I0aoHOIDIoDHOmioNDg,

COMPUTER SCIENCE
ugqulall oglc uua

dinglgisill Gaolall
LINIVERSITY OF TECHNOLOBY

Mobile app design

Practical experiments

Third Class, SW branch, Second Semester.
(2024-2025)

By: Teaba Wala aldeen Khairt.

University of technology, Computer science department.
E-Mail: 110053@uotechnology.edu.ig

Second course 3™/ Mobile app design

mailto:110053@uotechnology.edu.iq

,AAOO0A p I TAOTEA 000AET O 60 ATAA

Mobile platform

Required for any path Legends
I_Do!astructures & Algorithms] Mobile Developel' in 2019 |£ersonal Recommendation! I

I_ Basic Terminal Usage I L Possibilities I

L Git - Version Control J L Pick any! I
B == I Choose your path

| HTTP/HTTPs and APIs |
L Learn to Research I
|_ Character Encodings I

Github

| Android | [os] Hybrid
Create your profile. Explore the relevant T
source projects. Make it your hobit g .
to look under the hood for the projects = =
you like Create and contribute to
opensource projects .
not included not included

Android studio

Android Studio is the official integrated development environment (IDE)
for Google's Android operating system, built on JetBrains' IntelliJ
IDEA software and designed specifically for Android development. It is
available for download on Windows, macOS and Linux based operating
systems. It is a replacement for the Eclipse Android Development
Tools (E-ADT) as the primary IDE for native Android application
development. Android Studio is the official IDE (Integrated Development
Environment) for Android app development and it is based on JetBrains’
IntelliJ IDEA software. Android Studio provides many excellent features

that enhance productivity when building Android apps, such as:

¢ A blended environment where one can develop for all Android
devices

e Apply Changes to push code and resource changes to the running
app without restarting the app

o A flexible Gradle-based build system

Qiadal Mobileappdesign Lab.

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/JetBrains
https://en.wikipedia.org/wiki/IntelliJ_IDEA
https://en.wikipedia.org/wiki/IntelliJ_IDEA
https://en.wikipedia.org/wiki/Android_software_development
https://en.wikipedia.org/wiki/Windows
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Eclipse_(software)#Android_Development_Tools
https://en.wikipedia.org/wiki/Eclipse_(software)#Android_Development_Tools

A fast and feature-rich emulator

GitHub and Code template integration to assist you to develop
common app features and import sample code

Extensive testing tools and frameworks

C++ and NDK support

Built-in support for Google Cloud Platform, making it easy to
integrate Google Cloud Messaging and App Engine, and many
more.

Provides GUI tools that simplify the less interesting parts of app
development .

Easy integration with real time database ‘firebase.’

System Requirements :

0 dadall

Microsoft Windows 7/8/10 (32-bit or 64-bit

4 GB RAM minimum, 8 GB RAM recommended (plus 1 GB for
the Android Emulator

2 GB of available disk space minimum, 4 GB recommended (500
MB for IDE plus 1.5 GB for Android SDK and emulator system
image

1280 x 800 minimum screen resolution

Download Android Studio & App Tools - Android Developers

Mobile app design Lab.

https://developer.android.com/studio

= fle Edit View Novigate Code Anshze Refactor Buid Run Jools VCS Window Help . - " e S gl - Angroid Stud - A X
MeetAndroidStudio app 51 main java com | eample meetandoidstudio w opp || [, Google P2 = | B BGALE M EOmLe Q 1
g Android = G = = B ManAdtivyjove [
A X nackage com.e v i
C &
kad ¢
inpor
5 & Ipubiic class hainactivity extends Apptompatactivity
i - it o
¥ com.example meetandsoidstudio [
§ res of protectad|vatd antreate(Bundle savedInstanceState) {
H » D8 draviable superjonCreata(savedInstanceStata);
layout setloftentView(R. Layout.activity_main);
3 actwity, mainam|)
: mip"’aﬂ)
valies
5 " & Gradie Seipts
bulld gradie i/ cject: M
i
5
L
> Taskf tpreparetot1inBuildScriptiodel UP-T0-DATE 5 i
a b
BUTLD FUCCESSFUL in 38 -
i
i
= 1000] B Tffminal DB g logat s Profiler B Database Inspectar Qeventiog 4 Layout Inspector
8 G\ad\pVﬁmin4si?7m;27minuresagn\ 1 11 CRIF UTE8 dspaces W & & 8

O ®

1. Toolbar

One can find the Toolbar section at the top of the android studio. It contains
a wide range of functions including creating a new project which is inside
the File Section, Reformat your code which is inside the Code Section,
Rebuild your project which is inside the Build section, running your android
app which is inside the Run section, and many more. In fact, the Toolbar is

the most important part of the android studio.
2. Editor Window

In this window, the users can create, write, and modify their code. This
editor window changes depending on the current file type. For example, if
you are viewing a layout file(Here activity _main.xml file) then the editor
displays the layout editor. Similarly, if you are writing the backend code
then the editor displays the Java/Kotlin file (Here MainActivity.java file)
depending upon the language you have chosen during the creation of the

project.

T dadall Mobile app design Lab.

3. Tool Window Bar

The tool window bar operates around the outside of the IDE window and
includes the buttons that allow users to expand or collapse individual tool
windows. For example, in the above diagram, we have expanded the Project
and the Build button.

4. Navigation Bar

The navigation bar helps the users to navigate throughout the project and
open files for editing. It gives a more compressed view of the structure
visible in the Project window. For example in the above diagram when we
click on the MainActivity.java file in the editor window section then the
navigation bar shows us where this file present inside the android studio.
(Here app > src > main > java > com > example > meetandroidstudio >
MainActivity). Thus it helps us to navigate and modify the required file

easily.
5. Status Bar

The status bar displays the current status of the project and the IDE itself,

as well as any warnings or messages during the execution of the project .
5. Tool Windows

The tool windows give access to specific tasks like project management,
search, version control, and more. It is strongly related to the Tool Window
Bar section. When you expand the Tool Window Bar then they are visible
inside the Tool Windows section. So the user can also expand and collapse
them .

U Aaiall Mobile app design Lab.

Note: The user can organize the main window to get more screen space by
hiding or moving toolbars and tool windows. The user can also use the

shortcut keyboard to access most IDE features.

Android studio is a very standard IDE and there are many things to explore
inside this tool. We have just discussed its Main Window here. It provides
a lot of powerful things. For example, at the second last (From right) of the
Toolbar section, the user can find a search icon where the users can search

anything inside android studio such as searches for:

* Classes

* Files

« Tool Windows
« Actions

» Settings, etc

So before moving to the project development one should explore all the
features of android studio vividly and this will be very beneficial for them

during the project development .

Generally, when a developer wants to create a new project in the android
studio he/she needs to select a project template which is consisting of
many activities as shown in the below image. (Considering that the
developer developing the android app for phone and tablet). So in this
article, we are going to discuss what do these activities mean in brief.
Here is the list of activities:

1. No Activity

2. Basic Activity

3. Bottom Navigation Activity

4. Empty Activity

5. Fullscreen Activity

6. Google Admob Ads Activity

7. Google Maps Activity

8. Login Activity

9. Master/Detail Flow

10.Navigation Drawer Activity

@isaal Mobileappdesign Lab.

11.Settings Activity
12.Scrolling Activity
13.Tabbed Activity
14.Fragment + ViewModel
15.Native C++

i Create New Droject x

w Select a Project Template

Login Actiity Activity Settings Activity Seraliing Activity Tabled Activity Fragment « Viewhode!

No Activity
Creates & he empty project

Mobible app arcitrcture

Considering the common architectural principles mentioned in the previous
section, each application should have at least two layers:

The Ul layer that displays application data on the screen.

The data layer that contains the business logic of your app and exposes
application data.

You can add an additional layer called the domain layer to simplify and reuse
the interactions between the Ul and data layers.

Domain Layer (optional)

Data Layer

X daiall Mobile app design Lab.

Modern App Architecture

This Modern App Architecture encourages using the following techniques,

among others:

A reactive and layered architecture.

Unidirectional Data Flow (UDF) in all layers of the app.

A Ul layer with state holders to manage the complexity of the UL.
Coroutines and flows.

Dependency injection best practices.
Ul layer

The role of the Ul layer (or presentation layer) is to display the application
data on the screen. Whenever the data changes, either due to user
interaction (such as pressing a button) or external input (such as a network

response), the Ul should update to reflect the changes.
The Ul layer is made up of two things:

Ul elements that render the data on the screen. You build these elements

using Views or Jetpack Compose functions.

State holders (such as ViewModel classes) that hold data, expose it to the

Ul, and handle logic

LI elaermemts

+

State holders
|

MDormraim Layenr (opticomal)

Data Layer

Figure 2. The Ul layer's role in app architecture.

gisaa Mobileappdesign Lab.

https://developer.android.com/jetpack/compose
https://developer.android.com/topic/libraries/architecture/viewmodel

Data layer

The data layer of an app contains the business logic. The business logic is what gives
value to your app—it's made of rules that determine how your app creates, stores, and

changes data.

The data layer is made of repositories that each can contain zero to many data sources.
You should create a repository class for each different type of data you handle in your
app. For example, you might create a MoviesRepository class for data related to movies,

or a PaymentsRepository class for data related to payments.

Ul Layer

Domain Layer (optional)

Data Layer

Repositories

Figure 3. The data layer's role in app architecture.

Repository classes are responsible for the following tasks:

Exposing data to the rest of the app.

Centralizing changes to the data.

Resolving conflicts between multiple data sources.
Abstracting sources of data from the rest of the app.

Containing business logic.

@isial Mobileapp design Lab.

Each data source class should have the responsibility of working with only one source
of data, which can be a file, a network source, or a local database. Data source classes
are the bridge between the application and the system for data operations.

Domain layer

The domain layer is an optional layer that sits between the Ul and data layers.

The domain layer is responsible for encapsulating complex business logic, or simple
business logic that is reused by multiple ViewModels. This layer is optional because
not all apps will have these requirements. You should use it only when needed—for
example, to handle complexity or favor reusability.

Ul Layer

Data Layer

Figure 4. The domain layer's role in app architecture.

Classes in this layer are commonly called use cases or interactors. Each use case should have
responsibility over asingle functionality. For example, your app could have
a GetTimeZoneUseCase class if multiple ViewModels rely on time zones to display the proper

message on the screen.

Benefits of Architecture

Having a good Architecture implemented in your app brings a lot of benefits to the
project and engineering teams:

It improves the maintainability, quality and robustness of the overall app.

It allows the app to scale. More people and more teams can contribute to the same
codebase with minimal code conflicts.

It helps with onboarding. As Architecture brings consistency to your project, new
members of the team can quickly get up to speed and be more efficient in less amount
of time.

It is easier to test. A good Architecture encourages simpler types which are generally
easier to test.

Bugs can be investigated methodically with well defined processes.

P dsiall Mobile app design Lab.

) @ test-app - MainActivity.kt [test-app.app.main]

testapp = app = src a | c e e MainAc o p v

I Project

onStart() {

onRestart() {
)

onResume() {

i local.propert

Visual studio code

To downloaded it use

Documentation for Visual Studio Code

= O t\ hittps://code visualstudio,.com/doc:

T - Y

O by ge|aiiiabl [§ e colalghl- gy [gl oyl @l @) Recol

@ Publications by Car.. 8 (3 Watch OnceUpon.. (%) wwwvibercom &y Ma

ace D QOperating System:

} Visual Studio Code Docs

hon, PHP, Go, .NET). Begin your journey with VS Code with these intro
OVERVIEW

SETUP

Visual Studio Code in Action

xpress();
server.use(bodyParser.json);

server

etMaxListeners
arguments

Y teStrin
() defaultConfiguration

DATA SCIENCE

JoBRUBH GO

solnwy 7

https://code.visualstudio.com/docs/?dv=win64user

A

,AAOOO0A q &I1000A0 Q $AN

WHAT IS FLUTTER?
Flutter allows you to build beautiful native apps on iOS and Android from
a single codebase

* Open-source mobile app SDK

» Developed by Google

 Building high-performance apps for iOS and Android, from a

single codebase

WHY USE FLUTTER?
Flutter makes it easy and fast to build beautiful mobile apps.
* Reactive framework
» Material and Cupertino widgets
* Hot reload
* Dart language and core libs
* Interop with mobile SDKs
* Android Studio/IntelliJ official IDE
* Debugger, Format

PG Aniuall Mobile app design Lab.

Install dart and flutter

] File Edi clion View - - I B [o8

EXTEN [[) Weicome ™ Untitled-1.dart B Extension: Flutter X

Flutter
Dart Code & ¢ D 7865185 | ek
Flutter support and debugger for Visu o Code.

Instafling | {3}

Categories
NGEBUT | Flutte 5 : No— . Programming
Elev E i = Languages

Snippets | Linters
Simpler Flutter ... @ 18 %4 for supp 2 ming language. Debuggers

Formatters
g F5 or the Debug menu

ning from the buitt-in
vscode-runner
i Resources

Documentation Mare Info

blist
Please see the Hutter documentation for U Publish

What is widgets in Flutter

Widgets: Each element on a screen of the Flutter app is a widget. The
view of the screen completely depends upon the choice and sequence
of the widgets used to build the apps. And the structure of the code
of an apps is a tree of widgets.

Category of Widgets:

There are mainly 14 categories in which the flutter widgets are divided.
They are mainly segregated on the basis of the functionality they

provide in a flutter application.

PO dsiall Mobile app design Lab.

1. Accessibility: These are the set of widgets that make a flutter app
more easily accessible.

2. Animation and Motion: These widgets add animation to other
widgets.

3. Assets, Images, and Icons: These widgets take charge of assets
such as display images and show icons.

4. Async: These provide async functionality in the flutter application.

5. Basics: These are the bundle of widgets that are absolutely
necessary for the development of any flutter application.

6. Cupertino: These are the iOS designed widgets.

7. Input: This set of widgets provides input functionality in a flutter
application.

8. Interaction Models: These widgets are here to manage touch
events and route users to different views in the application.

9. Layout: This bundle of widgets helps in placing the other widgets
on the screen as needed.

10. Material Components: This is a set of widgets that mainly
follow material design by Google.

11. Painting and effects: This is the set of widgets that apply
visual changes to their child widgets without changing their layout
or shape.

12. Scrolling: This provides scrollability of to a set of other widgets
that are not scrollable by default.

13. Styling: This deals with the theme, responsiveness, and sizing
of the app.

14. Text: This displays text.

PT indall Mobile app design Lab.

Flutter — State Management

Based on states, widgets

are divided into 2 categories:
1- Stateless Widget
2- Stateful Widget
3- Inherited Widget

The state of an app can very simply be defined as anything that exists in
the memory of the app while the app is running. This includes all the
widgets that maintain the Ul of the app including the buttons, text fonts,
icons, animations, etc. So now as we know what are these states let’s dive
directly into our main topic i.e what are these stateful and stateless

widgets and how do they differ from one another.

State: The State is the information that can be read synchronously when
the widget is built and might change during the lifetime of the widget.

In other words, the state of the widget is the data of the objects that its
properties (parameters) are sustaining at the time of its creation (when the
widget is painted on the screen). The state can also change when it is used
for example when a CheckBox widget is clicked a check appears on the
box.

Stateless Widgets: The widgets whose state can not be altered once they
are built are called stateless widgets. These widgets are immutable once
they are built i.e any amount of change in the variables, icons, buttons, or
retrieving data can not change the state of the app. Below is the basic
structure of a stateless widget. Stateless widget overrides the build()
method and returns a widget. For example, we use Text or the Icon in our

flutter application where the state of the widget does not change in

pL dsiall Mobile app design Lab.

the runtime. It is used when the Ul depends on the information within the

object itself. Other examples can be Text, RaisedButton, IconButtons.

You can run the codes using online
https://api.flutter.dev/flutter/material/Scaffold-

class.html

~ +

runApp(const MyApp()):
b L el dlall Jlay
myapp 34 ol guasiyll 3

void main() {

class MyApp extends StatelessWidget {
t NyApp({super.key});

s i]y ol gl oo 55 oSy
N

Widget build(BuildContext context) {

material designJ sus 34 materialapp .
Jo 0l 3 03 g il Gl ol
Sl

]

}

https://api.flutter.dev/flutter/material/Scaffold-class.html
https://api.flutter.dev/flutter/material/Scaffold-class.html

Starter App

Materialapp(

Scaffola! " 2
ar: AppBar|

title: Textl

The difference between child: and children: property in Fluiter
child takes a single widget
child: Text('foo")
children takes a list of widgets

children: <Widget>[Text('foo'), Text("bar')]

Project 1 Hello word on screen with gray background

import ‘package:flutter/material.dart;'
void main} ()
runApp)
const Material App)
home: Scaffold)
/l background the Page
backgroundColor: Colors.grey,
// center the Page
body: Center)
// this text is the center of Page
child: Text("Hello world”) }

eb address

materialdart » Scaffold class Q, Search AP Docs

A=l Thrary O
ial librar Y CON!
al
CEQ
oEd
-~ PROF
Dialoe EEEEECTITAE. 0 PRrOr
ListTile ippde
D 3cKg
HETG ody
t
\CH n Vi
\Dispatche nE
L I‘. -
! feme ciid
— I WE
\liconThemeD3 i
IList e
. NE
VE
")
ACTION U
eln D
N E
yE | [

Flutter 3.19.2 » 2024-02-28 10;12 » 7482962148 + stabla

To remove banner we can use

debugShowCheckedModeBanner: false,

Project 1 Remove banner

import 'package:flutter/material.dart;'
void main} ()
runApp)
const Material App)
debugShowCheckedModeBanner: false,
home: Scaffold)

// background the Page
backgroundColor: Colors.grey,

// center the Page
body: Center)

// this text is the center of Page

child: Text("Hello world"™)

[SJAREN-R| Mobile app design Lab.

import

" void mair

Hello world

G Aadall

Mobile app design Lab.

,AAOOOA o 3AOAAT ATITO Q 4Ag0

Material App class

Material App is a predefined class or widget in a flutter. It is likely the
main or core component of a flutter app. The MaterialApp widget
provides a wrapper around other Material Widgets. We can access all the
other components and widgets provided by Flutter SDK. Text
widget, DropdownButton widget, AppBar widget, Scaffold widget, List

View widget, StatelessWidget, StatefulWidget, IconButton widget,

TextField widget, Padding widget, ThemeData widget, etc. are the
widgets that can be accessed using Material App class. There are many
more widgets that are accessed using Material App class. Using this
widget, we can make an attractive app that follows the Material Design

guidelines.

The Material App configures the top-level Navigator to search for routes in

the following order:

1. For the / route, the home property, if non-null, is used.

2. Otherwise, the routes table is used, if it has an entry for the route.

3. Otherwise, onGenerateRoute is called, if provided. It should return

a non-null value for any valid route not handled by home and routes.

4. Finally if all else fails onUnknownRoute is called.
If a Navigator is created, at least one of these options must handle
the / route, since it is used when an invalid initialRoute is specified on
startup (e.g. by another application launching this one with an intent on

Android; see dart:ui.PlatformDispatcher.defaultRouteName).

This widget also configures the observer of the top-level Navigator (if any)

to perform Hero animations.

Gp dniall Mobile app design Lab.

https://www.geeksforgeeks.org/flutter-dropdownbutton-widget/
https://www.geeksforgeeks.org/flutter-appbar-widget/
https://www.geeksforgeeks.org/scaffold-class-in-flutter-with-examples/
https://www.geeksforgeeks.org/listview-class-in-flutter/
https://www.geeksforgeeks.org/listview-class-in-flutter/
https://www.geeksforgeeks.org/flutter-stateful-vs-stateless-widgets/
https://www.geeksforgeeks.org/difference-between-stateless-and-stateful-widget-in-flutter/
https://www.geeksforgeeks.org/flutter-iconbutton-widget/
https://api.flutter.dev/flutter/material/MaterialApp-class.html
https://api.flutter.dev/flutter/widgets/Navigator-class.html
https://api.flutter.dev/flutter/material/MaterialApp/home.html
https://api.flutter.dev/flutter/material/MaterialApp/routes.html
https://api.flutter.dev/flutter/material/MaterialApp/onGenerateRoute.html
https://api.flutter.dev/flutter/material/MaterialApp/home.html
https://api.flutter.dev/flutter/material/MaterialApp/routes.html
https://api.flutter.dev/flutter/material/MaterialApp/onUnknownRoute.html
https://api.flutter.dev/flutter/widgets/Navigator-class.html
https://api.flutter.dev/flutter/material/MaterialApp/initialRoute.html
https://api.flutter.dev/flutter/dart-ui/PlatformDispatcher/defaultRouteName.html
https://api.flutter.dev/flutter/widgets/Navigator-class.html
https://api.flutter.dev/flutter/widgets/Hero-class.html

This example shows how to create a MaterialApp that disables the
"debug" banner with a home route that will be displayed when the app is
launched.

Material App(
home: Scaffold(
appBar: AppBar(
title: const Text('Home"),),),

debugShowCheckedModeBanner: false,)

Scaffold
It is a class in flutter which provides many widgets or we can

say APIs like Drawer, Snack-Bar, Bottom-Navigation-Bar, Floating-
Action-Button, App-Bar, etc. Flutter Scaffold is used to display a basic
material design layout that contains application bar, body, bottom
navigation bar, bottom sheet, drawer, floating action button, persistent
footer buttons, etc. . The class Hierarchy is as follows:

Object

l, Diagnosticable
l, Diagnosticable Tree
l, Widget
l, StateFul Widget

l, Scaffold

GG dniall Mobile app design Lab.

https://www.geeksforgeeks.org/flutter-an-introduction-to-the-open-source-sdk-by-google/
https://www.geeksforgeeks.org/introduction-to-apis/

Widget build(BuildContext context(

b

return Scaffold)
appBar: AppBar)

title: const Text('Hello"),),

Colors class
Color and ColorSwatch constants which represent Material design's color

palette.

Project 2 : Screen clocr and tex

AaLA) dialiia b aa) g el aua g
void main} ()
runApp)
const Material App)
debugShowCheckedModeBanner: false,
home: Scaffold)
backgroundColor: Colors.grey,
body: Center)

child: Text("hello world 1"),),),),)}

GO Aaduall Mobile app design Lab.

https://api.flutter.dev/flutter/dart-ui/Color-class.html
https://api.flutter.dev/flutter/painting/ColorSwatch-class.html
https://material.io/design/color/
https://material.io/design/color/

AELA) Ciuaiia A Ly gas (o gl A i g
void main} ()
runApp)
const Material App)
debugShowCheckedModeBanner: false,
home: Scaffold)
backgroundColor: Colors.grey,
body: Center)
child: Column)
mainAxisAlignment: MainAxisAlignment.center,

crossAxisAlignment: CrossAxisAlignment.center,

GT Andall Mobile app design Lab.

children] :
Text("hello world 1,("
Text("hello world 2,("

Text("hello world 3,[("

AELA) Ciuaiia A Ly gas (o gl EB pa g
void main} ()
runApp)
const Material App)
debugShowCheckedModeBanner: false,
home: Scaffold)
backgroundColor: Colors.grey,

body: Center)

[QUEEN Mobile app design Lab.

child: Column)
children] :
Text("hello world 1,("

Text("hello world 2,("

Text("hello world 3,("

iy 50 5_a8a £ 8 Lagiyy (815 AdLAD cluaiia (A L gas (o gl A pua g
void main} ()
runApp)
const Material App)
debugShowCheckedModeBanner: false,
home: Scaffold)
backgroundColor: Colors.grey,

body: Center)

QY Asiall Mobile app design Lab.

child: Column)
mainAxisAlignment: MainAxisAlignment.center,
crossAxisAlignment: CrossAxisAlignment.center,
children] :
Text("hello world 1,("
SizedBox)

height: 50,

Text("hello world 2,("
SizedBox)

height: 50,(

Text("helloworld 3 ("

QX Asiall Mobile app design Lab.

,AROOOA T #TT0ATA00 Q)ATTO

Container class in Flutter

Container class in flutter is a convenience widget that combines common
painting, positioning, and sizing of widgets. A Container class can be used
to store one or more widgets and position them on the screen according
to our convenience. Basically, a container is like a box to store contents.
A basic container element that stores a widget has a margin, which
separates the present container from other contents. The total container
can be given aborder of different shapes, for example, rounded
rectangles, etc. A container surrounds its child with padding and then
applies additional constraints to the padded extent (incorporating the

width and height as constraints, if either is non-null).

Margin

Padding

Content

QY Aniuall Mobile app design Lab.

Project 3 Circle container in the middle

import 'package:flutter/material.dart’;
void main() {
runApp(

Material App(
debugShowCheckedModeBanner: false,
home: Scaffold(

backgroundColor: Colors.grey,
body: Center(
child: Container(
height: 200,
width: 200,
decoration:

BoxDecoration(color: Colors.blue, shape: BoxShape.circle),

[QAREN-R] Mobile app design Lab.

Another example

Project 3 Container with text in it

import 'package:flutter/material.dart’;

void main() {
runApp(

MaterialApp(
debugShowCheckedModeBanner: false,
home: Scaffold(

backgroundColor: Colors.grey,
body: Center(
child: Container(
height: 200,
width: 200,
decoration:

BoxDecoration(color: Colors.blue, shape:
BoxShape.circle),

OTl 4aduall Mobile app design Lab.

)>
)>
)>
)>
)

child: Center(child: Text("hello world 1")),

Another example

Project 3 Container with two vertical text in it

import 'package:flutter/material.dart’;

void main() {
runApp (
MaterialApp(
debugShowCheckedModeBanner: false,
home: Scaffold(

0p 4xdall

Mobile app design Lab.

backgroundColor: Colors.grey,
body: Center(
child: Container(
height: 200,
width: 200,
decoration:

BoxDecoration(color: Colors.blue, shape:
BoxShape.circle),

child: Column(
mainAxisAlignment: MainAxisAlignment.center,

crossAxisAlignment:
CrossAxisAlignment.center,

children: [
Text("Hello world 1"),
Text("Hello world 2"),
1,
))s
)>
)>
)>
)s

main() {

Decoration
.lightBlue, shapa: BoxShape.circle),

0G 4aiall Mobile app design Lab.

Project 3 Container with soft edges

void main() {
runApp (

MaterialApp(
debugShowCheckedModeBanner: false,
home: Scaffold(

backgroundColor: Colors.grey,
body: Center(
child: Container(
height: 200,
width: 200,
decoration: BoxDecoration(

color: Colors.blue, borderRadius:
BorderRadius.circular(20)),

))s
)>
)>
)

Project 3 Container with alarm Icon

void main() {
runApp(

MaterialApp(
debugShowCheckedModeBanner: false,
home: Scaffold(

backgroundColor: Colors.grey,
body: Center(
child: Icon(
Icons.alarm,

color: Colors.yellow,

00 daiall Mobile app design Lab.

size: 100,

)5

ter/material.dart’;

P B

)
>

B colors.yellow,

"

o o a

DEBUG CONSOLE

0T 4aiall Mobile app design Lab.

_AAOO0A v _EFA AUAIA

Lifecycle Methods

* onCreate(Bundle savedInstanceState): create views, (re)
initialize state

» onStart(): Restore transient state; one-time processing

* onResume(): Session-specific processing, restore transient
state

* onPause(): Save persistent data, release resources, quickly!
Last method guaranteed to be called.

» onStop(): Called optionally by runtime

* onDestroy(): If finish() is called, or object is being temporarily
destroyed. Distinguish via isFinishing().

Lifecycle Methods

* onCreate(Bundle savedInstanceState): create views, (re)
initialize state

» onStart(): Restore transient state; one-time processing

* onResume(): Session-specific processing, restore transient
state

» onPause(): Save persistent data, release resources, quickly!
Last method guaranteed to be called.

* onStop(): Called optionally by runtime

» onDestroy(): If finish() is called, or object is being temporarily
destroyed. Distinguish via isFinishing().

Life cycle functions

OU daiall Mobile app design Lab.

LR MainActivity.kt

class MainActivity : AppCompatActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)

Toast.makeText(this@MainActivity, "this is the on create ",Toast.LENGTH_SHORT).show()

}

public override fun onStart() {
Toast.makeText(this@MainActivity, "this is the on start ", Toast.LENGTH_SHORT).show()
super.onStart()

public override fun onRestart() {
super.onRestart()
Toast.makeText(this@MainActivity, "this is the on restart ",Toast.LENGTH_SHORT).shou()

public override fun onResume() {
Toast.makeText(this@MainActivity, "this is the on resume ",Toast,LENGTH_SHORT).show()

super . onResume()

public override fun onStop() {
Toast.makeText (this@MainActivity, "this is the on stop ",Toast.LENGTH_SHORT).show()

super.onStop()

public override fun onDestroy() {
Toast.makeText(this@MainActivity, "this is the on destroy ", Toast.LENGTH_SHORT).show()

super.onDestroy()

0@ daiall Mobile app design Lab.

, AAOOOA @ 3AOTTIET

Scrolling

file.dart

body:SingleChildScrollView(
scrollDirection: Axis.vertical,
physics: BouncingScrollPhysics(),
child:
Column()
)

S —

Main screen

Create device ~ ?

¢ MainAc : . ' Emulator: [, Pixel mé

> o com.exam ‘ . \ VoD Daom@d !

S i——\

JeBeuenwy 9omeqa 51

onStart() {
test-app

onRestart() {
xml

res

v @ Gradle Scripts

i gradle-wrapper.
proguard-rules.| onResune() {
i aradle.propertie (
settings.gradle

i local.properties

BUTTON

so1@INW3

O daiall Mobile app design Lab.

import 'package:flutter/material.dart';
mainC) A
runApp (MyApp () ;

1ss MyApp xtends StatelessWidget o
@override
Widget build(BuildContext context) o
return MaterialApp(
home: Scaffold(
body: SafeArea(
child: Center
child: Column(
mainAxisAlignment: MainAxisAlignment.start,
crossAxisAlignment: CrossAxisAlignment.center,
children: [
SizedBox(
height:
25
Container(
alignment: Alignment.centerlLeft,
padding: const EdgeInsets.only(left: , bottom: 18),
child: Text(
('Login to your account'),
style: TextStyle(
fontSize 20,
Colors.grey,
fontWeight: FontWeight.bold),
J.
X5
Container(
padding: const EdgeInsets.only(left:
decoration: BoxDecoration(
coler: Celers.white,
borderRadius: BorderRadius.circular(s),
border: Border.all(color: Colors.grey)),
width: ,
height: -
child: Text(
('write your email or username'),
style: TextStyle(
fontSize:
color: Colors.grey,
d.
p s
>)
Padding(padding: const EdgeInsets.only(top: b b
Container(
padding: nst EdgeInsets.only(left:
decoration: BoxDecoration(
color: Colors.white,
borderRadius: BorderRadius.circular(s),
border: Border.all(color: Colors.grey)),
width: v
height: -
child: Text(
C'write your password'),
style: TextStyle(
fontSize: g
color: Colors.grey,
d.
P
2
Container(
alignment: Alignment.centerLeft,
width: -
height: -
child: Text(
(' forget password?'),
style: TextStyle(color: Colors.grey, fontSize:).
),
Padding(padding: censt EdgelInsets.only(top: 22,
Container(
padding: const EdgelInsets.only(top: 10),
decoration: BoxDecoration(
color: Colors.blueAccent,
borderRadiuvus: BerderRadius.circular(8)),
width: 7
height: »
child: Text(
C'Login'),
textAlign: TextAlign.center,
style: TextStyle(
fontSize: 7
color: Colors.white,
fontWeight: FontWeight.bold,

Mobile app design Lab.

LeacginTrms T WOOLINFE =accccoLart

[wwirrite yvouwur srrmmaail or ussesrmarvae l

[wwrrnite yvouur o asswvwvora]

forget passwora @

0w dadall Mobile app design Lab.

, AAOOOA x

1DDATALD

Create a New Flutter Project

T Aadeall Mobile app design Lab.

Step 1: Open the Android Studio IDE and select Start a new Flutter project.

Note: if you like to create a flutter project using terminal use the below command
and jump right into step 6

$ flutter create flutter_app

replace the ‘ flutter_app ¢ with your project name

avs BEIEN Edit VMiew Navigate Code Analyze Refactor Build Run Tools WVCS Window |

Z | New > MNew Project... -
=
S [¥ Profile or debug APK Import Project... ends
g Open Recent > Project from Wersion Control... ¢
;' Close Project New Module... this
A~ Settings... Ctrl+Alt+S Import Module...
5 B Project Structure... Ctrl+Al+Shift+5S Import Sample...
g Other Settings » (€ Java Class

Step 2: Select the Flutter Application as the project type. Then click Next.

s Croate Mow Flutier Project

New Flutter Project

Flutter Plugin Flutter Package Flutter Meodule

Step 3: Verify the Flutter SDK path specifies the SDK’s location (select Install
SDK... if the text field is blank).
Step 4: Enter a project name (for example, myapp). Then click Next.

i Create New Flutter Project >

New Flutter Application

Project name

flutter_appl

Flutter SDK path

Cflutter b 2 Install SPK.

Project location

CAUsers\msaunAndroidStudioProjects

Description
A new Flutter application.

[7] Create project gffline

provios | (TSI | covce

Note:

1. Project name: flutter_app

2. Flutter SDK Path: <path-to-flutter-sdk>

3. Project Location: <path-to-project-folder>

4. Description: Flutter based simple application

Step 5: Click Finish and wait till Android Studio creates the project.

TP daduall Mobile app design Lab.

s Create New Flutter Project

New Flutter Application

Set the package name

Applications and plugins need to generate platform-specific code

Package name

| com.example.flutterap|

AndroidX
Use androidx.* artifacts

Platform channel language
Include Kotlin support for Android code
Include Swift support for iOS code

Step 6: Edit the code

After successfully creating a file, we can edit the code of the application to show the
output we want. Android Studio creates a fully working flutter application with
minimal functionality. Let us check the structure of the application and then, change
the code to do our task.

The structure of the application and its purpose are as follows?

Fasjonct - e = o= | —_

i = helao sapp

- B et ool

F e

= P archodd [heeello app aasdeoddf

= it

| - o= 5
=]

|
L—;'-. s s]

==

W hesnurcehinager 'mﬂ. |

r: st Faesil s
= giEgemarie=

Er - rmerimedatn

5?: = packooges

'=' ' bholo_apopirnl
= b bock
ol -—;_::I-LII:II:-.:IE": ol
o e LE 5% [o
=

== = I Exstyrmnal Librarss
2 =l - -
=™ o S rntckurs ancd Coeholeey
="

Targset Files

We have to edit the code in main.dart as mentioned in the above image. We can see
that Android Studio has automatically generated most of the files for our flutter app.
Replace the dart code in the lib/main.dart file with the below code:

Example
/l Importing important packages require to connect
/I Flutter and Dart

TG Aaiuall Mobile app design Lab.

import 'package:flutter/material.dart’;

// Main Function
void main() {
I/l Giving command to runApp() to run the app.

[* The purpose of the runApp() function is to attach
the given widget to the screen. */
runApp(const MyApp());

// Widget is used to create Ul in flutter framework.

[* StatelessWidget is a widget, which does not maintain
any state of the widget. */

I* MyApp extends StatelessWidget and overrides its
build method. */
class MyApp extends StatelessWidget {

const MyApp({Key? key}) : super(key: key);

/I This widget is the root of your application.
@override
Widget build(BuildContext context) {
return Material App(// title of the application
title: 'Hello World Demo Application’,
[/l theme of the widget
theme: ThemeData(
primarySwatch: Colors.lightGreen,),
/I Inner Ul of the application
home: const MyHomePage(title: 'Home page’),); }}

/* This class is similar to MyApp instead it

returns Scaffold Widget */

class MyHomePage extends StatelessWidget {
const MyHomePage({Key? key, required this.title}) : super(key: key);
final String title;

@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text(title),
)
/I Sets the content to the
/I center of the application page
body: const Center(
/I Sets the content of the Application
child: Text(
‘Welcome to Hello!, 1)),); }}

Output:

TO 4adall Mobile app design Lab.

Hello world using Flutter
Hello

import 'package:flutter/material.dart;'

void main} ()
runApp(const hello;(() {
class hello extends StatelessWidget}
const hello({Key? key}) : super(key: key;(
@override
Widget build(BuildContext context} (
return const Material App)
home: Center(child: Text("Hello World,(('

LG

TT 4Aadall Mobile app design Lab.

W AndridStudie e Edt View Nevigate Cede

Anehze fetenior

Eulld’ Funy

Tagly

VS Windew Help

Neigh

Talk =

Rotalidn

TU daiall

Mobile app design Lab.

