

Mobile app design

Practical experiments

Third Class, SW branch, Second Semester.

(2024-2025)

By: Teaba Wala aldeen Khairi.

 University of technology, Computer science department.

110053@uotechnology.edu.iqMail: -E

Mobile app design / rd3 courseecond S

mailto:110053@uotechnology.edu.iq

Mobile app design Lab. الصفحةς

,ÅÃÔÕÒÅ ρ !ÎÄÒÏÉÄ ÓÔÕÄÉÏ Ǫ 6Ó ÃÏÄÅ

Mobile platform

Android studio

Android Studio is the official integrated development environment (IDE)

for Google's Android operating system, built on JetBrains' IntelliJ

IDEA software and designed specifically for Android development. It is

available for download on Windows, macOS and Linux based operating

systems. It is a replacement for the Eclipse Android Development

Tools (E-ADT) as the primary IDE for native Android application

development. Android Studio is the official IDE (Integrated Development

Environment) for Android app development and it is based on JetBrains’

IntelliJ IDEA software. Android Studio provides many excellent features

that enhance productivity when building Android apps, such as :

 A blended environment where one can develop for all Android

devices

 Apply Changes to push code and resource changes to the running

app without restarting the app

 A flexible Gradle-based build system

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/JetBrains
https://en.wikipedia.org/wiki/IntelliJ_IDEA
https://en.wikipedia.org/wiki/IntelliJ_IDEA
https://en.wikipedia.org/wiki/Android_software_development
https://en.wikipedia.org/wiki/Windows
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Eclipse_(software)#Android_Development_Tools
https://en.wikipedia.org/wiki/Eclipse_(software)#Android_Development_Tools

Mobile app design Lab. الصفحةσ

 A fast and feature-rich emulator

 GitHub and Code template integration to assist you to develop

common app features and import sample code

 Extensive testing tools and frameworks

 C++ and NDK support

 Built-in support for Google Cloud Platform, making it easy to

integrate Google Cloud Messaging and App Engine, and many

more .

 Provides GUI tools that simplify the less interesting parts of app

development .

 Easy integration with real time database ‘firebase .’

System Requirements :

 Microsoft Windows 7/8/10 (32-bit or 64-bit

 4 GB RAM minimum, 8 GB RAM recommended (plus 1 GB for

the Android Emulator

 2 GB of available disk space minimum, 4 GB recommended (500

MB for IDE plus 1.5 GB for Android SDK and emulator system

image

 1280 x 800 minimum screen resolution

Download Android Studio & App Tools - Android Developers

https://developer.android.com/studio

Mobile app design Lab. الصفحةτ

1. Toolbar

One can find the Toolbar section at the top of the android studio. It contains

a wide range of functions including creating a new project which is inside

the File Section, Reformat your code which is inside the Code Section,

Rebuild your project which is inside the Build section, running your android

app which is inside the Run section, and many more. In fact, the Toolbar is

the most important part of the android studio.

2. Editor Window

In this window, the users can create, write, and modify their code. This

editor window changes depending on the current file type. For example, if

you are viewing a layout file(Here activity_main.xml file) then the editor

displays the layout editor. Similarly, if you are writing the backend code

then the editor displays the Java/Kotlin file (Here MainActivity.java file)

depending upon the language you have chosen during the creation of the

project .

Mobile app design Lab. الصفحةυ

3. Tool Window Bar

The tool window bar operates around the outside of the IDE window and

includes the buttons that allow users to expand or collapse individual tool

windows. For example, in the above diagram, we have expanded the Project

and the Build button .

4. Navigation Bar

The navigation bar helps the users to navigate throughout the project and

open files for editing. It gives a more compressed view of the structure

visible in the Project window. For example in the above diagram when we

click on the MainActivity.java file in the editor window section then the

navigation bar shows us where this file present inside the android studio.

(Here app > src > main > java > com > example > meetandroidstudio >

MainActivity). Thus it helps us to navigate and modify the required file

easily .

5. Status Bar

The status bar displays the current status of the project and the IDE itself,

as well as any warnings or messages during the execution of the project .

5. Tool Windows

The tool windows give access to specific tasks like project management,

search, version control, and more. It is strongly related to the Tool Window

Bar section. When you expand the Tool Window Bar then they are visible

inside the Tool Windows section. So the user can also expand and collapse

them .

Mobile app design Lab. الصفحةφ

Note: The user can organize the main window to get more screen space by

hiding or moving toolbars and tool windows. The user can also use the

shortcut keyboard to access most IDE features .

Android studio is a very standard IDE and there are many things to explore

inside this tool. We have just discussed its Main Window here. It provides

a lot of powerful things. For example, at the second last (From right) of the

Toolbar section, the user can find a search icon where the users can search

anything inside android studio such as searches for :

• Classes

• Files

• Tool Windows

• Actions

• Settings, etc

So before moving to the project development one should explore all the

features of android studio vividly and this will be very beneficial for them

during the project development .

Generally, when a developer wants to create a new project in the android

studio he/she needs to select a project template which is consisting of

many activities as shown in the below image. (Considering that the

developer developing the android app for phone and tablet). So in this

article, we are going to discuss what do these activities mean in brief.

Here is the list of activities:

1. No Activity

2. Basic Activity

3. Bottom Navigation Activity

4. Empty Activity

5. Fullscreen Activity

6. Google Admob Ads Activity

7. Google Maps Activity

8. Login Activity

9. Master/Detail Flow

10. Navigation Drawer Activity

Mobile app design Lab. الصفحةχ

11. Settings Activity

12. Scrolling Activity

13. Tabbed Activity

14. Fragment + ViewModel

15. Native C++

Mobible app arcitrcture

Considering the common architectural principles mentioned in the previous
section, each application should have at least two layers:

 The UI layer that displays application data on the screen.

 The data layer that contains the business logic of your app and exposes
application data.

You can add an additional layer called the domain layer to simplify and reuse
the interactions between the UI and data layers.

Mobile app design Lab. الصفحةψ

Modern App Architecture

This Modern App Architecture encourages using the following techniques,

among others:

 A reactive and layered architecture.

 Unidirectional Data Flow (UDF) in all layers of the app.

 A UI layer with state holders to manage the complexity of the UI.

 Coroutines and flows.

 Dependency injection best practices.

UI layer

The role of the UI layer (or presentation layer) is to display the application

data on the screen. Whenever the data changes, either due to user

interaction (such as pressing a button) or external input (such as a network

response), the UI should update to reflect the changes.

The UI layer is made up of two things:

 UI elements that render the data on the screen. You build these elements

using Views or Jetpack Compose functions.

 State holders (such as ViewModel classes) that hold data, expose it to the

UI, and handle logic

Figure 2. The UI layer's role in app architecture.

https://developer.android.com/jetpack/compose
https://developer.android.com/topic/libraries/architecture/viewmodel

Mobile app design Lab. الصفحةω

Data layer

The data layer of an app contains the business logic. The business logic is what gives

value to your app—it's made of rules that determine how your app creates, stores, and

changes data.

The data layer is made of repositories that each can contain zero to many data sources.

You should create a repository class for each different type of data you handle in your

app. For example, you might create a MoviesRepository class for data related to movies,

or a PaymentsRepository class for data related to payments.

Figure 3. The data layer's role in app architecture.

Repository classes are responsible for the following tasks:

 Exposing data to the rest of the app.

 Centralizing changes to the data.

 Resolving conflicts between multiple data sources.

 Abstracting sources of data from the rest of the app.

 Containing business logic.

Mobile app design Lab. الصفحةρπ

Each data source class should have the responsibility of working with only one source

of data, which can be a file, a network source, or a local database. Data source classes

are the bridge between the application and the system for data operations.

Domain layer

The domain layer is an optional layer that sits between the UI and data layers.

The domain layer is responsible for encapsulating complex business logic, or simple

business logic that is reused by multiple ViewModels. This layer is optional because

not all apps will have these requirements. You should use it only when needed—for

example, to handle complexity or favor reusability.

Figure 4. The domain layer's role in app architecture.

Classes in this layer are commonly called use cases or interactors. Each use case should have

responsibility over a single functionality. For example, your app could have

a GetTimeZoneUseCase class if multiple ViewModels rely on time zones to display the proper

message on the screen.

Benefits of Architecture

Having a good Architecture implemented in your app brings a lot of benefits to the

project and engineering teams:

 It improves the maintainability, quality and robustness of the overall app.

 It allows the app to scale. More people and more teams can contribute to the same

codebase with minimal code conflicts.

 It helps with onboarding. As Architecture brings consistency to your project, new

members of the team can quickly get up to speed and be more efficient in less amount

of time.

 It is easier to test. A good Architecture encourages simpler types which are generally

easier to test.

 Bugs can be investigated methodically with well defined processes.

Mobile app design Lab. الصفحةρρ

Visual studio code

To downloaded it use

Documentation for Visual Studio Code

https://code.visualstudio.com/docs/?dv=win64user

Mobile app design Lab. الصفحةρς

,ÅÃÔÕÒÅ ς &ÌÕÔÔÅÒ Ǫ $ÁÒÔ

WHAT IS FLUTTER?

Flutter allows you to build beautiful native apps on iOS and Android from

a single codebase

• Open-source mobile app SDK

• Developed by Google

• Building high-performance apps for iOS and Android, from a

single codebase

WHY USE FLUTTER?

 Flutter makes it easy and fast to build beautiful mobile apps.

 • Reactive framework

• Material and Cupertino widgets

• Hot reload

• Dart language and core libs

• Interop with mobile SDKs

• Android Studio/IntelliJ official IDE

• Debugger, Format

Mobile app design Lab. الصفحةρσ

Install dart and flutter

What is widgets in Flutter

Widgets: Each element on a screen of the Flutter app is a widget. The

view of the screen completely depends upon the choice and sequence

of the widgets used to build the apps. And the structure of the code

of an apps is a tree of widgets.

Category of Widgets:

There are mainly 14 categories in which the flutter widgets are divided.

They are mainly segregated on the basis of the functionality they

provide in a flutter application.

Mobile app design Lab. الصفحةρτ

1. Accessibility: These are the set of widgets that make a flutter app

more easily accessible.

2. Animation and Motion: These widgets add animation to other

widgets.

3. Assets, Images, and Icons: These widgets take charge of assets

such as display images and show icons.

4. Async: These provide async functionality in the flutter application.

5. Basics: These are the bundle of widgets that are absolutely

necessary for the development of any flutter application.

6. Cupertino: These are the iOS designed widgets.

7. Input: This set of widgets provides input functionality in a flutter

application.

8. Interaction Models: These widgets are here to manage touch

events and route users to different views in the application.

9. Layout: This bundle of widgets helps in placing the other widgets

on the screen as needed.

10. Material Components: This is a set of widgets that mainly

follow material design by Google.

11. Painting and effects: This is the set of widgets that apply

visual changes to their child widgets without changing their layout

or shape.

12. Scrolling: This provides scrollability of to a set of other widgets

that are not scrollable by default.

13. Styling: This deals with the theme, responsiveness, and sizing

of the app.

14. Text: This displays text.

Mobile app design Lab. الصفحةρυ

Flutter – State Management

Based on states, widgets

 are divided into 2 categories :

1- Stateless Widget

2- Stateful Widget

3- Inherited Widget

The state of an app can very simply be defined as anything that exists in

the memory of the app while the app is running. This includes all the

widgets that maintain the UI of the app including the buttons, text fonts,

icons, animations, etc. So now as we know what are these states let’s dive

directly into our main topic i.e what are these stateful and stateless

widgets and how do they differ from one another.

State: The State is the information that can be read synchronously when

the widget is built and might change during the lifetime of the widget.

In other words, the state of the widget is the data of the objects that its

properties (parameters) are sustaining at the time of its creation (when the

widget is painted on the screen). The state can also change when it is used

for example when a CheckBox widget is clicked a check appears on the

box.

Stateless Widgets: The widgets whose state can not be altered once they

are built are called stateless widgets. These widgets are immutable once

they are built i.e any amount of change in the variables, icons, buttons, or

retrieving data can not change the state of the app. Below is the basic

structure of a stateless widget. Stateless widget overrides the build()

method and returns a widget. For example, we use Text or the Icon in our

flutter application where the state of the widget does not change in

Mobile app design Lab. الصفحةρφ

the runtime. It is used when the UI depends on the information within the

object itself. Other examples can be Text, RaisedButton, IconButtons.

You can run the codes using online

https://api.flutter.dev/flutter/material/Scaffold-

class.html

https://api.flutter.dev/flutter/material/Scaffold-class.html
https://api.flutter.dev/flutter/material/Scaffold-class.html

Mobile app design Lab. الصفحةρχ

Mobile app design Lab. الصفحةρψ

 Project 1 Hello word on screen with gray background

import 'package:flutter/material.dart ;'

void main } ()

 runApp)

 const MaterialApp)

 home: Scaffold)

 // background the Page

 backgroundColor: Colors.grey ,

 // center the Page

 body: Center)

 // this text is the center of Page

 child: Text("Hello world”) }

Mobile app design Lab. الصفحةρω

To remove banner we can use

 debugShowCheckedModeBanner: false,

Project 1 Remove banner

import 'package:flutter/material.dart ;'

void main } ()

 runApp)

 const MaterialApp)

debugShowCheckedModeBanner: false,

 home: Scaffold)

 // background the Page

 backgroundColor: Colors.grey ,

 // center the Page

 body: Center)

 // this text is the center of Page

 child: Text("Hello world") ,

Mobile app design Lab. الصفحةςπ

Mobile app design Lab. الصفحةςρ

,ÅÃÔÕÒÅ σ 3ÃÒÅÅÎ ÃÏÌÏÒ Ǫ 4ÅØÔ

MaterialApp class

MaterialApp is a predefined class or widget in a flutter. It is likely the

main or core component of a flutter app. The MaterialApp widget

provides a wrapper around other Material Widgets. We can access all the

other components and widgets provided by Flutter SDK. Text

widget, DropdownButton widget, AppBar widget, Scaffold widget, List

View widget, StatelessWidget, StatefulWidget, IconButton widget,

TextField widget, Padding widget, ThemeData widget, etc. are the

widgets that can be accessed using MaterialApp class. There are many

more widgets that are accessed using MaterialApp class. Using this

widget, we can make an attractive app that follows the Material Design

guidelines.

The MaterialApp configures the top-level Navigator to search for routes in

the following order:

1. For the / route, the home property, if non-null, is used.

2. Otherwise, the routes table is used, if it has an entry for the route.

3. Otherwise, onGenerateRoute is called, if provided. It should return

a non-null value for any valid route not handled by home and routes.

4. Finally if all else fails onUnknownRoute is called.

If a Navigator is created, at least one of these options must handle

the / route, since it is used when an invalid initialRoute is specified on

startup (e.g. by another application launching this one with an intent on

Android; see dart:ui.PlatformDispatcher.defaultRouteName).

This widget also configures the observer of the top-level Navigator (if any)

to perform Hero animations.

https://www.geeksforgeeks.org/flutter-dropdownbutton-widget/
https://www.geeksforgeeks.org/flutter-appbar-widget/
https://www.geeksforgeeks.org/scaffold-class-in-flutter-with-examples/
https://www.geeksforgeeks.org/listview-class-in-flutter/
https://www.geeksforgeeks.org/listview-class-in-flutter/
https://www.geeksforgeeks.org/flutter-stateful-vs-stateless-widgets/
https://www.geeksforgeeks.org/difference-between-stateless-and-stateful-widget-in-flutter/
https://www.geeksforgeeks.org/flutter-iconbutton-widget/
https://api.flutter.dev/flutter/material/MaterialApp-class.html
https://api.flutter.dev/flutter/widgets/Navigator-class.html
https://api.flutter.dev/flutter/material/MaterialApp/home.html
https://api.flutter.dev/flutter/material/MaterialApp/routes.html
https://api.flutter.dev/flutter/material/MaterialApp/onGenerateRoute.html
https://api.flutter.dev/flutter/material/MaterialApp/home.html
https://api.flutter.dev/flutter/material/MaterialApp/routes.html
https://api.flutter.dev/flutter/material/MaterialApp/onUnknownRoute.html
https://api.flutter.dev/flutter/widgets/Navigator-class.html
https://api.flutter.dev/flutter/material/MaterialApp/initialRoute.html
https://api.flutter.dev/flutter/dart-ui/PlatformDispatcher/defaultRouteName.html
https://api.flutter.dev/flutter/widgets/Navigator-class.html
https://api.flutter.dev/flutter/widgets/Hero-class.html

Mobile app design Lab. الصفحةςς

This example shows how to create a MaterialApp that disables the

"debug" banner with a home route that will be displayed when the app is

launched.

MaterialApp(

 home: Scaffold(

 appBar: AppBar(

 title: const Text('Home'),),),

 debugShowCheckedModeBanner: false,)

Scaffold
It is a class in flutter which provides many widgets or we can

say APIs like Drawer, Snack-Bar, Bottom-Navigation-Bar, Floating-

Action-Button, App-Bar, etc. Flutter Scaffold is used to display a basic

material design layout that contains application bar, body, bottom

navigation bar, bottom sheet, drawer, floating action button, persistent

footer buttons, etc. . The class Hierarchy is as follows:

Object

 ↳ Diagnosticable

 ↳ Diagnosticable Tree

 ↳ Widget

 ↳ StateFul Widget

 ↳ Scaffold

https://www.geeksforgeeks.org/flutter-an-introduction-to-the-open-source-sdk-by-google/
https://www.geeksforgeeks.org/introduction-to-apis/

Mobile app design Lab. الصفحةςσ

Widget build(BuildContext context (

}

return Scaffold)

 appBar: AppBar)

 title: const Text('Hello'),),

Colors class
Color and ColorSwatch constants which represent Material design's color

palette.

Project 2 : Screen clocr and tex

 وضع نص واحد في منتصف الشاشة

void main } ()

 runApp)

 const MaterialApp)

 debugShowCheckedModeBanner: false,

 home: Scaffold)

 backgroundColor: Colors.grey ,

 body: Center)

 child: Text("hello world 1"),),),),)}

https://api.flutter.dev/flutter/dart-ui/Color-class.html
https://api.flutter.dev/flutter/painting/ColorSwatch-class.html
https://material.io/design/color/
https://material.io/design/color/

Mobile app design Lab. الصفحةςτ

 وضع ثلاثة نصوص عمودیا في منتصف الشاشة

void main } ()

 runApp)

 const MaterialApp)

 debugShowCheckedModeBanner: false,

 home: Scaffold)

 backgroundColor: Colors.grey ,

 body: Center)

 child: Column)

 mainAxisAlignment: MainAxisAlignment.center ,

 crossAxisAlignment: CrossAxisAlignment.center ,

Mobile app design Lab. الصفحةςυ

 children] :

 Text("hello world 1 ,("

 Text("hello world 2 ,("

 Text("hello world 3 ,[,("

 وضع ثلاث نصوص عمودیا في منتصف الشاشة

void main } ()

 runApp)

 const MaterialApp)

 debugShowCheckedModeBanner: false,

 home: Scaffold)

 backgroundColor: Colors.grey ,

 body: Center)

Mobile app design Lab. الصفحةςφ

 child: Column)

 children] :

 Text("hello world 1 ,("

 Text("hello world 2 ,("

 Text("hello world 3 ,("

بكسل 50وضع ثلاثة نصوص عمودیا في منتصف الشاشة ولكن بینھما فراغ مقدارة

void main } ()

 runApp)

 const MaterialApp)

 debugShowCheckedModeBanner: false,

 home: Scaffold)

 backgroundColor: Colors.grey ,

 body: Center)

Mobile app design Lab. الصفحةςχ

 child: Column)

 mainAxisAlignment: MainAxisAlignment.center ,

 crossAxisAlignment: CrossAxisAlignment.center ,

 children] :

 Text("hello world 1 ,("

 SizedBox)

 height: 50 ,

 ,(

 Text("hello world 2 ,("

 SizedBox)

 height: 50 ,(,

 Text("hello world 3 ,("

Mobile app design Lab. الصفحةςψ

,ÅÃÔÕÒÅ τ #ÏÎÔÁÎÅÒÓ Ǫ)ÃÏÎÓ

Container class in Flutter

Container class in flutter is a convenience widget that combines common

painting, positioning, and sizing of widgets. A Container class can be used

to store one or more widgets and position them on the screen according

to our convenience. Basically, a container is like a box to store contents.

A basic container element that stores a widget has a margin, which

separates the present container from other contents. The total container

can be given a border of different shapes, for example, rounded

rectangles, etc. A container surrounds its child with padding and then

applies additional constraints to the padded extent (incorporating the

width and height as constraints, if either is non-null).

Mobile app design Lab. الصفحةςω

Project 3 Circle container in the middle

import 'package:flutter/material.dart';

void main() {

 runApp(

 MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 backgroundColor: Colors.grey,

 body: Center(

 child: Container(

 height: 200,

 width: 200,

 decoration:

 BoxDecoration(color: Colors.blue, shape: BoxShape.circle),

),

),

),

),

);

}

Mobile app design Lab. الصفحةσπ

Another example

Project 3 Container with text in it

import 'package:flutter/material.dart';

void main() {

 runApp(

 MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 backgroundColor: Colors.grey,

 body: Center(

 child: Container(

 height: 200,

 width: 200,

 decoration:

 BoxDecoration(color: Colors.blue, shape:
BoxShape.circle),

Mobile app design Lab. الصفحةσρ

 child: Center(child: Text("hello world 1")),

),

),

),

),

);

}

Another example

Project 3 Container with two vertical text in it

import 'package:flutter/material.dart';

void main() {

 runApp(

 MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

Mobile app design Lab. الصفحةσς

 backgroundColor: Colors.grey,

 body: Center(

 child: Container(

 height: 200,

 width: 200,

 decoration:

 BoxDecoration(color: Colors.blue, shape:
BoxShape.circle),

 child: Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment:
CrossAxisAlignment.center,

 children: [

 Text("Hello world 1"),

 Text("Hello world 2"),

],

)),

),

),

),

);

}

Mobile app design Lab. الصفحةσσ

Project 3 Container with soft edges

void main() {

 runApp(

 MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 backgroundColor: Colors.grey,

 body: Center(

 child: Container(

 height: 200,

 width: 200,

 decoration: BoxDecoration(

 color: Colors.blue, borderRadius:
BorderRadius.circular(20)),

)),

),

),

);

}

Project 3 Container with alarm Icon

void main() {

 runApp(

 MaterialApp(

 debugShowCheckedModeBanner: false,

 home: Scaffold(

 backgroundColor: Colors.grey,

 body: Center(

 child: Icon(

 Icons.alarm,

 color: Colors.yellow,

Mobile app design Lab. الصفحةστ

 size: 100,

)

),

),

),

);

}

Mobile app design Lab. الصفحةσυ

,ÅÃÔÕÒÅ υ ,ÉÆÅ ÃÙÃÌÅ

Lifecycle Methods

• onCreate(Bundle savedInstanceState): create views, (re)

initialize state

• onStart(): Restore transient state; one-time processing

• onResume(): Session-specific processing, restore transient

state

• onPause(): Save persistent data, release resources, quickly!

Last method guaranteed to be called.

• onStop(): Called optionally by runtime

• onDestroy(): If finish() is called, or object is being temporarily

destroyed. Distinguish via isFinishing().

Lifecycle Methods

• onCreate(Bundle savedInstanceState): create views, (re)

initialize state

• onStart(): Restore transient state; one-time processing

• onResume(): Session-specific processing, restore transient

state

• onPause(): Save persistent data, release resources, quickly!

Last method guaranteed to be called.

• onStop(): Called optionally by runtime

• onDestroy(): If finish() is called, or object is being temporarily

destroyed. Distinguish via isFinishing().

Life cycle functions

Mobile app design Lab. الصفحةσφ

Mobile app design Lab. الصفحةσχ

,ÅÃÔÕÒÅ φ 3ÃÒÏÌÌÉÎÇ

Scrolling

Main screen

Mobile app design Lab. الصفحةσψ

Log in screen

Mobile app design Lab. الصفحةσω

Mobile app design Lab. الصفحةτπ

,ÅÃÔÕÒÅ χ

!ÐÐÅÎÄÉØ

Create a New Flutter Project

Mobile app design Lab. الصفحةτρ

Step 1: Open the Android Studio IDE and select Start a new Flutter project.

Note: if you like to create a flutter project using terminal use the below command

and jump right into step 6

$ flutter create flutter_app

replace the ‘ flutter_app ‘ with your project name

Step 2: Select the Flutter Application as the project type. Then click Next.

Step 3: Verify the Flutter SDK path specifies the SDK’s location (select Install

SDK… if the text field is blank).

Step 4: Enter a project name (for example, myapp). Then click Next.

Note:

1. Project name: flutter_app

2. Flutter SDK Path: <path-to-flutter-sdk>

3. Project Location: <path-to-project-folder>

4. Description: Flutter based simple application

Step 5: Click Finish and wait till Android Studio creates the project.

Mobile app design Lab. الصفحةτς

Step 6: Edit the code

After successfully creating a file, we can edit the code of the application to show the

output we want. Android Studio creates a fully working flutter application with

minimal functionality. Let us check the structure of the application and then, change

the code to do our task.

The structure of the application and its purpose are as follows?

We have to edit the code in main.dart as mentioned in the above image. We can see

that Android Studio has automatically generated most of the files for our flutter app.

Replace the dart code in the lib/main.dart file with the below code:

Example
// Importing important packages require to connect

// Flutter and Dart

Mobile app design Lab. الصفحةτσ

import 'package:flutter/material.dart';

// Main Function

void main() {

// Giving command to runApp() to run the app.

/* The purpose of the runApp() function is to attach

the given widget to the screen. */

 runApp(const MyApp());

}

// Widget is used to create UI in flutter framework.

/* StatelessWidget is a widget, which does not maintain

any state of the widget. */

/* MyApp extends StatelessWidget and overrides its

build method. */

class MyApp extends StatelessWidget {

 const MyApp({Key? key}) : super(key: key);

// This widget is the root of your application.

 @override

 Widget build(BuildContext context) {

 return MaterialApp(// title of the application

 title: 'Hello World Demo Application',

 // theme of the widget

 theme: ThemeData(

 primarySwatch: Colors.lightGreen,),

 // Inner UI of the application

 home: const MyHomePage(title: 'Home page'),); }}

/* This class is similar to MyApp instead it

returns Scaffold Widget */

class MyHomePage extends StatelessWidget {

 const MyHomePage({Key? key, required this.title}) : super(key: key);

 final String title;

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text(title),

),

 // Sets the content to the

 // center of the application page

 body: const Center(

 // Sets the content of the Application

 child: Text(

 'Welcome to Hello!',)),); }}

Output:

Mobile app design Lab. الصفحةττ

Hello world using Flutter

Hello

import 'package:flutter/material.dart ;'

void main } ()

runApp(const hello;(() {

class hello extends StatelessWidget }

const hello({Key? key}) : super(key: key ;(

@override

Widget build(BuildContext context } (

 return const MaterialApp)

 home: Center(child: Text('Hello World ,(('

 {;(}

Mobile app design Lab. الصفحةτυ

