

University of Technology
 الجامعة التكنولوجية

Computer Science Department

 قسم علوم الحاسوب

Operating System2
 2نظم التشغيل

Lect. Rehab .F
 د رحاب فليح .ا

Lect. Rana Mohammed
 رنا محمد د.م

cs.uotechnology.edu.iq

Virtual Memory

1.1 Virtual Memory

Virtual memory is a technique that lows the execution of processes that are

not completely in memory. One major advantage of this scheme is that programs can

be larger than physical memory.

Virtual memory involves the separation of logical memory as perceived by users

from physical memory. This separation allows an extremely large virtual memory to be

provided for programmers when only a smaller physical memory is available (Figure1).

Virtual memory makes the task of programming much easier, because the programmer no

longer needs to worry about the amount of physical memory available

The virtual address space of a process refers to the logical (or virtual) view of how a process

is stored in memory. Typically, this view is that a process begins at a certain logical address

— say , address 0— and exists in contiguous memory,

physical memory may be organized in page frames and that the physical page frames

assigned to a process may not be contiguous. It is up to the memory- management unit

(MMU) to map logical pages to physical page frames in memory.

2. Demand Paging

With demand-paged virtual memory, pages are loaded only when they are demanded

during program execution.

Pages that are never accessed are thus never loaded into physical memory A demand-

paging system is similar to a paging.

Figure 1 : page table When some pages are not in main Memory.

system with swapping (Figure2) where processes reside in secondary memory (usually a

disk). When we want to execute a process, we swap it into memory.

Figure 2: system with swapping

But what happens if the process tries to access a page that was not brought into memory?

Access to a page marked invalid causes a page fault. The paging hardware, in translating the

address through the page table, will notice that the invalid bit is set, causing a trap to the

operating system. This trap is the result of the operating system’s failure to bring the desired

page into memory

Figure 3: Steps in handling a page fault.

3. Page Replacement

Page replacement takes the following approach. If no frame is free, we find one that is not

currently being used and free it. We can free a frame by writing its contents to swap space

and changing the page table.

Figure 4: page Replacement.

There are many different page-replacement algorithms. Every operating system

probably has its own replacement scheme. How do we select a particular replacement

algorithm? In general, we want the one with the lowest page-fault rate.

We evaluate an algorithm by running it on a particular string of memory references and

computing the number of page faults. The string of memory, references is called a

reference string. We can generate reference strings artificially (by using a random-number

generator, for example), or we can trace a given system and record the address of each

memory reference. The latter choice produces a large number of data (on the order of 1

million addresses per second). To reduce the number of data, we use two facts. First, for a

given page size (and the page size is generally fixed by the hardware or system), we need

to consider only the page number, rather than the entire address. Second, if we have a

reference to a page p, then any references to page p that immediately follow will never cause

a page fault. Page p will be in memory after the first reference, so the immediately following

references will not fault. For example, if we trace a particular process, we might record the

following, address sequence

0100, 0432, 0101, 0612, 0102, 0103, 0104, 0101, 0611, 0102, 0103,

0104, 0101, 0610, 0102, 0103, 0104, 0101, 0609, 0102, 0105

At 100 bytes per page, this sequence is reduced to the following reference string

1, 4, 1, 6, 1, 6, 1, 6, 1, 6,1

We next illustrate several page-replacement algorithms. In doing so, we use the reference

string:

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 for a memory with three frames

3.1 FIFO Page Replacement

The simplest page-replacement algorithm is a first-in, first-out (FIFO) algorithm. A FIFO

replacement algorithm associates with each page the time when that page was brought

into memory. When a page must be replaced, the oldest page is chosen. Notice that it is

not strictly necessary to record the time when a page is brought in. We can create a FIFO

queue to hold all pages in memory. We replace the page at the head of the queue. When a

page is brought into memory, we insert it at the tail of the queue.

Figure 5: FIFO page Replacement Algorithm.

Every time a fault occurs; we show which pages are in our three frames. There are fifteen

faults altogether to illustrate the problems that are possible with a FIFO page-replacement

algorithm, consider the following reference string:

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4,5

Notice that the number of faults for four frames (ten) is greater than the number of faults

for three frames (nine). This most unexpected result is known as Belady’s anomaly

3.2 Optimal Page Replacement

One result of the discovery of Belady’s anomaly was the search for an optimal page-

replacement algorithm — the algorithm that has the lowest page-fault rate of all

algorithms and will never suffer from Belady’s anomaly. Such an algorithm does exist

and has been called OPT or MIN. It is simply this:

Replace the page that will not be used for the longest period of time

Use of this page-replacement algorithm guarantees the lowest possible page- fault rate for a

fixed number of frames.

Unfortunately, the optimal page-replacement algorithm is difficult to implement, because it

requires future knowledge of the reference string. (We, encountered a similar situation

with the SJF CPU-scheduling algorithm. As a result, the optimal algorithm is used mainly for

comparison studies.

Figure 6: Optimal page Replacement Algorithm.

With only nine-page faults, optimal replacement is much better than a FIFO algorithm, which

results in fifteen faults

3.3 L R U Page Replacement

If we use the recent past as an approximation of the near future, then we can replace the

page that has not been used for the longest period of time. This approach is the least

recently used (LRU) algorithm. LRU replacement associates with each page the time of that

page’s last use. When a page must be replaced, LRU chooses the page that has not been

used for the longest period of time. The result of applying LRU replacement to our example

reference string is shown in figure 7.

Figure 7: LRU page Replacement Algorithm.

Chapter -2

Process
Synchronization

2.1 Introduction

 A cooperating process is one that can affect or be affected by other

processes executing in the system. Cooperating processes can either

directly share a logical address space (that is, both code and data) or

be allowed to share data only through files or messages. The former

case is achieved through the use of threads. Concurrent access to shared

data may result in data inconsistency, however. In this chapter, we

discuss various mechanisms to ensure the orderly execution of

cooperating processes that share a logical address space, so that data

consistency is maintained. We’ve already seen that processes can

execute concurrently or in parallel. introduced the role of process

scheduling and described how the CPU scheduler switches rapidly

between processes to provide concurrent execution. This means that

one process may only partially complete execution before another

process is scheduled. In fact, a process may be interrupted at any point

in its instruction stream, and the processing core may be assigned to

execute instruction so another process.

Let’s consider an example of how this can happen, we developed a

model of a system consisting of cooperating sequential processes or

threads, all running asynchronously and possibly sharing data. We

illustrated this model with the producer – consumer problem, which

is representative of operating systems. Specifically. We described how

a bounded buffer could be used to enable processes to share memory.

We now return to our consideration of the bounded buffer. As we

pointed out, our original solution allowed at BUFFER SIZE − 1 items

in the buffer at the same time. Suppose we want to modify the

algorithm to remedy this deficiency. One possibility is to add an integer

variable counter, initialized to 0. counter is incremented every time we

add a new item to the buffer and is decremented every time we remove

one item from the buffer. The code for the producer process can be

modified as follows:

while (true) {

 /* produce an item in next produced */

 while (counter == BUFFER_SIZE) ;

 /* do nothing */

 buffer[in] = next produced;

 in = (in + 1) % BUFFER_SIZE;

 counter++;

}

The code for the consumer process can be modified as follows:

Although the producer and consumer routines shown above are correct separately,

they may not function correctly when executed concurrently. As an illustration,

suppose that the value of the variable counter is currently 5 and that the producer

and consumer processes concurrently execute the statements “counter++” and

“counter--”. Following the execution of these two statements, the value of the

variable counter may be 4, 5, or 6! The only correct result, though, is counter == 5,

which is generated correctly if the producer and consumer execute separately.

We can show that the value of counter may be incorrect as follows. Note that the

statement “counter++” may be implemented in machine language (on a typical machine)

as follows:

register1 = counter
register1 = register1 + 1
counter = register1

where register1 is one of the local CPU registers. Similarly, the statement
“counter--” is implemented as follows:

register2 = counter

register2 = re gi ster2 − 1
counter = register2

while (true) {

 while (counter == 0)

 ; /* do nothing */

 next_consumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 counter--;

 /* consume the item in next consumed */

}

where again register2 is one of the local CPU registers. Even though register1

and register2 may be the same physical register (an accumulator, say),

remember that the contents of this register will be saved and restored by the

interrupt handler.

The concurrent execution of “counter++” and “counter--” is equivalent

to a sequential execution in which the lower-level statements presented

previously are interleaved in some arbitrary order (but the order within each

high-level statement is preserved). One such interleaving is the following:

T0 : producer execute re gi ster1 = counter {re gi ster1 = 5}
T1 : producer execute re gi ster1 = re gi ster1 + 1 {re gi ster1 = 6}
T2 : consumer execute re gi ster2 = counter {re gi ster2 = 5}
T3 : consumer execute re gi ster2 = re gi ster2 − 1 {re gi ster2 = 4}
T4 : producer execute counter = re gi ster1 {co unter = 6}
T5 : consumer execute counter = re gi ster2 {co unter = 4}

Notice that we have arrived at the incorrect state “counter == 4”,

indicating that four buffers are full, when, in fact, five buffers are full. If we

reversed the order of the statements at T4 and T5 , we would arrive at the

incorrect state “counter == 6”.

We would arrive at this incorrect state because we allowed both processes to

manipulate the variable counter concurrently. A situation like this, where several

processes access and manipulate the same data concurrently and the outcome of the

execution depends on the particular order in which the access takes place, is called

a race condition. To guard against the race condition above, we need to ensure that

only one process at a time can be manipulating the variable counter. To make such

a guarantee, we require that the processes be synchronized in some way. Situations

such as the one just described occur frequently in operating systems as different

parts of the system manipulate resources. Furthermore, as we have emphasized in

earlier chapters, the growing importance of multicore systems has brought an

increased emphasis on developing multithreaded applications. In such applications,

several threads — which are quite possibly sharing data — are running in parallel

on different processing cores.

do {

entry section

critical section

exit section

remainder section

} while (true);

Figure 1 General structure of a typical process Pi .

we want any changes that result from such activities not to interfere with

one another. Because of the importance of this issue, we devote a major

portion of this chapter to process synchronization and coordination

among cooperating processes.

2.2 The Critical-Section Problem

 Consider system of n processes {p0, p1, … pn-1}Each process has critical

section segment of code Process may be changing common variables, updating

table, writing file, etc. When one process in critical section, no other may be in its

critical section.

Critical section problem is to design protocol to solve this each process must ask

permission to enter critical section in entry section, may follow critical section

with exit section, then remainder section.

General structure of process Pi

Figure 2 part of critical section.

A solution to the critical-section problem must satisfy the following three

requirements:

1. Mutual exclusion. If process Pi is executing in its critical section, then no other

processes can be executing in their critical sections.

2. Progress. If no process is executing in its critical section and some processes

wish to enter their critical sections, then only those processes that are not

executing in their remainder sections can participate in deciding which will

enter its critical section next, and this selection cannot be postponed indefinitely.

3. Bounded waiting. There exists a bound, or limit, on the number of times that

other processes are allowed to enter their critical sections after

process has made a request to enter its critical section and before that request is

granted.

Two general approaches are used to handle critical sections in operating systems:

preemptive kernels and non-preemptive kernels. A preemptive

 kernel allows a process to be preempted while it is running in kernel mode. A

non-preemptive kernel does not allow a process running in kernel mode to be

preempted; a kernel-mode process will run until it exits kernel mode, blocks,

or voluntarily yields control of the CPU. Obviously, a non-preemptive kernel is

essentially free from race conditions on kernel data structures, as only one process

is active in the kernel at a time. We cannot say the same about preemptive

kernels, so they must be carefully designed to ensure that shared kernel data are

free from race conditions. Preemptive kernels are especially difficult to design for

SMP architectures, since in these environments it is possible for two kernel-mode

processes to run simultaneously on different processors.

Why, then, would anyone favor a preemptive kernel over a non-preemptive one?

A preemptive kernel may be more responsive, since there is less risk that a

kernel-mode process will run for an arbitrarily long period before relinquishing

the processor to waiting processes. (Of course, this risk can also be minimized

by designing kernel code that does not behave in this way.) Furthermore, a

preemptive kernel is more suitable for real-time programming, as it will allow

a real-time process to preempt a process currently running in the kernel. Later

in this chapter, we explore how various operating systems manage preemption

within the kernel.

2.2.1 Peterson’s Solution

 Next, we illustrate a classic software-based solution to the critical-section

problem known as Peterson’s solution. Because of the way modern computer

architectures perform basic machine-language instructions, such as load and

store, there are no guarantees that Peterson’s solution will work correctly on

such architectures. However, we present the solution because it provides a good

algorithmic description of solving the critical-section problem and illustrates

some of the complexities involved in designing software that addresses the

requirements of mutual exclusion, progress, and bounded waiting.

do {

flag[i] = true;
turn = j;

while (flag[j] && turn == j);

critical section

flag[i] = false;

remainder section

} while (true);

Figure 3 The structure of process Pi in Peterson’s solution.

Peterson’s solution is restricted to two processes that alternate

execution between their critical sections and remainder sections. The

processes are numbered P0 and P1 . For convenience, when presenting

Pi , we use Pj to denote the other process; that is, j equals 1 − i.

Peterson’s solution requires the two processes to share two data items:

int turn;

boolean flag[2];

The variable turn indicates whose turn it is to enter its critical section. That

is, if turn == i, then process Pi is allowed to execute in its critical

section. The flag array is used to indicate if a process is ready to enter its

critical section. For example, if flag[i] is true, this value indicates that

Pi is ready to enter its critical section. With an explanation of these data

structures complete, we are now ready to describe the algorithm shown in

Figure 3.

To enter the critical section, process Pi first sets flag[i] to be true

and then sets turn to the value j, thereby asserting that if the other process

wishes to enter the critical section, it can do so. If both processes try to enter

at the same time, turn will be set to both i and j at roughly the same time.

Only one of these assignments will last; the other will occur but will be

overwritten immediately. The eventual value of turn determines which of

the two processes is allowed to enter its critical section first.

We now prove that this solution is correct. We need to show that:

1. Mutual exclusion is preserved.(mutex lock)

2. The progress requirement is satisfied.

3. The bounded-waiting requirement is met.

 To prove property 1, we note that each Pi enters its critical section

only if either flag[j] == false or turn == i. Also note that, if both

processes can be executing in their critical sections at the same time, then

flag[0] == flag[1] == true. These two observations imply that P0 and

P1 could not have successfully executed their while statements at about the

same time, since the say, Pj — must have successfully executed the while

statement, whereas Pi had to execute at least one additional statement

(“turn == j”). However, at that time,

flag[j] == true and turn == j, and this condition will persist as

 long as Pj is in its critical section; as a result, mutual exclusion is preserved.

To prove properties 2 and 3, we note that a process Pi can be prevented from

entering the critical section only if it is stuck in the while loop with the condition

flag[j] == true and turn == j; this loop is the only one possible. If Pj is

not ready to enter the critical section, then flag[j] == false, and Pi can

enter its critical section. If Pj has set flag[j] to true and is also executing in

its while statement, then either turn == i or turn == j. If turn == i, then

Pi will enter the critical section. If turn == j, then Pj will enter the critical

section. However, once Pj exits its critical section, it will reset flag[j] to

false, allowing Pi to enter its critical section. If Pj resets flag[j] to true, it

must also set turn to i.

Thus, since Pi does not change the value of the variable turn while executing

the while statement, Pi will enter the critical section (progress) after at

most

one entry by Pj (bounded waiting).

2.2.2 Synchronization Hardware

We have just described one software-based solution to the critical-section

problem. However, as mentioned, software-based solutions such as Peterson’s

are not guaranteed to work on modern computer architectures.Many modern

computer systems therefore provide special hardware instructions that allow

us either to test and modify the content of a word or to swap the contents of

two words atomically — that is, as one uninterruptible unit. We can use these

special instructions to solve the critical-section problem in a relatively simple

manner. Like test and set () and compare and swap() instructions. as an

exercise.

The main disadvantage of the implementation given here is that it requires

busy waiting. While a process is in its critical section, any other process that

tries to enter its critical section must loop continuously

2.2.3 Semaphores

Mutex locks, as we mentioned earlier, are generally considered the simplest of

synchronization tools. In this section, we examine a more robust tool that can

behave similarly to a mutex lock but can also provide more sophisticated ways for

processes to synchronize their activities.

A semaphore S is an integer variable that, apart from initialization, is

accessed only through two standard atomic operations: wait() and signal().

The wait () operation was originally termed P (from the Dutch proberen, “to

test”); signal () was originally called V (from verhogen, “to increment”). The

definition of wait () is as follows:

wait(S)
{

while (S <= 0)
; // busy wait

S--;
}

The definition of signal () is as follows:

signal(S) {
S++;
}

All modifications to the integer value of the semaphore in the wait () and

signal() operations must be executed indivisibly. That is, when one process

modifies the semaphore value, no other process can simultaneously modify

that same semaphore value. In addition, in the case of wait(S), the testing of

the integer value of S (S ≤ 0), as well as its possible modification (S--), must

be executed without interruption. We shall see how these operations can be

implemented in Section 5.6.2. First, let’s see how semaphores can be used.

2.2.3.1 Semaphore Usage

Operating systems often distinguish between counting and binary semaphores. The

value of a counting semaphore can range over an unrestricted domain. The

value of a binary semaphore can range only between 0 and 1. Thus, binary

semaphores behave similarly to mutex locks. In fact, on systems that do not

provide mutex locks, binary semaphores can be used instead for providing

mutual exclusion.

Counting semaphores can be used to control access to a given resource

consisting of a finite number of instances. The semaphore is initialized to the

number of resources available. Each process that wishes to use a resource

performs a wait() operation on the semaphore (thereby decrementing the

count). When a process releases a resource, it performs a signal() operation

(incrementing the count). When the count for the semaphore goes to 0, all

resources are being used. After that, processes that wish to use a resource will

block until the count becomes greater than 0.

3. Classic Problems of Synchronization

In this section, we present a number of synchronization problems as examples of

a large class of concurrency-control problems. These problems are used for

testing nearly every newly proposed synchronization scheme. In our solutions to

the problems, we use semaphores for synchronization, since that is the

traditional way to present such solutions. However, actual implementations of

these solutions could use mutex locks in place of binary semaphores.

Classical problems used to test newly-proposed synchronization schemes

• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem

3.1 Bounded-Buffer Problem

The bounded-buffer problem was introduced in Section 5.1; it is commonly

used to illustrate the power of synchronization primitives. Here, we present a

general structure of this scheme without committing ourselves to any particular

implementation. We provide a related programming project in the exercises at

the end of the chapter. In our problem, the producer and consumer processes

share the following data structures:

int
n;

semaphore mutex =
1; semaphore empty
= n; semaphore
full = 0

We assume that the pool consists of n buffers, each capable of holding one item.

The mutex semaphore provides mutual exclusion for accesses to the buffer pool

and is initialized to the value 1. The empty and full semaphores count the

number of empty and full buffers. The semaphore empty is initialized to the

value n; the semaphore full is initialized to the value 0.

The code for the producer process is shown in Figure 5.9, and the code for the

consumer process is shown in Figure 2.4. Note the symmetry between the

producer and the consumer. We can interpret this code as the producer producing

full buffers for the consumer or as the consumer producing empty buffers for the

producer.

do {
wait(full);
wait(mutex);

. . .
/* remove an item from buffer to next consumed */

. . .
signal(mutex);

signal(empty);
. . .

/* consume the item in next consumed */
. . .

} while (true);

Figure 2.4 The structure of the consumer process.

3.2 The Readers – Writers Problem

 Suppose that a database is to be shared among several concurrent processes.

Some of these processes may want only to read the database, whereas others

may want to update (that is, to read and write) the database. We distinguish

between these two types of processes by referring to the former as readers

and to the latter as writers. Obviously, if two readers access the shared data

simultaneously, no adverse effects will result. However, if a writer and some

other process (either a reader or a writer) access the database simultaneously,

chaos may ensue.

To ensure that these difficulties do not arise, we require that the writers

have exclusive access to the shared database while writing to the database. This

synchronization problem is referred to as the readers – writers’ problem. Since

it was originally stated, it has been used to test nearly every new

synchronization primitive. The readers – writers problem has several

variations, all involving priorities. The simplest one, referred to as the first

readers – writers’ problem, requires that no reader be kept waiting unless a

writer has already obtained permission to use the shared object. In other

words, no reader should wait for other readers to finish simply because a

writer is waiting. The second readers– writers problem requires that, once a

writer is ready, that writer perform its write as soon as possible. In other

words, if a writer is waiting to access the object, no new readers may start

reading.

A solution to either problem may result in starvation. In the first case,

writers may starve; in the second case, readers may starve. For this reason,

other variants of the problem have been proposed. Next, we present a solution

to the first readers – writers’ problem. See the bibliographical notes at the end

of the chapter for references describing starvation-free solutions to the second

readers – writers’ problem.

In the solution to the first readers – writers’ problem, the reader processes

share the following data structures:

semaphore rw mutex =1;

semaphore mutex = 1;

int read count = 0;

The semaphores mutex and rw mutex are initialized to 1; read count is

initialized to 0. The semaphore rw mutex is common to both reader and writer

do {
wait(rw mutex);

. . .
/* writing is performed */

. . .
signal(rw mutex);

} while (true);

Figure 2.5The structure of a writer process.

processes. The mutex semaphore is used to ensure mutual exclusion when the

variable read count is updated. The read count variable keeps track of how many

processes are currently reading the object. The semaphore rw mutex functions

as a mutual exclusion semaphore for the writers. It is also used by the first or last

reader that enters or exits the critical section. It is not used by readers who enter

or exit while other readers are in their critical sections. the code for a reader

process is shown in Figure 2.6. Note that, if a writer is in the critical section and

n readers are waiting, then one reader is queued on rw mutex, and n − 1 readers are

queued on mutex. Also observe that, when a writer executes signal (rw mutex),

we may resume the execution of either the waiting readers or a single waiting

writer. The selection is made by the scheduler.

The readers – writers’ problem and its solutions have been generalized to

provide reader – writer locks on some systems. Acquiring a reader – writer lock

requires specifying the mode of the lock: either read or write access. When a

process wishes only to read shared data; it requests the reader – writer lock

in read mode. A process wishing to modify the shared data must request the

lock in write mode. Multiple processes are permitted to concurrently acquire

a reader – writer lock in read mode, but only one process may acquire the lock

for writing, as exclusive access is required for writers.

Reader – writer locks are most useful in the following situations:

do {

wait(mutex);

read count++;

if (read count == 1)

wait(rw mutex);

signal(mutex);

. . .

/* reading is performed */

. . .

wait(mutex);

read count--;

if (read count == 0)

signal(rw mutex);

signal(mutex);

} while (true);

Figure 2.6 The structure of a reader process.

RICE

Figure 5.7 The situation of the dining philosophers.

• In applications where it is easy to identify which processes only read shared

data and which processes only write shared data.

• In applications that have more readers than writers. This is because reader –

writer locks generally require more overhead to establish than semaphores or

mutual-exclusion locks. The increased concurrency of allowing multiple

readers compensates for the overhead involved in setting up the reader –

writer lock.

3.3 The Dining-Philosophers Problem

 Consider five philosophers who spend their lives thinking and eating. The

philosophers share a circular table surrounded by five chairs, each belonging to

one philosopher. In the center of the table is a bowl of rice, and the table is laid with

five single chopsticks (Figure 2.7). When a philosopher thinks, she does not

interact with her colleagues. From time to time, a philosopher gets hungry and

tries to pick up the two chopsticks that are closest to her (the chopsticks that are

between her and her left and right neighbors). A philosopher may pick up only one

chopstick at a time. Obviously, she cannot pick up a chopstick that is already in

the hand of a neighbor. When a hungry philosopher has both her chopsticks at

the same time, she eats without releasing the chopsticks. When she is finished

eating, she puts down both chopsticks and starts thinking again.

The dining-philosophers problem is considered a classic synchronization

problem neither because of its practical importance nor because computer

scientists dislike philosophers but because it is an example of a large class

of concurrency-control problems. It is a simple representation of the need to

allocate several resources among several processes in a deadlock-free and

starvation-free manner. One simple solution is to represent each chopstick with

a semaphore. A philosopher tries to grab a chopstick by executing a wait()

operation on that semaphore. She releases her chopsticks by executing the

signal() operation on the appropriate semaphores. Thus, the shared data are

semaphore chopstick [5];

 do {wait (chopstick[i]);

wait(chopstick[(i+1) % 5]);

. . .

/* eat for a while */

. . . signal(chopstick[i]);

signal(chopstick[(i+1) % 5]);

. . .

/* think for a while */

. . .

} while (true);

Figure 2.8 The structure of philosopher i.

where all the elements of chopstick are initialized to 1. The structure

of philosopher i is shown in Figure 2.8.

Chapter-3

Deadlocks

 3. Introduction

 In a multiprogramming environment, several processes may compete for a

finite number of resources. A process requests resources; if the resources are

not available at that time, the process enters a waiting state. Sometimes, a

waiting process is never again able to change state, because the resources it

has requested are held by other waiting processes. This situation is called a

deadlock.

3.1 System Model
 A system consists of a finite number of resources to be distributed among a

number of competing processes. The resources may be partitioned into several

 types (or classes), each consisting of some number of identical instances. CPU

cycles, files, and I/O devices (such as printers and DVD drives) are examples of

resource types. If a system has two CPUs, then the resource type CPU has two

instances. Similarly, the resource type printer may have five instances. If a

process requests an instance of a resource type, the allocation of any instance of

the type should satisfy the request. If it does not, then the instances are not

identical, and the resource type classes have not been defined properly.

A process must request a resource before using it and must release the

resource after using it. A process may request as many resources as it requires

to carry out its designated task. Obviously, the number of resources requested

may not exceed the total number of resources available in the system. In other

words, a process cannot request three printers if the system has only two.

Under the normal mode of operation, a process may utilize a resource in

only the following sequence:

1. Request. The process requests the resource. If the request cannot

be granted immediately (for example, if the resource is being

used by another process), then the requesting process must

wait until it can acquire the resource.

2. Use. The process can operate on the resource (for example, if the

resource is a printer, the process can print on the printer).

 3. Release. The process releases the resource.

 events with which we are mainly concerned here are resource acquisition and

release. The resources may be either physical resources (for example, printers,

tape drives, memory space, and CPU cycles) or logical resources (for example,

semaphores, mutex locks, and files). However, other types of events may result

in deadlocks. To illustrate a deadlocked state, consider a system with three CD

RW drives. Suppose each of three processes holds one of these CD RW drives.

If each process now requests another drive, the three processes will be in a

deadlocked state. Each is waiting for the event “CD RW is released,” which

can be caused only by one of the other waiting processes. This example

illustrates a deadlock

involving the same resource type.

Deadlocks may also involve different resource types. For example, consider

 a system with one printer and one DVD drive. Suppose that process Pi is

holding the DVD and process Pj is holding the printer. If Pi requests the

printer and Pj requests the DVD drive, a deadlock occurs. Developers of

multithreaded applications must remain aware of the possibility of deadlocks.

The locking tools presented in Chapter 5 are designed to avoid race

conditions. However, in using these tools, developers must pay careful

attention to how locks are acquired and released. Otherwise.

3.2 Deadlock Characterization

 In a deadlock, processes never finish executing, and system resources are tied

up, preventing other jobs from starting. Before we discuss the various methods

for dealing with the deadlock problem, we look more closely at features that

characterize deadlocks.

DEADLOCK WITH MUTEX LOCKS

 Let’s see how deadlock can occur in a multithreaded Pthread

program using mutex locks. The pthread mutex init() function

initializes an unlocked mutex. Mutex locks are acquired and

released using pthread mutex lock() and pthread mutex

unlock(), respec- tively. If a thread attempts to acquire a

locked mutex, the call to pthread mutex lock() blocks the thread

until the owner of the mutex lock invokes pthread mutex unlock().

Two mutex locks are created in the following code example:

/* Create and initialize the mutex locks */

pthread mutex t first mutex;

pthread mutex t second mutex;

pthread mutex init(&first mutex,NULL);

pthread mutex init (&second mutex, NULL);

 Next, two threads — thread one and thread two — are created, and both

these threads have access to both mutex locks.

3.3 Necessary Conditions
 A deadlock situation can arise if the following four conditions hold

simultaneously in a system:

1. Mutual exclusion: at least one resource must be held in a non-sharable

mode; that is, only one process at a time can use the resource. If another process

requests that resource, the requesting process must be delayed until the resource

has been released.

2. Hold and wait: A process must be holding at least one resource and waiting

to acquire additional resources that are currently being held by other processes.

3. No preemption: Resources cannot be preempted; that is, a resource can be

released only voluntarily by the process holding it, after that process has

completed its task. 4. Circular wait. A set {P0, P1, ..., Pn} of waiting processes

must exist such that P0 is waiting for a resource held by P1, P1 is waiting for a

resource held by P2, ..., Pn−1 is waiting for a resource held by Pn, and Pn is

waiting for a resource held by P0. We emphasize that all four conditions must

hold for a deadlock to occur.

3.4 Resource-Allocation Graph

 Deadlocks can be described more precisely in terms of a directed graph

called a system resource-allocation graph. This graph consists of a set of

vertices V and a set of edges E. The set of vertices V is partitioned into two

different types of nodes: P = {P1, P2, ..., Pn}, the set consisting of all the active

processes in the system, and R = {R1, R2, ..., Rm}, the set consisting of all

resource types in the system. A directed edge from process Pi to resource type

Rj is denoted by Pi → Rj; it signifies that process Pi has requested an instance

of resource type Rj and is currently waiting for that resource. A directed edge

from resource type Rj to process Pi is denoted by Rj → Pi; it signifies that an

instance of resource type Rj has been allocated to process Pi. A directed edge Pi

→ Rj is called a request edge; a directed edge Rj → Pi is called an assignment

edge. Pictorially, we represent each process Pi as a circle and each resource type

Rj as a rectangle. Since resource type Rj may have more than one instance, we

represent each such instance as a dot within the rectangle. Note that a request

edge points to only the rectangle Rj, whereas an assignment edge must also

designate one of the dots in the rectangle. When process Pi requests an instance

of resource type Rj, a request edge is inserted in the resource-allocation graph.

When this request can be fulfilled, the request edge is instantaneously

transformed to an assignment edge. When the process no longer needs access to

the resource, it releases the resource. As a result, the assignment edge is deleted.

The resource-allocation graph shown in Figure 3.1 depicts the following

situation.

The sets P, R, and E:

 ◦ P ={P1, P2, P3}

 ◦ R ={R1, R2, R3, R4}

◦ E ={P1 → R1, P2 → R3, R1 → P2, R2 → P2, R2 → P1, R3 → P3}

 • Resource instances:

 ◦ One instance of resource type R1

 ◦ Two instances of resource type R2

◦ One instance of resource type R3

◦ Three instances of resource type R4

 • Process states:

◦ Process P1 is holding an instance of resource type R2 and is waiting for an

instance of resource type R1.

◦ Process P2 is holding an instance of R1 and an instance of R2 and is waiting

for an instance of R3. ◦ Process P3 is holding an instance of R3.

R1 R3

P1 P2 P3

R2

R4

Figure 3.1 Resource-allocation graph.

Given the definition of a resource-allocation graph, it can be shown that, if the

graph contains no cycles, then no process in the system is deadlocked. If the graph

does contain a cycle, then a deadlock may exist. If each resource type has exactly

one instance, then a cycle implies that a deadlock has occurred. If the cycle involves

only a set of resource types, each of which has only a single instance, then a

deadlock has occurred. Each process involved in the cycle is deadlocked. In this

case, a cycle in the graph is both a necessary and a sufficient condition for the

existence of deadlock. If each resource type has several instances, then a cycle does

not necessarily imply that a deadlock has occurred. In this case, a cycle in the graph

is a necessary but not a sufficient condition for the existence of deadlock. To

illustrate this concept, we return to the resource-allocation graph depicted in Figure

3.1.Suppose that process P3 requests an instance of resource type R2.

R1 R3

P1 P2 P3

R2

R4

Figure 3.2 Resource-allocation graph with a deadlock.

type R2 . Since no resource instance is currently available, we add a request edge

P3 → R2 to the graph (Figure 3.2). At this point, two minimal cycles exist in

the

system:

P1 → R1 → P2 → R3 → P3 → R2 → P1

P2 → R3 → P3 → R2 → P2

Processes P1, P2, and P3 are deadlocked. Process P2 is waiting for the

resource R3, which is held by process P3. Process P3 is waiting for either

process P1 or process P2 to release resource R2. In addition, process P1 is

waiting for process P2 to release resource R1.

Now consider the resource-allocation graph in Figure 3.3. In this example,

we also have a cycle:

P1 → R1 → P3 → R2 → P1

P2

R1

P3

P1

R2

P4

Figure 3.3 Resource-allocation graph with a cycle but no deadlock.

 However, there is no deadlock. Observe that process P4 may release its instance

of resource type R2. That resource can then be allocated to P3, breaking the cycle.

In summary, if a resource-allocation graph does not have a cycle, then the

system is not in a deadlocked state. If there is a cycle, then the system may or

may not be in a deadlocked state. This observation is important when we deal with

the deadlock problem.

3.5 Methods for Handling Deadlocks

Generally speaking, we can deal with the deadlock problem in one of three

ways:

• We can use a protocol to prevent or avoid deadlocks, ensuring that

the system will never enter a deadlocked state.

• We can allow the system to enter a deadlocked state, detect it, and

recover.

• We can ignore the problem altogether and pretend that deadlocks never

occur in the system.

The third solution is the one used by most operating systems, including

Linux and Windows. It is then up to the application developer to write

programs that handle deadlocks.

3.5.1 Deadlock Prevention
 As we noted previously, for a deadlock to occur, each of the four necessary

conditions must hold. By ensuring that at least one of these conditions cannot hold,

we can prevent the occurrence of a deadlock. We elaborate on this approach by

examining each of the four necessary conditions separately.

3.5.1.1 Mutual Exclusion

The mutual exclusion condition must hold. That is, at least one resource must be

non-sharable. Sharable resources, in contrast, do not require mutually exclusive

access and thus cannot be involved in a deadlock. Read-only files are a good

example of a sharable resource. If several processes attempt to open a read-only

file at the same time, they can be granted simultaneous access to the file. A

process never needs to wait for a sharable resource. In general, however, we

cannot prevent deadlocks by denying the mutual-exclusion condition, because

some resources are intrinsically non-sharable.

3.5.1.2 Hold and Wait

To ensure that the hold-and-wait condition never occurs in the system, we must

guarantee that, whenever a process requests a resource, it does not hold any

other resources. One protocol that we can use requires each process to request

and be allocated all its resources before it begins execution. We can implement

this provision by requiring that system calls requesting resources for a process

precede all other system calls. An alternative protocol allows a process to

request resources only when it has none. A process may request some resources

and use them. Before it can request any additional resources, it must release all

the resources that it is currently allocated. To illustrate the difference between

these two protocols, we consider a process that copies data from a DVD drive to

a file on disk, sorts the file, and then prints the results to a printer. If all

resources must be requested at the beginning of the process, then the process

must initially request the DVD drive, disk file, and printer. It will hold the

printer for its entire execution, even though it needs the printer only at the end.

The second method allows the process to request initially only the DVD drive

and disk file. It copies from the DVD drive to the disk and then releases both the

DVD drive and the disk file. The process must then request the disk file and the

printer. After copying the disk file to the printer, it releases these two resources

and terminates. Both these protocols have two main disadvantages. First,

resource utilization may below, since resources may be allocated but unused for

a long period. In the example given, for instance, we can release the DVD drive

and disk file, and then request the disk file and printer, only if we can be sure

that our data will remain on the disk file. Otherwise, we must request all

resources at the beginning for both protocols. Second, starvation is possible. A

process that needs several popular resources may have to wait indefinitely,

because at least one of the resources that it needs is always allocated to some

other process.

 3.5.1.3 No Preemption

The third necessary condition for deadlocks is that there is no preemption of

resources that have already been allocated. To ensure that this condition does

not hold, we can use the following protocol. If a process is holding some

resources and requests another resource that cannot be immediately allocated to

it (that is, the process must wait), then all resources the process is currently

holding are preempted. In other words, these resources are implicitly released.

The preempted resources are added to the list of resources for which the process

is waiting. The process will be restarted only when it can regain its old

resources, as well as the new ones that it is requesting. Alternatively, if a

process requests some resources, we first check whether they are available. If

they are, we allocate them. If they are not, we check whether they are allocated

to some other process that is waiting for additional resources.

If so, we preempt the desired resources from the waiting process and allocate

them to the requesting process. If the resources are neither available nor held by

a waiting process, the requesting process must wait. While it is waiting, some of

its resources may be preempted, but only if another process requests them. A

process can be restarted only when it is allocated the new resources it is

requesting and recovers any resources that were preempted while it was waiting.

This protocol is often applied to resources whose state can be easily saved and

restored later, such as CPU registers and memory space.

3.5.1.4 Circular Wait

 The fourth and final condition for deadlocks is the circular-wait condition. One

way to ensure that this condition never holds is to impose a total ordering of all

resource types and to require that each process requests resources in an

increasing order of enumeration. To illustrate, we let R = {R1, R2, ..., Rm} be

the set of resource types. We assign to each resource type a unique integer

number, which allows us to compare two resources and to determine whether

one precedes another in our ordering. Formally, we define a one-to-one function

F: R→N, where N is the set of natural numbers. For example, if the set of

resource types R includes tape drives, disk drives, and printers, then the function

F might be defined as follows: F(tape drive) = 1 F(disk drive) = 5 F(printer) =

12 We can now consider the following protocol to prevent deadlocks: Each

process can request resources only in an increasing order of enumeration. That

is, a process can initially request any number of instances of a resource type —

say, Ri. After that, the process can request instances of resource type Rj if and

only if F(Rj) > F(Ri). For example, using the function defined previously, a

process that wants to use the tape drive and printer at the same time must first

request the tape drive and then request the printer. Alternatively, we can require

that a process requesting an instance of resource type Rj must have released any

resources Ri such that F(Ri) ≥ F(Rj). Note also that if several instances of the

same resource type are needed, a single request for all of them must be issued. If

these two protocols are used, then the circular-wait condition cannot hold.

 We can demonstrate this fact by assuming that a circular wait exists (proof by

contradiction). Let the set of processes in volve din the circular wait be {P0, P1,

..., Pn}, where Pi is waiting for a resource Ri, which is held by process Pi+1.

(Modulo arithmetic is used on the indexes, so that Pn is waiting for a resource

Rn held by P0.) Then, since process Pi+1 is holding resource Ri while

requesting resource Ri+1, we must have F(Ri) < F(Ri+1) for all i. But this

condition means that F(R0) < F(R1) < ... < F(Rn) < F(R0). By transitivity, F(R0)

< F(R0), which is impossible. Therefore, there can be no circular wait. We can

accomplish this scheme in an application program by developing an ordering

among all synchronization objects in the system. All requests for

synchronization objects must be made in increasing order. Keep in mind that

developing an ordering, or hierarchy, does not in itself prevent deadlock. It is up

to application developers to write programs that follow the

3.5.2 Deadlock Avoidance

 Deadlock-prevention algorithms, as discussed in Section 1, prevent deadlocks by

limiting how requests can be made. The limits ensure that at least one of the

necessary conditions for deadlock cannot occur. Possible side effects of

preventing deadlocks by this method, however, are low device utilization and

reduced system throughput.

An alternative method for avoiding deadlocks is to require additional information

about how resources are to be requested. For example, in a system with one tape

drive and one printer, the system might need to know that

 process P will request first the tape drive and then the printer before releasing

both resources, whereas process Q will request first the printer and then the tape

drive. With this knowledge of the complete sequence of requests and releases for

each process, the system can decide for each request whether or not the process

should wait in order to avoid a possible future deadlock. Each request requires that

in making this decision the system consider the resources currently available, the

resources currently allocated to each process, and the future requests and releases of

each process. The various algorithms that use this approach differ in the amount

and type of information required. The simplest and most useful model requires that

each process declare the maximum number of resources of each type that it may

need. Given this a priori information, it is possible to construct algorithm that

ensures that the system will never enter a deadlocked state. A deadlock-avoidance

algorithm dynamically examines the resource-allocation state to ensure that a

circular-wait condition can never exist. The resource- allocation state is defined by

the number of available and allocated resources and the maximum demands of the

processes. In the following sections, we explore two deadlock-avoidance

algorithms.

3 . 5 . 2 . 1 S a f e State

 A state is safe if the system can allocate resources to each process (up to its

maximum) in some order and still avoid a deadlock. More formally, a system is

in a safe state only if there exists a safe sequence. A sequence of processes

< P1 , P2 , ..., Pn> is a safe sequence for the current allocation state if, for each Pi ,

the resource requests that Pi can still make can be satisfied by the currently

available resources plus the resources held by all Pj , with j < i. In this situation, if

the resources that Pi needs are not immediately available, then Pi can wait until all

Pj have finished. When they have finished, Pi can obtain all of its needed

resources, complete its designated task, return its allocated resources, and

terminate. When Pi terminates, Pi +1 can obtain its needed resources, and so on. If

no such sequence exists, then the system state is said to be unsafe.

A safe state is not a deadlocked state. Conversely, a deadlocked state is an unsafe

state. Not all unsafe states are deadlocks, however (Figure 7.6). An unsafe state

may lead to a deadlock. As long as the state is safe, the operating system can avoid

unsafe (and deadlocked) states. In an unsafe state, the operating system cannot

prevent processes from requesting resources in such a way that a deadlock occurs.

The behavior of the processes controls unsafe states.To illustrate, we consider a

system with twelve magnetic tape drives and three processes: P0 , P1 , and P2 .

Process P0 requires ten tape drives, process P1 may need as many as four tape

drives, and process P2 may need up to nine tape drives. Suppose that, at time t0 ,

process P0 is holding five tape drives, process P1 is holding two tape drives, and

process P2 is holding two tape drives.

deadlock

unsafe

safe

Figure 3.1 Safe, unsafe, and deadlocked state spaces.

 Maximum Needs Current Needs

P0 10 5
P1 4 2
P2 9 2

At time t0 , the system is in a safe state. The sequence < P1 , P0 , P2 >

satisfies the safety condition. Process P1 can immediately be allocated all

its tape drives and then return them (the system will then have five

available tape drives); then process P0 can get all its tape drives and return

them (the system will then have ten available tape drives); and finally

process P2 can get all its tape drives and return them (the system will then

have all twelve tape drives available).

A system can go from a safe state to an unsafe state. Suppose that, at

time t1 , process P2 requests and is allocated one more tape drive. The

system is no longer in a safe state. At this point, only process P1 can be

allocated all its tape drives. When it returns them, the system will have

only four available tape drives. Since process P0 is allocated five tape

drives but has a maximum of ten, it may request five more tape drives. If it

does so, it will have to wait, because they are unavailable. Similarly,

process P2 may request six additional tape drives and have to wait,

resulting in a deadlock. Our mistake was in granting the request from

process P2 for one more tape drive. If we had made P2 wait until either

of the other processes had finished and released its resources, then we could

have avoided the deadlock.

Given the concept of a safe state, we can define avoidance algorithms

that ensure that the system will never deadlock. The idea is simply to ensure

that the system will always remain in a safe state. Initially, the system is in a

safe state. Whenever a process requests a resource that is currently

available, the system must decide whether the resource can be allocated

immediately or whether the process must wait. The request is granted only

if the allocation leaves the system in a safe state.

In this scheme, if a process requests a resource that is currently

available, it may still have to wait. Thus, resource utilization may be lower

than it would otherwise be.

3.6 Resource-Allocation-Graph Algorithm

If we have a resource-allocation system with only one instance of each

resource type, we can use a variant of the resource-allocation graph defined

in Section () for deadlock avoidance. In addition to the request and

assignment edges already described, we introduce a new type of edge,

called a claim edge. A claim edge Pi → R j indicates that process Pi may

request resource R j at some time in the future. This edge resembles a

request edge in direction but is represented in the graph by a dashed line.

When process Pi requests resource R j , the claim edge Pi → R j is

converted to a request edge. Similarly, when a resource R j is released by

Pi , the assignment edge R j → Pi is reconverted to a claim edge Pi → R

j .

Note that the resources must be claimed a priori in the system. That is,

before process Pi starts executing, all its claim edges must already appear

in the resource-allocation graph. We can relax this condition by allowing a

claim edge Pi → R j to be added to the graph only if all the edges

associated with process Pi are claim edges.

R1

P1 P2

R2

Figure 3.2 Resource-allocation graph for deadlock avoidance.

Now suppose that process Pi requests resource R j . The request can be

granted only if converting the request edge Pi → R j to an assignment edge R

j → Pi does not result in the formation of a cycle in the resource-allocation

graph. We check for safety by using a cycle-detection algorithm. An

algorithm for detecting a cycle in this graph requires an order of n2

operations, where n is the number of processes in the system.

If no cycle exists, then the allocation of the resource will leave the system

in a safe state. If a cycle is found, then the allocation will put the system in

an unsafe state. In that case, process Pi will have to wait for its requests to be

satisfied. To illustrate this algorithm, we consider the resource-allocation

graph of Figure 3.2. Suppose that P2 requests R2 . Although R2 is currently

free, we annot allocate it to P2 , since this action will create a cycle in the

graph (Figure 3.3). A cycle, as mentioned, indicates that the system is in an

unsafe state. If P1 requests R2 , and P2 requests R1 , then a deadlock will

occur.

3.7 Banker’s Algorithm

The resource-allocation-graph algorithm is not applicable to a resource-

allocation system with multiple instances of each resource type. The

deadlock- avoidance algorithm that we describe next is applicable to such

a system but is less efficient than the resource-allocation graph scheme.

This algorithm is commonly known as the banker’s algorithm. The name

was chosen because the algorithm could be used in a banking system to

ensure that the bank never

R1

P1 P2

R2

Figure 3.3 An unsafe state in a resource-allocation graph.

allocated its available cash in such a way that it could no longer satisfy the

needs of all its customers.

When a new process enters the system, it must declare the maximum

number of instances of each resource type that it may need. This number may

not exceed the total number of resources in the system. When a user requests a

set of resources, the system must determine whether the allocation of these

resources will leave the system in a safe state. If it will, the resources are

allocated; otherwise, the process must wait until some other process releases

enough resources.

Several data structures must be maintained to implement the banker ’s

algorithm. These data structures encode the state of the resource-allocation

system. We need the following data structures, where n is the number of

processes in the system and m is the number of resource types:

• Available. A vector of length m indicates the number of available

resources of each type. If Available[j] equals k, then k instances of

resource type R j are available.

• Max. An n × m matrix defines the maximum demand of each process.

If Max[i][j] equals k, then process Pi may request at most k instances of

resource type R j .

• Allocation. An n × m matrix defines the number of resources of each type

currently allocated to each process. If Allocation[i][j] equals k, then

process Pi is currently allocated k instances of resource type R j .

• Need. An n × m matrix indicates the remaining resource need of each

process. If Need[i][j] equals k, then process Pi may need k more instances

of resource type R j to complete its task. Note that Need[i][j] equals

Max[i][j]

− Allocation[i][j].

These data structures vary over time in both size and value.

To simplify the presentation of the banker ’s algorithm, we next establish

some notation. Let X and Y be vectors of length n. We say that X ≤ Y if and

only if X[i] ≤ Y[i] for all i = 1, 2, ..., n. For example, if X = (1,7,3,2) and Y =

(0,3,2,1), then Y ≤ X. In addition, Y < X if Y ≤ X and Y = X.

We can treat each row in the matrices Allocation and Need as vectors and

refer to them as Allocation i and Need i. The vector Allocation i specifies the

resources currently allocated to process Pi ; the vector Needi specifies the

additional resources that process Pi may still request to complete its task.

3.7.1 Safety Algorithm

We can now present the algorithm for finding out whether or not a system is
in a safe state. This algorithm can be described as follows:

1. Let Work and Finish be vectors of length m and n, respectively. Initialize

Work = Available and Finish[i] = false for i = 0, 1, ..., n − 1.

2. Find an index i such that both a.

Finish[i] == false

b. Needi ≤ Work

If no such i exists, go to step

4.

3. Work = Work + Allocationi
Finish[i] =
true
Go to step
2.

4. If Finish[i] == true for all i, then the system is in a safe state.

This algorithm may require an order of m × n2 operations to determine
whether a state is safe.

3.7.2 Resource-Request Algorithm

Next, we describe the algorithm for determining whether requests can be

safely granted.

Let Requesti be the request vector for process Pi . If Requesti [j] == k,

then

process Pi wants k instances of resource type R j . When a request for

resources

is made by process Pi , the following actions are

taken:

1. If Requesti ≤ Needi , go to step 2. Otherwise, raise an error condition,

since the process has exceeded its maximum claim.

2. If Requesti ≤ Available, go to step 3. Otherwise, Pi must wait, since

the resources are not available.

3. Have the system pretend to have allocated the requested resources

to process Pi by modifying the state as follows:

Available = Available – Requesti ;

Allocationi = Allocationi +

Requesti ; Needi = Needi –

Requesti ;

If the resulting resource-allocation state is safe, the transaction is

com- pleted, and process Pi is allocated its resources. However, if the

new state is unsafe, then Pi must wait for Requesti , and the old

resource-allocation state is restored.

3.7.3 An Illustrative Example

To illustrate the use of the banker ’s algorithm, consider a system with

five processes P0 through P4 and three resource types A, B, and C.

Resource type A has ten instances, resource type B has five instances, and

resource type C has seven instances. Suppose that, at time T0 , the following

snapshot of the system has been taken:

 Allocation Max Available

A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

The content of the matrix Need is defined to be Max − Allocation and is as
follows:

Need

A B C
P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

We claim that the system is currently in a safe state. Indeed, the sequence

< P1 , P3 , P4 , P2 , P0 > satisfies the safety criteria. Suppose now that process

P1 requests one additional instance of resource type A and two instances of

resource type C, so Re q ue st1 = (1,0,2). To decide whether this request can be

immediately granted, we first check that Re q ue st1 ≤ Available — that is, that (1,0,2)

≤ (3,3,2), which is true. We then pretend that this request has been

fulfilled, and we arrive at the following new state:

 Allocation Need Available

A B C A B C A B C
P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 2 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

We must determine whether this new system state is safe. To do so, we

execute our safety algorithm and find that the sequence < P1 , P3 , P4 , P0

, P2 > satisfies the safety requirement. Hence, we can immediately grant

the request of process P1 .

You should be able to see, however, that when the system is in this state,

a request for (3,3,0) by P4 cannot be granted, since the resources are not

available. Furthermore, a request for (0,2,0) by P0 cannot be granted,

even though the resources are available, since the resulting state is unsafe.

We leave it as a programming exercise for students to implement the

banker ’s algorithm

3.8 Deadlock Detection

If a system does not employ either a deadlock-prevention or a

deadlock- avoidance algorithm, then a deadlock situation may occur. In this

environment, the system may provide:

• An algorithm that examines the state of the system to determine

whether a deadlock has occurred

• An algorithm to recover from the deadlock

figure 3.8 : (a) Resource-allocation graph. (b) Corresponding wait-for graph.

In the following discussion, we elaborate on these two requirements as they

pertain to systems with only a single instance of each resource type, as well as to

systems with several instances of each resource type. At this point, however, we

note that a detection-and-recovery scheme requires overhead that includes not

only the run-time costs of maintaining the necessary information and executing

the detection algorithm but also the potential losses inherent in recovering from

a deadlock.

3.8.1 Single Instance of Each Resource Type

If all resources have only a single instance, then we can define a deadlock-

detection algorithm that uses a variant of the resource-allocation graph, called a

wait-for graph. We obtain this graph from the resource-allocation graph by

removing the resource nodes and collapsing the appropriate edges.

More precisely, an edge from Pi to Pj in a wait-for graph implies that process

Pi is waiting for process Pj to release a resource that Pi needs. An edge Pi → Pj exists

in a wait-for graph if and only if the corresponding resource-allocation graph contains

two edges Pi → Rq and Rq → Pj for some resource Rq . In Figure 7.9, we present a

resource-allocation graph and the corresponding wait-for graph.

 As before, a deadlock exists in the system if and only if the wait-for graph contains a

cycle. To detect deadlocks, the system needs to maintain the wait-for graph and

periodically invoke an algorithm that searches for a cycle in the graph. An algorithm

to detect a cycle in a graph requires an order of n2 operations, where n is the number

of vertices in the graph.

3.8.2 Several Instances of a Resource Type
The wait-for graph scheme is not applicable to a resource-allocation system with

multiple instances of each resource type. We turn now to a deadlock-

detection algorithm that is applicable to such a system. The algorithm employs

several time-varying data structures that are similar to those used in the banker ’s

algorithm .

• Available. A vector of length m indicates the number of available resources of

each type.

• Allocation. An n × m matrix defines the number of resources of each type

currently allocated to each process.

• Request. An n × m matrix indicates the current request of each process.

If Request[i][j] equals k, then process Pi is requesting k more instances of

resource type R j .

The ≤ relation between two vectors is defined as in Section 7.5.3. To simplify

notation, we again treat the rows in the matrices Allocation and Request as

vectors; we refer to them as Allocationi and Requesti . The detection algorithm

described here simply investigates every possible allocation sequence for the

processes that remain to be completed. Compare this algorithm with the banker

’s algorithm.

1. Let Work and Finish be vectors of length m and n, respectively. Initialize

Work = Available. For i = 0, 1, ..., n– 1, if Allocationi = 0, then Finish[i] =

false. Otherwise, Finish[i] = true.

2. Find an index i such that both a.

Finish[i] == false

b. Requesti ≤ Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true

Go to step 2.

4. If Finish[i] == false for some i, 0 ≤ i < n, then the system is in a deadlocked

state. Moreover, if Finish[i] == false, then process Pi is deadlocked.

This algorithm requires an order of m × n2 operations to detect whether the

system is in a deadlocked state.

You may wonder why we reclaim the resources of process Pi (in step 3) as

soon as we determine that Requesti ≤ Work (in step 2b). We know that Pi is

currently not involved in a deadlock (since Requesti ≤ Work). Thus, we take

an optimistic attitude and assume that Pi will require no more resources to

complete its task; it will thus soon return all currently allocated resources to the

system. If our assumption is incorrect, a deadlock may occur later. That

deadlock will be detected the next time the deadlock-detection algorithm is

invoked.

To illustrate this algorithm, we consider a system with five processes P0

through P4 and three resource types A, B, and C. Resource type A has seven

instances, resource type B has two instances, and resource type C has six

instances. Suppose that, at time T0 , we have the following resource-allocation state:

 Allocation Request Available

A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

 We claim that the system is not in a deadlocked state. Indeed, if we execute our

algorithm, we will find that the sequence < P0 , P2 , P3 , P1 , P4 > results in

Finish[i] == true for all i.

 Suppose now that process P2 makes one additional request for an instance of

type C. The Request matrix is modified as follows:

Request

A B C P0

 0 0 0
P1 2 0 2
P2 0 0 1
P3 1 0 0
P4 0 0 2

 We claim that the system is now deadlocked. Although we can reclaim the

resources held by process P0 , the number of available resources is not

sufficient to fulfill the requests of the other processes. Thus, a deadlock exists,

consisting of processes P1 , P2 , P3 , and P4 .

3.8.3 Detection-Algorithm Usage

 When should we invoke the detection algorithm? The answer depends on two

factors:

1. How often is a deadlock likely to occur?

2. How many processes will be affected by deadlock when it happens?

If deadlocks occur frequently, then the detection algorithm should be invoked

frequently. Resources allocated to deadlocked processes will be idle until the

deadlock can be broken. In addition, the number of processes involved in the

deadlock cycle may grow.

Deadlocks occur only when some process makes a request that cannot be

 granted immediately.

This request may be the final request that completes achain of waiting

processes. In the extreme, then, we can invoke the deadlock-detection

algorithm every time a request for allocation cannot be granted immediately.

In this case, we can identify not only the deadlocked set of

 processes but also the specific process that “caused” the deadlock. (In reality,

each of the deadlocked processes is a link in the cycle in the resource graph, so

all of them, jointly, caused the deadlock.) If there are many different resource

types, one request may create many cycles in the resource graph, each cycle

completed by the most recent request and “caused” by the one identifiable

process.

Of course, invoking the deadlock-detection algorithm for every resource

request will incur considerable overhead in computation time. A less expensive

alternative is simply to invoke the algorithm at defined intervals — for example,

once per hour or whenever CPU utilization drops below 40 percent. (A

deadlock eventually cripples system throughput and causes CPU utilization

to drop.) If the detection algorithm is invoked at arbitrary points in time,

the resource graph may contain many cycles. In this case, we generally cannot

tell which of the many deadlocked processes “caused” the deadlock.

3.9 Recovery from Deadlock

When a detection algorithm determines that a deadlock exists, several alter- natives

are available. One possibility is to inform the operator that a deadlock has occurred

and to let the operator deal with the deadlock manually. Another possibility is to

let the system recover from the deadlock automatically. There are two options for

breaking a deadlock. One is simply to abort one or more processes to break the

circular wait. The other is to preempt some resources from one or more of the

deadlocked processes.

3.9.1 Process Termination

 To eliminate deadlocks by aborting a process, we use one of two methods. In

both methods, the system reclaims all resources allocated to the terminated

processes.

• Abort all deadlocked processes. This method clearly will break the

deadlock cycle, but at great expense. The deadlocked processes may have

computed for a long time, and the results of these partial computations must

be discarded and probably will have to be recomputed later.

• Abort one process at a time until the deadlock cycle is eliminated. This

method incurs considerable overhead, since after each process is aborted, a

deadlock-detection algorithm must be invoked to determine whether any

processes are still deadlocked.

 Aborting a process may not be easy. If the process was in the midst of updating

a file, terminating it will leave that file in an incorrect state. Similarly, if the process

was in the midst of printing data on a printer, the system must reset the printer to a

correct state before printing the next job. If the partial termination method is used,

then we must determine which deadlocked process (or processes) should be

terminated. This determination is a policy decision, similar to CPU-scheduling

decisions. The question is basically an economic one; we should abort those processes

whose termination will incur the minimum cost. Unfortunately, the term minimum cost

is not a precise one. Many factors may affect which process is chosen, including:

1. What the priority of the process is

2. How long the process has computed and how much longer the process

will compute before completing its designated task

3. How many and what types of resources the process has used (for example,

whether the resources are simple to preempt)

4. How many more resources the process needs in order to complete

5. How many processes will need to be terminated

6. Whether the process is interactive or batch

3.9.2 Resource Preemption

 To eliminate deadlocks using resource preemption, we successively preempt

some resources from processes and give these resources to other processes until the

deadlock cycle is broken. If preemption is required to deal with deadlocks, then three

issues need to be addressed:

1. Selecting a victim. Which resources and which processes are to be

preempted? As in process termination, we must determine the order of

preemption to minimize cost. Cost factors may include such parameters

as the number of resources a deadlocked process is holding and the

amount of time the process has thus far consumed.

2. Rollback. If we preempt a resource from a process, what should be

done with that process? Clearly, it cannot continue with its normal

execution; it is missing some needed resource. We must roll back the

process to some safe state and restart it from that state.

Since, in general, it is difficult to determine what a safe state is, the

simplest solution is a total rollback: abort the process and then restart

it. Although it is more effective to roll back the process only as far as

necessary to break the deadlock, this method requires the system to keep

more information about the state of all running processes.

3. Starvation. How do we ensure that starvation will not occur? That is,

how can we guarantee that resources will not always be preempted from

the same process?

In a system where victim selection is based primarily on cost factors,

it may happen that the same process is always picked as a victim. As

a result, this process never completes its designated task, a starvation

situation any practical system must address. Clearly, we must ensure

that a process can be picked as a victim only a (small) finite number of

times. The most common solution is to include the number of rollbacks

in the cost factor.

Chapter-4-

Mass -Storage

Structure

4.1 Overview of Mass-Storage Structure

In this section, we present a general overview of the physical structure of

secondary and tertiary storage devices.

4.1.1 Magnetic Disks

Magnetic disks provide the bulk of secondary storage for modern

computer systems. Conceptually, disks are relatively simple (Figure 10.1).

Each disk platter has a flat circular shape, like a CD. Common platter

diameters range from 1.8 to 3.5 inches. The two surfaces of a platter are

covered with a magnetic material. We store information by recording it

magnetically on the platters.

track t spindle

sector s

arm assembly

cylinder c read-write
head

platter

arm

rotation

Figure 4.1 Moving-head disk mechanism.

A read – write head “flies” just above each surface of every platter.

The heads are attached to a disk arm that moves all the heads as a unit. The

surface of a platter is logically divided into circular tracks, which are

subdivided into sectors. The set of tracks that are at one arm position

makes up a cylinder. There may be thousands of concentric cylinders in a

disk drive, and each track may contain hundreds of sectors. The storage

capacity of common disk drives is measured in gigabytes. When the disk is

in use, a drive motor spins it at high speed. Most drives rotate 60 to 250

times per second, specified in terms of rotations per minute (RPM).

Common drives spin at 5,400, 7,200, 10,000, and 15,000 RPM. Disk speed

has two parts. The transfer rate is the rate at which data flow between the

drive and the computer. The positioning time, or random-access time,

consists of two parts: the time necessary to move the disk arm to the

desired cylinder, called the seek time, and the time necessary for the

desired sector to rotate to the disk head, called the rotational latency.

Typical disks can transfer several megabytes of data per second, and they

have seek times and rotational latenciesof several milliseconds.

4.4 Disk Scheduling

One of the responsibilities of the operating system is to use the hardware

efficiently. For the disk drives, meeting this responsibility entails having fast.

access time and large disk bandwidth. For magnetic disks, the access time has

two major components, as mentioned in Section 10.1.1. The seek time is the

time for the disk arm to move the heads to the cylinder containing the desired

sector. The rotational latency is the additional time for the disk to rotate the

desired sector to the disk head. The disk bandwidth is the total number of bytes

transferred, divided by the total time between the first request for service and the

completion of the last transfer. We can improve both the access time and the

bandwidth by managing the order in which disk I/O requests are serviced.

Whenever a process needs I/O to or from the disk, it issues a system call to

the operating system. The request specifies several pieces of information:

• Whether this operation is input or output

• What the disk address for the transfer is

• What the memory address for the transfer is

• What the number of sectors to be transferred is

If the desired disk drive and controller are available, the request can be

serviced immediately. If the drive or controller is busy, any new

requests for service will be placed in the queue of pending requests for

that drive. For a multiprogramming system with many processes, the disk

queue may often have several pending requests. Thus, when one request is

completed, the operating system chooses which pending request to service

next. How does the operating system make this choice? Any one of

several disk-scheduling algorithms can be used, and we discuss them next.

4.4.1 FCFS Scheduling

The simplest form of disk scheduling is, of course, the first-come, first-served

(FCFS) algorithm. This algorithm is intrinsically fair, but it generally does not

provide the fastest service. Consider, for example, a disk queue with requests for

I/O to blocks on cylinders

98, 183, 37, 122, 14, 124, 65, 67,

 Figure 4.4 FCFS disk scheduling.

in that order. If the disk head is initially at cylinder 53, it will first move from 53

to 98, then to 183, 37, 122, 14, 124, 65, and finally to 67, for a total head

movement of 640 cylinders. This schedule is diagrammed in Figure 4.4. The

wild swing from 122 to 14 and then back to 124 illustrates the problem with this

schedule. If the requests for cylinders 37 and 14 could be serviced together,

before or after the requests for 122 and 124, the total head movement could be

decreased substantially, and performance could be thereby improved.

4.4.2 SSTF Scheduling

It seems reasonable to service all the requests close to the current head position

before moving the head far away to service other requests. This assumption is

the basis for the shortest-seek-time-first (SSTF) algorithm. The SSTF algorithm

selects the request with the least seek time from the current head position. In

other words, SSTF chooses the pending request closest to the current head

position.

For our example request queue, the closest request to the initial head

position (53) is at cylinder 65. Once we are at cylinder 65, the next closest

request is at cylinder 67. From there, the request at cylinder 37 is closer than the

one at 98, so 37 is served next. Continuing, we service the request at cylinder

14, then 98, 122, 124, and finally 183 (Figure 4.5). This scheduling method

results in a total head movement of only 236 cylinders — little more than one-

third of the distance needed for FCFS scheduling of this request queue. Clearly, this

algorithm gives a substantial improvement in performance.

SSTF scheduling is essentially a form of shortest-job-first (SJF) scheduling;

and like SJF scheduling, it may cause starvation of some requests. Remember

that requests may arrive at any time. Suppose that we have two requests in the

queue, for cylinders 14 and 186, and while the request from 14 is being serviced,

a new request near 14 arrives. This new request will be serviced next, making

the request at 186 wait. While this request is being serviced, another request

close to 14 could arrive. In theory, a continual stream of requests near one

another could cause the request for cylinder 186 to wait indefinitely.

queue = 98, 183, 37, 122, 14, 124, 65, 67 head starts at

53

0 14 37 53 65 67 98 122124 183199

Figure 4.5 SSTF disk scheduling.

This scenario becomes increasingly likely as the pending-request queue grows

longer. Although the SSTF algorithm is a substantial improvement over the FCFS

algorithm, it is not optimal. In the example, we can do better by moving the head

from 53 to 37, even though the latter is not closest, and then to 14, before turning

around to service 65, 67, 98, 122, 124, and 183. This strategy reduces the total

head movement to 208 cylinders.

4.4.3 SCAN Scheduling

In the SCAN algorithm, the disk arm starts at one end of the disk and moves toward

the other end, servicing requests as it reaches each cylinder, until it gets to the other

end of the disk. At the other end, the direction of head movement is reversed, and

servicing continues. The head continuously scans back and forth across the disk.

The SCAN algorithm is sometimes called the elevator algorithm, since the disk arm

behaves just like an elevator in a building, first servicing all the requests going up

and then reversing to service requests the other way.

Let’s return to our example to illustrate. Before applying SCAN to schedule the

requests on cylinders 98, 183, 37, 122, 14, 124, 65, and 67, we need to know

the direction of head movement in addition to the head’s current position.

Assuming that the disk arm is moving toward 0 and that the initial head position is

again 53, the head will next service 37 and then 14. At cylinder 0, the arm will

reverse and will move toward the other end of the disk, servicing the requests at 65,

67, 98, 122, 124, and 183 (Figure 4.6). If a request arrives in the queue just in front

of the head, it will be serviced almost immediately; a request arriving just behind

the head will have to wait until the arm moves to the end of the disk, reverses

direction, and comes back.

Assuming a uniform distribution of requests for cylinders, consider the density

of requests when the head reaches one end and reverses direction. At this point,

relatively few requests are immediately in front of the head, since these cylinders

have recently been serviced. The heaviest density of requests

Figure 4.6 SCAN disk scheduling.

is at the other end of the disk. These requests have also waited the longest, so

why not go there first? That is the idea of the next algorithm.

4.4.4 C-SCAN Scheduling

Circular SCAN (C-SCAN) scheduling is a variant of SCAN designed to provide a

more uniform wait time. Like SCAN, C-SCAN moves the head from one end of the disk

to the other, servicing requests along the way. When the head reaches the other end,

however, it immediately returns to the beginning of the disk without servicing any

requests on the return trip (Figure 4.7). The C-SCAN scheduling algorithm essentially

treats the cylinders as a circular list that wraps around from the final cylinder to the first

one.

queue = 98, 183, 37, 122, 14, 124, 65, 67 head starts at 53

0 14 37 53 65 67 98 122 124 183 199

Figure 4.7 C-SCAN disk scheduling.

4.4.5 LOOK Scheduling

As we described them, both SCAN and C-SCAN move the disk arm across the full

width of the disk. In practice, neither algorithm is often implemented this way. More

commonly, the arm goes only as far as the final request in each direction. Then, it

reverses direction immediately, without going all the way to the end of the disk.

Versions of SCAN and C-SCAN that follow this pattern are called LOOK and C-

LOOK scheduling, because they look for a request before continuing to move in a

given direction (Figure 4.8).

queue = 98, 183, 37, 122, 14, 124, 65, 67 head starts at 53

0 14 37 53 65 67 98 122 124 183 199

Figure 4.8 C-LOOK disk scheduling.

