

Artificial Intelligence Branch

 Computer science Dep

University of Technology 2023-2024

By

Prof. Dr. Alia Karim Abdulhassan

Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\
University of technology 2023-2024

1

The BASIC Stamp Microcontroller

1.1 Microcontroller

A microcontroller is essentially an inexpensive single-chip computer. Single chip means the entire

computer system lies within the confines of a sliver of silicon encapsulated inside the plastic

housing of an integrated circuit. The microcontroller has features similar to those of a standard

personal computer.

The microcontroller contains:

a CPU (central processing unit),

RAM (random access memory),

ROM (read-only memory),

I/O (input/output) lines,

serial and parallel ports,

timers,

and sometimes other built-in peripherals such as ana- log-to-digital (A/D) and digital-to-analog

(D/A) converters.

The key feature, however, is the microcontroller’s capability of uploading, storing, and running a

program.

1.2 Why Use a Microcontroller?

Being inexpensive single-chip computers, microcontrollers are easy to embed into larger electronic

circuit designs. Their ability to store and run unique programs makes them extremely versatile.

For instance, one can program a microcontroller to make decisions and perform functions based

on situations (I/O line logic) and events. The math and logic functions allow the microcontroller

to mimic sophisticated logic and electronic circuits.

Programs can also make the microcontroller behave as a neural network and/or a fuzzy logic

controller. Microcontrollers are incorporated in consumer electronics and are responsible for the

“intelligence” in these smart electronic devices.

1.3 The Compiler

There are a number of compilers on the market that allow users to write programs (code) in

different high-level languages. High-level language frees the programmer from wrestling with and

controlling the microcontroller’s registers when writing code and accessing the different aspects

of the microcontroller’s features and memory.

The compiler reads through the text file and creates (compiles) an equivalent machine code

instruction listing (.hex file) of the program. The machine code (.hex file) is a list of hexadecimal

numbers that represent the Basic program. The list of hexadecimal numbers (.hex file) is uploaded

(programmed) into the microcontroller.

Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\
University of technology 2023-2024

2

1.4 Firmware

Many writers use the term firmware. This word is used when software is embedded in a hardware

device that can read and execute by the device but cannot be modified. So when our program

(software) is embedded (uploaded) into the microcontroller, it may be referred to as firmware.

Other phrases may include the term firmware instead of software, such as “upload the firmware”

or “once the firmware has been installed into the device.”

1.5 Consumables

Consumables are the electronic components, the microcontroller chip itself, with a few support

components to get the microcontroller up and running.

2. Boe-Bot’s Brain

The Boe-Bot and a close-up of its BASIC Stamp® 2 programmable microcontroller brain are

shown in Figure 2.1. The BASIC Stamp 2 module is both powerful and easy to use, especially

with a robot.

 Figure 2-1 BASIC Stamp Module on a Boe-Bot Robot

Through writing simple programs that make the BASIC Stamp and your Boe-Bot do four essential

robotic tasks:

1. Monitor sensors to detect the world around it

2. Make decisions based on what it senses

3. Control its motion (by operating the motors that make its wheels turn)

4. Exchange information with its Roboticist (that will be you!)

2.1 The PBASIC programming language

The programming language you will use to accomplish these tasks is called PBASIC, which stands

for:

· Parallax - Company that invented and manufactures BASIC Stamp microcontrollers

· All-purpose - Powerful and useful for solving many different kinds of problems

· Symbolic - Using symbols (terms that resemble English word/phrases)

· Instruction - To tell a computer what to do ·

Code - In terms that the computer (and you) can understand

Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\
University of technology 2023-2024

3

2.2 The BASIC Stamp Microcontroller

 It’s a programmable device that is designed into your digital wristwatch, cell phone, calculator,

clock radio, etc. In these devices, the microcontroller has been programmed to sense when you

press a button, make electronic beeping noises, and control the device’s digital display.

They are also built into factory machinery, cars, submarines, and spaceships because they can be

programmed to read sensors, make decisions, and orchestrate devices that control moving parts.

Student Guide is the recommended first text for beginners. It is full of examples of how to use

microcontrollers, and how to make the BASIC Stamp the brain of your own microcontrolled

inventions.

It’s available for free download from www.parallax.com/go/WAM, and it's also included in the

BASIC Stamp Editor Help as a PDF file.

2.3 THE SOFTWARE

The BASIC Stamp Editor (version 2.5 or higher) is the software you will use in most of the

activities and projects in this text. You will use this software to write programs that the BASIC

Stamp module will run. You can also use this software to display messages sent by the BASIC

Stamp that help you understand what it senses.

2.4 Computer System Requirements

You will need a personal computer to run the BASIC Stamp Editor software. Your computer will

need to have the following features:

 · Microsoft Windows 2K/XP/Vista/7 or newer operating system

 · An available serial or USB port

· Internet access and an Internet browser program

2.5 Running the BASIC Stamp Editor for the first time

ü If you see the BASIC Stamp Editor icon on your computer desktop, double-click it (Figure

2.2).

ü Or, click on your computer’s Start menu, then choose All Programs 4

Parallax Inc 4 BASIC Stamp Editor 2.5 4 BASIC Stamp Editor 2.5.

Figure 2.2 BASIC Stamp Editor Desktop Icon Double-click to launch the program.

Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\
University of technology 2023-2024

4

Questions
1. What device will be the brain of your Boe-Bot?

Solution:

A BASIC Stamp 2 microcontroller module.

2. When the BASIC Stamp sends a character to your PC/laptop, what type of

numbers are used to send the message through the programming cable?

 Solution:

Binary numbers, that is, 0’s and 1’s.

3. What is the name of the window that displays messages sent from the BASIC

Stamp to your PC/laptop?

Solution:

The Debug Terminal.

4.Explain what the asterisk does in this command: DEBUG DEC 7 * 11

5. There is a problem with these two commands. When you run the code, the

numbers they display are stuck together so that it looks like one large number

instead of two small ones. Modify these two commands so that the answers appear

on different lines in the Debug Terminal.

DEBUG DEC 7 * 11

DEBUG DEC 7 + 11

 Solution:

 The Debug Terminal would display: 18 E3. To fix the problem, add a carriage

return using the CR control character and a comma.

DEBUG DEC 7 * 11

DEBUG CR, DEC 7 + 11

6. Use DEBUG to display the solution to the math problem: 1 + 2 + 3 + 4. 2. Save

FirstProgramYourTurn.bs2 under another name. If you were to place the DEBUG

command shown below on the line just before the END command in the program,

what other lines could you delete and still have it work the same?

Solution:

is a program to display a solution to the math problem: 1+2+3+4.

Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\
University of technology 2023-2024

5

'{$STAMP BS2}

'{$PBASIC 2.5}

DEBUG "What's 1+2+3+4?"

DEBUG CR, "The answer is: "

DEBUG DEC 1+2+3+4

END

7.Modify the copy of the program to test your hypothesis (your prediction of what

will happen).

DEBUG "What's 7 X 11?", CR, "The answer is: ", DEC 7 *

11

Solution:

The last three DEBUG lines can be deleted. An additional CR is needed after the

"Hello" message.

' {$STAMP BS2}

' {$PBASIC 2.5}

DEBUG "Hello, it's me, your BASIC Stamp!", CR

DEBUG "What's 7 X 11?", CR, "The answer is: ", DEC 7 *

11

END

The output from the Debug Terminal is:

Hello, it's me, your BASIC Stamp!

What's 7 X 11?

The answer is: 77

This output is the same as it was with the previous code. This is an example of

using commas to output a lot of information, using only one DEBUG command

with multiple elements in it.

Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\
University of technology 2023-2024

1

Displaying Messages at Human Speeds

PAUSE command to tell the BASIC Stamp to wait for a while before executing the next

command.

PAUSE Duration

PAUSE command

Duration argument, how long it should wait before moving on to the next command.

The units for the Duration argument are thousandths of a second (ms).

one second=1000.

PAUSE 1000

If you want to wait for twice as long, try: PAUSE 2000

Note:

A second “s.” :1 s, it means one second.

A millisecond “ms.”

PAUSE 1000 delays the program for 1000 ms, which is 1000/1000 of a second, which is one

second, or 1 s.

Example: Show how the PAUSE command can be used to display messages at human speeds.

' {$STAMP BS2}

' {$PBASIC 2.5}

DEBUG "Start timer..."

PAUSE 1000

DEBUG CR, "One second elapsed..."

PAUSE 2000

DEBUG CR, "Three seconds elapsed..."

DEBUG CR, "Done."

END

The longest possible Duration argument is 65535. If you've got a minute to spare, try PAUSE

60000.

DO and LOOP :

DO

DEBUG "Hello!", CR

PAUSE 1000

LOOP

Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\
University of technology 2023-2024

2

Example: Display a message once every second.

' {$STAMP BS2}

' {$PBASIC 2.5}

DO

DEBUG "Hello!", CR PAUSE 1000

LOOP

PULSOUT that can deliver high signals for precise amounts of time.

PULSOUT Pin, Duration

A microsecond is a millionth of a second. It’s abbreviated µs.

For example, 8 microseconds is abbreviated 8 µs.

You can send a HIGH signal that turns the P13 LED on for 2 µs (that’s two millionths of a

second) by using this command:

PULSOUT 13, 1

This command would turn the LED on for 4 µs:

PULSOUT 13, 2

This command sends a high signal that you can actually view:

PULSOUT 13, 65000

How long does the LED circuit connected to P13 stay on when you send this pulse?

Let’s figure it out. The time it stays on is 65000 times 2 µs.

That’s:

Duration 65000 * 2µ s= 65000 0.000002s =0.13 s

which is still pretty fast, thirteen hundredths of a second.

Example:' Send a 0.13 second pulse to the LED circuit connected to P13 every 2 s.

' {$STAMP BS2}

' {$PBASIC 2.5}

DEBUG "Program Running!"

DO

PULSOUT 13, 65000

PAUSE 2000

LOOP

Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\
University of technology 2023-2024

3

 Viewing the Full Speed Servo Signal

Remember the servo signal is 100 times as fast as the program you just ran. First, let’s try

running the program ten times as fast.

That means divide all the Duration arguments (PULSOUT and PAUSE) by 10. ü Modify the

program so that the commands look like this:

DO

PULSOUT 13, 6500

PULSOUT 12, 6500

PAUSE 200

LOOP

Run it and verify that it makes the LEDs blink ten times as fast. Modify the program so that the

commands look like this:

DO

PULSOUT 13, 650

PULSOUT 12, 650

PAUSE 20

LOOP

Run the modified program and verify that it makes both LEDs about the same brightness.

Try substituting 850 in the Duration argument for the P13 PULSOUT command.

DO

PULSOUT 13, 850

PULSOUT 12, 650

PAUSE 20

LOOP

Run the modified program and verify that the P13 LED now appears slightly brighter than the

P12 LED. You may have to cup your hands around the LEDs and peek inside to see the

difference. They differ because the amount of time the P13 LED stays on is longer than the

amount of time the P12 LED stays on.

Try substituting 750 in the Duration argument for both the PULSOUT commands.

DO

PULSOUT 13, 750

PULSOUT 12, 750

PAUSE 20

LOOP

Run the modified program and verify that the brightness of both LEDs is the same again. It may

not be obvious, but the brightness level is between those given by Duration arguments of 650

and 850.

Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\
University of technology 2023-2024

4

Run the servo connected to P13 at full speed counterclockwise and the servo

connected to P12 at full speed clockwise.

' {$STAMP BS2}

' {$PBASIC 2.5}

DEBUG "Program Running!"

DO

PULSOUT 13, 850

PULSOUT 12, 650

PAUSE 20

LOOP

 Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\

 University of technology 2023-2024

1

Run the servos for a certain amount of time

Let’s say you want to run both servos, the P13 servo at a pulse width of 850 and

the P12 servo at a pulse width of 650. Now, each time through the loop, it will

take:

 1.7ms – Servo connected to P13

 1.3 ms – Servo connected to P12

 20 ms – Pause duration

1.6 ms – Code overhead ---------

24.6 ms – Total

If you want to run the servos for a certain amount of time, you can calculate it like

this:

Number of pulses = Time s / 0.0246 s = Time / 0.0246

Lets’ say we want to run the servos for 3 seconds. That’s:

Number of pulses = 3 / 0.0246 = 122

Now, you can use the value 122 in the EndValue of the FOR…NEXT loop, and it

will look like this:

FOR counter = 1 TO 122

PULSOUT 13, 850

PULSOUT 12, 650

PAUSE 20

NEXT

Example:

Run both servos in opposite directions for three seconds, then reverse ' the

direction of both servos and run another three seconds.

' {$STAMP BS2}

' {$PBASIC 2.5}

DEBUG "Program Running!"

counter VAR Byte

FOR counter = 1 TO 122

PULSOUT 13, 850

PULSOUT 12, 650

 Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\

 University of technology 2023-2024

2

PAUSE 20

NEXT

FOR counter = 1 TO 122

PULSOUT 13, 650

PULSOUT 12, 850

PAUSE 20

NEXT

END

Question

First, calculate the number of loops needed to get the servos to run for three

seconds, for each combination of rotation. As given on page 65, the code overhead

is 1.6 ms.

Four combinations (1,2,3,4).

Each combination: Determine PULSOUT Duration arguments:

1. Both counterclockwise: 12, 850 and 13, 850 2.

2. Both clockwise: 12, 650 and 13, 650

3. 12 CW and 13 CCW: 12, 850 and 13, 650

4. 12 CCW and 13 CW: 12, 650 and 13, 850

Each combination: Calculate how long it will take for one loop:

1. one loop = 1.7 + 1.7 + 20 ms + 1.6 = 25.0 ms = 0.025 s

2. one loop = 1.3 + 1.3 + 20 ms + 1.6 = 24.2 ms = 0.0242 s

3. one loop = 1.7 + 1.3 + 20 ms + 1.6 = 24.6 ms = 0.0246 s

4. one loop = 1.3 + 1.7 + 20 ms + 1.6 = 24.6 ms = 0.0246 s

Each combination: Calculate number of pulses needed for 3 s of running:

1. number of pulses = 3 s / 0.025 s = 120

2. number of pulses = 3 s / 0.0242 s = 123.9 = 124

3. number of pulses = 3 s / 0.0246 s = 121.9 = 122

4. number of pulses = 3 s / 0.0246 s = 121.9 = 122

Move servos through 4 clockwise/counterclockwise rotation ' combinations.

 Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\

 University of technology 2023-2024

3

'{$STAMP BS2}

'{$PBASIC 2.5}

DEBUG "Program Running!"

counter VAR Word

FOR counter = 1 TO 120 ' Loop for three seconds

PULSOUT 13, 850 ' P13 servo counterclockwise

PULSOUT 12, 850 ' P12 servo counterclockwise PAUSE 20

NEXT

FOR counter = 1 TO 124 ' Loop for three seconds

PULSOUT 13, 650 ' P13 servo clockwise

PULSOUT 12, 650 ' P12 servo clockwise

PAUSE 20

NEXT

FOR counter = 1 TO 122 ' Loop for three seconds

PULSOUT 13, 650 ' P13 servo clockwise

PULSOUT 12, 850 ' P12 servo counterclockwise PAUSE 20

NEXT

FOR counter = 1 TO 122 ' Loop for three seconds

PULSOUT 13, 850 ' P13 servo counterclockwise

PULSOUT 12, 650 ' P12 servo clockwise PAUSE 20

NEXT

END

 Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\

 University of technology 2023-2024

1

Boe-Bot Navigation

BASIC BOE-BOT MANEUVERS

Figure 4-1 shows your Boe-Bot’s front, back, left, and right. When the Boe-Bot

goes forward, in the picture, it would have to roll to the right edge of the page.

Backward would be toward the left edge of the page. A left turn would be make the

Boe-Bot ready to drive off the top of the page, and a right turn would have it facing

the bottom of the page.

Boe-Bot go forward,

The Boe-Bot’s left wheel has to turn counterclockwise, but its right wheel has to turn

clockwise.

 Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\

 University of technology 2023-2024

2

e

Definitions:

 it generates a tone to signal the start of the program. It will be used in all programs

that run the servos.

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

Example:

This FOR…NEXT loop sends 122 sets of pulses to the servos, one each to P13 and

P12, pausing for 20 ms after each set and then returning to the top of the loop.

FOR counter = 1 TO 122

PULSOUT 13, 850

PULSOUT 12, 650

PAUSE 20

NEXT

PULSOUT 13, 850 causes the left servo to rotate counterclockwise while

PULSOUT 12, 650 causes the right servo to rotate clockwise. Therefore, both

wheels will be turning toward the front end of the Boe-Bot, causing it to drive

forward. It takes about 3 seconds for the FOR…NEXT loop to execute 122 times,

so the Boe-Bot drives forward for about 3 seconds.

 Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\

 University of technology 2023-2024

3

example: Make the Boe-Bot roll forward for three seconds.

' {$STAMP BS2}

' {$PBASIC 2.5}

DEBUG "Program Running!"

counter VAR Word

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

FOR counter = 1 TO 122 ' Run servos for 3 seconds.

PULSOUT 13, 850

PULSOUT 12, 650

PAUSE 20

NEXT

END

Q: Run the program and verify that it ran at half the time and covered half the

distance.

Q: Try these steps over again, but this time, change the FOR…NEXT loop’s

EndValue to 244.

Example:

Modify your program with these PULSOUT commands:

PULSOUT 13, 780

PULSOUT 12, 720

Then Run the program, and verify that your Boe-Bot moves slower.

Moving Backward

These two PULSOUT commands can be used to make your Boe-Bot go backwards:

PULSOUT 13, 650

PULSOUT 12, 850

 Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\

 University of technology 2023-2024

4

Rotate left

These two commands will make your Boe-Bot rotate in a left turn counterclockwise

as you are looking at it from above):

PULSOUT 13, 650

PULSOUT 12, 650

Rotate right

These two commands will make your Boe-Bot rotate in a right turn (clockwise as

you are looking at it from above):

PULSOUT 13, 850

PULSOUT 12, 850

Example : Move forward, left, right, then backward for testing and tuning. '

{$STAMP BS2}

' {$PBASIC 2.5}

DEBUG "Program Running!"

counter VAR Word

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

FOR counter = 1 TO 64 ' Forward

PULSOUT 13, 850

PULSOUT 12, 650

PAUSE 20

NEXT

PAUSE 200

FOR counter = 1 TO 24 ' Rotate left - about 1/4 turn

PULSOUT 13, 650

PULSOUT 12, 650

PAUSE 20

NEXT

 Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\

 University of technology 2023-2024

5

PAUSE 200

FOR counter = 1 TO 24 ' Rotate right - about 1/4 turn

PULSOUT 13, 850

PULSOUT 12, 850

PAUSE 20

NEXT

PAUSE 200

FOR counter = 1 TO 64 ' Backward

PULSOUT 13, 650

PULSOUT 12, 850

PAUSE 20

NEXT

END

Your Turn – Pivoting

You can make the Boe-Bot turn by pivoting around one wheel. The trick is to keep

one wheel still while the other rotates.

1) keep the left wheel still and make the right wheel turn clockwise (forward), the

Boe-Bot will pivot to the left.

PULSOUT 13, 750

PULSOUT 12, 650

2) If you want to pivot forward and to the right, simply stop the right wheel, and

make the left wheel turn counterclockwise (forward).

PULSOUT 13, 850

PULSOUT 12, 750

3) These are the PULSOUT commands for pivoting backwards and to the right.

PULSOUT 13, 650

PULSOUT 12, 750

4) Finally, these are the PULSOUT commands for pivoting backwards and to the

left.

PULSOUT 13, 750

PULSOUT 12, 850

 Example: Make the Boe-Bot roll forward for ten seconds.

 Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\

 University of technology 2023-2024

6

 ' {$STAMP BS2}

' {$PBASIC 2.5}

DEBUG "Program Running!"

counter VAR Word

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

FOR counter = 1 TO 407 ' Number of pulses – run time.

PULSOUT 13, 850 ' Left servo full speed ccw.

PULSOUT 12, 650 ' Right servo full speed cw.

PAUSE 20

NEXT

END

Adjusting Servo Speed to Straighten the Boe-Bot’s Path

If your Boe-Bot goes perfectly straight, try this example anyway. If you follow

the instructions, it should adjust your Boe-Bot so that it curves slightly to the right.

Let’s say that the Boe-Bot turns slightly to the left. There are two ways to think

about this problem: either the left wheel is turning too slowly, or the right wheel is

turning too quickly. Since the Boe-Bot is already at full speed, speeding up the left

wheel isn’t going to be practical, but slowing down the right wheel should help

remedy the situation.

Remember that servo speed is determined by the PULSOUT command’s Duration

argument. The closer the Duration is to 750, the slower the servo turns. This means

you should change the 650 in the command PULSOUT 12,650 to something a little

closer to 750.

 If the Boe-Bot is only just a little off course, maybe PULSOUT 12,663 will do the

trick. If the servos are severely mismatched, maybe it needs to be PULSOUT

12,690.

It will probably take several tries to get the right value. Let’s say that your first guess

is that PULSOUT 12,663 will do the trick, but it turns out not to be enough because

the Boe- Bot is still turning slightly to the left.

So try PULSOUT 12,670. Maybe that overcorrects, and it turns out that PULSOUT

12,665 gets it exactly right. This is called an iterative process, meaning a process

that takes repeated tries and refinements to get to the right value.

 Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\

 University of technology 2023-2024

7

If your Boe-Bot curved to the right instead of the left, it means you need to slow

down the left wheel by reducing the Duration of 850 in the PULSOUT 13,850

command. Again, the closer this value gets to 750, the slower the servo will turn.

- Modify BoeBotForwardTenSeconds.bs2 so that it makes your Boe-Bot go

straight forward.

- Use masking tape or a sticker to label each servo with the best PULSOUT

values.

- If your Boe-Bot already travels straight forward, try the modifications just

discussed to see the effect. It should cause the Boe-Bot to travel in a curve

instead of a straight line.

You might find that there’s an entirely different situation when you program your

Boe- Bot to roll backward.

ü Modify BoeBotForwardTenSeconds.bs2 so that it makes the Boe-Bot roll

backward for ten seconds. ü Repeat the test for straight line. ü Repeat the steps for

correcting the PULSOUT command’s Duration argument to straighten the Boe-

Bot’s backward travel.

Tuning the Turns

Software adjustments can also be made to get the Boe-Bot to turn to a desired angle,

such as 90°. The amount of time the Boe-Bot spends rotating in place determines

how far it turns. Because the FOR…NEXT loop controls run time, you can adjust

the FOR…NEXT loop’s EndValue argument to get very close to the turning angle

you want.

Here’s the left turn routine from ForwardLeftRightBackward.bs2:

FOR counter = 1 TO 24 ' Rotate left - about 1/4 turn PULSOUT 13, 650

PULSOUT 12, 650

PAUSE 20

NEXT

Let’s say that the Boe-Bot turns just a bit more than 90° (1/4 of a full circle). Try

FOR counter = 1 TO 23, or maybe even FOR counter = 1 TO 22. If it doesn’t

turn far enough, increase the run time of the rotation by increasing the FOR…NEXT

loop’s EndValue argument to whatever value it takes to complete the quarter turn.

If you find yourself with one value slightly overshooting 90° and the other slightly

undershooting, try choosing the value that makes it turn a little too far, then slow

down the servos slightly. In the case of the rotate left, both PULSOUT Duration

arguments should be changed from 650 to something a little closer to 750. As with

the straight line exercise, this will also be an iterative process.

Your Turn – 90° Turns

 Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\

 University of technology 2023-2024

8

ü Modify ForwardLeftRightBackward.bs2 so that it makes precise 90° turns. ü

Update ForwardLeftRightBackward.bs2 with the PULSOUT values that you

determined for straight forward and backward travel. ü Update the label on each

servo with a notation about the appropriate EndValue for a 90° turn.

Carpeting can cause navigation errors. If you are running your Boe-Bot on

carpeting, don’t expect perfect results! A carpet is a bit like a golf green—the way

the carpet pile is inclined can affect the way your Boe-Bot travels, especially over

long distances. For more precise maneuvers, use a smooth surface.

ACTIVITY #3: CALCULATING DISTANCES

In many robotics contests, more precise robot navigation lends itself to better scores.

One popular entry level robotics contest is called dead reckoning. The entire goal

of this contest is to make your robot go to one or more locations and then return to

exactly where it started.

 Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\
 University of technology 2023-2024

1

Data types

variableName VAR Size

You can declare four different sizes of variables in PBASIC:

Size – Stores

Bit – 0 to 1

Nib – 0 to 15

Byte – 0 to 255

Word – 0 to 65535,

or -32768 to + 32767

Example Program: Make the Boe-Bot roll forward for one second.

' {$STAMP BS2}

' {$PBASIC 2.5}

DEBUG "Program Running!" counter VAR Word FREQOUT 4, 2000, 3000

' Signal program start/reset.

FOR counter = 1 TO 41 PULSOUT 13, 850

PULSOUT 12, 650

PAUSE 20

NEXT

END

Example Circle: Boe-Bot navigates a circle of 1 unit diameter.

'{$STAMP BS2}

'{$PBASIC 2.5}

DEBUG "Program running!"

pulseCount VAR Word ' Pulse count to servos

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

DO

PULSOUT 13, 850 ' Veer right PULSOUT 12, 716

PAUSE 20

LOOP

SUBROUTINES

GOSUB label // the program jumps to the label

RETURN // jumps back to the command immediately after the GOSUB command

 Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\
 University of technology 2023-2024

2

Example:

Example This program demonstrates a simple subroutine call.

' {$STAMP BS2}

' {$PBASIC 2.5}

DEBUG "Before subroutine", CR

PAUSE 1000

GOSUB My_Subroutine

DEBUG "After subroutine", CR

END

My_Subroutine:

DEBUG "Command in subroutine", CR

PAUSE 1000

RETURN

Example : This program demonstrates that a subroutine is a reusable block of commands.

' {$STAMP BS2}

' {$PBASIC 2.5}

DO

GOSUB High_Pitch

DEBUG "Back in main", CR

PAUSE 1000

GOSUB Low_Pitch

DEBUG "Back in main again", CR

 Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\
 University of technology 2023-2024

3

PAUSE 1000

DEBUG "Repeat...", CR, CR

LOOP

High_Pitch:

DEBUG "High pitch", CR

FREQOUT 4, 2000, 3500

RETURN

Low_Pitch:

DEBUG "Low pitch", CR

FREQOUT 4, 2000, 2000

RETURN

Example: Make forward, left, right, and backward movements in reusable subroutines.

' {$STAMP BS2}

' {$PBASIC 2.5}

DEBUG "Program Running!"

counter VAR Word

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

GOSUB Forward

GOSUB Left

GOSUB Right

GOSUB Backward END

Forward:

FOR counter = 1 TO 64 PULSOUT 13, 850

PULSOUT 12, 650

PAUSE 20

NEXT

PAUSE 200

RETURN

Left:

FOR counter = 1 TO 24

PULSOUT 13, 650

PULSOUT 12, 650

PAUSE 20

NEXT

PAUSE 200

RETURN

 Robotics and Planning lab. \Artificial Intelligence Branch\ Computer science Dep\
 University of technology 2023-2024

4

Right:

FOR counter = 1 TO 24

PULSOUT 13, 850

PULSOUT 12, 850

PAUSE 20

NEXT

PAUSE 200

RETURN

Backward:

FOR counter = 1 TO 64

PULSOUT 13, 650

PULSOUT 12, 850

PAUSE 20

NEXT

RETURN

Exerscie:

