

University of Technology- Computer Science

Material: Microprocessors

Stage: Second Class

Year: 2024-2025

Semester :2nd course

Assist lecturer Mohammed Thamer

Lect1 & 2: Load & Move Instructions with Practical Examples

1. Introduction to Load & Move Instructions

The MOV instruction is the primary instruction used for data transfer in 8086. It moves data

between registers, memory, or I/O ports without altering the value.

MOV Instruction Format:

MOV destination, source

• Transfers source operand to destination operand.

• Does not modify any flag registers.

Rules for MOV Instruction:

• Both operands cannot be memory locations.

• Operands must be of the same size (8-bit or 16-bit).
• Immediate values cannot be moved directly to segment registers (e.g., MOV DS,

1234H is invalid).

2. Register Addressing and Examples

Example 1: Moving Data Between Registers

MOV AX, BX ; Copy the value from BX to AX

MOV CL, DL ; Copy the value from DL to CL

MOV DX, 1234H ; Load immediate value into DX

Example 2: Moving Data from Memory to Register

MOV AX, [2000H] ; Move data from memory location 2000H to AX

MOV [3000H], BX ; Store BX value into memory location 3000H

Example 3: Moving Immediate Value to Register

MOV CX, 0F5H ; Load CX with immediate value F5H

MOV AX, 45H ; Load AX with immediate value 45H

4. Direct vs Indirect Addressing

• Direct Addressing: Uses a specific memory address in the instruction.

• Indirect Addressing: Uses a register to hold the address pointing to memory.

Example 4: Direct Addressing

MOV AL,[5000H] ;Load value from memory address 5000H into AL

Example 5: Indirect Addressing

MOV SI, 5000H ; Load address into SI

MOV AL, [SI] ; Load value from memory location pointed by SI

5. Extended Examples and Practical Applications

Example 6: Copying Data Between Registers

MOV AX, 1234H

MOV BX, AX ; Copy AX to BX

Example 7: Using Immediate Value for Data Transfer

MOV DX, 0A1H ; Load DX with immediate value

MOV CX, 0B2H ; Load CX with immediate value

Example 8: Moving Data Between Memory Locations Using Indirect Addressing

MOV SI, 2000H

MOV DI, 3000H

MOV AX, [SI] ; Load value from memory location 2000H

MOV [DI], AX ; Store the loaded value at memory location 3000H

6. Exercises and Solutions

Question 1: Moving Data Between Registers

Q: Write a program to move data from AX to BX and from CX to DX.

Solution:

MOV BX, AX ; Move data from AX to BX

MOV DX, CX ; Move data from CX to DX

Question 2: Using Immediate Values

Q: Load 0A1H into DX and 0B2H into CX.

Solution:

MOV DX, 0A1H ; Load DX with immediate value

MOV CX, 0B2H ; Load CX with immediate value

Question 3: Direct vs Indirect Addressing

Q: Move the value stored at memory address 5000H into AL using direct addressing, and then

use indirect addressing to load the same value.

Solution:

MOV AL, [5000H] ; Direct addressing

MOV SI, 5000H ; Load address into SI

MOV AL, [SI] ; Indirect addressing

Question 4: Moving Data Between Memory Locations

Q: Write a program to copy a block of data from one memory location to another.

Solution:

MOV SI, 2000H ; Source memory location

MOV DI, 3000H ; Destination memory location

MOV AX, [SI] ; Load data from source

MOV [DI], AX ; Store data at destination

Lect3: Arithmetic Instructions (ADD, SUB, MUL, DIV)

1. Introduction to Arithmetic Instructions

Arithmetic instructions allow the processor to perform addition, subtraction, multiplication, and

division.

Common Arithmetic Instructions:

Instruction Description

ADD dest, src Adds src to dest, result stored in dest.

SUB dest, src Subtracts src from dest, result stored in dest.

MUL src Multiplies AX by src (for 16-bit), or AL by src (for 8-bit).

IMUL src Signed multiplication.

DIV src Unsigned division. Quotient in AX, remainder in DX (for 16-bit).

IDIV src Signed division.

2. Arithmetic Operations and Examples

Example 1: Addition of Two Registers

MOV AX, 05H ; Load AX with 5

MOV BX, 03H ; Load BX with 3

ADD AX, BX ; AX = AX + BX (AX = 5 + 3 = 8)

Example 2: Subtraction of Two Registers

MOV AX, 09H ; Load AX with 9

MOV BX, 04H ; Load BX with 4

SUB AX, BX ; AX = AX - BX (AX = 9 - 4 = 5)

Example 3: Multiplication of Two Numbers

MOV AL, 04H ; Load AL with 4

MOV BL, 02H ; Load BL with 2

MUL BL ; AL = AL * BL (AL = 4 * 2 = 8)

Example 4: Division of Two Numbers

MOV AX, 10H ; Load AX with 16

MOV BL, 04H ; Load BL with 4

DIV BL ; AX = AX / BL (Quotient in AL, Remainder in AH)

4. Exercises and Solutions

Question 1: Perform Addition of Immediate Values

Q: Write a program to add 0AH and 05H and store the result in AX.

Solution:

MOV AX, 0AH ; Load AX with A (10 in decimal)

ADD AX, 05H ; AX = AX + 5

Question 2: Subtraction Using Registers

Q: Subtract 07H from 15H and store the result in BX.

Solution:

MOV BX, 15H ; Load BX with 15

SUB BX, 07H ; BX = BX – 7

Question 3: Multiply Two Numbers Using MUL

Q: Multiply 03H and 05H, store the result in AX.

Solution:

MOV AL, 03H ; Load AL with 3

MOV BL, 05H ; Load BL with 5

MUL BL ; AL = AL * BL

Question 4: Division of Numbers

Q: Divide 20H by 04H, store the quotient in AL and remainder in AH.

Solution:

MOV AX, 20H ; Load AX with 32 (decimal)

MOV BL, 04H ; Load BL with 4

DIV BL ; Quotient in AL, Remainder in AH

Lect4: Examples of Arithmetic Instructions & Jump Operations

1. Introduction to Jump Instructions

Jump instructions allow control flow changes in assembly programming. These instructions alter the execution

sequence based on specific conditions.

Types of Jump Instructions:

Instruction Description
JMP label Unconditional jump to a specified label.
JZ label Jump if the Zero flag (ZF) is set.
JNZ label Jump if the Zero flag (ZF) is not set.
JE label Jump if Equal (same as JZ).
JNE label Jump if Not Equal (same as JNZ).
JL label Jump if Less (signed comparison).
JG label Jump if Greater (signed comparison).

2. Arithmetic Operations and Jumps with Examples

Example 1: Addition and Conditional Jump

MOV AX, 5 ; Load AX with 5

MOV BX, 3 ; Load BX with 3

ADD AX, BX ; AX = AX + BX

CMP AX, 10 ; Compare AX with 10

JNZ NOT_EQUAL ; Jump if AX is not equal to 10

Example 2: Subtraction and Jump if Zero

MOV AX, 10 ; Load AX with 10

MOV BX, 10 ; Load BX with 10

SUB AX, BX ; AX = AX - BX (AX = 10 - 10 = 0)

JZ EQUAL ; Jump to EQUAL if AX is zero

Example 3: Looping Using Jumps

MOV CX, 5 ; Counter

LOOP_START:

DEC CX ; Decrease CX by 1

JNZ LOOP_START ; Repeat loop if CX is not zero

3. Exercises and Solutions

Question 1: Compare Two Numbers and Jump

Q: Write a program to compare two values and jump to a label if they are equal.

Solution:

MOV AX, 10 ; Load AX with 10

MOV BX, 10 ; Load BX with 10

CMP AX, BX ; Compare AX with BX

JE EQUAL ; Jump if AX == BX

Question 2: Loop Execution Until Zero

Q: Write a program to decrement a counter and loop until it reaches zero.

Solution:

MOV CX, 5 ; Initialize loop counter

LOOP_LABEL:

DEC CX ; Decrement CX

JNZ LOOP_LABEL ; Repeat if CX is not zero

Question 3: Conditional Jump Based on Addition Result

Q: Add 05H and 07H and jump if the result is greater than 0AH.

Solution:

MOV AL, 05H

ADD AL, 07H

CMP AL, 0AH

JG GREATER

Lect5: Logical Instructions, Shift & Rotate Operations

1. Logical Instructions Overview

Logical operations allow manipulation of individual bits within a byte or word.

Common Logical Instructions:

Instruction Description
AND dest, src Performs bitwise AND between dest and src.

OR dest, src Performs bitwise OR between dest and src.

XOR dest, src Performs bitwise XOR (exclusive OR) between dest and src.

NOT dest Inverts all bits in dest.

SHL dest, n Shifts bits of dest left by n places.

SHR dest, n Shifts bits of dest right by n places.
ROL dest, n Rotates bits of dest left by n places.

ROR dest, n Rotates bits of dest right by n places.

3. Logical Operations and Examples

Example 1: Bitwise AND Operation

MOV AL, 0F0H ; Load AL with 11110000B

AND AL, 0F5H ; AL = AL AND 11110101B

Example 2: Bitwise OR Operation

MOV AL, 0A0H ; Load AL with 10100000B

OR AL, 05H ; AL = AL OR 00000101B

Example 3: Logical Shift Left

MOV AL, 05H ; Load AL with 00000101B

SHL AL, 1 ; AL = AL shifted left by 1 (00001010B)

Lect6: Examples of Logical Instructions

1. Practical Applications and Examples

Example 4: Bitwise XOR Operation

MOV AL, 0FFH ; Load AL with 11111111B

XOR AL, 0F0H ; AL = AL XOR 11110000B

Example 5: Logical NOT Operation

MOV AL, 0F0H ; Load AL with 11110000B

NOT AL ; AL = NOT AL (00001111B)

Example 6: Rotate Left Operation

MOV AL, 85H ; Load AL with 10000101B

ROL AL, 1 ; Rotate left by 1 (00001011B)

2. Exercises and Solutions

Question 1: Bitwise AND Operation

Q: Perform a bitwise AND operation between 0AAH and 0F0H.

Solution:

MOV AL, 0AAH ; Load AL with 10101010B

AND AL, 0F0H ; AL = AL AND 11110000B

Question 2: Shift Left Operation

Q: Shift the value 3CH left by 2 bits and store the result in AL.

Solution:

MOV AL, 3CH ; Load AL with 00111100B

SHL AL, 2 ; Shift AL left by 2 (11110000B)

Question 3: Rotate Right Operation

Q: Rotate the value 0C3H right by 1 bit.

Solution:

MOV AL, 0C3H ; Load AL with 11000011B

ROR AL, 1 ; Rotate right by 1 (01100001B)

Lect7: The Addressing Mode in 8-bit Register

1. Addressing Modes Overview

Addressing modes determine how an instruction accesses operands in memory or registers.

Types of Addressing Modes in 8-bit Registers:

Addressing Mode Description

Immediate Operand is specified directly in the instruction.

Register Operand is in a register.

Direct Address of the operand is specified in the instruction.

Indirect Register holds the address of the operand.

Indexed Uses an index register (SI or DI) to determine the operand’s address.

2. Addressing Mode Examples

Example 1: Immediate Addressing Mode

MOV AL, 0AH ; Load AL with immediate value 0AH

Example 2: Register Addressing Mode

MOV BL, AL ; Copy the value from AL to BL

Example 3: Direct Addressing Mode

MOV AL, [2000H] ; Load AL from memory location 2000H

Example 4: Indirect Addressing Mode

MOV SI, 3000H ; Load address 3000H into SI

MOV AL, [SI] ; Load AL with value from memory location 3000H

Example 5: Indexed Addressing Mode

MOV SI, 2000H ; Base address

MOV AL, [SI+5] ; Load AL with value at address 2005H

4. Exercises and Solutions

Question 1: Immediate and Register Addressing

Q: Load 05H into AL and copy it to BL.

Solution:

MOV AL, 05H ; Load AL with 05H

MOV BL, AL ; Copy AL to BL

Question 2: Direct Addressing Mode

Q: Store the value 0AH at memory address 3000H.

Solution:

MOV AL, 0AH

MOV [3000H], AL ; Store AL value at memory 3000H

Question 3: Indirect Addressing Mode

Q: Load the value from memory location 4000H into AL using SI.

Solution:

MOV SI, 4000H

MOV AL, [SI]

Lect8: Examples of Direct and Immediate Register Addressing

1. Addressing Mode Examples

Example 1: Immediate Addressing Mode

MOV AL, 0AH ; Load AL with immediate value 0AH

MOV BX, 1234H ; Load BX with immediate value 1234H

Example 2: Direct Addressing Mode

MOV AL, [2000H] ; Load AL from memory location 2000H

MOV [3000H], AL ; Store AL value at memory location 3000H

Example 3: Register Addressing Mode

MOV DL, AL ; Copy AL to DL

MOV CX, DX ; Copy DX to CX

2. Exercises and Solutions

Question 1: Direct and Immediate Addressing

Q: Load 0FH into AL and store it in memory location 4000H.

Solution:

MOV AL, 0FH ; Load AL with immediate value

MOV [4000H], AL ; Store AL value at memory 4000H

Question 2: Register to Register Transfer

Q: Move the value in AX to BX, then move it to DX.

Solution:

MOV BX, AX ; Copy AX to BX

MOV DX, BX ; Copy BX to DX

Question 3: Memory to Register Transfer

Q: Load a value from memory 5000H into AL, then move it to CL.

Solution:

MOV AL, [5000H] ; Load value from memory 5000H into AL

MOV CL, AL ; Move AL value to CL

Lect9: The Addressing Mode in 16-bit Register

1. Addressing Modes Overview

Addressing modes determine how an instruction accesses operands in memory or registers.

Types of Addressing Modes in 16-bit Registers:

Addressing Mode Description

Immediate Operand is specified directly in the instruction.

Register Operand is in a register.

Direct Address of the operand is specified in the instruction.

Indirect Register holds the address of the operand.

Base Uses a base register (BX or BP) to access memory.

Index Uses an index register (SI or DI) to determine the operand’s address.

Base-Index Combines base and index registers for memory addressing.

2. Addressing Mode Examples

Example 1: Immediate Addressing Mode

MOV AX, 1234H ; Load AX with immediate value 1234H

Example 2: Register Addressing Mode

MOV DX, AX ; Copy AX to DX

Example 3: Direct Addressing Mode

MOV AX, [2000H] ; Load AX from memory location 2000H

Example 4: Indirect Addressing Mode

MOV BX, 3000H ; Load address 3000H into BX

MOV AX, [BX] ; Load AX with value from memory location 3000H

Example 5: Base-Index Addressing Mode

MOV BX, 2000H ; Base address

MOV SI, 10H ; Offset

MOV AX, [BX+SI] ; Load AX with value at address (2000H + 10H)

3. Exercises and Solutions

Question 1: Immediate and Register Addressing

Q: Load 1234H into AX and move it to BX.

Solution:

MOV AX, 1234H ; Load AX with immediate value

MOV BX, AX ; Copy AX to BX

Question 2: Direct Addressing Mode

Q: Load a value from memory 4000H into AX.

Solution:

MOV AX, [4000H] ; Load AX from memory 4000H

Question 3: Base-Index Addressing Mode

Q: Load a value from [3000H + SI] into AX, where SI = 10H.

Solution:

MOV BX, 3000H

MOV SI, 10H

MOV AX, [BX+SI]

Lect10: Examples of Direct, Indirect, Base, Index, and Base-Index

Register Addressing

1. Addressing Modes in Practice

Addressing Mode Description

Direct Operand is stored at a specific memory address.

Indirect Operand is stored at a memory address pointed to by a register.

Base Uses a base register (BX, BP) for memory access.

Index Uses an index register (SI, DI) for offset memory access.

Base-Index Combines base and index registers for complex memory access.

2. Addressing Mode Examples

Example 1: Direct Addressing Mode

MOV AX, [2000H] ; Load AX from memory location 2000H

Example 2: Indirect Addressing Mode

MOV BX, 3000H ; Load address 3000H into BX

MOV AX, [BX] ; Load AX with value from memory location 3000H

Example 3: Base-Index Addressing Mode

MOV BX, 2000H ; Base address

MOV SI, 10H ; Offset

MOV AX, [BX+SI] ; Load AX with value at address (2000H + 10H)

3. Exercises and Solutions

Question 1: Direct Addressing Mode

Q: Load a value from memory 5000H into AX.

Solution:

MOV AX, [5000H] ; Load AX from memory 5000H

Question 2: Base-Index Addressing Mode

Q: Load a value from [3000H + SI] into AX, where SI = 10H.

Solution:

MOV BX, 3000H

MOV SI, 10H

MOV AX, [BX+SI]

Lect11: The Addressing Mode in 32-bit Register

1. Addressing Modes in 32-bit Registers

32-bit addressing modes in the 8086 microprocessor provide more flexibility and allow

efficient memory access. The common addressing modes are:

Addressing Mode Description

Direct Addressing The operand is stored at a specific memory address mentioned in the

instruction.

Register Addressing The operand is stored in a 32-bit register.

Indirect Addressing A register contains the memory address of the operand.

Base Addressing A base register (EBX, EBP) holds the base memory address.

Index Addressing An index register (ESI, EDI) is used for offset memory access.

Base-Index

Addressing

Combines a base register and an index register for complex memory

operations.

2. Addressing Mode Examples in 32-bit Registers

Example 1: Direct Addressing Mode

MOV EAX, [2000H] ; Load EAX from memory location 2000H

Example 2: Register Addressing Mode

MOV ECX, EAX ; Copy value from EAX to ECX

Example 3: Indirect Addressing Mode

MOV EBX, 3000H ; Load address 3000H into EBX

MOV EAX, [EBX] ; Load EAX with value from memory location 3000H

Example 4: Base Addressing Mode

MOV EBP, 4000H ; Load base address into EBP

MOV EAX, [EBP] ; Load EAX with value from base address

Example 5: Base-Index Addressing Mode

MOV EBX, 5000H ; Load base address into EBX

MOV ESI, 20H ; Load offset into ESI

MOV EAX, [EBX+ESI] ; Load value at address (5000H + 20H) into

EAX

Lect12: Examples of Direct, Indirect, Base, Index, and Base-Index

Register Addressing in 32-bit Registers

1. Addressing Modes in Practice (32-bit Registers)

Addressing Mode Description

Direct Operand is stored at a specific memory address.

Indirect Operand is stored at a memory address pointed to by a register.

Base Uses a base register (EBX, EBP) for memory access.

Index Uses an index register (ESI, EDI) for offset memory access.

Base-Index Combines base and index registers for complex memory access.

2. Additional Addressing Mode Examples in 32-bit Registers

Example 6: Indexed Addressing Mode

MOV EDI, 6000H ; Load base address into EDI

MOV EAX, [EDI+10H] ; Load value at address (6000H + 10H) into

EAX

Example 7: Complex Base-Index Addressing Mode

MOV EBX, 7000H ; Load base address into EBX

MOV ESI, 30H ; Load offset into ESI

MOV EAX, [EBX+ESI] ; Load value at address (7000H + 30H) into

EAX

3. Exercises and Solutions

Question 1: Using Indirect Addressing

Q: Load a value from memory location 8000H into EAX using indirect addressing.

Solution:

MOV EBX, 8000H ; Load memory address into EBX

MOV EAX, [EBX] ; Load value from memory into EAX

Question 2: Using Base-Index Addressing

Q: Load a value from [9000H + SI] into EAX, where SI = 50H.

Solution:

MOV EBX, 9000H ; Load base address into EBX

MOV ESI, 50H ; Load index offset into ESI

MOV EAX, [EBX+ESI] ; Load value at address (9000H + 50H) into

EAX

Lect13: Bit Scan and Bit Test Register

1. Bit Scan and Bit Test Instructions

Bit Scan Instructions:

Instruction Description
BSF dest, src Finds the first set bit (1) in src and stores the position in dest.

BSR dest, src Finds the last set bit (1) in src and stores the position in dest.

Bit Test Instructions:

Instruction Description
BT src, bit Tests a specific bit in src and sets Carry Flag (CF) if it is 1.

BTC src, bit Tests and complements (toggles) a specific bit in src.

BTR src, bit Tests and resets (clears) a specific bit in src.

BTS src, bit Tests and sets (turns on) a specific bit in src.

2. Bit Scan and Bit Test Examples

Example 1: Using BSF to Find First Set Bit

MOV EAX, 0B8H ; Binary: 10111000B

BSF ECX, EAX ; ECX = Position of first set bit (3)

Example 2: Using BT to Test a Bit

MOV AX, 5 ; Binary: 00000101B

BT AX, 2 ; Test bit 2 (CF = 1 since bit 2 is set)

Example 3: Using BTS to Set a Bit

MOV BX, 0H ; BX = 00000000B

BTS BX, 4 ; Set bit 4 (BX = 00010000B)

Example 4: Using BTR to Clear a Bit

MOV DX, 0FH ; DX = 00001111B

BTR DX, 3 ; Clear bit 3 (DX = 00000111B)

Lect14: Examples of Bit Scan and Bit Test Instructions

1. Advanced Examples and Practical Applications

Example 5: Using BSR to Find the Highest Set Bit

MOV EAX, 0F0H ; Binary: 11110000B

BSR ECX, EAX ; ECX = Position of highest set bit (7)

Example 6: Toggling a Bit with BTC

MOV AX, 4 ; AX = 00000100B

BTC AX, 2 ; Toggle bit 2 (AX = 00000000B)

BTC AX, 2 ; Toggle bit 2 again (AX = 00000100B)

Example 7: Using Bit Test for Conditional Execution

MOV CX, 2 ; CX = 00000010B

BT CX, 1 ; Test bit 1

JC BIT_IS_SET ; Jump if bit is set

Example 8: Clearing a Bit with BTR and Checking Flag

MOV DX, 3 ; DX = 00000011B

BTR DX, 0 ; Clear bit 0 (DX = 00000010B)

JNC BIT_CLEARED ; Jump if bit was already clear

2. Exercises and Solutions

Question 1: Using BSF to Find First Set Bit

Q: Given AX = 01011000B, find the position of the first set bit.

Solution:

MOV AX, 58H ; Binary: 01011000B

BSF BX, AX ; BX = Position of first set bit (3)

Question 2: Toggling a Bit

Q: Toggle bit 5 of register CX using BTC.

Solution:

MOV CX, 20H ; Binary: 00100000B

BTC CX, 5 ; Toggle bit 5 (CX = 00000000B)

Question 3: Testing and Setting a Bit

Q: Test bit 7 of DX, and if it is 0, set it using BTS.

Solution:

MOV DX, 10H ; Binary: 00010000B

BT DX, 7 ; Test bit 7

JNC SET_BIT ; Jump if bit is clear

BTS DX, 7 ; Set bit 7 (DX = 10010000B)

Lect15: General Examples

1. Comprehensive Assembly Programming Examples

Example 1: Arithmetic and Logical Operations Combined

MOV AX, 5 ; Load AX with 5

ADD AX, 3 ; AX = AX + 3 (AX = 8)

AND AX, 0FH ; Apply bitmask (AX = 8 AND 15 = 8)

Example 2: Looping with Conditional Execution

MOV CX, 5 ; Set loop counter

LOOP_START:

DEC CX ; Decrease counter

JNZ LOOP_START ; Repeat if CX is not zero

Example 3: String Manipulation (Copying Data)

MOV SI, 1000H ; Source address

MOV DI, 2000H ; Destination address

MOV CX, 10 ; Number of bytes to copy

REP MOVSB ; Repeat move operation for CX times

Example 4: Stack Operations and Subroutines

CALL SUB_ROUTINE ; Call a subroutine

...

SUB_ROUTINE:

PUSH AX ; Save AX on stack

MOV AX, 10H ; Modify AX

POP AX ; Restore AX

RET ; Return to main program

Example 5: Interrupts and I/O Operations

MOV AH, 09H ; DOS interrupt for printing string

MOV DX, OFFSET MESSAGE

INT 21H ; Call DOS interrupt

...

MESSAGE DB 'Hello, World!$', 0

2. Exercises and Solutions

Question 1: Combining Arithmetic and Logical Operations

Q: Write an assembly program that adds 07H and 09H, then applies a bitmask 0FH to the

result.

Solution:

MOV AL, 07H ; Load AL with 07H

ADD AL, 09H ; AL = AL + 09H (AL = 10H)

AND AL, 0FH ; Apply bitmask (AL = 10H AND 0FH = 0H)

Question 2: Implementing a Counter Using Loops

Q: Create an assembly program that decrements CX from 5 to 0 using a loop.

Solution:

MOV CX, 5 ; Set loop counter

LOOP_LABEL:

DEC CX ; Decrease CX by 1

JNZ LOOP_LABEL ; Repeat if CX is not zero

Question 3: Using Stack Operations in Subroutines

Q: Implement a subroutine that saves AX and modifies it, then restores the original value.

Solution:

CALL MY_SUB ; Call the subroutine

...

MY_SUB:

PUSH AX ; Save AX on stack

MOV AX, 20H ; Modify AX

POP AX ; Restore original AX

RET

Question 4: Printing a String Using an Interrupt

Q: Write a program that prints HELLO using an interrupt.

Solution:

MOV AH, 09H ; DOS interrupt for printing string

MOV DX, OFFSET HELLO_MSG

INT 21H ; Call DOS interrupt

...

HELLO_MSG DB 'HELLO$', 0

