

University of Technology
 الجامعة التكنولوجية

Computer Science Department

 قسم علوم الحاسوب

Object Oriented Programming
 ةالبرمجة الشيئي

Assist. Prof. Dr. Ekhlas Falih Naser
 أخلاص فالح ناصر د..مأ.

cs.uotechnology.edu.iq

 1 / المرحلة الثبنية/ الكورس الأول البرمجه الشيئيه المحبضره الاولى

Overview for functions

 A function is a set of statements designed to accomplish a particular task.

The advantage of using functions is that it is possible to reduce the size of a

program by calling and using them at different places in the program. C++

has added many new features to functions to make them more reliable and

flexible.

General Format of a Function Definition:

Functions can be define before the definition of the main() function, or they

can be declared before it and define after it.

Declaring a function means listing its return type, name, and arguments.

This line is called the function prototype. A function prototype tells the

compiler the type of data returned by the function. It is usually defined after

the preprocessing statements at the beginning of the program.

Figure 1: Function syntax.:

 2 / المرحلة الثبنية/ الكورس الأول البرمجه الشيئيه المحبضره الاولى

Example 1: Write a C++ program to find the maximum value between two values

using function

#include <iostream.h>

float max ()

{

 float a, b; a=3.5; b=10.25;

 float c;

 if (a > b)

 c = a;

 else

 c = b;

 return (c);

}

void main ()

{ float k;

 k=max();

 cout <<k;

}

Local and Global Variables:

#include <iostream.h>

void sum ()

{ int a,b,s; // a,b,s are local variables in a function sum()

 a=3;

 b=5;

 s=a+b;

 cout<<s;

}

void main()

{

 sum();
}

Output:-
10.25

 3 / المرحلة الثبنية/ الكورس الأول البرمجه الشيئيه المحبضره الاولى

Inline Function:
C++ suppliers‟ programmers with the inline keyword, which can speed up

programs by making very short functions execute more efficiently. Normally

a function resides in a separate part of memory, and is referred to by a

running program in which it is called. Inline functions save the step of

retrieving the function during execution time, at the cost of a larger compiled

program.

#include <iostream.h>

int a,b,s; // a,b,s are Global variables

void sum ()

{ s=a+b;

cout<<s;

}

void main()

{ a=3;

 b=5;

 sum();
}

 4 / المرحلة الثبنية/ الكورس الأول البرمجه الشيئيه المحبضره الاولى

 Figure: Functions versus inline code

Example 2: Write a C++ program to find the square of a number using inline

function

#include<iostream.h>

inline int square (int y)

 {

 return (y*y);

 }

void main()

 {

 int m;

 m=5;

 cout<< square (m) ;

}

 5 / المرحلة الثبنية/ الكورس الأول البرمجه الشيئيه المحبضره الاولى

Function Overloading:

Overloading refers to the use the same thing for different purposes. C++ also

permits overloading of functions. This means that we can use the same

function name to create functions that perform a variety of different tasks.

We can design a family of functions with one function name but with

different argument lists. The function would perform different operations

depending on the argument list in the function call.

e4:

Example3:

 6 / المرحلة الثبنية/ الكورس الأول البرمجه الشيئيه المحبضره الاولى

Passing Parameters:

There are two main methods for passing parameters to a program:

1- Passing by Value:

When parameters are passed by value, a copy of the parameters value is taken

from the calling function and passed to the called function. The original variables

inside the calling function, regardless of changes made by the function to it are

parameters will not change. All the pervious examples used this method.

Example 4

 Write C++ program using function to calculate the average of

two numbers entered by the user in the main program:

#include<iostream.h>

void aver (int x1, int x2)

{

 float z;

 z = (x1 + x2) / 2.0;

 cout<<z;

}

void main()

{

 int num1,num2;

 cout << "Enter 2 numbers \n";

 cin >> num1 >> num2;

 aver (num1, num2);

}

2- Passing by Reference:

When parameters are passed by reference their addresses are copied to the

corresponding arguments in the called function, instead of copying their values.

Thus pointers are usually used in function arguments list to receive passed

references.

Input:-

Enter 2 numbers
 6 3

Output:-
 4.5

 7 / المرحلة الثبنية/ الكورس الأول البرمجه الشيئيه المحبضره الاولى

E

Example 5:

 8 / المرحلة الثبنية/ الكورس الأول البرمجه الشيئيه المحبضره الاولى

Default Arguments

As with global functions, a member function of a class may have default

arguments. The same rules apply: all default arguments should be trailing

arguments, and the argument should be an expression consisting of objects

defined within the scope in which the class appears.

Surprisingly, a function can be called without specifying all its arguments.

This won‟t work on just any function: The function declaration must provide

default values for those arguments that are not specified.

Example 7:

 9 / المرحلة الثبنية/ الكورس الأول البرمجه الشيئيه المحبضره الاولى

Example 8:Write a simple program to represent a default argument

In this program the function repchar() takes two arguments. The first time it‟s

called with no arguments, the second time with one, and the third time with two.

Why do the first two calls work? Because the called function provides default

arguments, which will be used if the calling program doesn‟t supply them. The

default arguments are specified in the declaration for repchar(): void

repchar(char=’*’, int=45); The default argument follows an equal sign, which is

placed directly after the type name. You can also use variable names, as in void

repchar(char reptChar=’*’, int numberReps=45); If one argument is missing

when the function is called, it is assumed to be the last argument. The repchar()

function assigns the value of the single argument to the ch parameter and uses the

default value 45 for the n parameter. If both arguments are missing, the function

assigns the default value „*‟ to ch and the default value 45 to n.

 1 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول لمحبضره الثبنيها

 Overview of OOP:

When working with computers, it is very important to be fashionable. In the

1960s, the new fashion was what was called high-level languages (H.L.L.)

such as FORTRAN and COBOL, in which the programmer did not have to

understand the machine instructions.

In the 1970s, people realized that there were better ways to program than

with a jumble of GOTO statements, and the structured programming

languages such as PASCAL were invented.

In the 1980s, much time was invested in trying to get good results out of

fourth-generation languages (4GLs), in which complicated programming

structures could be coded in a few words. There were also schemes such as

Analyst Workbenches, which made systems analysts into highly paid and

overqualified programmers.

Bjarne Stroustrup at Bell Labs developed C++ during 198-1985. The term

C++ was first used in 1983. Prior to 1983, Stroustrup added features to C

programming language and formed what he called “C with Classes”. In

addition to the efficiency and portability of C, C++ provides number of new

features. C++ programming language is basically an extension of C

programming language.

The fashion of the 1990s is most definitely object-oriented programming.

Read any book on object-oriented programming, and the first things you will

read about are three importance OOP features:

• Encapsulation and Data Hiding.

• Inheritance and Reuse.

• Polymorphism.

 2 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول لمحبضره الثبنيها

Figure 1: The three pillars of OOP.

 Encapsulation and Data Hiding:

C++ supports the properties of encapsulation and data hiding through the

creation of user-defined types, called classes.

Once created, class acts as a fully encapsulated entity, it is used as a whole

unit. The actual inner workings of the class should be hidden. Users of a

well-defined class do not need to know how the class works; they just need

to know how to use it.

Inheritance and Reuse:

C++ supports the idea of reuse through inheritance. A new type, which is

an extension of an existing type, can be declared. This new subclass is said

to derive from the existing type and is sometimes called a derived type. The

Quasar model is derived from the Star model and thus inherits all its

qualities, but can add to them as needed.

Polymorphism:

C++ supports the idea that different objects do "the right thing" through

what is called function polymorphism and class polymorphism.

 3 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول لمحبضره الثبنيها

Poly means many, and morph means form. Polymorphism refers to the same

name taking many forms.

Class Definition:
Class is a keyword, whose functionality is similar to that of the struct

keyword, but with the possibility of including functions as members, instead

of only data.

Classes are collections of variables and functions that operate on those

variables. The variables in a class definition are called data members, and

the functions are called member functions.

 Note: Class is a specification for number of objects.

A class definition consists of two parts: header and body. The class header

specifies the class name and its base classes. The class body defines the

class members. Two types of members are supported:

 Data members have the syntax of variable definitions and specify the

representation of class objects.

 Member functions have the syntax of function prototypes and

specify the class operations, also called the class interface.

 4 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول لمحبضره الثبنيها

Class members fall under one of three different access permission

categories:

 Public members are accessible by all class users.

 Private members are only accessible by the class members.

 ·Protected members are only accessible by the class members and the

members of a derived class.

Figure 2: Public and Private Definition

 5 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول لمحبضره الثبنيها

Example 1: write an OOP to find the area of rectangle using a class called
rectangle

Output

42

 6 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول لمحبضره الثبنيها

Example 2: write an OOP to read a data and print it. Create a class
called data with one data member called (a).

Output:

Data is 1066

Data is 1776

 7 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول لمحبضره الثبنيها

Example 3: write an OOP to define the coordinate of point and shift
these values of this point.

Output

1222

 1 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول ثبلثهالالمحبضره

Class Constructors and Destructors:

A class constructor is a function that is executed automatically whenever a

new instance of a given class is declared.

The main purpose of a class constructor is to perform any initializations

related to the class instances via passing of some parameter values as initial

values and allocate proper memory locations for that object.

Note1: A class constructor must have the same name as that of the

associated class.

Note2: A class constructor has not return type, not even void.

Note3: A class constructor can be overloaded.

Example 1: Write an OOP to represent simple constructor with class

point which contains two data members vxal and yval.

 2 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول ثبلثهالالمحبضره

Example 2: Write an OOP to represent a rectangle constructor.

A class may have more than one constructor. To avoid ambiguity, however,

each of these must have a unique signature.

 3 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول ثبلثهالالمحبضره

Example 3: Write an OOP to represent multiple constructors in class

rectangle.

 4 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول ثبلثهالالمحبضره

Destructor

Just as a constructor is used to initialize an object when it is created, a destructor is

used to clean up the object just before it is destroyed. A destructor always has the

same name as the class itself, but is preceded with a ~ symbol. Unlike

constructors, a class may have at most one destructor. A destructor never takes any

arguments and has no explicit return type.Destructors are generally useful for

classes which have pointer data members which point to memory blocks allocated

by the class itself. In such cases it is important to release member-allocated

memory before the object is destroyed. A destructor can do just that.

Example 1: Write an OOP to represent a simple destructor with class rectangle.

 5 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول ثبلثهالالمحبضره

Example2: Write an OOP to represent destructor of pointer members in class

rectangle.

Note: A class destructor proceeded with a tilde (~).

 1 الثبنية/ الكورس الأول البرمجه الشيئيه / المرحلة رابعهالالمحبضره

Friend function

Occasionally we may need to grant a function access to the nonpublic members of

a class. Such an access is obtained by declaring the function a friend of the class.

There are two possible reasons for requiring this access:

• It may be the only correct way of defining the function.

• It may be necessary if the function is to be implemented efficiently.

Example1: Write an OOP to find the summation of point coordinates using friend

function.

Output:

xval=4 yval=5

the summation of coordinate x & y =9

 2 الثبنية/ الكورس الأول البرمجه الشيئيه / المرحلة رابعهالالمحبضره

Example2: Write an OOP to print the square value of the data in class alpha

using friend function .

Output:

81

 3 الثبنية/ الكورس الأول البرمجه الشيئيه / المرحلة رابعهالالمحبضره

Example 3: Write an OOP to print the coordinates of a class point and a class

D3 using friend function.

Output:

 xval=6

 yval=3

 zval=5

 4 الثبنية/ الكورس الأول البرمجه الشيئيه / المرحلة رابعهالالمحبضره

friend class

The member functions of a class can all be made friends at the same time

when you make the entire class a friend.

Example 1:Write an OOP to divide the value m in a class first on the value n in the

class second using a friend class.

Output:

 division=2

 5 الثبنية/ الكورس الأول البرمجه الشيئيه / المرحلة رابعهالالمحبضره

Example 2:Write an OOP to read the values x and y in a class read and write the

values x and y in a class write using friend class

 1 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول خبمسهالالمحبضره

Scope Operator Resolution

When calling a member function, we usually use an abbreviated syntax. For

example: pt.OffsetPt(2,2); // abbreviated form

This is equivalent to the full form: pt.Point::OffsetPt(2,2); // full form

Example 1: write an OOP to find the area of rectangle using the concept

of Scope Operator Resolution

 2 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول خبمسهالالمحبضره

Member Initialization List

There are two ways of initializing the data members of a class.

1) The first approach involves initializing the data members using

assignments in the body of a constructor. For example:

Example 1: Write an OOP to initialize the data member of a class using

assignments in the body of constructor.

 3 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول خبمسهالالمحبضره

2) The second approach uses a member initialization list in the definition

of a constructor. For example:

Example 2: Write an OOP to initialize the data member of a class in the

definition of constructor.

 4 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول خبمسهالالمحبضره

Constant member

A class data member may define as constant.

Constant Function Argument

Suppose you want to pass an argument by reference for efficiency, but not

only do you want the function not to modify it, you want a guarantee that the

function cannot modify it. To obtain such a guarantee, you can apply the

const modifier to the variable in the function declaration.

Example 1:Write a C++ simple program to represent a constant argument

Here we want to be sure that aFunc() can‟t modify the variable beta. (We

don‟t care if it modifies alpha.) So we use the const modifier with beta in the

function declaration (and definition):

void aFunc(int& alpha, const int& beta);

 5 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول خبمسهالالمحبضره

Constant Member Functions

We can apply const to variables of basic types such as int to keep them from

being modified. In a similar way, we can apply const to objects of classes.

When an object is declared as const, you can‟t modify it.

Example 2:Write an OOP to represent a constant member function

 6 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول خبمسهالالمحبضره

Static Members

A data member of a class can be defined to be static. This ensures that there

will be exactly one copy of the member, shared by all objects of the class.

Example 1: Write an OOP to represent a static members for count class.

Output:

c1=1

c2=1

c1=2

c2=1

c1=3

c2=1

 7 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول خبمسهالالمحبضره

Example 2: Write an OOP to represent a static members for point class.

Output:

x-coordinate= 1

y-coordinate= 1

x-coordinate= 2

y-coordinate=2

 1 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول دسهسبالالمحبضره

Objects Pointers

It has already been stated that a pointer is a variable which holds the memory

address of another variable of any basic data type. It has been shown that how a

pointer variable can be declared with a class.

First way :- (*object name).member name=variable;

Example 1: Write an OOP to read and display student information using pointer.

 2 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول دسهسبالالمحبضره

Second way:- object name ->member name=variable;

Example 2: Write an OOP to read and display student information using pointer.

 3 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول دسهسبالالمحبضره

This pointer

This pointer is a variable which is used to access the address of the class itself.

Example 1:Write an OOP to display the address of class using this pointer

The above program create three objects,obj1, obj2, obj3 and displays each

object‟s address using this pointer.

Example 2:Write an OOP to display the content of class member using this pointer

 4 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول دسهسبالالمحبضره

References Members
A class data member may define as reference. For example:

Example 1:Write an OOP to find the value of third coordinate z using reference

member.

Output:

z-coordinate= 5

 5 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول دسهسبالالمحبضره

Class Object Member

A data member of a class may be of a user-defined type, that is, an object of

another class.

Example 1:Write an OOP to find the area of square using class object member

Output:

area of square= 49

 6 البرمجه الشيئيه / المرحلة الثبنية/ الكورس الأول دسهسبالالمحبضره

Example 2: Write an OOP to find the summation of point coordinates using class

object member

Output:

8

 1 المرحلة الثبنية/ الكورس الأول البرمجه الشيئيه / بعهسبالالمحبضره

Arrays as Class Data Member

In C++, the definition of an array specifies a variable type and a name. But it

includes another feature: a size. The size specifies how many data items the

array will contain.

The items in an array are called elements .All elements in an array are of the

same type; only the values vary. As specified in the definition, the array has

exactly four elements. The first array element is numbered 0. Thus, since

there are four elements, the last one is number 3.

Example 1: Write an OOP to subtract a value 3 from data member with 5 elements.

Output:

4 0 -1 7 -2

 2 المرحلة الثبنية/ الكورس الأول البرمجه الشيئيه / بعهسبالالمحبضره

Object Arrays

 An array of a user-defined type is defined and used much in the same

way as an array of a built-in type.

Example 1: Write an OOP to represent object array of class point for 2 points

objects .

Output:

18 12

 7 10

 3 المرحلة الثبنية/ الكورس الأول البرمجه الشيئيه / بعهسبالالمحبضره

Example 2: Write an OOP to read and write student information for 10 students

objects.

 4 المرحلة الثبنية/ الكورس الأول البرمجه الشيئيه / بعهسبالالمحبضره

An Array of Pointers to Objects
A common programming construction is an array of pointers to objects. This

arrangement allows easy access to a group of objects, and is more flexible

than placing the objects themselves in an array.

Example 1: Write an OOP to represent array of pointer to object for class

point with 2 points objects .

Output:

18 12

 7 10

 5 المرحلة الثبنية/ الكورس الأول البرمجه الشيئيه / بعهسبالالمحبضره

Example 2: Write an OOP to read and write student information for 10 students

using array of pointer to objects.

 1 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول ثبمنتالمحبضره ال

Operator overloading

Operator overloading is one of the most exciting features of object-oriented

programming. It can transform complex, obscure program into intuitively

obvious ones. Operators overloading was applied for unary and binary

1- Overloading Unary Operators

Unary operators act on only one operand. Examples of unary operators are the

increment and decrement operators ++ and --, and the unary minus, as in -33.

Example 1:-Write an oo program to increment the counter variable using ++ operator.

 2 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول ثبمنتالمحبضره ال

Here’s the program’s output:

c1=5 counts are initially 5

c2=5

c1=6 incremented once

c2=7 incremented twice

The ++ operator is applied once to c1 and twice to c2. We use prefix

notation in this example.

Operator Arguments
In main () the ++ operator is applied to a specific object, as in the expression

++c1. Yet operator++() takes no arguments. What does this operator

increment? It increment the count data in the object of which it is a member.

Since member functions can always access the particular object for which

they’ve been invoked, this operator requires no arguments. This is shown in

Figure 1.

Figure 1: Overloaded unary operator: no arguments.

 3 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول ثبمنتالمحبضره ال

Operator Return Values

You will discover it if you use a statement like this in main (): c1 = --c2;

There are two types to return object in the operator overloading:-

a-Using Temporary Object.

Example 2:-Write an OOP to decrement a variable in class decrement using (--)

operator and return the value to other object using temporary object .

 4 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول ثبمنتالمحبضره ال

b- Nameless Temporary Objects

In Example 2 we created a temporary object of type decrement, named temp,

whose sole purpose was to provide a return value for the -- operator.

Example 3:- Write an OOP to decrement a variable in class decrement using (--)

operator and return the value to other object using nameless temporary object.

In this program a single statement return decrement(x); this statement

creates an object of type decrement decrement (int y) //constructor, one arg

 5 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول ثبمنتالمحبضره ال

Postfix Notation

We define two overloaded ++ operators, as shown in the Example4:

Example 4:-Write an oo program to increment the counter variable with ++

operator using both prefix and postfix.

Now there are two different decelerator for overloading the ++ operator. The one

we’ve seen before, for prefix notation, is Counter operator ++ (). The new one,

for postfix notation, is Counter operator ++ (int). The only difference is the (int)

in the parentheses. This (int) isn’t really an argument, and it doesn’t mean integer.

It’s simply a signal to the compiler to create the postfix version of the operator.

 6 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول ثبمنتالمحبضره ال

2- Overloading Binary Operators
Binary operators can be overloaded just as easily as unary operators. There

are two types of overloading binary operators:

a) Arithmetic Operators

Arithmetic operators consists of (+,-,*,/) as illustrated in examples bellow

Example 5:-Write an OOP to subtract two numbers objects using - operator.

 7 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول ثبمنتالمحبضره ال

Example 6:-Write an OOP to add two area of rectangle using+ operator.

Input for r1 : 3 4

Input for r2 : 9 2

Outputs:

area1 = 12

area2=18

area3=30

 8 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول ثبمنتالمحبضره ال

b) Comparison Operators

Comparing operators consists of (>, <, >= ,<= ,==, !=).Examples bellow

show some of these operator.

Example 7:-Write an OOP to compare two ages using operator < in class person.

 9 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول ثبمنتالمحبضره ال

Figure 3: Overloadable Operators

 Figure 4: Operators can’t be overloaded

 1البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول تبسعتالمحبضره ال

Inheritance
Inheritance is probably the most powerful feature of object-oriented programming,

after classes themselves. Inheritance is the process of creating new classes, called

derived classes, from existing or base classes. The derived class inherits all the

capabilities of the base class but can add embellishments and refinements of its

own. The base class is unchanged by this process. The inheritance relationship is

shown in Figure 1.

Figure 1: Inheritance.

An important result of reusability is the ease of distributing class libraries. A

programmer can use a class created by another person or company, and, without

modifying it, derive other classes from it that are suited to particular situations.

 2البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول تبسعتالمحبضره ال

Derived Class and Base Class

There are two main reasons that we might not want to modifying the base class.

1) First, the base class works very well and has undergone many hours of testing

and debugging.

2) Second reason for not modifying the base class: We might not have access to

its source code, especially if it was distributed as part of a class library.

Example 1:-Write an OOP to decrement the count variable in class counter using – operator

and inheritance with ++ operator. The program includes a class called Counter which

contains a private count and a class CountDn was drived from Counter class.

 3البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول تبسعتالمحبضره ال

Output from example 1:-

c1=7 ← after ++c1, ++c1

c1=4 ← after --c1, --c1.—c1

Accessing Base Class Members

An important topic in inheritance knows when a member function in the base class

can be used by objects of the derived class. This is called accessibility.

The protected Access Specifier

We have increased the functionality of a class without modifying it. Let’s first

review what we know about the access specifies private and public. A member

function of a class can always access class members, whether they are public or

private. But an object declared externally can only invoke public members of the

class. Private members are, well, private. This is shown in Figure 2.

Figure 2: Access specifiers without inheritance

 4البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول تبسعتالمحبضره ال

A protected member, on the other hand, can be accessed by member functions in

its own class and in any class derived from its own class. It can’t be accessed from

functions outside these classes, such as main(). The situation is shown in Figure 3.

Figure 3: Access specifiers with inheritance.

Table 1: Inheritance and Accessibility

 5البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول تبسعتالمحبضره ال

Example 2:- Write an OOP to decrement the count variable in class counter using –

operator and inheritance with ++ operator and the main contains the statement c2=--c1

 6البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول تبسعتالمحبضره ال

Output from example 2:-

c1 after (1) increment =101

c1 after (3) decrement =98

c2 after (1) decrement of c1 =97

Dangers of protected

You should know that there’s a disadvantage to making class members protected.

Say you’ve written a class library, which you’re distributing to the public. Any

programmer who buys this library can access protected members of your classes

simply by deriving other classes from them. This makes protected members

considerably less secure than private members. To avoid corrupted data, it’s often

safer to force derived classes to access data in the base class using only public

functions.

Overriding Member Functions

You can use member functions in a derived class that override—that is, have the

same name as those in the base class. You might want to do this so that calls in

your program work the same way for objects of both base and derived classes.

 7البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول تبسعتالمحبضره ال

Example 3:-Write an OOP to read and write the information of employee. Create a

class called employee which contains employee's name and number as private data

items. Derived from class employee a class called manger which contains a salary of

type float as private item.

#include <iostream.h>

class employee

{ private:

 char name[100]; long number;

public:

 void getdata()

{ cin >> name; cin >> number; }

void putdata()

{ cout << name; cout << number; }

};

class manager : public employee

{ private:

 float salary;

public:

void getdata()

{

 employee :: getdata();

 cin >> salary;

}

void putdata()

{

 employee :: putdata();

 cout << salary;

}

};

void main()

{ manager m1;

 m1.getdata();

 m1.putdata();

}

 1 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول لمحبضره العبشرة ا

Class Hierarchies

Inheritance has been used to add functionality to an existing class. Now let’s

look at an example where inheritance is used for a different purpose: as part

of the original design of a program.

The database stores a name and an employee identification number for all

employees. However, for managers, it also stores their titles. For scientists, it

stores the number of scholarly articles they have published. Laborers need

no additional data beyond their names and numbers.

Figure 1: class diagram for EMPLOY

 2 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول لمحبضره العبشرة ا

Example 1:-Write an oo program to model employ in figure1 using inheritance.

 3 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول لمحبضره العبشرة ا

“Abstract” Base Class

It may seem that the laborer class is unnecessary, but by making it a separate

class we emphasize that all classes are descended from the same source,

employee. Also, if in the future we decided to modify the laborer class, we

would not need to change the declaration for employee.

 4 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول لمحبضره العبشرة ا

Access Combinations

There are so many possibilities for access that it’s instructive to look at

Example 2:

Example 2:-

 5 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول لمحبضره العبشرة ا

The program specifies a base class, A, with private, protected, and public data items.

Two classes, B and C, are derived from A. B is publicly derived and C is privately

derived. As we’ve seen before, functions in the derived classes can access protected

and public data in the base class. Objects of the derived classes cannot access private

or protected members of the base class. What’s new is the difference between

publicly derived and privately derived classes. Objects of the publicly derived class B

can access public members of the base class A, while objects of the privately derived

class C cannot; they can only access the public members of their own derived class.

This is shown in Figure 2.

Figure2: Public and private derivation.

 6 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول لمحبضره العبشرة ا

Levels of Inheritance

Classes can be derived from classes that are themselves derived. Here’s a

miniprogram that shows the idea:

class A

{ };

class B : public A

{ };

class C : public B

{ };

Here B is derived from A, and C is derived from B. The process can be extended

to an arbitrary number of levels D could be derived from C, and so on. Suppose

that we decided to add a special kind of laborer called a foreman to the EMPLOY

program. Since a foreman is a kind of laborer, the foreman class is derived from

the laborer class, as shown in Figure 3.

Figure 3: class diagram for EMPLOY2.

 7 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول لمحبضره العبشرة ا

Example 3:-Write an oo program to model employ database in figure3.

 8 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول لمحبضره العبشرة ا

Multiple Inheritances

A class can be derived from more than one base class. This is called multiple

inheritances. Figure 4 shows how this looks when a class C is derived from base

classes A and B.

 9 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول لمحبضره العبشرة ا

Figure 4: class diagram for multiple inheritances.

The syntax for multiple inheritances is similar to that for single inheritance. In the

situation shown in Figure 4, the relationship is expressed like this:

class A // base class A

{

};

class B // base class B

{

};

class C : public A, public B // C is derived from A and B

{

};

 Figure5 : Multiple Inheritances with Employee .

 11 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول لمحبضره العبشرة ا

Example 4:-Write an OOP to model employee database in figure5 .

 11 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول لمحبضره العبشرة ا

Ambiguity in Multiple Inheritances

There are two types ambiguity in Multiple Inheritances

1. Two base classes have functions with the same name, while a class derived

from both base classes has no function with this name. How do objects of the

derived class access the correct base class function? The name of the function

alone is insufficient, since the compiler can’t figure out which of the two

functions is meant.

 12 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول لمحبضره العبشرة ا

Example: demonstrates ambiguity in multiple inheritance

#include <iostream.h>

class A

{

public:

void show() { cout << " A \n”; }

};

class B

{

public:

void show() { cout << " B \n”; }

};

class C : public A, public B

{

};

//

void main()

{

C C1; //object of class C

// C1. show(); //ambiguous--will not compile

C1.A :: show(); //OK

C1.B :: show(); //OK

}

The problem is resolved using the scope-resolution operator to specify the class in

which the function lies. Thus C1.A::show(); refers to the version of show() that’s

in the A class, while C1.B::show(); refers to the function in the B class.

 13 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول لمحبضره العبشرة ا

2. Another kind of ambiguity arises if you derive a class from two classes that are

each derived from the same class. This creates a diamond-shaped inheritance

tree.

Example: investigates diamond-shaped multiple inheritance

#include <iostream.h>

class A

{

public:

void print();

};

class B : public A

{ };

class C : public A

{ };

class D : public B, public C

{ };

//

void main()

{

D D1;

D1.print(); //ambiguous: won’t compile

}

Classes B and C are both derived from class A, and class D is derived by multiple

inheritance from both B and C. Trouble starts if you try to access a member

function in class A from an object of class D. In this example D1 tries to access

print(). However, both B and C contain a copy of print(), inherited from A. The

compiler can’t decide which copy to use, and signals an error.

 1 الثبنيت/ الكورس الأولالبرمجو الشيئيو / المرحلت الحبديت عشر المحبضره

Virtual Functions

Virtual means existing in appearance but not in reality. When virtual functions

are used, a program that appears to be calling a function of one class may in reality

be calling a function of a different class. Why are virtual functions needed?

Suppose you have a number of objects of different classes but you want to put

them all in an array and perform a particular operation on them using the same

function call. For example, in suppose a graphics program in figure1 includes

several different shapes: a triangle, a ball, a square. Each of these classes has a

member function draw () that causes the object to be drawn on the screen.

Figure 1: The class hierarchy for the Figures example.

Now suppose you plan to make a picture by grouping a number of these elements

together and you want to draw the picture in a convenient way. One approach is to

create an array that holds pointers to all the different objects in the picture. The

array might be defined like this:

Figure *ptrarr[100]; // array of 100 pointers to Figures .If you insert pointers

to all the shapes into this array, you can then draw an entire picture using loop:

For (int j=0; j<N; j++) ptrarr[j]->draw();

This is an amazing capability: Completely different functions are executed by the

same function call. If the pointer in ptrarr points to a ball, the function that draws a

 2 الثبنيت/ الكورس الأولالبرمجو الشيئيو / المرحلت الحبديت عشر المحبضره

ball is called; if it points to a triangle, the triangle-drawing function is called. This

is called polymorphism, which means different forms.

Polymorphism

Polymorphism is one of the crucial features of object oriented programming. It

simply means ―one name, multiple forms‖. However, polymorphism allows an

entity (variable, function or object) to take a variety of representations (take a

multiple forms).

In C++ Polymorphism is implemented via virtual functions.

Therefore we have to distinguish different three types of polymorphism:

A. Polymorphism of Variables:

The first type of polymorphism is similar to the concept of dynamic binding. Here,

the type of a variable depends on its content. Thus, its type depends on the content

at a specific time:

int a=5; //use a as integer

…..

char a=’g’; //use a as character

……

B. Polymorphism of Functions:

Another type of polymorphism can be defined for functions. For example, suppose

you want to define a function isNull() which returns TRUE if its argument is zero

and FALSE otherwise. For integer numbers this is easy:

Bool isNull(int r)

{

If (r==0) Return(true)

Else Return(false) }

 3 الثبنيت/ الكورس الأولالبرمجو الشيئيو / المرحلت الحبديت عشر المحبضره

However, if we want to check this for float numbers, we should use another

comparison due to the precision problem:

Bool isNull(float k)

{

If (k<=0.01)&&(k>-0.99)

Return(true)

Else

Return(false)

}

Since the parameter list of both isNull functions differs, the compiler is able to

figure-out the correct function call by using the actual types of the arguments.

int r;

float k;

r=0;

k=0.0;

If (isNull(r)) //use isNull integer

If (isNull(k)) //use isNull float

This type of polymorphism allows us to reuse the same name for functions (or

methods) as long as the parameter list differs. Sometimes this type of

polymorphism is called overloading.

C. Polymorphism of Objects:

The last type of polymorphism allows an object to choose correct methods. In this

type, polymorphism refers to situation in which objects belong to different classes

can be respond to the same message, usually in different ways. For example,

suppose we have classes box, triangle, and circle, whose objects represent the

corresponding geometrical figures, as shown in figure (1).

 4 الثبنيت/ الكورس الأولالبرمجو الشيئيو / المرحلت الحبديت عشر المحبضره

For the polymorphic approach to work, several conditions must be met.

1) First, all the different classes of shapes, such as balls and triangles, must be

descended from a single base class.

2) Second, the draw() function must be declared to be virtual in the base class.

Normal Member Functions Accessed with Pointers

 Example 1 shows what happens when a base class and derived classes all have

functions with the same name.

Example 1:

 5 الثبنيت/ الكورس الأولالبرمجو الشيئيو / المرحلت الحبديت عشر المحبضره

The Derv1 and Derv2 classes are derived from class Base. Each of these three

classes has a member function show(). In main () we create objects of class Derv1

and Derv2, and a pointer to class Base. Then we put the address of a derived class

object in the base class pointer in the line

 ptr = &dv1; // derived class address in base class pointer .

 Now the question is, when you execute the line :-

 ptr->show(); what function is called? Is it show() of Base or show() of

Derv1? Again, in the last two lines of not virtual we put the address of an object of

class Derv2 in the pointer, and again execute

 ptr->show(); Which of the show() functions is called here?

The output from the program:

Base

Base

As you can see, the function in the base class is always executed. The compiler

ignores the contents of the pointer ptr and chooses the member function that

matches the type of the pointer, as shown in figure 2

Figure 2 Nonvirtual pointer accesses.

 6 الثبنيت/ الكورس الأولالبرمجو الشيئيو / المرحلت الحبديت عشر المحبضره

Virtual Member Functions Accessed with Pointers

 We’ll place the keyword virtual in front of the declarator for the show() function

in the base class. Here’s the listing for the resulting program.

Example 2:

The output of this program is

Derv1

Derv2

The member functions of the derived classes, not the base class, are executed. We

change the contents of ptr from the address of Derv1 to that of Derv2, and the

 7 الثبنيت/ الكورس الأولالبرمجو الشيئيو / المرحلت الحبديت عشر المحبضره

instance of show() that is executed also changes. So the same function call ptr-

>show(); executes different functions, depending on the contents of ptr. The rule

is that the compiler selects the function based on the contents of the pointer ptr,

not on the type of the pointer, as in not virtual. This is shown in figure 3

Figure 3 Virtual pointer access.

Late Binding

In not virtual the compiler has no problem with the expression ptr->show(); It

always compiles a call to the show() function in the base class. But in virtual the

compiler doesn’t know what class the contents of ptr may contain. It could be the

address of an object of the Derv1 class or of the Derv2 class. Which version of

draw() does the compiler call? In fact the compiler doesn’t know what to do, so it

arranges for the decision to be deferred until the program is running. At runtime,

when it is known what class is pointed to by ptr, the appropriate version of draw

will be called. This is called late binding or dynamic binding.(Choosing functions

in the normal way, during compilation, is called early binding or static binding.)

Late binding requires some overhead but provides increased power and flexibility.

 8 الثبنيت/ الكورس الأولالبرمجو الشيئيو / المرحلت الحبديت عشر المحبضره

Abstract Classes and Pure Virtual Functions

When we will never want to instantiate objects of a base class, we call it an

abstract class. Such a class exists only to act as a parent of derived classes that

will be used to instantiate objects. It may also provide an interface for the class

hierarchy. By placing at least one pure virtual function in the base class.

A pure virtual function is one with the expression =0 added to the declaration.

This is shown in the example3.

Example 3:

 9 الثبنيت/ الكورس الأولالبرمجو الشيئيو / المرحلت الحبديت عشر المحبضره

Example 4: Write an OOP to read and chek a person if successful or fail. Create a class

called person which contains name of type string and derived a class student and a class

professor from a class person

 11 الثبنيت/ الكورس الأولالبرمجو الشيئيو / المرحلت الحبديت عشر المحبضره

Virtual Base Classes

Consider the situation shown in Figure 4, with a base class, A; two derived

classes, B and C; and a fourth class, D, derived from both B and C.In this

arrangement a problem can arise if a member function in the D class wants to

access data or functions in the A class.

Figure 4 Virtual base classes.

 11 الثبنيت/ الكورس الأولالبرمجو الشيئيو / المرحلت الحبديت عشر المحبضره

// ambiguous reference to base class

class A

{ protected:

 int d;

};

class B : public A { };

class C : public A { };

class D : public B, public C

{ public:

 void show()

 { cout<< d; } // ERROR: ambiguous

};

 // virtual base classes

class A

{ protected:

 int d;

};

class B : virtual public A

{ };

class C : virtual public A

{ };

class D : public B, public C

{ public:

void show() { cout<< d; }

};

 1 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول ت عشر الثبني لمحبضرها

Function Template
Suppose you want to write a function that prints the absolute value of two

numbers. The absolute value of a number is its value without regard to its

sign: The absolute value of 3 is 3, and the absolute value of –3 is also 3.

Ordinarily this function would be written for a particular data type:

void abs(int n)

{

if (n<0)

cout<<-n

else

cout<<n;

}

Here the function is defined to take an argument of type int and to print a

value of this same type. But now suppose you want to find the absolute

value of a type long. You will need to write a completely new function:

void abs(long n)

{

if (n<0)

cout<<-n

else

cout<<n;

}

The body of the function is written the same way in each case, but they are

completely different functions because they handle arguments and the values

of different types.

 2 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول ت عشر الثبني لمحبضرها

A) Simple Function Template

This program defines a template version of abs().

Example 1:Write an OO Program to find the absolute value using template function.

 The abs () function now works with all three of the data types (int, long,

and double) that we use as arguments.

This entire syntax, with a first line starting with the keyword template and

the function definition following, is called a function template.

Output of the program:

 5

 6

70000

80000

9.95

10.15

 3 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول ت عشر الثبني لمحبضرها

Function Template Syntax

The key innovation in function templates is to represent the data type used

by the function not as a specific type such as int, but by a name that can

stand for any type. In the preceding function template, this name is t. The

template keyword signals the compiler that we’re about to define a function

template. The keyword class, within the angle brackets, might just as well be

called type. You can define your own data types using classes, so there’s

really no distinction between types and classes. The variable following the

keyword class (t in this example) is called the template argument.

What the Compiler Does

What does the compiler do when it sees the template keyword and the

function definition that follows it? The function template itself doesn’t cause

the compiler to generate any code. It can’t generate code because it doesn’t

know yet what data type the function will be working with. It simply

remembers the template for possible future use.

Code generation doesn’t take place until the function is actually called

(invoked) by a statement within the main program. In example 1 this

happens in expressions like abs(a) in the statement abs(a);

When the compiler sees such a function call, it knows that the type to use is

int, because that’s the type of the argument a. So it generates a specific

version of the abs() function for type int, substituting int wherever it sees the

name t in the function template. This is called instantiating the function

template, and each instantiated version of the function is called a template

function.

 4 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول ت عشر الثبني لمحبضرها

B) Class Template

The template concept can be extended to classes. Class templates are generally

used for data storage (container) classes.

Example 2: Write an OOP that include a class called divide . Use the concept of template class

to write the program. The divide class includes a and b as private, and two functions read() and a

function div() to divide a on b. The main program includes the call of the objects of type integer

and long.

 5 البرمجو الشيئيو / المرحلت الثبنيت/ الكورس الأول ت عشر الثبني لمحبضرها

Example 3: Write an OOP that include a class called max . Use the concept of

template class to write the program. The max class includes x and y as private

attributes, and a functions large() to find the largest number between x and y. The

main program includes the call of the functions to objects of type integer, float and

long.

