University of Technology
A ol 43Sl Azalal

Computer Science Department
G gulad) agle ot

Object Oriented Programming
Apiudid) daa yall

Assist. Prof. Dr. Ekhlas Falih Naser

cs.uotechnology.edu.iq

\ JsY) G oS /A A yal) / diadid) dsa) A o palaall

Overview for functions

A function is a set of statements designed to accomplish a particular task.
The advantage of using functions is that it is possible to reduce the size of a
program by calling and using them at different places in the program. C++
has added many new features to functions to make them more reliable and

flexible.

General Format of a Function Definition:

Functions can be define before the definition of the main() function, or they
can be declared before it and define after it.

Declaring a function means listing its return type, name, and arguments.
This line is called the function prototype. A function prototype tells the
compiler the type of data returned by the function. It is usually defined after

the preprocessing statements at the beginning of the program.

Semicolon
void FuncT Cdz — e Function declaration
Return type !
void maind)

Return type —— _l_
voild funcd I Yy — e Declarator

e Function
e Function body definition

Figure 1: Function syntax.:

Y JsY) G oS /A A yal) / diadid) dsa) A o palaall

Example 1: Write a C++ program to find the maximum value between two values
using function

#include <iostream.h>
float max ()
{
float a, b; a=3.5; b=10.25;
float c;
if (a > b)
c=aq;
else
c=b;
return (c);
}
void main ()
{ floatk; .
k=max(); ?OUtzpsUt'-
cout <<k; > :
}

Local and Global Variables:

The variables in general bay be classified as local or global variables.
(a) local variables: Identifiers, variables and functions in a block are said to
belong to a particular block or function and these identifiers are known

as the local parameters or variables. Local variables are defined inside

a function block or a compound statement. For example,

#include <iostream.h>
void sum ()
{ int a,b,s; // a,b,s are local variables in a function sum()
a=3;
b=5;
s=a+b;
coui<s;
}
void main()
{
sum();
}

¥ JsY) G oS /A A yal) / diadid) dsa) A o palaall

(b)Global variables: these are variables defined outside the main function
block. These variables are refered by the same data type and by the
same name through out the program in both the calling portion of the

program and in the function block.

#include <iostream.h>

int a,b,s; // a,b,s are Global variables

void sum ()

{ s=a+b;

cout<<s;

}

void main()

{ a=3;
b=5;
sum();

Inline Function:
C++ suppliers’ programmers with the inline keyword, which can speed up

programs by making very short functions execute more efficiently. Normally
a function resides in a separate part of memory, and is referred to by a
running program in which it is called. Inline functions save the step of
retrieving the function during execution time, at the cost of a larger compiled

program.

¢ JsY) G oS /A A yal) / diadid) dsa) A o palaall

maind()

maind()

——————

func1(); — func1()
e — N
————— | —
/
func1(); s

func1(); /

a) Repeated code b) Repeated code
placed in function placed inline

i

Figure: Functions versus inline code

Example 2: Write a C++ program to find the square of a number using inline

function

#include<iostream.h>
inline int square (inty)

{
return (y*y);
}

void main()

{

intm;
m=5;
couik< square (m);

o s 58 /AN Al jal) / Aipdal) dins AV o palal

Function Overloading:
Overloading refers to the use the same thing for different purposes. C++ also

permits overloading of functions. This means that we can use the same
function name to create functions that perform a variety of different tasks.

We can design a family of functions with one function name but with
different argument lists. The function would perform different operations

depending on the argument list in the function call.

Example3:

Hhe following program illustrates function overloading.

#include <iostream.h>

int volume(int);
double volume(double,int);
long volume(long,int,int):;

void main()

{
cout<<volume(10)<<"\n";
cout<<volume(2.5,8)<<"\n";
cout<<volume(100L,75,15);

}

int volume(int s)

{ return(s*s*s); // cube

}

double volume(double r,int h) /] cylinder
{ return(3.14519%*r*h);

}

long volume(long l,int b,int h) /[rectangular box

{
}

return(I*b*h);

1 JsY) G oS /A A yal) / diadid) dsa) A o palaall

Passing Parameters:

There are two main methods for passing parameters to a program:

1- Passing by Value:

When parameters are passed by value, a copy of the parameters value is taken
from the calling function and passed to the called function. The original variables
inside the calling function, regardless of changes made by the function to it are

parameters will not change. All the pervious examples used this method.

Write C++ program using function to calculate the average of
two numbers entered by the user in the main program:
#include<iostream.h>
void aver (int x1, int x2)
{
float z;
z=(x1+x2)/2.0; Output:-
cout<<z; > 4.5
}
void main()
{
int num1,num2; Input:-
cout << "Enter 2 numbers \n"; Enter 2 numbers
cin >> num1 >> num2; 6 3
aver (num1, num2);
}

2- Passing by Reference:

When parameters are passed by reference their addresses are copied to the
corresponding arguments in the called function, instead of copying their values.
Thus pointers are usually used in function arguments list to receive passed

references.

Y JsY) G oS /A A yal) / diadid) dsa) A o palaall

Example 5:

% The following program illustrates passing parameter by reference.

#include <iostream.h>
void swap(int *q,int *b);

void main()

{
int x=10;
int y=15;
cout<<"x before swapping is:"<<x<<"\n";
cout<<"y before swapping is:"<<y<<"\n"
swap(&x,&y);
cout<<"x after swapping is:"<<x<<"\n"
cout<<"y after swapping is:"<<y<<"\n";
}
void swap(int *a,int *b)
{
int c;
c=*a;
*q=*p:
*b=c:
}

Example 6:

Q Write a C++ program using functions fo print the contents of an integer array of
10 elements.
#include <iostream.h>

int const size=10;

void pary(int y[]):

void main()

{
int s[size]={2,4,6,8,10,12,14,16,18,20};
pary(s);

}

void pary(int x[])
{
inti;
for (i=0;i<size:i++)
cout<<x]i]<<endl;

>

s 58 /AN Al jal) / Aipdal) dins AV o palal

Example 7:

Q Design a function that takes the third element of an integer array defined in the
main program. The function must multiply the element by 2 and return the result to
the main program.

#include<iostream.h>
int elementedit(int);

void main()
{
int a[4]={2,5,3,7}:
int k;
k=elementedit(a[2]);
cout<<"k after change is: "<<k;

}
int elementedit(int m)
{
m=m*2;
return(m);
}

Default Arquments

As with global functions, a member function of a class may have default
arguments. The same rules apply: all default arguments should be trailing
arguments, and the argument should be an expression consisting of objects
defined within the scope in which the class appears.

Surprisingly, a function can be called without specifying all its arguments.
This won’t work on just any function: The function declaration must provide

default values for those arguments that are not specified.

q JsY) G oS /A A yal) / diadid) dsa) A o palaall

Example 8:Write a simple program to represent a default argument

[/ missarg.cpp

[/ demonstrates missing and default arguments
#include =iostream=

using namespace std;

void repchar{char="*", int=45); [/declaration with
[fdefault arguments
int main()

{

repchar(); ffprints 45 asterisks

repchar{'="); ffprints 45 equal signs

repchar{'+"', 38); flfprints 3@ plus signs
return @;

}
il e e I
[repchar()

[/ displays line of characters
void repchar({char ch, int n) [fdefaults supplied

{ I if necessary

for{int j=0; j=<n; j++) [/ 1loops n times

cout << ch; ffprints ch
cout << endl;

}

In this program the function repchar() takes two arguments. The first time it’s
called with no arguments, the second time with one, and the third time with two.
Why do the first two calls work? Because the called function provides default
arguments, which will be used if the calling program doesn’t supply them. The
default arguments are specified in the declaration for repchar(): void
repchar(char="*", int=45); The default argument follows an equal sign, which is
placed directly after the type name. You can also use variable names, as in void
repchar(char reptChar="*’, int numberReps=45); If one argument is missing
when the function is called, it is assumed to be the last argument. The repchar()
function assigns the value of the single argument to the ch parameter and uses the
default value 45 for the n parameter. If both arguments are missing, the function

assigns the default value “*’ to ch and the default value 45 to n.

\ 8N G oS /AN Al yal) / diadil) dsa) AU b palaal)

Overview of OOP:

When working with computers, it is very important to be fashionable. In the

1960s, the new fashion was what was called high-level languages (H.L.L.)
such as FORTRAN and COBOL, in which the programmer did not have to
understand the machine instructions.

In the 1970s, people realized that there were better ways to program than
with a jumble of GOTO statements, and the structured programming
languages such as PASCAL were invented.

In the 1980s, much time was invested in trying to get good results out of
fourth-generation languages (4GLs), in which complicated programming
structures could be coded in a few words. There were also schemes such as
Analyst Workbenches, which made systems analysts into highly paid and

overqualified programmers.

Bjarne Stroustrup at Bell Labs developed C++ during 198-1985. The term
C++ was first used in 1983. Prior to 1983, Stroustrup added features to C
programming language and formed what he called “C with Classes”. In
addition to the efficiency and portability of C, C++ provides number of new
features. C++ programming language is basically an extension of C
programming language.

The fashion of the 1990s is most definitely object-oriented programming.
Read any book on object-oriented programming, and the first things you will
read about are three importance OOP features:

* Encapsulation and Data Hiding.

* Inheritance and Reuse.

* Polymorphism.

Y 8N G oS /AN Al yal) / diadil) dsa) AU b palaal)

Object -
Oriented Programming

Encapsulation
Inheritance
Polymorphism

Figure 1: The three pillars of OOP.

Encapsulation and Data Hiding:

C++ supports the properties of encapsulation and data hiding through the
creation of user-defined types, called classes.

Once created, class acts as a fully encapsulated entity, it is used as a whole
unit. The actual inner workings of the class should be hidden. Users of a
well-defined class do not need to know how the class works; they just need

to know how to use it.

Inheritance and Reuse:

C++ supports the idea of reuse through inheritance. A new type, which is
an extension of an existing type, can be declared. This new subclass is said
to derive from the existing type and is sometimes called a derived type. The
Quasar model is derived from the Star model and thus inherits all its

qualities, but can add to them as needed.

Polymorphism:

C++ supports the idea that different objects do "the right thing" through
what is called function polymorphism and class polymorphism.

¥ 8N G oS /AN Al yal) / diadil) dsa) AU b palaal)

Poly means many, and morph means form. Polymorphism refers to the same

name taking many forms.

Class Definition:
Class is a keyword, whose functionality is similar to that of the struct

keyword, but with the possibility of including functions as members, instead
of only data.

Classes are collections of variables and functions that operate on those
variables. The variables in a class definition are called data members, and

the functions are called member functions.

Data + Functions = Object

Note: Class is a specification for number of objects.

Class name

Data Members

Member Functions

A class definition consists of two parts: header and body. The class header
specifies the class name and its base classes. The class body defines the
class members. Two types of members are supported:
e Data members have the syntax of variable definitions and specify the
representation of class objects.
e Member functions have the syntax of function prototypes and

specify the class operations, also called the class interface.

¢ 8N G oS /AN Al yal) / diadil) dsa) 45 5 palaall

General form of class declaration:

class class-name
{
public:
public-data-members;
public-functions;

private:
private-data-members;
private -functions;

protected:
protected-data-members;
protected -functions;

Class members fall under one of three different access permission
categories:

¢ Public members are accessible by all class users.

¢ Private members are only accessible by the class members.

+ -Protected members are only accessible by the class members and the

members of a derived class.

Class
Not accessible from Data or functions
outside class E——
Public
Accessible from Data or functions
outside class s

Figure 2: Public and Private Definition

° 8N G oS /AN Al yal) / diadil) dsa) AU b palaal)

Example 1: write an OOP to find the area of rectangle using a class called

rectangle

¥ include ¢<ilostream. h:

clazs Hectangle

b
public:
int length . width;
int areal)
{
return length # width;
i
I3 |
vold main()
{
Rectangle my_rectangle; Output

42

ny_rectangle. length = 6;
ny_rectangle. width = 7;

cout<{ my_rectangle. area(),

1 8N G oS /AN Al yal) / diadil) dsa) AU b palaal)

Example 2: write an OOP to read a data and print it. Create a class
called data with one data member called (a).

#include <iostreamn.h:

clas= data
i
private:
int a;

public:
vo1d setdata({int d)

1
a = d;

vold showdatal)
I cout <¢ "Data 1i=

{{ a << endl; }

b
vold main)
1
data =1. =2;

=l . =etdata(l066);

=2 . =etdatall?76); Output:

=l .showdatal): Data is 1066

Data is 1776
=¢ . showdatal);

¥

4 Ja¥) sl /AN Al pall / Aplad) e sl

AL o_yalaal)

Example 3: write an OOP to define the coordinate of point and shift

these values of this point.

finclude<iostrean . h>

clazs point {
int ®Ewal, ywval;

point pt;
pt.=etpt{10, 203 ;

pt . offsetpt(2.2);

public:
vold setpt{int =, 1nt w)
1
Eval=xz;
yval=y;
b | | |
vold offsetpt{int =.1int v)
1
Eval+==;
yval+=vy;
cout{{xEval<<yval;
¥
Fo _
vold main()
1

Output
1222

| I G oS /AUl Ada pal) / Agiadil) daa sl QA o_pdalaall

Class Constructors and Destructors:

A class constructor is a function that is executed automatically whenever a
new instance of a given class is declared.

The main purpose of a class constructor is to perform any initializations
related to the class instances via passing of some parameter values as initial
values and allocate proper memory locations for that object.

Notel: A class constructor must have the same name as that of the
associated class.

Note2: A class constructor has not return type, not even void.

Note3: A class constructor can be overloaded

Example 1: Write an OOP to represent simple constructor with class

point which contains two data members vxal and yval.

#include<io=tream h:
cla=z= point {
int =Eval.vwval;

public:

pointi{int =.int w) Sooonstructor
1

Eval=x:

viral=y;
¥ . . .

vold offsetptiint =.int)
1

Eval+==;

vval+=vy;

cout<{<xval{<ywval:

T
T

wold mainf)

point pt{l0.207;
pt . off=setpt{2.2);
I

Y I G oS /AUl Ada pal) / Agiadil) daa sl AANEY o palaall

Example 2: Write an OOP to represent a rectangle constructor.

¥ include <io=tream.h>

cla=s== Rectangle

1
int length . width:
public:
Fectanglei{iint =, int w)
1
length = =:
width = ¥
r
int areal 1
1
return {(length *width)
r
T
woid maini)
1
FEectangle rectli(t. 7] ;
cout<< rectl areal) << endl;
T

A class may have more than one constructor. To avoid ambiguity, however,

each of these must have a unique signature.

s s Gy sS /Al Al pall / Agiadid) daa) AANEY o palaall

Example 3: Write an OOP to represent multiple constructors in class

rectangle.

include <iostream. h:
cla== Fectangle

int length . width;

public:
Fectangls() < soconstructorl
1
length = 7:
width = 9;
I
Eectangle(int =. int w) “soconstructor?
{
length = =;
width = v
L
int areal)
1 return (length *width):
I
¥
vold maini)
1

Fectangle rectl(f.?);
Eectangle rect?:

cout<< rectl. areal) << endl:
cout<{ rect? areal) << endl:;

¢ I G oS /AUl Ada pal) / Agiadil) daa sl QA o_pdalaall

Destructor

Just as a constructor is used to initialize an object when it is created, a destructor is
used to clean up the object just before it is destroyed. A destructor always has the
same name as the class itself, but is preceded with a ~ symbol. Unlike
constructors, a class may have at most one destructor. A destructor never takes any
arguments and has no explicit return type.Destructors are generally useful for
classes which have pointer data members which point to memory blocks allocated
by the class itself. In such cases it is important to release member-allocated

memory before the object is destroyed. A destructor can do just that.

Example 1: Write an OOP to represent a simple destructor with class rectangle.

include <{ioztream. h:
cla== Rectangle
int length ., width;
public:

Eectangle{int =, int) Seoonstructor

length = =;

width = ¥;
b
™~ Rectangle() Sodestructor
1
h

int areal)

return (length #width);
b

T

vold maini)

Eectangle rectlio.¥):
cout<< rectl areal) << endl;

F

° S G gSl) /ALY Ada jall / dgiadal) dga) QA 5 pialaall

Example2: Write an OOP to represent destructor of pointer members in class

rectangle.

include <io=tream. hr
cla== Rectangle
int #length . #*#width;

publicz:
Rectangle(int =. int w)

1
length= new int;
width= new int:
#®]length = =;
#®*iyidth = v;

I

~REectangle()

1
delete length;
delete width;

T

int arsal

return (*length **ywidth):

T
T
vold maini)
1
FRectangle rectlia. 7] ;
cout<< rectl. areal) << endl;
I

Note: A class destructor proceeded with a tilde (~).

) s G sS) /AL Al palf /7 Agiadid) daa) dagl) o _paalaall

Friend function

Occasionally we may need to grant a function access to the nonpublic members of
a class. Such an access is obtained by declaring the function a friend of the class.
There are two possible reasons for requiring this access:

« It may be the only correct way of defining the function.

* [t may be necessary if the function is to be implemented efficiently.

Examplel: Write an OOP to find the summation of point coordinates using friend

function.

finclude <iostream. h:

claz= point

{

private:
int =wal,ywval;
public:

point{int =, int v)

{

Eval==+7:
vral=v+3;
cout<<"®Eval= "<¢Evali«

}

friend int sumi{point p); Sofriend function
T

int sum{point p)

{ Output:

int = = p.Eval + p.ywval;
return (=) xval=4 yval=5
} the summation of coordinate x & y =9

vold main()

{

¢ "yral=s "<¢yval<sendl;

point pl(2.2):

cout<<¢" the summation of coordinate = & v = "<<{sum(p)<<endl;

Y s G sS) /AL Al palf /7 Agiadid) daa) dagl) o _paalaall

Example2: Write an OOP to print the square value of the data in class alpha

using friend function .

¥include <io=stream.h:>

cla== alpha

1

private:
int data:
public:
wvoid geti)

data=9:
F

friend woid =sguareialpha al;

T

vwolid =guarefalpha a)

o
b

wold mainti)
1 :
alpha a: Output:
a. gt):; 81

=quarel(a)

+

cout<< a.data * a. data<<endl:

s I G oSl /ASSUY Ads yal) / Agindl) dga yall day)) o_plalaall

Example 3: Write an OOP to print the coordinates of a class point and a class
D3 using friend function.

F¥include <io=tream. h:

cla=s=s D3;

clas=s point

{
private:

int =wval, vywval;
public:

vold get(]

1

=val =6; vwal=3;

friend woid writeipoint p. D3 di: Sefriend function

¥

cla== D3

1

private:
int zwval:
public:
D3id

{ zZwal=5;

T

friend woid writeipoint p. D3 di: Sefriend function

¥

vold write(point p, D3 d) Sffunction definition
1

cout<<"®gval= "<¢p.®val<<endl;

cout<<"yval= "<¢p.yval<<endl;

cout<{"zval= "<¢d.zval<<endl;

I

vold main() Output:
1 xval=6
point p. yval=3
D2 d: zval=5
p.get();

vrite(p.d);

h

¢ s G sS) /AL Al palf /7 Agiadid) daa) dagl) o _paalaall

friend class

The member functions of a class can all be made friends at the same time

when you make the entire class a friend.

Example 1:Write an OOP to divide the value m in a class first on the value n in the

class second using a friend class.

Finclude<io=streamn. hs
clas=s first

o

int m;
public:

volid get_mi)

m=12;
T

friend clas=s =econd;

+
cla=s=s second
T

int m:

public:
volid get_ni)

n=6: Output:
*

vold divifirst)
1

division=2

int b= £f.m ~1n;
cout<<"division= "<<b<<endl;

T
void main)

fir=t f: f.get_m();
s=cond = =.get_ni);

=.diwvif);

o Jg¥) w98 /Al Ads yal) / Agindd) Age) Ax)) o palaal)

Example 2:Write an OOP to read the values x and y in a class read and write the

values x and y in a class write using friend class

¥include<io=streamn. s

=la=s= read

i
int =.v:
public:
read()
i
cout< < "Enter the wvalues of = & wv";
Cin Gy rEF PV
b
friend clas=s write;
T
cla== write
public:
vold write =Zvi(read)
1
cout<<r.®E <<" "<<r.yv<<endl;
T
woid main)
1
read T

write w:

w.write =yvir);

\ Y G oS /Al Al yal) / Agiadil) dsa) dual) o pualaal)

Scope Operator Resolution

When calling a member function, we usually use an abbreviated syntax. For
example: pt.OffsetPt(2,2); // abbreviated form
This is equivalent to the full form: pt.Point::OffsetPt(2,2); // full form

Example 1: write an OOP to find the area of rectangle using the concept

of Scope Operator Resolution

include <io=stream. h:
cla== Fectangle
1
int length . width:
public:
Rectanglel)
wold areal)
¥
Fectangle :: Rectanglel)
1
cout s < "Enter Length and Width"
cinrrlength;
cinsrwidth
T
vwold Hectangle: areal)
i
cout< < length¥*®yidth
T
wold maini)
1
Fectangle rect:
rect . areafl)
T

Y Y G oS /Al Al yal) / Agiadil) dsa) docalAl) 5_palaal)

Member Initialization List

There are two ways of initializing the data members of a class.
1) The first approach involves initializing the data members using

assignments in the body of a constructor. For example:

Example 1: Write an OOP to initialize the data member of a class using

assignments in the body of constructor.

¥ 1nclude <i1ostream. hr
clas= Eectangle

1

int length . width;
public:

Fectangle()

wolid areal)

¥
Fectangle :: Hectangle()
length = 3;
width = §;
I
wold Fectangle: areal)
1
coukt<< length * width;
I
wold mainf)
1

Fectangle rect;

rect areal)

¥ Y G oS /Al Al yal) / Agiadil) dsa) docalAl) 5_palaal)

2) The second approach uses a member initialization list in the definition

of a constructor. For example:

Example 2: Write an OOP to initialize the data member of a class in the

definition of constructor.

¥ include <iostream. hs

cla== Fectangle

d

private:
int length . width:

public:

Fectanglel)
wvold areal);

T

Fectangle :: Rectangle():lengthi(3).widthi(&)
1

F

wvold FEectangle: :areal)

1
¥

wold maini)

d

cout<¢ length *# width:

FEectangle 1

Tr.areal)

¢ Y G oS /Al Al yal) / Agiadil) dsa) dual) o pualaal)

Constant member

A class data member may define as constant.

Constant Function Argument

Suppose you want to pass an argument by reference for efficiency, but not
only do you want the function not to modify it, you want a guarantee that the
function cannot modify it. To obtain such a guarantee, you can apply the

const modifier to the variable in the function declaration.

Example 1:Write a C++ simple program to represent a constant argument

ffconstarg.cpp
f/demonstrates constant function arguments

void aFunc{int& a, const ant& b); [/declaration

int main()
{
int alpha = 7;
int beta = 11;
aFunc(alpha, beta);

return @;

b
F T T e
void aFunc(int& a, const int& b) //definition

{

a = 187; J 0K

b= 111; fferror: can't modify constant argument

b

Here we want to be sure that aFunc() can’t modify the variable beta. (We
don’t care if it modifies alpha.) So we use the const modifier with beta in the
function declaration (and definition):

void aFunc(int& alpha, const int& beta);

° g1 G eSl) /AN Ada jall / diadd) daa) duualdl) o pualaal)

Constant Member Functions
We can apply const to variables of basic types such as int to keep them from

being modified. In a similar way, we can apply const to objects of classes.

When an object is declared as const, you can’t modify it.

Example 2:Write an OOP to represent a constant member function

finclude <iostream h:

class Rectangle
1

private:

int length.width;

public:
Rectanglel]
length=3; width=5;
I
wiold readf] SAz=er input; non—const func

cout << "~n Enter length: cin > length;
cout << "n Enter width: ": cin ¥ width:

wold writel) const
{ cout<< "Length= "<<length<<endl;
cout << "Width= "<<width<<endl:
¥

A S S S S
wvold mainf)

{
con=t Rectangle
S read() < AERROR

r.writel(]; 0K

1 Y G oS /Al Al yal) / Agiadil) dsa) docalAl) 5_palaal)

Static Members

A data member of a class can be defined to be static. This ensures that there

will be exactly one copy of the member, shared by all objects of the class.

Example 1: Write an OOP to represent a static members for count class.

#include<iostreamn . h>
class count
1
private:
=tatic int cl1;
int o2 ;
public:
count ()

1
c2=0:
T

static volid write_cl() ~=s=tatic function

1

cout <<"cl= "<{++clccendl;

ks

volid write _cZ() ~non—-=static function
1
cout << "oZ=
I
} .

A

{44++cd << endl;

int count::cl1 = 0;

A S S

wold maing)
count nl; Output:
nl write cl(): cl=1
nl write c2(): c2=1
count nZ; cl=2
nhe . write cl(): =
nd write_c2(); c2=1
cl=3
count n3: =
n3d . write_cl(); c2=1
nl.write_c():
h

Y Y G oS /Al Al yal) / Agiadil) dsa) dual) o pualaal)

Example 2: Write an OOP to represent a static members for point class.

finclude<io=strean. h:
claz= point
i
private:
static int =;
int ¥;
public:
point ()

ztatic void show_=()
{
cout ¢<¢"¥-coordinate = " <<{®<{<{endl;

I
void show_v()

1
cout ¢{"y-coordinate
I

¥
£

¢ v ¢ endl;

int point::x = 0;

e

wold maint)

1 _ Output:
proint pl:)

pl . show _=({: x-coordinate= 1
pl.show_wi): y-coordinate=1
point p2- x—coord!natez 2
02 show_=i{): y-coordinate=2

p2.=how_wi);
¥

| I G oS /ASUY Ada yal) / Anindd) daa) dusadlid) o_pualaal)

Obijects Pointers

It has already been stated that a pointer is a variable which holds the memory
address of another variable of any basic data type. It has been shown that how a

pointer variable can be declared with a class.

First way :- (*object name).member name=variable;

Example 1: Write an OOP to read and display student information using pointer.

finclude <io=streamn.h>
cla== =tudent

{

private:
int =tageno:;
int ages:

char =ex:

float height;

float weight
public:

volid getinfol):

vold disinfofl):;

T soend of class definition
vold =student: getinfoi)
{

cout< < "stage number:
cout< < " hge: "
cout<<"Sex
cout< < "Height
cout< < "Weight

cihn:r=tageno:
Ccinyrage;
Ciny r=eH;
cinrrheight
cinrrwelight

T

vold =tudent: di=sinfoi)

{
cout< < "Stage numnber = " cout < <=tageno; cout<<"wn"
cout<< "hge= " cout < <age; cout<<"wn"
cout<<"Sex = "; cout < < =ex; cout<<g"~n";
cout< < "Height ="; cout < <height cout<<"~n";
cout< < "Weight ="; cout < <weight

b

vold maing)

ztudent =*ptr;

ptr=new =tudent:

cout< < "enter the following information”<<endl:
(#*ptr) getinfo ()

cout<<endl

cout << "contents of class "<<{endl:;

(#ptr) di=infol);

T

Y s G eS) /AL Al pall /7 Agiadid) daa) ducadlad) 5_pialaall

Second way:- object name ->member name=variable;

Example 2: Write an OOP to read and display student information using pointer.

Binclude ¢iostream. b
claz=s =student

1

private:
int =tageno;
int age;
char =zex;

float height;

float weight:
public:

vold getinfai);

void disinfol);

1; soend of class definition

vold student: getinfol)

1
cout<<" Stage number :"; cinrrstageno; cout<<endl;
cout<<" hge:"; cin:rage; cout<<endl;
cout<¢ "Sex " Cihy ySEE; cout<<endl;
cout< < "Height " cinyrheight; cout<<endl;

cout< < "Meight cin:rweight;

T

vold student: :disinfol)

1
cout<<"Stage number = “; cout<<stageno; cout<s"~n";
cout<<" hge= " cout<<{age; coutg<"wn";
cout<s "Sex = " cout{ < zex; coutgd "~n";
cout<< "Height ="; cout<<height ; cout<s"~n";
cout<< "Meight ="; oot < {weight ;

¥

rold maind)

1

student *ptr;

ptr=new =student;

cout<<" enter the following information"<<endl;
ptr—rgetinfaol);

cout<<" “n contents of claszs "<<endl;
ptr—rdisinfal);

i

s s G eS) /AL Al pall /7 Agiadid) daa) ducadlad) 5_pialaall

This pointer

This pointer is a variable which is used to access the address of the class itself.

Example 1:Write an OOP to display the address of class using this pointer

Finclude <io=stream. kb
clas=s =ample
1
private

int =
public:

inline woid displawi() :
} .

iﬁline wolid =ample: displawi()

i

cout << "object address = "<<thi=:
cout <<endl:

T

wold mairng)

1
s=ample obijl.obi2 . obj3:
obijl . displaswi)
obijiZ2 di=splas():
obi2 . displawi)

The above program create three objects,objl, obj2, obj3 and displays each
object’s address using this pointer.

Example 2:Write an OOP to display the content of class member using this pointer

Hincludse <io=tream. k>
—lass ==amplse
i
Driwvate
it =
rublic:
irnnline wolid displas()

iﬁline wodld =mamplse: di=plaswi)
t thi=—>==20:
cout<scthis—>3x;
oot £ <=rndl o
%Did maSirl)

=s=amplse obil ;
obil displas()
x

¢ I G oS /ASUY Ada yal) / Anindd) daa) dusadlid) o_pualaal)

References Members
A class data member may define as reference. For example:

Example 1:Write an OOP to find the value of third coordinate z using reference

member.

¥ include <iostream. h:

class point
.
int =
int v;
int &%,
public:

?Diﬂt()33(3)f?(5]‘f3(5ﬂ'

cout << "z-coordinate= "<<z<{<endl:

h

b _ Output:
vold nain{) z-coordinate=5

{

point p;

° S Sl /ALY Ada jall / dgiadid) dga) duadlid) o_pualaal)

Class Object Member

A data member of a class may be of a user-defined type, that is, an object of

another class.

Example 1:Write an OOP to find the area of square using class object member

¥ include <i1ostream. h>
class area

int k;
public:
arealint =)
1

k=x:

coutd¢"k= "¢k¢{endl;
cout << "area of sguare= "{{k*k{{endl;

¥
I
clas=s sguare

1

private:
area length;
public:

square(int =®=):lengthi(x)

Output:
1 area of square= 49

I

vold main()
{ square s(7);

¥

! s G eS) /AL Al pall /7 Agiadid) daa) ducadlad) 5_pialaall

Example 2: Write an OOP to find the summation of point coordinates using class

object member

¥ include <iostreamn. h:
claz=s point

1
int =val.yval.=;
public:
pointiint =, int ¥)
1
val=x;
vval=v;
z=xval+yval;
cout<<=<<endl

¥
:iass add

{
point coordinate;
public:

Output:
add() coordinate(3.h) 8

{
¥
T

vold maing)

1
¥

add a:

\ I G oS /ASUY Ada pal) / Agindl) dga) dajld) o_pialaall

Arrays as Class Data Member

In C++, the definition of an array specifies a variable type and a name. But it
includes another feature: a size. The size specifies how many data items the
array will contain.

The items in an array are called elements .All elements in an array are of the
same type; only the values vary. As specified in the definition, the array has
exactly four elements. The first array element is numbered 0. Thus, since

there are four elements, the last one is number 3.

Example 1: Write an OOP to subtract a value 3 from data member with 5 elements.

finclude <iostream. h:
clasz=s sub 3

L
rrivate .
int %[5];
public:
inline void =sub()
{
int 1;
z[0]=7; x[1]=3; =[2]=2; =[3]=10; =[4]=1;
for{i=0 ; i<5 ;i++)
cout¢s" "<em[1]-3:;
cout<<endl;
j]f; Output:
void main{} 4 0 -1 7 -2
{
zub 3 =;
=.subl);

Y s G sS /AL Al palf /7 Agiadil) daa) daglud) o palaall

Object Arrays

® An array of a user-defined type is defined and used much in the same

way as an array of a built-in type.

Example 1: Write an OOP to represent object array of class point for 2 points

objects .

¥includesiostrean. h:

cla=zs point

i
int =wal,vyval;
public:
vold offsetpt{int =, 1nt vw)
i
Eval=x; Eval=mval+l;
yval=y; yral=yval+d;
Output:
cout<<Eval<<" "<{<yval<<endl; 18 12
7 10
I
o
vold mainf)
i

point pt[2]:
pt[0].offsetpt(15.8);
pt[1].offsetpt (4.6);

¥

¥ s G sS /AL Al palf /7 Agiadil) daa) daglud) o palaall

Example 2: Write an OOP to read and write student information for 10 students

objects.

include <iocstream.h:

class student

1
char name[20];
int age ;
float average:;

public:

vold get_datal)

d

Clnd rHamne;
Clhr rage;
cinrraverage;

vold print_datal)

1
cout<<name <<" " <{<{age{<" "<<{averaged<{endl;
r
Fo _
vold main()
1

=tudent =[10]:
for (int 1=0;1<10;144)
=[1] . get_datal);

=[1].print_data();
T

¢ I G oS /ASUY Ada pal) / Agindl) dga) dajld) o_pialaall

An Array of Pointers to Objects
A common programming construction is an array of pointers to objects. This

arrangement allows easy access to a group of objects, and is more flexible

than placing the objects themselves in an array.

Example 1: Write an OOP to represent array of pointer to object for class

point with 2 points objects .

Finclude<io=strean . hx

cla== point

1
int =wval.wwval:;
public:
wold offsetptiint =.int w)
1
Hval=x; HEval==wval+3:
wwal=y: vwal=yval+d: Chﬂput
cout<<Evalgs” "eowwals<endl 18 12
v 710

void mainf)

{pDint *pt[2]:
pt[0]=new point:
pt[0]—>offzetpt {15, 8% ;
pt[l]=new point;
pt[l]—roff=setpt (4.6

¥

° s oS /ALY Ada yal) / Aindd) daa yall dagld) o pialaall

Example 2: Write an OOP to read and write student information for 10 students

using array of pointer to objects.

¥ include <icstreamn.h:
class =tudent

i
char name[20];
int age ;
float awverage;

public:

vold get_datafl)

1
Clnysname;
Cilhyrage;

Clhy »average;

vold print_dataf)

1
cout<<name <" " {{age¢<" "<{{averaged<endl;
I
b .
vold mainf)
i

student *=[10];

for (int 1=0;1<10;14++)

1
=[1]=new student;
(#=[1]) . get_datal);
(#=[1]) . print_data():
+

| s G oS /AL A yal) / dgiadal) dsa) JLalE) 5_pualaal)

Operator overloading

Operator overloading is one of the most exciting features of object-oriented
programming. It can transform complex, obscure program into intuitively
obvious ones. Operators overloading was applied for unary and binary

1- Overloading Unary Operators

Unary operators act on only one operand. Examples of unary operators are the

increment and decrement operators ++ and --, and the unary minus, as in -33.

Example 1:-Write an 0o program to increment the counter variable using ++ operator.

finclude <iostream. hr
class Counter
1
private:
int count:
public:
Counter() S Constructor
{ count=5t;
h
vold operator ++() Soincrement (prefix)

!

++ocount

vold writel)

1
i

P R P
wold main)

cout < {ocount

Counter cl, o2
cout<< "~ncl=";
cl . writel):
cout << "mnod=";
cd . writel);

++=1; SSincrement o1
++o2 ; SSincrement o2
++= 2 ; Seincrement o2

cout< < "~ncl=";
cl writel):
cout << "snod=";
c?2 . writel);

Y s G oS /AL A yal) / dgiadal) dsa) JLa 5 palaall

Here’s the program’s output:

cl=5 «<—— counts are initially 5

c2=5 +——

cl=6 «—— incremented once

c2=7 «——— incremented twice

The ++ operator is applied once to ¢l and twice to c2. We use prefix

notation in this example.

Operator Arguments
In main () the ++ operator is applied to a specific object, as in the expression

++cl. Yet operator++() takes no arguments. What does this operator
increment? It increment the count data in the object of which it is a member.
Since member functions can always access the particular object for which
they’ve been invoked, this operator requires no arguments. This is shown in

Figure 1.

++c1; -€——— Thisstatement
CALSES

this function —
1 obiect to increment
Gl objed this count.
GOl nt /
Mo arguments —h
volid operatort+(]
{

++count;
¥

Figure 1: Overloaded unary operator: no arguments.

s s G oS /AL A yal) / dgiadal) dsa) JLa 5 palaall

Operator Return Values

You will discover it if you use a statement like this in main (): c1 = --c2;
There are two types to return object in the operator overloading:-

a-Using Temporary Object.

Example 2:-Write an OOP to decrement a variable in class decrement using (--)

operator and return the value to other object using temporary object .

finclude <iostream. h:
class decrement

1

private:

int =;

public:

void geti)

I ==7;

¥

decrement operator —-()

1

__H_:

decrement temnp:; Ssmake a temporary object
tenp.x = =;

return temp:;

vold writel)

{

F

b

S S
vold mainf)

cout{<=z{<endl;

decremnent m. n:
m.get();

no= ——n;

m.writel);
n.writel);

¥

¢ s G oS /AL A yal) / dgiadal) dsa) JLalE) 5_pualaal)

b- Nameless Temporary Objects

In Example 2 we created a temporary object of type decrement, named temp,
whose sole purpose was to provide a return value for the -- operator.

Example 3:- Write an OOP to decrement a variable in class decrement using (--)

operator and return the value to other object using nameless temporary object.

finclude <iostream. h:
class decrement

1

Frivate:

int =;

public:

decrement (int w) S Constructor
1 ®=y;
¥

decrement operator ——i)

1

return decremsnt(=);

¥

vold writel)

1

F
b
S S S SS
vold main()

{

decrement mi{7). n{l);

cout{<x{<endl;

no= ——m;

m.writel);
n.writel);

¥

In this program a single statement return decrement(x); this statement

creates an object of type decrement decrement (int y) //constructor, one arg

° s G oS /AL A yal) / dgiadal) dsa) JLa 5 palaall

Postfix Notation

We define two overloaded ++ operators, as shown in the Example4:

Example 4:-Write an oo program to increment the counter variable with ++

operator using both prefix and postfix.

#include <iostream. h:
cla=z= Counter

i

private:

int count;

public:

Counteri{int o)

{ count=c;

I

Counter operator ++ ()

{

return Counter{++count)

1

Counter operator ++ {1int)

1

return Counter{count++);

b
vold printi{)

cout < <count < <endl ;

b

P
vold maing)

i
Counter clil). c2{1);

2 = ++4c1; Sool=2, z2=2 (prefix)
cout<d"cl=s " cl . print{]}:;

cout< g "od= " cZ2.print{];

2 = cl++; Sool=3, o2=2 (postfix)
cout<d"cl=s " cl . print{]}:;

coutdd "od= " 2 .print{};

T

Now there are two different decelerator for overloading the ++ operator. The one
we’ve seen before, for prefix notation, is Counter operator ++ (). The new one,
for postfix notation, is Counter operator ++ (int). The only difference is the (int)
in the parentheses. This (int) isn’t really an argument, and it doesn’t mean integer.

It’s simply a signal to the compiler to create the postfix version of the operator.

! s G oS /AL A yal) / dgiadal) dsa) JLa 5 palaall

2- Overloading Binary Operators
Binary operators can be overloaded just as easily as unary operators. There

are two types of overloading binary operators:

a) Arithmetic Operators

Arithmetic operators consists of (+,-,*,/) as illustrated in examples bellow

Example 5:-Write an OOP to subtract two numbers objects using - operator.

#¥include <iostream. hr
cla== =ub

1

private:

float n:

public:

sub{float t)

1

n=t;

wold show(] const
{ cout << n;

h

=ub operator — {(=ub =2)
1

float £ = n — =2 .n;

return subif);

b

¥

A A A
wold main)

d
sub =1(15.5),.=2{10.5).=3(0.0):

=3 = =1 - =7;

cout << "~n =1 "
=l . show();
cout << "~n =4
=Z . =show();
cout << "~n =3
=3 .show(];
cout<<endl ;

’

Y s G oS /AL A yal) / dgiadal) dsa) JLalE) 5_pualaal)

Example 6:-Write an OOP to add two area of rectangle using+ operator.

x| claszs rectangle
- 1
i private:
int length,width, area;
rublic:
void get(]
cinrrlengthyrwidth; 1
rectangle()
area=0; I
rectanglel(int a)

area=a;

¥

rectangle operator + (rectangle ré)

1
int al = length*width;
cout<< "areal = "¢<al<<endl:

int aZ= r?. length#*r? width;
cout << "areg? = "<<{al<{<{endl;

int ad=al+a?:;
return rectangle(al);

void show()
I cout ¢ area; }

S
vold main()

1

rectangle rl.r?.r3;

rl.get():
re.get();
ri=rl+rd;

cout << "areal =

=)

;v show();

Input for rl: 3 4
Input for r2 : 9 2
Outputs:

areal =12

area2=18

area3=30

A s G oS /AL A yal) / dgiadal) dsa) JLalE) 5_pualaal)

b) Comparison Operators

Comparing operators consists of (>, <, >= <= ==, I=).Examples bellow

show some of these operator.

Example 7:-Write an OOP to compare two ages using operator < in class person.

#include <iostream h:
class person

{

private:

int age;

mblic:

void get()

1

cout ¢¢ "“nEnter age:
Cilh 3} age;

'

bool operator ¢ (person pd)

if (age<pd. age)
return (true);
elze
returnifalze);
¥

b

AL S S S S A S S A
void main()

1

per=on pl,pé;
pl.geti):

pd .geti);

if{ pl ¢ p2) #soverloaded "¢ operator

cout ¢¢ "~n perszonl 1= youngest than persond";
elze

cout <¢" “n persond iz youngest than personl”;
cout ¢¢ endl;

'

J Y ()9Sl /A Al sal) / Agindid) e sal)

dLal o palaall

Overloadable operators.

Unary + - * ~ O e I O T =
}'}:
ne delete
W
Binary: + ~ * % & | S
= += —_= %: L= | = M= <= el
== | l= < <= | == | && | || [] () ‘

Figure 3: Overloadable Operators

Operators that can’t be overloaded are listed bellow:

Operator Description

. Dot operator.

Flor-=) Access member operator.
> Scope resolution.

7 Conditional operator.
sizeof, Size of file

Figure 4: Operators can’t be overloaded

\ JsN) G oSl /AN A yal) / diadad) A) dauldl) o_plalaall

Inheritance
Inheritance is probably the most powerful feature of object-oriented programming,

after classes themselves. Inheritance is the process of creating new classes, called
derived classes, from existing or base classes. The derived class inherits all the
capabilities of the base class but can add embellishments and refinements of its
own. The base class is unchanged by this process. The inheritance relationship is

shown in Figure 1.

1 Arrow means derived from

Derived class

. FeatureD } Defined in derived class

- FeatureA

3 FeatureB\;/ Defined in base class
“““““ 3 but accessible from
e derived class

.. FeatureC _~

Figure 1: Inheritance.

An important result of reusability is the ease of distributing class libraries. A
programmer can use a class created by another person or company, and, without

modifying it, derive other classes from it that are suited to particular situations.

Y JsN) G oSl /AN A yal) / diadad) A) daldl) o palaall

Derived Class and Base Class

There are two main reasons that we might not want to modifying the base class.

1) First, the base class works very well and has undergone many hours of testing
and debugging.

2) Second reason for not modifying the base class: We might not have access to

its source code, especially if it was distributed as part of a class library.

Example 1:-Write an OOP to decrement the count variable in class counter using — operator

and inheritance with ++ operator. The program includes a class called Counter which

contains a private count and a class CountDn was drived from Counter class.

#finclude <iostream. h:

cla=s=s Counter Srobhaze class
protected:
int count;
public:
Counter()
count=5: *

volid operator ++ ()

1
¥

void writel)
{ cout<<count;

++count

P i i i i

class CountDn : public Counter Soderived class
public:

vold operator — ()

1

——count

h

i
volid maini)

1

CountDn o1 ;

++=1 ; ++=1 ;

cout << "tnocl=" o cl writel):
—=1; —c1; ——1;

cout << "tnol=" o =l writel):

¥ JsN) G oSl /AN A yal) / diadad) A) daldl) o palaall

Output from example 1:-

c1=7 « after ++cl, ++cl

cl=4 « after --c1, --c1.—c1

Accessing Base Class Members

An important topic in inheritance knows when a member function in the base class
can be used by objects of the derived class. This is called accessibility.

The protected Access Specifier

We have increased the functionality of a class without modifying it. Let’s first
review what we know about the access specifies private and public. A member
function of a class can always access class members, whether they are public or
private. But an object declared externally can only invoke public members of the

class. Private members are, well, private. This is shown in Figure 2.

class A

Member function of class A
can access both private and
public membears.

/-——b' private *_aWoﬁe_d—'"‘“

— public D ——

)

Ok A

_J

Object of class A can access
only public members of A

Figure 2: Access specifiers without inheritance

¢ JsN) G oSl /AN A yal) / diadad) A) dauldl) o_plalaall

A protected member, on the other hand, can be accessed by member functions in
its own class and in any class derived from its own class. It can’t be accessed from

functions outside these classes, such as main(). The situation is shown in Figure 3.

class Base

 private

/ _protected
class Derv: /—__‘ public

public Base 4

— _pase objs

private

Derv ObjD

Figure 3: Access specifiers with inheritance.

Table 1: Inheritance and Accessibility

Access Accessible from Accessible from Accessible from
Specifier Own Class Derived Class Objects Outside Class
public yes yes yes

protected ves yes no

private ves no no

° JsN) G oSl /AN A yal) / diadad) A) daldl) o palaall

Example 2:- Write an OOP to decrement the count variable in class counter using —

operator and inheritance with ++ operator and the main contains the statement c2=--c1

tinclude <iostream. h:
class Counter S<baze class
1
protected:
int count;
public:
Counteri{int c)
! count=c; I

void cperator ++ ()

{

++oount ;

void writel)
I cout<<count;}

I
S
claszs CountDn ; public Counter ssderived claszs
public:

CountDniint k) :Counter(lk]

11
CountDn operator ——()
1
return CountDn({——count);
I
F

FELS LSS

vold mainf)

1
CountDn c1(1003; CountDn c2(0);

++cl;

cout <¢ "~ncl after (1) increment= " ol writel):
i ——c1; ——c1;

cout <¢ "~ncl after (3) decrement = " ; ol writel);
c2=——rcl;

cout <¢ "~nc? after (1) decrement of cl=

}

o . writel);

1 JsN) G oSl /AN A yal) / diadad) A) daldl) o palaall

Qutput from example 2:-
cl after (1) increment =101
cl after (3) decrement =98
c2 after (1) decrement of c1 =97

Dangers of protected

You should know that there’s a disadvantage to making class members protected.
Say you’ve written a class library, which you’re distributing to the public. Any
programmer who buys this library can access protected members of your classes
simply by deriving other classes from them. This makes protected members
considerably less secure than private members. To avoid corrupted data, it’s often
safer to force derived classes to access data in the base class using only public

functions.

Overriding Member Functions

You can use member functions in a derived class that override—that is, have the
same name as those in the base class. You might want to do this so that calls in

your program work the same way for objects of both base and derived classes.

Y JsN) G oSl /AN A yal) / diadad) A) dauldl) o_plalaall

Example 3:-Write an OOP to read and write the information of employee. Create a

class called employee which contains employee's name and number as private data
items. Derived from class employee a class called manger which contains a salary of

type float as private item.

#include <iostream.h>
class employee

{ private:
char name[100]; long number;
public:
void getdata()
{ cin >> name; cin >>number; }

void putdata()

{ cout << name; cout << number; }
¥
class manager : public employee
{ private:
float salary;
public:
getdata()
{
employee :: getdata();
cin >> salary;
putdata()

{
employee :: putdata();
cout << salary;

—

main()
{ manager ml,;
m1l.getdata();
m1.putdata();

\ J) (oSl /A Al yal) / Agindil) Ada sl

Class Hierarchies

Inheritance has been used to add functionality to an existing class. Now let’s

look at an example where inheritance is used for a different purpose: as part

of the original design of a program.

The database stores a name and an employee identification number for all
employees. However, for managers, it also stores their titles. For scientists, it

stores the number of scholarly articles they have published. Laborers need

no additional data beyond their names and numbers.

employee

name
number

A

5_ylad) o_yualaall

manager

scientist

laborer

title

publications

Figure 1: class diagram for EMPLOY

Y s G oS /Al A yal) / Agindil) dga) B_yilad) o_palaall

Example 1:-Write an oo program to model employ in figurel using inheritance.

#include <{iostream. h:
clazz enploves

1

private:

char name[30]: long number

public:

wold read()

cout<<"~h enter nams": cin »» hame:
cout<<"~n enter numnber"; cin > number:

wvolid writel)

{

cout << name:;
cout << number;

} .

AT TGS TGS
clazsz manager | public enploves

i

private:

char title[30]:

public:

wold read()

1

enploves: (readi)

cout{{"~n enter title". cin > title;

wolid writel)

{

enplovees: (writel):
cout <<title:

P R R
class scientist | public enploves

i

private:

int pubs: Senumber of publications

public:

vold read()

enployves: (readi)
cout<<"~n enter number of publications

cin > pub=s;

volid writel)

{

enployves: write();
cout < <pubs;

T

} .

.
A ra a

¥ JY) Sl /AU Al jall / Agipdd) da)

5_ylad) o_yualaall

class laborer : public emploves

{
} .

vold main()

{

nanager m;
scientist =;
laborer b;

cout << "~nEnter data for manager
m.readi);

cout<< "~nEnter data for =scientist
=.read()

cout << "~nEnter data for laborer
b.read();

cout ¢¢ "~nlata on manager ";
m.writei);

cout << "~nlata on =scienti=st “;
= . writel);

cout << "~nlata on laborer “;
b.owrite);

AL LSS S S

“Abstract” Base Class

It may seem that the laborer class is unnecessary, but by making it a separate

class we emphasize that all classes are descended from the same source,

employee. Also, if in the future we decided to modify the laborer class, we

would not need to change the declaration for employee.

¢ s G oS /Al A yal) / Agindil) dga) B_yudilall o palaall

Access Combinations
There are so many possibilities for access that it’s instructive to look at

Example 2:

Example 2:-

#include <(iostream. h:

S S
clazs 4 “~ba=ze clazs

{

private:

int privdatad; S functions have the szamne access

protected: Ssrules as the data shown here)

int protdatah;

public:

int pubdatad;

b

S S
cla== B : public & spublicly-derived cla=s

public:

void funct()

{

int a;

a = privdatah; Sierror: not accessible
protdatad; A0K

pubdatad; A 0E

[xl]
n nn

——

S S S S
cla=ss C : private & s privatelv-derived cla=s

public:

woid functi)

{

int a;

a = privdatah; Sserror: not accessible
= protdatad; A0K
= pubdatad; A0K

° s G oS /Al A yal) / Agindil) dga) B_yilad) o_palaall

PP P P P P P P
wold main()

= obijB.privdatad; Sserror: not accessible
= objB . protdatad; SLerror: not accessible
= objB.pubdatai: So0K (A public to Bl

= objC . priwvdatad; << error: not acces=ible
= objC.protdatad; ~~error: not acces=sible
= objC . pubdatad; <“error: not acces=ibkle (4 private to C)

bl U VU I I ' w
]
o
()
1

The program specifies a base class, A, with private, protected, and public data items.
Two classes, B and C, are derived from A. B is publicly derived and C is privately
derived. As we’ve seen before, functions in the derived classes can access protected
and public data in the base class. Objects of the derived classes cannot access private
or protected members of the base class. What’s new is the difference between
publicly derived and privately derived classes. Objects of the publicly derived class B
can access public members of the base class A, while objects of the privately derived
class C cannot; they can only access the public members of their own derived class.

This is shown in Figure 2.

class class C:
public private A
private __private
protected protected

public T public
B OobiB c OobjcC
S

Figure2: Public and private derivation.

! s G oS /Al A yal) / Agindil) dga) B_yilad) o_palaall

Levels of Inheritance
Classes can be derived from classes that are themselves derived. Here’s a

miniprogram that shows the idea:
class A

{:
class B : public A

{:

class C : public B

{:

Here B is derived from A, and C is derived from B. The process can be extended
to an arbitrary number of levels D could be derived from C, and so on. Suppose
that we decided to add a special kind of laborer called a foreman to the EMPLOY
program. Since a foreman is a kind of laborer, the foreman class is derived from

the laborer class, as shown in Figure 3.

amployee

manager scientist laborer

A

foreman

Figure 3: class diagram for EMPLOY2.

Y s G oS /Al A yal) / Agindil) dga) B_yudilall o palaall

Example 3:-Write an oo program to model employ database in figure3.

Finclude <iostream. h:
cla=s=s enploves

{

private:

char name[30]; long number

public:

vold readi)
cout<<"~n enter name": Cln >» name;
cout<<¢"~n enter number": cin »r nunber:

T

vold write()

{

cout << name;

cout << number:

T

T

P R R P P
cla=z=z manager : public emploves

i

private:

char title[30]:

public:
wold readi)

enployves: (read() ;
cout<<"~n enter title"; cin >> title;

vold write()

1

enployves: iwritel):

cout <<title:

T

T

A ALIL LA LLE LS LSS E SIS SIS SIS TSI IFFIEITIFF IS
clas=s =cienti=st © public emploves

i

private:

int pubs; Sosnumber of publications
public:

woid readi)

enploves: readi)
cout<<"~n enter number of publication=

cin »» pubs;

woid writel)

1

enploves: (writel);
cout < <pubs;

T

} .

-
R L A I A A R A A A A A A A A A

A s G oS /Al A yal) / Agindil) dga) B_yudilall o palaall

AT
class laborer | public emploves <o laborer class

{
B P P e e e

L A A i i T A A A A a
clas=s foreman : public laborer Softoreman class

{

private:

float guotas:

public:

wold read()

laborer: iread();
cout << " Enter gquotas:

cln »r guotas;
wold writel)

laborer: write();

cout< < quotas;

¥

T
S
wold maini)

laborer b

foreman f;

cout << "~nEnter data for laborer
b.read();

cout << "~nEnter data for foreman
f.read();

cout << endl;

cout << "“nData on laborer
b.write();

cout << "~nData on foreman
f writel);

Multiple Inheritances

A class can be derived from more than one base class. This is called multiple
inheritances. Figure 4 shows how this looks when a class C is derived from base

classes A and B.

J) (oSl /A Al yal) / Agindil) Ada sl

5_ylad) o_yualaall

Figure 4: class diagram for multiple inheritances.

The syntax for multiple inheritances is similar to that for single inheritance. In the

situation shown in Figure 4, the relationship is expressed like this:

class A // base class A

{
}.

{
}.

{
}

class B // base class B

employeac

Ja

ciass C : public A, public B // C is derived from A and B

student

manadger

A

scicentist

laborear

Figure5 : Multiple Inheritances with Employee .

Y. s (e sS /ASUE) Al jall / Agiadal) daa) B_ydilad) o_pualaall

Example 4:-Write an OOP to model employee database in figure5 .

#include <iostreamn.h:

A S S S S
clazs student

1

private:

char =school[30]; char degre=[30];

public:

wolid getedul)

cout ¢¢ " Enter name of school or university: " cin »» =chool;
cout << " Enter highest degree (Highschool, Bachelor's, Haster's. Phl)earned “n":

cin »r degree;

i

void putedul)

1

cout << =choaol: cout << degree:
T
T
S S E S SEE
clazs enploves

1

private:

char name[30]; long number:

public:

wold getdatal)

1

cout<<"~n enter name"; cihn »r namneg;
cout<<"~n enter number": cin »» number;

wolid putdatal)
1

cout << name;
cout << number;

P P P
class manager : public emploves, public student

1

Frivate:
char title[30];

public:

wolid getdatal)

{

enployes: (getdatal);

cout<<"~n enter title": cin :» title:
student : :getedui)

T

woild putdatal)

{

enployes: :putdatal);
cout <<title;
student : :putedul);

T

LSS SIS S

1) s (e sS /ASUE) Al jall / Agiadal) daa) B_ydilad) o_pualaall

I
EE ST S S S S

class scientist | public employee, public student Ar=scientist

{

private:

int pubz; Sonumber of publications
public:

vold getdatal)

1

employes: ;getdatal);
cout (¢ " Enter number of pubs:
student : getedul) ;

cin »» pubs;

vold putdatal)

1

enployes: putdatai)
cout << pubs;
student : putedu);

LSS S S S
claz= laborer : public employes - laborer

i

b
S
vold maini)

1

nanager m: scientist = laborer b

cout {¢ "~nEnter data for manager "; n.getdatal);
cout << "“nEnter data for scientist " =.getdatal);
cout << "~nEnter data for laborer "; b.getdatal);
cout << "~nData on manager " n.putdatal);
cout << "~nData on scientist *; =.putdatal);
cout << "~nlata on laborer “; b.putdata(};
L

Ambiquity in Multiple Inheritances

There are two types ambiguity in Multiple Inheritances

1. Two base classes have functions with the same name, while a class derived
from both base classes has no function with this name. How do objects of the
derived class access the correct base class function? The name of the function
alone is insufficient, since the compiler can’t figure out which of the two

functions is meant.

VY s (e sS /ASUE) Al jall / Agiadal) daa) B_ydilad) o_pualaall

Example: demonstrates ambiguity in multiple inheritance
#include <iostream.h>

class A

{

public:

void show() { cout<<™ A \n”;}

h

class B

{

public:

void show() { cout<<™ B \n”;}

h

class C : public A, public B

{

h

i

void main()

{

C C1; /lobjectofclassC

Il C1. show(); /lambiguous--will not compile

C1.A :: show(); I/OK

C1.B :: show(); /IOK

}

The problem is resolved using the scope-resolution operator to specify the class in
which the function lies. Thus C1.A::show(); refers to the version of show() that’s

in the A class, while C1.B::show(); refers to the function in the B class.

Y s (e sS /ASUE) Al jall / Agiadal) daa) B_ydilad) o_pualaall

2. Another kind of ambiguity arises if you derive a class from two classes that are
each derived from the same class. This creates a diamond-shaped inheritance
tree.

Example: investigates diamond-shaped multiple inheritance

#include <iostream.h>

class A

{

public:

void print();

3

class B : public A

{:
class C : public A

{:
class D : public B, public C

{%
.

void main()

{
D Di;

Dl.print(); //ambiguous: won’t compile

}

Classes B and C are both derived from class A, and class D is derived by multiple
inheritance from both B and C. Trouble starts if you try to access a member
function in class A from an object of class D. In this example D1 tries to access
print(). However, both B and C contain a copy of print(), inherited from A. The
compiler can’t decide which copy to use, and signals an error.

| I G oS /AL Al yal) / Aipdil) dsa) e Lalall o palaal)

Virtual Functions

Virtual means existing in appearance but not in reality. When virtual functions
are used, a program that appears to be calling a function of one class may in reality
be calling a function of a different class. Why are virtual functions needed?
Suppose you have a number of objects of different classes but you want to put
them all in an array and perform a particular operation on them using the same
function call. For example, in suppose a graphics program in figurel includes
several different shapes: a triangle, a ball, a square. Each of these classes has a

member function draw () that causes the object to be drawn on the screen.

Fiqure
dravt)
[T

Box Trangle Circle
drawd draw() draw()

Figure 1: The class hierarchy for the Figures example.

Now suppose you plan to make a picture by grouping a number of these elements
together and you want to draw the picture in a convenient way. One approach is to
create an array that holds pointers to all the different objects in the picture. The
array might be defined like this:

Figure *ptrarr[100]; // array of 100 pointers to Figures .If you insert pointers
to all the shapes into this array, you can then draw an entire picture using loop:
For (int j=0; j<N; j++) ptrarr[j]->draw();

This is an amazing capability: Completely different functions are executed by the

same function call. If the pointer in ptrarr points to a ball, the function that draws a

Y s (oS /ALY Al jal) / Aiadd) Asca all e) o palaall

ball is called; if it points to a triangle, the triangle-drawing function is called. This
is called polymorphism, which means different forms.

Polymorphism

Polymorphism is one of the crucial features of object oriented programming. It
simply means “one name, multiple forms”. However, polymorphism allows an
entity (variable, function or object) to take a variety of representations (take a
multiple forms).

In C++ Polymorphism is implemented via virtual functions.

Therefore we have to distinguish different three types of polymorphism:

A. Polymorphism of Variables:

The first type of polymorphism is similar to the concept of dynamic binding. Here,
the type of a variable depends on its content. Thus, its type depends on the content
at a specific time:

int a=5; //use a as integer

char a=’g’; //use a as character

B. Polymorphism of Functions:

Another type of polymorphism can be defined for functions. For example, suppose
you want to define a function isNull() which returns TRUE if its argument is zero
and FALSE otherwise. For integer numbers this is easy:

Bool isNull(int r)

{

If (r==0) Return(true)

Else Return(false) }

s s (oS /ALY Al jal) / Aiadd) Asca all e) o palaall

However, if we want to check this for float numbers, we should use another
comparison due to the precision problem:

Bool isNull(float k)

{

If (k<=0.01)&&(k>-0.99)

Return(true)

Else

Return(false)

}

Since the parameter list of both isNull functions differs, the compiler is able to
figure-out the correct function call by using the actual types of the arguments.

int r;

float k;

r=0;

k=0.0;

If (isNull(r)) //use isNull integer

If (isNull(k)) //use isNull float

This type of polymorphism allows us to reuse the same name for functions (or
methods) as long as the parameter list differs. Sometimes this type of
polymorphism is called overloading.

C. Polymorphism of Objects:

The last type of polymorphism allows an object to choose correct methods. In this
type, polymorphism refers to situation in which objects belong to different classes
can be respond to the same message, usually in different ways. For example,
suppose we have classes box, triangle, and circle, whose objects represent the

corresponding geometrical figures, as shown in figure (1).

¢ I G oS /AL Al yal) / Aipdil) dsa) e Lalall o palaal)

For the polymorphic approach to work, several conditions must be met.

1) First, all the different classes of shapes, such as balls and triangles, must be
descended from a single base class.

2) Second, the draw() function must be declared to be virtual in the base class.

Normal Member Functions Accessed with Pointers

Example 1 shows what happens when a base class and derived classes all have

functions with the same name.

Example 1:

finclude <iostream:

U=ing namnespace =td:

A S S S
=la==s Base .

public:
vold show() .
{ cout <¢ "Base-n"; }

A S S S
cla==s Dervl : public Base . =~ B '

1

public:

void show()

I cout << "Dervisn"; }
ifffffffffffffffffffffffffffffffffffff/ffff/ffff/ffff/ffff/ffff/
claz=s Derv? : public Base

1

public:

vold show()

{ cout << "Derva~n"; }
i!/Xfff/Xfff/Xfff/ﬁfff/ﬁfff/ﬁfff/fffffﬁffffﬁffffﬁffffﬁffffﬁffffﬁ
int maini)

1

Dexrvl dwvl;
Derve dvi;
Baze*® ptr:
ptr = &dwl;
ptr—sshow();
ptr = &dwvZ;
ptr—sshow();
return 0;

¥

° s (oS /ALY Al jal) / Aiadd) Asca all e) o palaall

The Dervl and Derv2 classes are derived from class Base. Each of these three
classes has a member function show(). In main () we create objects of class Dervl
and Derv2, and a pointer to class Base. Then we put the address of a derived class
object in the base class pointer in the line
ptr = &dv1l; // derived class address in base class pointer .
Now the question is, when you execute the line :-

ptr->show(); what function is called? Is it show() of Base or show() of
Derv1? Again, in the last two lines of not virtual we put the address of an object of
class Derv2 in the pointer, and again execute

ptr->show(); Which of the show() functions is called here?
The output from the program:
Base
Base
As you can see, the function in the base class is always executed. The compiler
ignores the contents of the pointer ptr and chooses the member function that

matches the type of the pointer, as shown in figure 2

ptr Base
~&bervd show ()
ptr—>show() =
Derv1i
btr show ()
"&perv2
ptr—>shou()—'/ Derv2
show ()

Figure 2 Nonvirtual pointer accesses.

! s (oS /ALY Al jal) / Aiadd) Asca all e) o palaall

Virtual Member Functions Accessed with Pointers

We’ll place the keyword virtual in front of the declarator for the show() function

in the base class. Here’s the listing for the resulting program.

Example 2:

Finclude <iostresam.h:
7T T T T T T T T T T 7 T T T T T T T T T T T T T T T

=la=s= Bas=se

public:
wirtual woid showi)
{ cout << "Baze~n": }

P R P P R P P P P P P R P

cla== Dervl : public Ba=e

public:

wold =show()

4 cout << "Dervl-n"; F

T

B e R i P P P R P P P R P P
=la== Derv? : public Ba=e

public:

wolid showi)

{ cout << "Derwva2sn": ¥

i T
int maini)

1

Dervl dwvwl:
Dervs dv:
Ba=e*® ptr;
ptr = fGdwl;
ptr—rshowi) ;
ptr = &dw?; .
ptr—rshow():
return 0

b

The output of this program is

Dervl

Derv2

The member functions of the derived classes, not the base class, are executed. We

change the contents of ptr from the address of Dervl to that of Derv2, and the

Y I G oS /AL Al yal) / Aipdil) dsa) e Lalall o palaal)

instance of show() that is executed also changes. So the same function call ptr-
>show(); executes different functions, depending on the contents of ptr. The rule
Is that the compiler selects the function based on the contents of the pointer ptr,

not on the type of the pointer, as in not virtual. This is shown in figure 3

ptr Base
_&bervi | virtual
show ()

ptr=>show()

Dervi
ptr show()
“&perve
ptr—>show() Derv2
show ()

Figure 3 Virtual pointer access.

Late Binding

In not virtual the compiler has no problem with the expression ptr->show(); It
always compiles a call to the show() function in the base class. But in virtual the
compiler doesn’t know what class the contents of ptr may contain. It could be the
address of an object of the Derv1l class or of the Derv2 class. Which version of
draw() does the compiler call? In fact the compiler doesn’t know what to do, so it
arranges for the decision to be deferred until the program is running. At runtime,
when it is known what class is pointed to by ptr, the appropriate version of draw
will be called. This is called late binding or dynamic binding.(Choosing functions
in the normal way, during compilation, is called early binding or static binding.)

Late binding requires some overhead but provides increased power and flexibility.

A I G oS /AL Al yal) / Aipdil) dsa) e Lalall o palaal)

Abstract Classes and Pure Virtual Functions

When we will never want to instantiate objects of a base class, we call it an
abstract class. Such a class exists only to act as a parent of derived classes that
will be used to instantiate objects. It may also provide an interface for the class
hierarchy. By placing at least one pure virtual function in the base class.

A pure virtual function is one with the expression =0 added to the declaration.
This is shown in the example3.

Example 3:

#include <iostream.h:

A S S S S S
cla=z=z Ba=ze -vbaze claz=

L

public:

virtual woid show() = 0; /spure wirtual function

¥

S S S S S S S
cla==s Derwl : public Base

public:

void show(]

{ cout <¢ "Derwvi~n"; }
¥
S S S S S S S S
cla=s Derwv? : public Basze

1

public:

void show()

{ cout <¢ "Derv~n"; }

A S S
int main()

1 Bases arr(?2];

Dierwl dwvl;
Dervi dvi;
arr[0] = &dwl;
arr[l] = &dw2;
arr[0]-sshow().
arr[1]-sshow().
return 0;

q s (oS /ALY Al jal) / Aiadd) Asca all e) o palaall

Example 4: Write an OOP to read and chek a person if successful or fail. Create a class

called person which contains name of type string and derived a class student and a class
professor from a class person

#include <iostream. h:
P P P P P R P R R R
cla=ss person ~-person class

private:

char name[40]:;

public:

vold getHame()

{ cout << " Enter name:
volid putHame()

{ cout << "Hame 1=: £¢ name << endl; }

virtual woid getDatad) = 0; Sopure wirtual function

wvirtual bool iz succez=s() = 0; rpure virtual function

1

P PP T P R R e
cla=s=s =student : public pers=on

1

private:;

float avg;

public:

void getDatal)

1
person; getHane() ;

cout << " Enter =student's average:
T
bool i= succes=()
{ i1f {awvg ==50)
return true;

=l=e

return fal=e; }
} .

-
B

cin »» name. +

cin *» avg:

class professor ; public person
L

private:

int numPubs;

public:

vold getDatai)

person; ;getHanse();

cout << " Enter number of professor's publications:
¥

bool 1= _success()

I if (numPub= » 100)

return true;

el=se

return falsze; }

b

; cin »» numPubs;

Ve J 9 (oSl /AN Al sall / Agindid) Adna sal)

e Al s palaall

void main()

d

person *persPtr[5];

int 1;
char ch:

for (i=0;1<5;1i++)

d

cout <¢ "Enter student or professor (s/p):

cin »» ch;

if(ch=="s")
[1]
[i]

persPtr|i

per=Ftr
else

persPtr[i]-rgetDatal);

persPtr[i]-rputHame();

if{persPtr[i]-ris_success({l==true)
cout << " This person is successful-n";

el=e

cout ¢ " Thiz person is fail-n";

R

new =tudent

new professor;

Virtual Base Classes

Consider the situation shown in Figure 4, with a base class, A; two derived

classes, B and C; and a fourth class, D, derived from both B and C.In this

arrangement a problem can arise if a member function in the D class wants to

access data or functions in the A class.

A

/'\

B

C

W\\/_/,V

D

Figure 4 Virtual base classes.

e Al s palaall

VY J 9 (oSl /AN Al sall / Agindid) Adna sal)

/I ambiguous reference to base class
class A
{ protected:
int d,
3
class B : public A { %
class C : public A { }
class D : public B, public C
{ public:
void show()
{cout<<d;} //ERROR: ambiguous

Il virtual base classes
class A
{ protected:
int d;
5
class B : virtual public A

{:

class C : virtual public A

{:

class D : public B, public C

{ public:

void show() { cout<<d; }

|

\ I G oS /AL Ads yal) / Anindd) dga) e 4G 5 ualaal)

Function Template
Suppose you want to write a function that prints the absolute value of two

numbers. The absolute value of a number is its value without regard to its
sign: The absolute value of 3 is 3, and the absolute value of —3 is also 3.
Ordinarily this function would be written for a particular data type:

void abs(int n)

{

if (N<0)

cout<<-n

else

cout<<n;

}

Here the function is defined to take an argument of type int and to print a
value of this same type. But now suppose you want to find the absolute
value of a type long. You will need to write a completely new function:

void abs(long n)

{

if (n<0)

cout<<-n

else

cout<<n;

}

The body of the function is written the same way in each case, but they are
completely different functions because they handle arguments and the values

of different types.

Y I G oS /AL Ads yal) / Anindd) dga) e 4G 5 ualaal)

A) Simple Function Template
This program defines a template version of abs().

Example 1:Write an OO Program to find the absolute value using template function.

#include {io=stream . h:
temnplate <cla== t» Sofunction template
wold ab=(t 1)

1

if (k < 0
cout<<—l;
el=s

cout <<l

¥

Py
wold maing)

int a = 5;

int b = -6;

long = = 70000L;

long w = —80000L;

double n = 9.95;

double m = —10.15: Output of the program:
ab=({a); cout<<endl;)
ab=({b): cout<<endl; 6
ab=({=x); cout<<endl;

ab=(vy): cout<<endl; 70000
ab=(n): cout<<endl: 80000
abs(m); cout<<endl; 0.95
. 10.15

The abs () function now works with all three of the data types (int, long,
and double) that we use as arguments.
This entire syntax, with a first line starting with the keyword template and

the function definition following, is called a function template.

¥ I G oS /AL Ads yal) / Anindd) dga) e 4G 5 ualaal)

Function Template Syntax

The key innovation in function templates is to represent the data type used
by the function not as a specific type such as int, but by a name that can
stand for any type. In the preceding function template, this name is t. The
template keyword signals the compiler that we’re about to define a function
template. The keyword class, within the angle brackets, might just as well be
called type. You can define your own data types using classes, so there’s
really no distinction between types and classes. The variable following the
keyword class (t in this example) is called the template argument.

What the Compiler Does

What does the compiler do when it sees the template keyword and the

function definition that follows it? The function template itself doesn’t cause
the compiler to generate any code. It can’t generate code because it doesn’t
know yet what data type the function will be working with. It simply
remembers the template for possible future use.

Code generation doesn’t take place until the function is actually called
(invoked) by a statement within the main program. In example 1 this
happens in expressions like abs(a) in the statement abs(a);

When the compiler sees such a function call, it knows that the type to use is
int, because that’s the type of the argument a. So it generates a specific
version of the abs() function for type int, substituting int wherever it sees the
name t in the function template. This is called instantiating the function
template, and each instantiated version of the function is called a template

function.

¢ I G oS /AL Ads yal) / Anindd) dga) e 4G 5 ualaal)

B) Class Template

The template concept can be extended to classes. Class templates are generally

used for data storage (container) classes.

Example 2: Write an OOP that include a class called divide . Use the concept of template class
to write the program. The divide class includes a and b as private, and two functions read() and a

function div() to divide a on b. The main program includes the call of the objects of type integer
and long.

finclude <iostream.h:

template <clazs 43
claszs divide

d

private:
& a.b;
public:

vold read()

d

h
A odivi)

d

T

¥

PP S R R S
wvold main()

1

divide<int: dl;

dl . read();

cout<<dl . diwi):

cout < <endl ;

cinrraxsb:

return (a<b);

divide<long: d2;
dZ . readf() ;
cout<<dd . div();

¥

o SN (g /AN Al sal) / Aiadal) A ol i Al 5 pudalaal)

Example 3: Write an OOP that include a class called max . Use the concept of

template class to write the program. The max class includes x and y as private
attributes, and a functions large() to find the largest number between x and y. The
main program includes the call of the functions to objects of type integer, float and
long.

#include <io=stream.h:
template <{cla==s T:

clas= nax

d

private:
T =.v.
public:

woid large()

Clhr>®Er V]
if (=Z:v)
cout<<x;
el=e
coutd <y
I
¥

P P P S
wold maini)

max<int: ml;
ml. large();

max<float: m2:
me . large();

maxs long: ma;
ma. large();

