representing the adjacency
relation between cells.

3) Search the connectivity graph for a sequence of adjacent cells
connecting the initial to the goal cell.

4) Transform the sequence of cells (if one has been produced) into a
path. Each cell represents a connected region of free space.

2

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Cell decomposition Methods are

• Exact Cell Decomposition

• Approximate Decomposition

Exact cell decomposition

In this method the free space is decomposed into a collection of non overlapping

regions cells whose union is exactly Cfree. A connectivity graph which represents

the adjancy relation among the cells constructed and searched. If successful the out

come of the search is a sequence of cells called a channel connecting the cell

containing the initial configuration to the cell containing the goal configuration a

path finally extracted from this sequence. The generated cells should have the

following properties:

a) The geometry of each cell should be simple to make it easy to compute a path

between any two configurations.

b) It should not be difficult to test the adjancy of any two cells and to find a path

crossing the portion of boundary shared by two adjacent cells.

Three planning methods based on exact cell decomposition are:

• Trapezoidal cell decomposition

• Translation and rotation in plane cell decomposition

• Collins cell decomposition

Figure 5: Cell decompositions methods (a)The Exact method cell decomposition

method (b) The approximate cell decomposition method.

 (a) ((b)

3

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

In figure 6 a collection of non-overlapping cells: Union(Cells) = Free Space. Finite

set of convex polygons that cover the space (fig6 a), Midpoints of adjacent cells are

“crossings”, then graph search(fig 6 b).

a b

 Figure 6

Trapezoidal exact cell decomposition

Figure 7 describe trapezoidal exact cell decomposition a collection of non-

overlapping cells: Union(Cells) = Free Space, then extend a bi-directional vertical

line from each vertex until collision(fig 7a). Again a graph search(fig7 b).

 a b

 Figure 7

4

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Exact cell decomposition analysis

• Complete? Yes

• Optimal? No

• Advantage? Efficiency!

Approximate cell decomposition

Represent the robot free space as a collection of cells. The cells have a simple prespecified shape

(eg. Rectangloid shape). Such that donot in general allow to represent free space exactly. The

reason for standardization of the shape of cells are :

1. to achieve space decomposition iteratively by simple computation

2. easy to implement numerically

3. one can directly control the amount of the free space around a generated path by setting a

minimal size for the cell

4. may fail to find a free path even if one exist

divide and label method (quad tree)

5

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Quadtrees

Quadtrees are recursive grids. They are created by recursively subdividing each map square with

non-uniform attributes into four equal-sized sub-squares. The division is repeated until a square is

uniform or the highest resolution is reached. Quadtrees reduce memory requirements hereby

allowing efficient partitioning of the environment. A single cell can be used to encode a large
empty region.

Quadtrees represent a partition of space in two dimensions by decomposing the region into four

equal quadrants, subquadrants and so on until the contents of the cells meet some criterion of data

occupancy. The resolution (cell size) of the grid varies depending on the data density.

6

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

7

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Potential Field
– The goal location generates an attractive potential – pulling
the robot towards the goal
– The obstacles generate a repulsive potential – pushing the
robot far away from the obstacles
– The negative gradient of the total potential is treated as an
artificial force applied to the robot

8

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

1

Kinematic Constraints

– In the basic path planning problem the only constraint of robot motion is due to obstacles

– There may occur other contraints – kinematic constraints (objects that cannot translate and rotate

freely in the workspace)

– Two types of kinematic constraints

• Holonomic Constraints

– Do not fundamentally change the path planning problem

• Nonholonomic Constraints

– Much harder to deal in terms of path planning

holonomic constraints

A holonomic equality constraint is an equality relation among the

parameters of the minimally-represented configuration space that can be

solved for one of the parameters. Such a relation reduces the dimension of

the actual configuration space of the robot by one. A set of k holonomic

constraints reduces it by k. For example, a robot limited to rotating around

a fixed axis has a configuration space of dimension 4 instead of 6 (since

revolute joints impose 2 holonomic constraints).

2

3

nonholonomic constraints

A nonholonomic equality constraint is a non-integrable equation involving

the configuration parameters and their derivatives (velocity parameters).

Such a constraint does not reduce the dimension of the configuration space,

but instead reduces the dimension of the space of possible differential

motions.

For example, a car-like robot has 3 dimensions: two for translation and one

for rotation. However, the velocity of R is required to point along the main

axis of A. (This is written as - sin T dx + cos T dy = 0.)

The instantaneous motion of the car is determined by two parameters: the

linear velocity along the main axis, and the steering angle. However, when

the steering angle is non-zero, the robot changes orientation, and its linear

velocity with it, allowing the robot's configuration to span a three-

dimensional space. Restricting the steering angle to pi/2 restricts the set of

possible differential motions without changing its dimension.

Nonholonomic constraints restrict the geometry of the feasible free paths

between two configurations. They are much harder to deal with in a planner

than holonomic constraints.

4

In general, a robot with nonholonomic constraints has fewer controllable degrees

of freedom than it has actual degrees of freedom; these are equal in a holonomic

robot.

Grasp Planning

Many typical robot operations require the robot to grasp an object. The rest of the

operation is strongly influenced by choices made during grasping.

Grasping requires positioning the gripper on the object, which requires generating

a path to this position.

The grasp position must be accessible, stable, and robust enough to resist some

external force. Sometimes a satisfactory position can only be reached by grasping

an object, putting it down, and re-grasping it.

The grasp planner must choose configurations so that the grasped objects are

stable in the gripper, and it should also choose operations that reduce or at least

do not increase the level of uncertainty in the configuration of the object.

The object to be grasped is the target object. The gripping surfaces are the

surfaces on the robot used for grasping.

There are three principal considerations in gripping an object. They are:

• safety -- the robot must be safe in the initial and final configurations

• reachability -- the robot must be able to reach the initial grasping

configuration and, with the object in hand, reach the final configuration

• stability -- the grasp should be stable in the presence of forces exerted on

the grasped object during transfer and parts-mating motions

Example: peg placement. By tilting a peg the robot can increase the likelihood

that the initial approach conditions will have the peg part way in the hole. Other

solutions are chamfers (a widening hole, producing the same effect as tilting),

search along the edge, and biased search (introduce bias so that search can be

done in at most one motion and not two, if the error direction is not known).

5

Three different aspects in motion planning are:

- Path: is a geometric locus of the path points in a given
space where the robot has to pass.

- Trajectory : is a path for which a temporal law is specified (
e.g, acceleration and velocity in each point.

- Manouvers: a mobile robot is not a point, (see fig 17).

Reference:

- Robot basics online resource for robotics.

- 'Robot Motion Planning and Control', J.P. Laumond (Ed.),Springer-Verlag London

Limited 1998 .

1

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Basic Concepts of Robot control

Robot Control System Task

The task of a robot control system is to execute the planned sequence of motions

and forces in the presence of unforseen errors.

Errors can arise from:

– inaccuracies in the model of the robot,

– tolerances in the workpiece,

– static friction in joints,

– mechanical compliance in linkages,

– electrical noise on transducer signals, and

– limitations in the precision of computation.

 Open Loop Control

No Feedback! Basic control suitable for systems with simple loads, Tight speed

control is not required, no position or rate-of-change sensors, on each axis, there is

a fixed mechanical stop to set the endpoint of the robot, its called “stop-to-stop” or

“pick-and-place” systems.

The desired change in a parameter is calculated (joint angles), The actuator energy

needed to achieve that change is determined, and the amount of energy is applied

to the actuator. If the model is correct and there are no disturbances, the desired

change is achieved.

Feedback Control Loop

Determine rotor position and/or speed from one or more sensors. Position of robot

arm is monitored by a position sensor, power to the actuator is altered so that the

movement of the arm conforms to the desired path in terms of direction and/or

velocity. Errors in positioning are corrected.

2

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Feedforward Control

It is a control, where a model is used to predict how much action to take, or the

amount of energy to use. It is used to predict actuator settings for processes where

feedback signals are delayed and in processes where the dynamic effects of

disturbances must be reduced.

Adaptive Control

This control uses feedback to update the model of the process based upon the

results of previous actions. The measurements of the results of previous actions are

used to adapt the process model to correct for changes in the process and errors in

the model. This type of adaption corrects for errors in the model due to long-term

variations in the environment but it cannot correct for dynamic changes caused by

local disturbances.

Robot Arm Configurations:

• Cartesian (3P)

• Cylindrical (R2P)

• Spherical (Polar) (2 RP)

• Articulated (3R)

• SCARA (2R in horizontal + 1P in vertical plane)

Casrtesian (3P)

• Due to their rigid structure they can manipulate high loads so they are commonly

used for pick-and-place operations, machine tool loading, in fact any application

that uses a lot of moves in the X,Y,Z planes.

• These robots occupy a large space, giving a low ratio of robot size to operating

volume. They may require some form of protective covering.

Cylindrical (R2P)

• They have a rigid structure, giving them the capability to lift heavy loads through

a large working envelope, but they are restricted to area close to the vertical base

or the floor.

• This type of robot is relatively easy to program for loading and unloading of

palletized stock, where only the minimum number of moves is required to be

programmed.

3

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Spherical (Polar) (2 RP)

• These robots can generate a large working envelope.

• The robots can allow large loads to be lifted.

• The semi-spherical operating volume leaves a considerable space near to the base

that cannot be reached.

• This design is used where a small number of vertical actions is adequate: the

loading and unloading of a punch press is a typical application.

Articulated Arm (3R)

• This is the most widely used arm configuration because of its flexibility in

reaching any part of the working envelope.

• This configuration flexibility allows such complex applications as spray painting

and welding to be implemented successfully.

SCARA

• Although originally designed specifically for assembly work, these robots are

now being used for welding, drilling and soldering operations because of their

repeatability and compactness.

• They are intended for light to medium loads and the working volume tends to be

restricted as there is limited vertical movement.

End Effector

• Attached to the wrist a hand “end effector”.

• The end effector is not considered as part of the robot’s manipulator.

• An end-effector is a tool or gripping mechanism attached to the end of a robot

arm used to make intentional contact with an object or to produce the robot’s final

effect on its surroundings to accomplish some task.

4

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Tools

• Tools are used in applications where the robot must perform some processing

operation on the work-part.

• In each case the robot must not only control the relative position of the tool with

respect to the work as a function of time, it must also control the operation of the

tool.

Grippers

Grippers are end effectors used to grasp and manipulate objects during the work

cycle. The objects are usually work-parts that are moved from one location to

another in the cell.

Examples of Grippers

• Mechanical grippers, in which the part is held between mechanical fingers and

the fingers are mechanically actuated

• Vacuum grippers, in which suction cups are used to hold flat objects

• Magnetized devices, for holding ferrous parts

• Adhesive devices, where an adhesive substance is used to hold a flexible material

such as fabrics.

1

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Sensors

A sensor is an electronic device that transfers a physical phenomenon

(temperature, pressure, humidity, etc.) into an electrical signal. Sensors in Robotics

are used for both internal feedback control and external interaction with the outside

environment.

Desirable Features of Sensors

• Accuracy.

• Precision.

• Operating range.

• Speed of response.

• Calibration.

• Reliability.

• Cost.

• Ease of operation.

Potentiometers

The general idea is that the device consists of a movable tap along two fixed ends.

As the tap is moved, the resistance changes. The resistance between the two ends is

fixed, but the resistance between the movable part and either end varies as the part

is moved. In robotics, pots are commonly used to sense and tune position for

sliding and rotating mechanisms.

Switch Sensors

Switches are the simplest sensors of all. They work without processing, at the

electronics level. Switches measure physical contact. Their general underlying

principle is that of an open vs. closed circuit. If a switch is open, no current can

flow; if it is closed, current can flow and be detected.

Principle of Switch Sensors

Contact sensors: detect when the sensor has contacted another object.

 Limit sensors: detect when a mechanism has moved to the end of its range.

 Shaft encoder sensors: detects how many times a shaft turns by having a switch

click (open/close) every time the shaft turns.

Ultrasonic Sensors

Ultrasonic sensors are used in wide range due to some considerations:

• very cheap in compare with other type of detectors.

2

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

• relatively have a good sensitivity

• available in different shapes.

Ultrasonic sensors measure the distance or presence of target objects by sending a

pulsed ultrasound wave at the object and then measuring the time for the sound

echo to return. Knowing the speed of sound, the

sensor can determine the distance of the object.

Ultrasonic Distance Sensing

Ultrasound sensing is based on the time-of-flight principle. The emitter produces a

sonar of sound, which travels away from the source, and, if it encounters barriers,

reflects from them and returns to the

microphone. The amount of time it takes for the sound beam to come back is

tracked and is used to compute the distance the sound traveled.

Sound wave travels with is a constant speed, which varies slightly based on

ambient temperature. At room temperature, sound travels at 1.12 feet per

millisecond.

Ultrasonic Sensors Applications

*Long sonar readings can be very inaccurate, as they may result from false rather

than accurate reflections For example, a robot approaching a wall at a steep angle

may not see the wall at all, and collide with it!

*Sonar sensors have been successfully used for very sophisticated robotics

applications, including terrain and indoor mapping, and remain a very popular

sensor choice in mobile robotics.

One can find ultrasound used in a variety of other applications; the best known one

is ranging in submarines. The sonars there have much more focused and have

longer-range beams. Simpler and more mundane applications involve automated

“tape measures”, height measures, burglar alarms, etc.

3

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Light sensors measure the amount of light impacting a photocell, which is

basically a resistive sensor. The resistance of a photocell is low when it is brightly

illuminated, it is high when it is dark.

Light sensors can measure:

 Light intensity (how light/dark it is)

 Differential intensity(difference between photocells)

 Break-beam (change/drop in intensity)

Optical Sensors

Optical sensors consists of an emitter and a detector. Depending of the

arrangement of emitter and detector relative to each other, we can get two types of

sensors:

 Reflective sensors (the emitter and the detector are next to each other, separated

by a barrier; objects are detected when the light is reflected off them and back into

the detector)

 Break-beam sensors (the emitter and the detector face each other; objects are

detected if they interrupt the beam of light between the emitter and the detector)

The emitter is usually made out of a light-emitting diode (an LED), and the

detector is usually a photodiode/phototransistor in Reflective optical sensors. A

light bulb in combination with a photocell can make a break-beam sensor.

Light Reflective Sensors

Light reflectivity depends on the color (and other properties) of a surface. It may

be harder (less reliable) to detect darker objects this way than lighter ones. In the

case of object distance, lighter objects that are farther away will seem closer than

darker objects that are not as far away.

What can be done with light reflectivity?

 object presence detection

object distance detection

 surface feature detection (finding/following markers/tape)

 wall/boundary tracking

 rotational shaft encoding (using encoder wheels with ridges or black & white

color)

 bar code decoding

Light Sensors Calibration

Source of noise in light sensors is ambient light. The best thing to do is subtract the

4

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

ambient light level out of the sensor reading, in order to detect the actual change in

the reflected light, not the ambient light. This done by taking two readings of the

detector, one with the emitter on, and one with it off, and subtracting the two

values from each other. The result is the ambient light level, which can then be

subtracted from future readings. This process is called sensor calibration.

Beam-break Sensors

Any pair of compatible emitter-detector devices can be used to produce such a

sensors, for example: an incandescent flashlight bulb and a photocell, red LEDs

and visible-light- sensitive photo-transistors or infra-red IR emitters and detectors

Infra Red Sensors

Infra red sensors are a type of light sensors, which function in the infra red part of

the frequency spectrum. IR sensors are active sensors: they consist of an emitter

and a receiver. IR sensors are used in the same ways that visible light sensors: as

break-beams and as reflectance sensors. IR is preferable to visible light in robotics

applications because it suffers a bit less from ambient interference, because it can

be easily modulated, and simply because it is not visible.

Voice recognition

This process involves determining what is said and taking an action based on the

perceived information. Voice recognition systems generally work on the frequency

content of the spoken words. Any signal may be decomposed into a series of sines

& cosines of different frequencies at different amplitudes. It is assumed that every

word (letter), when decomposed into the constituent frequencies, will have a

unique signature composed of its major frequencies, which allow the system to

recognize the word. The user must train the system by speaking the words a priori

to allow the system to create a look up table of the major frequencies of the spoken

words. When a word is spoken and its frequencies determined, the result is

compared with the look up table. If a close match is found, the word is recognized.

A universal system that recognizes all accents and variations in speaking may not

be either possible or useful.

For better accuracy, it is necessary to train the system with more repetitions. The

more accurate the frequencies, the narrower the allowable variations. This means

that if the system tries to match many frequencies for better accuracy, in the

presence of any noise or any variations in the spoken words, the system will not be

able to recognize the word. On the other hand, if a limited number of frequencies is

matched in order to allow for variations, then it may mix the words with other

similar words.

5

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

Many robots have been equipped with voice recognition systems in order to

communicate with the users. In most cases, the robot is trained by the user and it

can recognize words that trigger a certain action in response. When the voice-

recognition system recognizes the word, it will send a signal to the controller,

which, in turn, will run the robot as desired.

Voice Synthesizers

Voice synthesis is accomplished in two different ways:

 One is to recreate each word by combining phonemes and vowels this can be

accomplished with commercially available phonemes chip and a corresponding

program. Although this type of system can reproduce any word, it sounds

unnatural and machine like. The alternative is to record the words that the system

may need to synthesize and to access them from memory or tape as needed.

Although this system sounds very natural, it is limited. As long as all the words

that the machine needs to say are known a priori, this system can be used.

Intelligent Control System Properties:

1) Interact with its environment, Make decision when things go wrong during the

work cycle,

2) Communicate with human beings,

3) Make computations.

4) Operate in response to advanced sensors.

Autonomous Robot Control

The basic task of autonomous robot is to navigate from an initial position to a

desired target position. To achieve the goals of autonomy, an intelligent control

system must be designed to manage the robot’s operation. Autonomy of robots can

range from remote controlled means, through program controlled ones, to

completely autonomous mobile robots. An aim of intelligent control research is to

develop autonomous system that can dynamically interact with the real world.

6

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

1

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

1. Robot Programming
The interface between human user and an industrial robot is extremely important. Manipulators

are a minor part of an automated process. So manipulator programming is considered within a

workcell.

2. LEVELS OF ROBOT PROGRAMMING

There have been many styles of user interface developed for programming robots.:

Level 1- Teaching by showing: which involved moving the robot to a desired goal point and recording its

position in a memory that the sequencer would read during playback. During the teach phase, the user would

guide the robot either by hand or through interaction with a teach pendant. Limitations is The controller

must have sufficient memory to store information on the data points (usually both joint and

Cartesian space).

Level2- Explicit programming languages: programming robots via programs written in computer

programming languages. Usually, these computer programming languages have special features that apply

to the problems of programming manipulators and so are called robot programming languages (RPLs).

Robot programming languages have likewise taken on many forms. We will split them into three categories:

1. Specialized manipulation languages. These robot programming languages have been built by developing a

completely new language that, although addressing robot-specific areas, might well be considered a general

computer programming language. An example is the VAL language developed to control the industrial

robots by Unimation, Inc. Typical commands:

Where: display current robot position (joint and world space)

Here: define a position

Move: move to a specified location

Delay: pause for a number of seconds

Calibrate: calibrate the robot

Execute: run a program

Typical program:

A A Move PT1

B B Delay (10)

C C Move PT2

D D Goto A

2. Robot library for an existing computer language. These robot programming languages have been

developed by starting with a popular computer language (e.g., Pascal) and adding a library of robotspecific

subroutines. The user then writes a Pascal program making use of frequent calls to the predefined subroutine

package for robot-specific needs. An examples is AR-BASIC from American Cimfiex.

3. Robot library for a new general-purpose language. These robot programming languages have been

developed by first creating a new general-purpose language as a programming base and then supplying a

library of predefined robot-specific subroutines. Examples of such robot programming languages are RAPID

developed by ABB Robotics [6], AML developed by IBM [7], and KAREL developed by GMF Robotics

Level3- Task level programming languages

2

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

The third level of robot programming methodology is embodied in task-level progranmiing

languages. These languages allow the user to command desired subgoals of the task directly, rather

than specify the details of every action the robot is to take. In such a system, the user is able to

include instructions in the application program at a significantly higher level than in an explicit

robot programming language. A task-level robot programming system must have the ability to

perform many planning tasks automatically. For example, if an instruction to "grasp the bolt" is

issued, the system must plan a path of the manipulator that avoids coffision with any surrounding

obstacles, must automatically choose a good grasp location on the bolt, and must grasp it.

3. REQUIREMENTS OF A ROBOT PROGRAMMING LANGUAGE

1-World modeling

Manipulation programs must, by definition, involve moving objects in three-dimensional space, so it is clear that

any robot programming language needs a means of describing such actions. The most common element of

robot progra ming languages is the existence of special geometric types. For example, types are introduced

to represent jointangle sets, Cartesian positions, orientations, and frames.

2-Motion specification

A very basic function of a robot programming language is to allow the description by motion

statements.

These statements specify: via points, goal points, interpolated motion or Cartesian straight

line motion, space and time control. And the ability to do math on frames, vectors, matrices.

Different geometric representation and conversion between them. Constraints on speed. The

ability to specify goals relative to various frames.

Move goall
Move vial

3- Flow Execution

As in more conventional computer programming languages, a robot programming system allows the user

to specify the flow of execution—that is, concepts such as testing and branching, looping, calls to subroutines,

and even interrupts are generally found in robot programming languages.

- Most RPL support concepts such as:
- Testing, branching, looping, call to subroutines and interrupts.

Parallel processing for control of two robots or other equipments in the same workcell in

a parallel fashion. (By using signal and wait primitives).

Event monitoring by interrupts or though polling.

4-Programming environment
As with any computer languages, a good programming environment fosters programmer productivity.

Manipulator programming is difficult and tends to be very interactive, with a lot of trial and error. If the

user were forced to continually repeat the "edit-compile-run" cycle of compiled languages, productivity

would be low.

Therefore, most robot programming languages are now interpreted, so that individual language statements

can be run one at a time during program development and debugging.

3

PLANNING AND ROBOTICS\4TH CLASS \ARTIFICIAL INTELLIGENCE \COMPUTER SCIENCE DEPARTMENT \
UNIVERSITY OF TECHNOLOGY

- Manipulator programming is difficult and tend to very interactive, with a lot of trial and

error.

- The productivity of “edit-compile-run” would be low, hence most RPL are interpreted:

statements run one at a time during program development and debugging.

- Typical program support: text editors, debuggers, and file system.

5-Sensor integration

An extremely important part of robot programming has to do with interaction with sensors. The

system should have, at a minimum, the capability to query touch and force sensors and to use the

response in if- then-else constructs. The ability to specify event monitors to watch for transitions

on such sensors in a background mode is also very useful.

- Any RPL should have capability to query touch and force sensors. Some may support

other sensors:

Vision: to extract coordinate of objects

Conveyor belt interface: to track belt motion_and acquire objects from the bet as it

moves

Active force control: the ability to specify_force strategies, display force data and

programming the stiffness

Move arm to goal

Withforce=20*ounces alongz

