
Microprocessor class: 2nd stage

1

University of Technology
 الجامعة التكنولوجیة

Computer Science Department

 قسم علوم الحاسوب
 Microprocessor

 المعالجات المایكرویة

cs.uotechnology.edu.iq

Dr. Khitam A. Salman
Assist. Lecturer Mohammed Thamer

Assist. Lecturer Sarab M. Taher
 عبدالنبي سلماند. ختام

 م.م. محمد ثامر

Microprocessor class: 2nd stage

2

Microprocessors – 1’st course (Syllabus)

 Introduction to Microprocessor and Microcomputer system.

 Microprocessor Architecture and Register Set.

 System Buses

 Memory types and physical addressing.

 I/O devices

 Instruction Set and Format

 Addressing Modes

 Introduction to Assembly Programming Language.

 Arithmetic and logical Instructions (Shift and Rotate).

 Program Control (interrupt and subroutine call).

References:

1. Abel P., "IBM PC Assembly Language and Programming", 4th

Edition, Prentice Hall, 1998..

2. Thorne M., "Computer Organization and Assembly Language

Programming", 2nd Edition, Benjamin/Cummings, 1990.

Microprocessor class: 2nd stage

3

Introduction to Microprocessors

Electronic and Logic Circuits

Modern devices contain two types of circuits:

Electronic circuits

The basic components of electronic circuits are transistors, resistors,

capacitors, etc. Electronic circuits operate on a wide range of voltages such as

(1V, 2.1V, 3.3V, 12V) positive or negative and deal with analog signals.

Logic Circuits

The basic component of digital circuits are logic gates such as AND, OR,

NAND, NOR, XOR, XNOR, NOT... which deal with digital signals.

Integrated Circuits (IC)

Integrated circuits consist of logic and electronic circuits built on a single

small block or chip of semiconductor that all work together to perform a specific

task. The IC is easily breakable, so to be attached to a circuit board, it is often

housed in a plastic package with metal pins.

Figure 1 Integrated circuits of Microprocessor

Microprocessor

Computer's Central Processing Unit (CPU) built on a single Integrated

Circuit (IC) is called a microprocessor. A digital computer with one

microprocessor which acts as a CPU is called microcomputer. It is a

programmable, multipurpose, clock-driven, register-based electronic device that

reads binary instructions from a storage device called memory, accepts binary

data as input and processes data according to those instructions and provides

results as output.

Microprocessor class: 2nd stage

4

Figure 2 Main Component of Microprocessor

Central processing unit (CPU)

The CPU supervises and controls all other computer units, transfers data to and

from these units, and performs the arithmetic and logical operations necessary to

transform data into meaningful information. It called “Processor” or

“Microprocessor” in personal computer. It is divided into three parts:

1- Arithmetic and Logic unit (ALU).

2- Control unit (CU).

3- Register.

1. Arithmetic and Logic unit (ALU).

Perform the processing of data including arithmetic operations such as addition,

subtraction, multiplication, division and logic operations including comparison

(ex. A<B) and sorting.

2. Control Unit (CU).

The control unit coordinates the operation of the entire computer system

automatically, and acts as a central nervous system that sends control signals to

other computer units. The operations it performs are:

1- Control of input and output devices.

2- Sending and retrieving information to and from memory’s (primary and

secondary memory).

Microprocessor class: 2nd stage

5

3- Routing of information between the main memory (RAM) and the

arithmetic and logic unit (ALU).

4- Direct and coordinates all units of the computer to execute program steps.

3. Registers

Registers are a type of computer memory used to quickly accept, store, and

transfer data and instructions that are being used immediately by the CPU. The

most important registers are:

1- Instruction Register (IR): It contains the instruction being executed.

2- Program Counter Register (PC): It contains the address of the next

instruction to be executed.

3- Address Register (AR): holds the address of memory location.

4- Data Register (DR): Holds data that is being transferred to or from

memory.

5- Accumulator Register (ACC): Where intermediate arithmetic and logic

results are stored.

The basic operations performed by microprocessor

A microprocessor does three basic things.

1- Using its ALU to perform arithmetic and logical operations. Modern

microprocessors contain complete floating-point processors that can

perform extremely sophisticated operations on large floating-point

numbers.

2- A microprocessor can move data from one memory location to another.

3- A microprocessor can make decisions and jump to a new set of instructions

based on those decisions.

Instructions Fetch-Execute Cycle

The microprocessor follows the following sequence to execute instructions.

1. Initially: the microprocessor loads the program instructions into main

memory.

2. Fetch: The microprocessor fetches those instructions from the memory.

3. Decode: Separate the operation from the operands and replace the variables

with their real values stored in main memory in preparation for execution.

4. Execute: Executes these instructions until the end of the program (until all

instructions are performed).

5. Later: it sends the result in binary to the output device.

Microprocessor class: 2nd stage

6

Between these processes the register stores the temporarily data and ALU

performs the computing functions.

Figure 3 Sequence of Execute Instructions Cycle

Q: How does the CPU Fetch and execute program instructions?

1. Fetch: Fetch the instruction from memory to IR.

2. Change the address of Program Counter PC to the next instruction.

3. Decode: Determine the type of the instruction to be execute.

- If the instruction uses data in memory, use the address in the AR register

to fetch the data.

- Fetch the data into DR register (Data Register).

4. Execute: Execute the instruction.

5. Store the result in the ACC register or in a proper place or send it to the

output device.

6. Go to step 1 to Fetch the next instruction whose address in PC register.

List of Terms Used in a Microprocessor

Here is a list of some of the used terms in a microprocessor.

 Instruction Set: It is the set of instructions that the microprocessor can

understand (Ex: MOV, ADD, SUB...). The instruction set acts as an

interface between the software and hardware.

 Bus: The bus is used for the transmission of data, address and control

information. This transmission occurs in different elements of the

microprocessor. The bus in this is basically of three types which are data

bus, address bus and control bus.

This microprocessor has:

Microprocessor class: 2nd stage

7

✓ A data bus (that may be 8, 16, 32 or 64 bits wide) that can send data to

memory or receive data from memory.

✔ An address bus (that may be 8, 16, 32 or 64 bits wide) that sends an

address to memory.

✓An RD (read) and WR (write) line to tell the memory whether it should

set or get the addressed location.

✓ A clock line that lets a clock pulse sequence the processor

✓ A reset line that resets the program counter to zero (or whatever) and

restarts execution

 Word Length: It depends upon the (number of bits) of internal data bus,

registers, ALU, etc. A 16-bit microprocessor can process 16-bit data at a

time. The word length ranges from 4 bits to 64 bits depending on the type

of the microcomputer. A processor with longer word length is more

powerful and can process data at a faster speed as compared to a processor

with shorter word length.

NOT: The power of the given microprocessor is measured in terms of bits.

 Clock Speed: It determines the number of operations per second the

processor can perform. It is expressed in megahertz (MHz) or gigahertz

(GHz). It is also known as Clock Rate.

 Data Types: The microprocessor has multiple data type formats like

Decimal, Hexadecimal, Binary, signed and unsigned numbers.

Evolution of Microprocessors (

We can categorize the microprocessor according to the generations or

according to the size of the microprocessor. The following table shows this

categorization.

Table 1 Evolution of Microprocessor

Generation Year Size Example Features

1st generation 1971-1972 4 bits 4004 Basic operation and it has limited

memory and the control unit

executes fetch, decode and

execute instructions

2nd generation 1973 8 bits Intel 8008 &

8080

Improved processing speed,

better instruction sets

Microprocessor class: 2nd stage

8

Generation Year Size Example Features

3rd generation 1978 16 bits Intel 8086, Zilog

Z800 and 80286

Its performance like

minicomputers. Enhanced

memory access, pipelining

introduced

4th generation 1985-1994 32 bits Intel 80386,

80486, Motorola

68020

Integrated FPU, cache memory,

faster processing

5th generation 195-2005 64 bits Intel Pentium,

AMD Athlon,

PowerPC G4

Super scalar architecture,

advanced power management

6th generation 2006 up

now

Multi-

core

Intel Core

i3/i5/i7/i9,

AMD Ryzen,

Apple M-series

Multi-core processing, AI

acceleration, high energy

efficiency

Introduction to Microcomputers

Microcomputer is a digital computer with one microprocessor which acts as a

CPU.

Microcomputer: small computers, also called personal computers (PC), can fit

next to a desk or on a desktop, or can be carried around. They are either

standalone machines or are connected to a computer network

such as a local area network LAN. LAN connects, usually by special cable, a

group of desktop PCs and other devices, such as printers, in an office or

a building.

Computers used nowadays can be known as general purpose machines or special

purpose machines.

General purpose machines are machines that built with no specific application

in mind, but rather are capable of performing computation needed by different

applications.

Special purpose machines: are machines that to serve specific applications.

1. Desktop PCs: are those in which the case or main housing sits on a desk,

with keyboard in front and monitor (screen) often on top.

2. Tower PCs: are those Microcomputer in which the case sits as a "tower,"

often on the floor beside a desk, thus freeing up desk surface space.

Microprocessor class: 2nd stage

9

3. Laptop computers (notebook computers): are lightweight portable

computers with built-in monitor, keyboard, hard-disk drive, battery, and

AC adapter that can be plugged into an electrical outlet; their weight

anywhere from 1.8 to 9 pounds.

4. Personal digital assistants (PDAs) (handheld computers or palmtops)

combine personal organization tools-schedule planners, address books, to-

do lists. Some are able to send e-mail and faxes. Some PDAs have touch-

sensitive screens. Some also connect to desktop computers for sending or

receiving information.

5. Microcontrollers (tiny computers: Microcontrollers, also called

embedded computers, are the tiny, specialized microprocessors installed in

"smart" appliances and automobiles. These microcontrollers enable PDAs,

microwave ovens, for example to store data about how long to cook your

potatoes and at what temperature.

The Microprocessor-Based Personal Computer System

Machines that once filled large areas have been reduced to small desktop

computer systems. Companies such as DEC (Digital Equipment Corporation now

owned by Hewlett-Packard Company) have stopped producing mainframe

computer systems in order to concentrate their resources on microprocessor-

based computer systems. PC consists of three main blocks which are:

microprocessor, memory system and I/O systems. These blocks are

interconnected by buses. A bus is a set of common connections that carry the same

type of information. Figure 4 shows the general block diagram of the

microcomputer

Figure 4 Microcomputer component

Microprocessor class: 2nd stage

10

Memory system
Memory unit in microprocessor is used to store information such as numbers,

characters and so on. Storing information means that the memory has the ability

to hold this information for processing or for later use. Programs that define how

the computer work are also stored in the memory.

Memory can be divided into: primary storge that is used for temporary storage

and it is normally of small size and secondary storage which is used for long term

storage.

The primary storage is further divided into Read Only Memory (ROM) and

Random Access Memory (RAM). The information stored in ROM are

nonvolatile, that is the information is not lost when the power turned off. On the

other hand, the information stored in RAM are volatile can be modified.

Input/Output System
The microcomputer system contains input and output (I/O) devices that allow the

system to communicate with the external environment. Keyboard, mouse,

joystick and microphone are examples of the input devices. On the other hand the

most used output devices are printers, displays and speakers.

Performance measure

The clock synchronizes the internal operations of the CPU with other components

in the system. CPU speed is determined by a clock cycle, which is the time

between two rising edges of a periodic clock signal. Figure 5 shows the clock

cycle time

Figure 5 Clock signal

The higher number of pulses per second, the faster the processor. The clock speed

is measured in Hz, often either MHz (megahertz) or GHz (gigahertz). For

example, a 4 GHz processor performs 4,000,000,000 clock cycles per second.

Microprocessor class: 2nd stage

11

Instructions Per Cycle (IPC): it measures how many instructions a CPU is

capable of executing in a single clock. The performance of a processor can be

measured by calculating the average number of Clock cycles Per Instruction

(CPI).

The instruction set of a given machine consists of a number of instruction

categories: ALU (simple assignment and arithmetic and logic instructions), load

and store, branch and others In case that CPI for each instruction category is

known then the overall CPI can be computed as:

퐶푃퐼 =
∑ 퐶푃퐼 × 퐼

퐼푛푠푡푟푢푐푡푖표푛 푐표푢푛푡

Where 퐼 is the number of times an instruction of type i is executed in the

program and 퐶푃퐼 is the average number of clock cycles needed to execute such

instruction.

Example:

Use the CPI to measure the performance of a computer, which records the

following metrics in table 2when you run a set of benchmarking programs.

Table 2 Machine inforation

Instruction Category Percentage of occurrence No. of cycles per instruction

ALU 38 1

Load & store 15 3

Branch 42 4

Others 5 5

Solution:

퐶푃퐼 =
∑ 퐶푃퐼 × 퐼

퐼푛푠푡푟푢푐푡푖표푛 푐표푢푛푡

Instruction count = 38+15+42+5 =100

퐶푃퐼 =
38 × 1 + 15 × 3 + 42 × 4 + 5 × 5

100
= 2.76

Million Instructions-Per-Second (MIPS)

MIPS is a measure of a processor's speed, providing a standard for

representing the number of instructions that a CPU can process in one second.

The number is meant to indicate how well a computer performs and how much

work it can do.

Microprocessor class: 2nd stage

12

푀퐼푃푆 =
푐푙표푐푘 푟푎푡푒

퐶푃퐼 × 10

Example:

Use MIPS to measure the performance of a computer for which the following

metrics are recorded when running a set of benchmarking programs in table3.

Assume that the clock rate of the CPU is 200 MHz

Table 3 Machine information

Instruction Category Percentage of occurrence No. of cycles per instruction

ALU 35 1

Load & store 30 2

Branch 15 3

Others 20 5

Solution:

퐶푃퐼 =
∑ 퐶푃퐼 × 퐼

퐼푛푠푡푟푢푐푡푖표푛 푐표푢푛푡

Instruction count = 35+30+15+20 =100

퐶푃퐼 =
35 × 1 + 30 × 2 + 15 × 3 + 20 × 5

100
= 2.4

푀퐼푃푆 =
푐푙표푐푘 푟푎푡푒

퐶푃퐼 × 10

푀퐼푃푆 =
200 푀퐻푧

2.4 × 10

Note:1 MHz = 1 000 000 hertz = 106 hertz

푀퐼푃푆 =
 ×

. ×
 = 83.67

The MIPS scale can be used to compare computers and determine which one

has better performance. For example, a computer that can process 12,000 MIPS

should be able to outperform one that processes 10,000 MIPS.

Example3:

What is the MIPS for the devices (A, B) shown in table 4? assuming the clock

rate is 200 MHz

Microprocessor class: 2nd stage

13

Table 4 Machine A and B information

Machine A Machine B

Instruction

Category

Percentage

of

occurrence

No. of cycles

per

instruction

Instruction

Category

Percentage

of

occurrence

No. of cycles

per

instruction

ALU 38 1 ALU 35 1

Load &

store

15 3 Load &

store

30 2

Branch 42 4 Branch 15 3

Others 5 5 Others 20 5

Solution:

퐶푃퐼 =
∑ 퐶푃퐼 × 퐼

퐼푛푠푡푟푢푐푡푖표푛 푐표푢푛푡
=

38 × 1 + 15 × 3 + 42 × 4 + 5 × 5

100
= 2.76

푀퐼푃푆 =

 ×
=

 ×

. ×
 = 70.24

퐶푃퐼 =
∑ ×

=

× × × ×
= 2.4

푀퐼푃푆 =

 ×
=

 ×

. ×
= 83.67 =

Thus: 푀퐼푃푆 (83.67) > 푀퐼푃푆 (70.24)

Microprocessor class: 2nd stage

14

Microprocessor Architecture

8086 Microprocessor is an enhanced version of 8085 Microprocessor that was

designed by Intel in 1976. This 16 Bit Microprocessor have 20-bit address lines

and16-bit data lines that provides up to 1MB storage. It consists of powerful

instruction set, which provides operations like multiplication and division easily.

It supports two modes of operation Maximum mode and Minimum mode.

Maximum mode is suitable for system having multiple processors and Minimum

mode is suitable for system having a single processor.

Features of 8086 Microprocessors

The most prominent features of an 8086 microprocessor are as follows:

 It is a 16-bit Microprocessor. Its ALU, internal registers work within 16-

bit binary word.

 It has a 20-bit address bus which can access up to 2 = 1 푀퐵 memory

locations.

 It has 16-bit data bus. It can read or write to a memory/port 16 bits or bit at

a time.

 It provides 14,16-bit registers.

 The frequency range of the 8886 microprocessor is 6-10 Hz.

 It has multiplexed address bus and data bus D0-D15 and A17-A19

 It has an instruction queue, which is capable of storing six instruction bytes

from the memory resulting in faster processing.

 It can prefetch up to 6 instruction bytes from memory and queues them in

order to speed up the instruction execution.

 It requires +5V power supply.

Comparison between 8085 & 8086 Microprocessor

 Size − 8085 is 8-bit microprocessor, whereas 8086 is 16-bit

microprocessor.

 Address Bus − 8085 has 16-bit address bus while 8086 has 20-bit address

bus.

 Memory − 8085 can access up to 64Kb, whereas 8086 can access up to 1

Mb of memory.

 Instruction − 8085 doesn’t have an instruction queue, whereas 8086 has

an instruction queue.

Microprocessor class: 2nd stage

15

 Pipelining − 8085 doesn’t support a pipelined architecture while 8086

supports a pipelined architecture.

 I/O − 8085 can address 2^8 = 256 I/O's, whereas 8086 can access 2^16 =

65,536 I/O's.

 Cost − The cost of 8085 is low whereas that of 8086 is high.

 Operation mode: 8085 has single operation mode while 8086 has

minimum mode which suits systems that have one processor and maximum

mode that suits for multiprocessors systems

Microprocessor 8086 Architecture

The internal architecture of 8086 family of microprocessor has changed from the

original 8086 to the 80386. All members of 8086 family employ the parallel

processing. That is, they are implemented with several simultaneously operating

processing units. Each unit has a dedicated function and they operate at the same

time. The more parallel processing the higher microprocessor performance.

8086 microprocessors contain two processing units: the Bus Interface Unit

(BIU) and the Execution Unit (EU). Figure (6) depicts the architecture diagram

of the microprocessor 8086.

Figure 6 Microprocessor 8086 Architecture

Microprocessor class: 2nd stage

16

Bus Interface Unit (BIU)

It provides a full 16-bit bidirectional data bus and 20-bit address bus. This unit

fetches a set of program instructions from main memory and queuing them in an

instruction queue to be executed later by the execution unit. This unit acts as a

control unit that is connected to the memory and external computer parts via the

external bus and is connected to the Execution Unit (EU) via the internal bus.

It is responsible for transmitting data, addresses and control signals on these

buses. BIU performs the following operations:

1- Fetches instruction from main memory.

2- Supports instruction queuing.

3- Sends address of the memory or I/O.

4- Reads data from port/memory.

5- Writes data into port/memory.

The BIU uses a mechanism known as instruction stream queue to implement

pipeline architecture. The Instruction queue, as mentioned before can store up to

6-byte instruction to be executed by the EU. When the EU execute the current

instruction, the next instruction to be executed will be ready in the instruction

queue. This lead to increase the execution speed.

Execution Unit (EU)

The execution unit is responsible for decoding and executing all instructions. It

consists of: ALU, status and control flag, general-purpose registers and

temporary registers.

The EU extract the instruction from the top of the instruction queue in the BIU,

decode them, generates operands, if necessary, passes them to the BIU and

requests it to perform the read or write by cycles to memory or to I/O and perform

the operation specified by the instruction on the operands.

 During the execution of the instruction, the EU tests the status and control flags

and updates them based on the result of executing the instruction.

Microprocessor 8086 - Pin Configuration

8086 was the first 16-bit microprocessor available in 40-pin Dual Inline Package

(DIP) chip. Let us now discuss in detail the pin configuration of an 8086

Microprocessor.

Microprocessor class: 2nd stage

17

8086 Pin Diagram

The pin diagram of 8086 microprocessors is shown in Figure 7. Some of these

signals are explained as follows

Figure 7 8086 Pin Diagram

1. MN/MX’: It stands for Minimum/Maximum and is available at pin 33. It

indicates what mode the processor is to operate in; when it is high, it works

in the minimum mode and vice-averse. 8086 supports two modes of

operation Maximum mode and Minimum mode. Maximum mode is

suitable for system having multiple processors and Minimum mode is

suitable for system having a single processor.

2. Address/data bus: AD0-AD15. These are 16 address/data bus. AD0-AD7

carries low order byte data and AD8-AD15 carries higher order byte data.

During the first clock cycle, it carries 16-bit address and after that it carries

16-bit data.

3. Address/status bus: A16-A19/S3-S6. These are the 4 address/status

buses. During the first clock cycle, it carries 4-bit address and later it carries

status signals.

4. Read (RD): It is available at pin 32 and is used to read signal for Read

operation.

5. Ready: It is available at pin 22. It is an acknowledgement signal from I/O

devices that data is transferred. It is an active high signal. When it is high,

it indicates that the device is ready to transfer data. When it is low, it

indicates wait state.

Microprocessor class: 2nd stage

18

6. RESET: It is available at pin 21 and is used to restart the execution. It

causes the processor to immediately terminate its present activity. This

signal is active high for the first 4 clock cycles to RESET the

microprocessor.

7. M/IO: This signal is used to distinguish between memory and I/O

operations. When it is high, it indicates I/O operation and when it is low

indicating the memory operation. It is available at pin 28.

8. WR: It stands for write signal and is available at pin 29. It is used to write

the data into the memory or the output device depending on the status of

M/IO signal.

9. QS1 and QS0: These are queue status signals and are available at pin 24

and 25. These signals provide the status of instruction queue. Their

conditions are shown in the following table

QS0 QS1 Status

0 0 No operation

0 1 First byte of opcode from the queue

1 0 Empty the queue

1 1 Subsequent byte from the queue

10. S0, S1, S2: These are the status signals that provide the status of operation,

which is used by the Bus Controller 8288 to generate memory and I/O

control signals. These are available at pin 26, 27, and 28. Following is the

table showing their status:

S2 S1 S0 Status

0 0 0 Interrupt acknowledgement

0 0 1 I/O Read

0 1 0 I/O Write

0 1 1 Halt

1 0 0 Opcode fetch

Microprocessor class: 2nd stage

19

1 0 1 Memory read

1 1 0 Memory write

1 1 1 Passive

11. LOCK: When this signal is active, it indicates to the other processors not

to ask the CPU to leave the system bus. It is activated using the LOCK

prefix on any instruction and is available at pin 29.

Microprocessor class: 2nd stage

20

Registers Set
Registers are fast memory locations within the CPU that are used to create and

store the results of CPU operations and other calculations. Different computers

have different register sets. They differ in the number of registers, register types,

and the length of each register. They also differ in the usage of each register.

Registers can be general-purpose registers used for multiple purposes and

assigned to a variety of functions by the programmer. Special-purpose registers

are restricted to only specific functions. In some cases, some registers are used

only to hold data and cannot be used in the calculations of operand addresses.

Data registers’ length must be long enough to hold values of most data types.

Some machines allow two contiguous registers to hold double-length values.

The 8086 registers are classified into four types as follow

1. Data Registers (General Purpose Registers).

2. Pointers and Index Registers.

3. Flag Register (Status Register).

4. Segment Registers.

1. Data Registers (General Purpose Registers).

There are four registers that are generally used to store both data and addresses.

All data registers can be used for arithmetic and logic operations and data

movement. each of them has a special use. Each of these registers is 2-bytes

(16-bit) long and each is divided into two smaller registers in 1-byte (8-bit)

long as follows:

1.1. AX, AH, AL registers

Also known as the accumulator register, it is used to transfer data, access

I/O ports, and arithmetic and logical instructions. The AX register is 2

bytes long and can be divided into two one-byte registers AH (A High)

and AL (A Low). The AH register is specially used to store the O/I device

number to be handled before using the INT 21h interrupt instruction.

1.2. BX, BH, BL registers

Also known as a Base index register, BX register usually contains a data

pointer used for based. It is used to hold the address of a procedure or

variable. The BX register is 2 bytes long and can be divided into two one-

byte registers BH (B High) and BL (B Low). The BX register is specially

Microprocessor class: 2nd stage

21

used to store the starting base address of the memory area within the data

segment.

1.3. CX, CH, CL registers

Also known as a Count register, used in Loop, shift/rotate instructions

and as a counter in string manipulation. The CX register is 2 bytes long

and can be divided into two one-byte registers CH (C High) and CL (C

Low). The CX register is specially used in loop instruction to store the loop

counter.

1.4. DX, DH, DL registers

Also known as Data register. It is used as a port number in I/O operations.

It is also used in multiplication and division. The DX register is 2 bytes

long and can be divided into two one-byte registers DH (D High) and DL

(D Low). The DX register is specially used to store the address of the string

that will be processed before the INT 21 interrupt instruction is used.

2. Pointers and Index Registers

These registers contain the offset of data and instructions. The term offset

refers to the distance of a variable, label, or instruction from its base

segment. The pointers will always store some address or memory location.

In 8086 Microprocessor, they usually store the offset through which the actual

address is calculated.

2.1. Stack Pointer (SP)

The Stack Pointer points at the current top value of the Stack. Like the BP,

it also acts as an offset to the Stack Segment (SS).

2.2. Base Pointer (BP)

The Base pointer stores the base address of the memory. Also, it acts as an

offset for Stack Segment (SS).

2.3. Source Index (SI)

It stores the offset address of the source in string manipulation instructions.

2.4. Destination Index (DI)

It stores the offset address of the Destination in string manipulation

instructions.

3. Flag Register(Status Register)

It is a 16-bit register, only 9 bits are used as flags and the rest are ignored.

These 9 flags provide information about the state of the processor after

Microprocessor class: 2nd stage

22

executing an instruction. The flag bit is changed to 0 or 1 depending on the

value of the result after arithmetic or logical operations. The flags used to

determine the behavior of many conditional jump and branch instructions.

The 9 flags are divided into two groups, 6 for Conditional Flags and 3 for

Control Flags.

3.1. Conditional Flags

It represents the result of the last arithmetic or logical instruction executed.

Following is the list of conditional flags:

a) Carry Flag (CF)

The carry flag (commonly referred to as the C flag) is a single bit in the

flag register used to indicate when to Carry/Borrow from the Most

Significant Bit (MSB) during mathematical operations. Figure 8 illustrate

it.

Figure 8 illustrates the terms most significant bit (MSB), least significant bit (LSB),

Upper Nibble, Lower nibble on one byte

b) Auxiliary carry Flag (AF)

- This flag is used in BCD (Binary-coded Decimal) operations.

- The status of this flag is updated for every arithmetic or logical

operation performed by ALU.

- This flag is set to one if there is a Carry/Borrow for the lower nibble (4

bits) in binary representation, else it is set to zero.

c) Parity Flag (PF)

This flag is set to 1 when there is an even number of one bits in the result,

and to 0 when there is an odd number of one bits. Even if the result is a

word only 8 low bits are analyzed.

d) Zero Flag (ZF)

This flag is set to 1 when the result of the arithmetic or the logical operation

is zero else it is set to 0.

Microprocessor class: 2nd stage

23

e) Sign Flag (SF)

This flag holds the sign of the result, i.e. when the result of the operation

is negative, then the sign flag is set to 1 else set to 0.

f) Overflow Flag (OF)

It sets to 1 when there is a signed overflow. For example, when you add

signed bytes 100 + 50 (result is not in range -128...127).

3.2. Control Flags

The control flags control the operations of the execution unit. These flags

are shown in figure 9. The control flags are as follows:

a) Trap Flag (TF)

It is used for single step control and allows the user to execute one

instruction at a time for debugging. If it is set, then the program can be run

in a single step mode.

b) Interrupt Flag (IF)

It is an interrupt enable/disable flag, i.e. it is used to allow/prevent the

interruption of a program. It is set to 1 for interrupt enabled condition and

set to 0 for interrupt disabled condition.

c) Direction Flag (DF)

This flag is used by some instructions to process data string, when this flag

is set to 0 - the processing is done forward, when this flag is set to 1 the

processing is done backward.

Figure 9 Flag Register

Microprocessor class: 2nd stage

24

4. Segment Registers

The processor can divide the main memory into four Segments (Sections)

which are: Code Segment, Data Segment, Stack Segment, and Extra

Segment. For this reason, the BIU has four segments’ registers, each 2 bytes

long, and are used to store the addresses of the beginnings of the four Segment.

The processor uses the addresses stored in these registers to determine the

physical address and access any memory location in those segments figure 10

shows the segment registers. These registers are:

4.1. Code segment register (CS)

The CS register holds the base address of the code segment area in the memory.

In this area of memory, the executable program instructions are stored.

4.2. Data Segment register (DS).

The DS register holds the base address of the data segment area in memory. In

this area of memory, the stored data, variables and arrays are declared in the

program.

4.3. Extra Segment register (ES)

The ES register holds the base address of the extra segment area in memory. In

this area of memory more data, variables and arrays declared in the program

are stored.

4.4. Stack Segment register (SS)

The SS register holds the base address of the Stack segment area in memory.

This area of memory is used as a stack where data is stored according to the

"first in, last out" (FILO) principle.

Figure 10 Segment Registers and 1MB Memory

Microprocessor class: 2nd stage

25

System Buses

Bus structure

The system bus connects the CPU (Processor), memory and

peripherals devices (input/output device or secondary memory)

with each other. The bus system carries data, address and control

information. The speed of the system bus is the part of performance

of computer system figure 11 shows the system buses.

Note: The components of the computer system communicate with each other

and with the outside world through system bus. The processor connects to

memory and peripheral devices by bus system.

A Bus is a bunch of wires, and electrical path on the printed IC to which

everything in the system is connected.

There are three types of Buses

1. Address Buss (AB): is unidirectional (one direction) because address

flow in one direction from processor to memory or from processor to

input/ output devices. The width of AB determines the amount of

physical memory addressable by the processor.

2. Data Bus (DB): Is bidirectional (two directions) because allow data to

transfer between the processor (CPU) and memory (RAM). the width

of DB indicates the size of the data transferred between the processor

and memory or I/O device.

3. Control Bus (CB): is bidirectional (two directions) used by CPU for

communicating with other devices within the computer. It carries

control signals from CPU. The typical control signals include memory

read, memory write, I/O read, I/O write, bus request. These signals

indicate the type of action taking place in the computer system.

Figure 11 The system bus

Microprocessor class: 2nd stage

26

2

1

0000

Address in Decimal Address in Hex

220-1
FFFF

2 0010

1 0001

0 0000

Figure 12 Logical view of the system memory

Memory (Main Memory or Primary memory (RAM))

The primary memory (RAM) is a temporary storage area. It holds the data

and instruction that the CPU needs. The memory of a computer system

consists of tiny electronics witches, with each switch set in one of two states:

open or close. It is however more convenient to think of these states as 0 and

1. Thus each switch can represent a binary digit or bit, as it is known, the

memory unit consists of millions of such bits, bits are organized into groups

of eight bits called byte. Memory can be viewed as consisting of an ordered

sequence of bytes. Each byte in this memory can be identified by its sequence

number starting with 0, as shown in Figure 12. This is referred to as memory

address of the byte. Such memory is called byte addressable memory. The

memory address space of a system is determined by the address bus width of

the CPU used in the system.

.

.

.

.

Microprocessor class: 2nd stage

27

Two basic memory operations:

The memory unit supports two fundamental operations: Read and Write. The

read operation read a previously stored data and the write operation stores a

value in memory.

Steps in a typical Read cycle:

1. Place the address of the location to be read on the address bus.

2. Activate the memory read control signal on the control bus.

3. Wait for the memory to retrieve the data from the address memory

location.

4. Read the data from the data bus.

5. Drop the memory read control signal to terminate the read cycle.

Steps in a typical Write cycle:

1. Place the address of the location to be written on the address bus.

2. Place the data to be written on the data bus.

3. Activate the memory write control signal on the control bus.

4. Wait for the memory to store the data at the address location.

5. Drop the memory write control signal to terminate the write cycle.

Addresses

Group of bits which are arranged sequentially in memory, to enable direct

access, a number called address is associated with each group. Addresses start

at 0 and increase for successive groups. The term location refers to a group of

bits with a unique address. Table 5 represents Bit, Byte, and larger units.

Table 5 address units

Name Number of Byte

Bit 0 or 1

Byte is a group of bits used to represent a character,

typically 8-bit.

Word 2-byte (16-bit)

Double

Word

4-byte (32-bits)

Quad word 8-byte (64-byte)

Microprocessor class: 2nd stage

28

Name Number of Byte

Kilo Byte

(KB)

The number 210=1024=1 KB thus

640K=640*1024=655360 bytes)

Megabyte

(MB)

(1024*1024) byte or 1,048,576 byte) approximately

1,000,000 bytes

Gigabyte

(GB)

(1024*1024*10240byte) or (1,073,741,824 byte),

approximately 1,000,000,000 bytes.

Terabyte

(TB)

Approximately 1,000,000,000,000 bytes.

Memory Chips

Memory chips have two main properties that determine their application,

storage capacity or size and access time or speed. A memory chip contains

a number of locations, each of which stores one or more bits of data known

as its bit width. The storage capacity of a memory chip is the product of the

number of locations and the bit width. For example, a chip with 512

locations and a 2-bit data width has a memory size of 512×2=1024 bits.

Since the standard unit of data is a byte (8 bits), the above storage capacity is

normally given as 1024/8 =128 bytes.

The number of locations may be obtained from the address width of the chip.

For example, a chip with 10 address lines has 210= 1024 or 1 k locations.

Given an 8-bit data width, a 10- bit address chip has a memory size of 210 ×8

= 1024×8 = 1k ×1 byte = 1 KB. The computer’s word size can be expressed

in bytes as well as in bits.

For example, a word size of 8-bit is also a word size of one byte; a word size

of 16- bit is a word size of two byte. Computers are often described in terms

of their word size, such as an 8-bit computer, a 16-bit computer and so on.

For example, a 16-bit computer is one in which the instruction data are stored

in memory as 16-bit units, and processed by the CPU in 16-bit units. The

word size also indicates the size of the data bus which carries data between

the CPU and memory and between the CPU and I/O devices. To access the

memory, to store or retrieve a single word of information, it is necessary to

have a unique address.

The word address is the number that identifies the location of a word in a

memory. Each word stored in a memory device has a unique address.

Microprocessor class: 2nd stage

29

Addresses are always expressed as binary number, although hexadecimal and

decimal numbers are often used for convenience.

The second property of memory chips is the access time, access time is the

speed with which a location within the memory chip may be made a variable

to the data bus. It is defined as the time interval between the instant that an

address is sent to the memory chip and the instant that the data stored in to

the location appears on the data bus. Access time is given in nanosecond (ns)

and varies from 25 ns to the relatively slow 200 ns.

NOTES:

- The large computers (mainframes) have word-sizes that are usually in

the 32-to-64 –bits range.

- Mini computers have a word size from 8-to-32-bits range.

- Microcomputers have a word size from 4-to-32-bits range.

In general, a computer with a larger word size, can execute programs of

instruction at a fast rate because more data and more instruction are stuffed

into one word. The larger word sizes, however, mean more lines making up

the data bus, and therefore more interconnections between the CPU and

memory and I/O devices.

The word size is 4-bit therefore there are 4-data I/P lines and 4-data O/P lines.

This memory has 32 different words, and therefore has 32 different addresses

(storage location) from (00000) to (11111). Thus, we need a 5 address I/P

lines.

Memory capacity = number of memory storage Location ×size of each

word

 = (number of word) × (number of bits per word)

 = m (word)*n(bits)

 = m*n bits

The capacity of memory depends on two parameters, the number of words

(m) and the number of bits per word (n).

Every bit added to the length of address will double the number of words in

the memory. The increase in the number of bits per bits requires that an

increase the length of data I/P and data O/P lines.

Microprocessor class: 2nd stage

30

Memory capacity units
Byte 8bits

KB 1024 Byte

MB 1024 KB

GB 1024 MG

TB 1024 GB

Figure 13 shows the unit of memory capacity measurement.

Examples

1. If the capacity of memory is 2MG, what is the capacity in KB ?

Solution: the capacity in KB

Capacity = 2*1024= 2048 KB

2. the capacity of memory is 10MG, what is the capacity in byte?

Solution: The capacity in byte

Capacity = 10*1024 *1024 = 10485760

3. the capacity of memory is 2MG, what is the capacity in bit

?2*1024*1024*8= 16777216 bits

4. if the capacity of memory is 16 bits, what is the capacity in Byte?

Solution: the capacity in byte

Capacity = 16/ 8 = 2 byte

5. the capacity of memory is 20 KB, what is the capacity in MG?

Solution: the capacity in MG

capacity = 20/ 1024=0.01953125 MG

6. the capacity of memory is 15 KB, what is the capacity in GB?

Solution: the capacity in KB

Capacity = 15/1024 /1024 = 0.0000143051 GB

byt
e

÷ 8 ÷ 1024

bit

*1024 * 8

K
B MB

*1024 * 1024

G
B

÷1024 ÷1024

Figure 13 memory capacity measurements

Microprocessor class: 2nd stage

31

Memory example

Example1 A certain memory chip is specified as 2K×8:

1. How many words can be stored on this chip?

2. What is the words size?

3. How many total bits can this chip store?

SOLUTION:

1. 2K =2 × 1024 = 2048 words(bytes)

2. The word size is 8-bits (1 byte).

3. Capacity = 2048 × 8 = 16384 bits. Memory chip

Example2: A certain memory chip is specified as 2K × 16

1. How many words can be stored on this chip?

2. What is the words size?

3. How many total bits can this chip store?

Solution:

1. 2K = 2 × 1024 = 2048 words

2. The word size is 16-bits(2 byte).

3. Capacity = 2048 * 16 = 32768 bits.

Example3:- Which memory stores the most number of bits: 2MG × 8

memory or 2MG × 16 memory?

Solution:

2MG= 2×1024× 1024 = 2 ×(1048576) =words

1. Capacity 2MG ×8 =(2 × 1024 ×1024) × 8 = 16,777,216 bits.

2. Capacity 2MG ×16=(2 × 1024 ×1024) ×16= 33,554,432 bits.

So 2MG × 16 memory is bigger than 2MG × 8

Example4: Which memory stores the greatest number of bits: 4MG × 8

memory or 2MG × 16?

Microprocessor class: 2nd stage

32

Solution:

1. Capacity = (4 × 1024 ×1024) × 8 =33,554,432 bits.

2. Capacity = (2 × 1024 × 1024) ×16= 33,554,432 bits.

Example5: A certain memory has a capacity of 4K × 8

1. How many data I/P & data O/P lines?

2. How many word address line?

3. What is its capacity in byte?

Solution

1. 8 each line: So, data I/P lines = data O/P lines =8

2. 4 × 1024 = 4096 words(bytes) Thus, there are 4096 memory addresses

212 = 4096

So, it required a 12- bit address line

3. The capacity = (4 ×1024) × 8= 32,768 bit = 32,769/8 =4096 byte (since

1byte = 8 bit).

Example6: - the a certain memory has a capacity of 4K×16

1. How many data I/P & data O/P lines?

2. How many word address lines?

3. What is its capacity in byte?

Solution:

1. 16 each one.

Data I/P lines = data O/P lines =16

2. 4 × 1024 = 4096 words

Thus, there are 4096 memory addresses.

4096 = 212 so, its require a 12-bit address line.

3. Capacity = (4 × 1024) × 16 = 65,536 bit

= 65,536 / 8 = 8.192 byte

H.W: A computer system has 8bits data I/P & data O/P lines and

12-bit address bus (address lines) find the capacity of memory in

bits and KB.

33

Microprocessor class: 2nd stage

Memory Types and Physical addressing

Memory Representation

The computer memory stores different kinds of data like input data, output data,

intermediate results, etc., and the instructions. Binary digit or bit is the basic

unit of memory. A bit is a single binary digit, i.e., 0 or 1. A bit is the smallest

unit of representation of data in a computer. However, the data is handled by

the computer as a combination of bits. A group of 8 bits form a byte.

One byte is the smallest unit of data that is handled by the computer.

One byte (8 bit) can store 28 = 256 different combinations of bits, and thus can

be used to represent 256 different symbols. In a byte, the different combinations

of bits fall in the range 00000000 to 11111111. A group of bytes can be further

combined to form a word. A word can be a group of 2, 4 or 8 bytes.

I. Characteristics Of Memories

- Volatility

 Volatile {RAM}

 Non-volatile {ROM, Flash memory}

- Mutability

 Read/Write {RAM, HDD, SSD, RAM, Cache, Registers…}

 Read Only {Optical ROM (CD/DVD…), Semiconductor

ROM}

- Accessibility

 Random Access {RAM, Cache}

 Direct Access {HDD, Optical Disks}

 Sequential Access {Magnetic Tapes}

1 bit = 0 or 1

1 Byte (B) = 8 bits

1 Kilobyte (KB) = 210 = 1024 bytes

1 Megabyte (MB) = 220 = 1024KB

1 Gigabyte (GB) = 230 = 1024 MB = 1024 *1024 KB

1 Terabyte (TB) = 240= 1024 GB = 1024 * 1024 *1024 KB

34

Microprocessor class: 2nd stage

II. Memory Hierarchy

The memory is characterized on the basis of two key factors: capacity and access

time.

 Capacity is the amount of information (in bits) that a memory can store.

 Access time is the time interval between the read/ write request and the

availability of data. The lesser the access time, the faster is the speed of

memory.

Ideally, we want the memory with fastest speed and largest capacity. However,

the cost of fast memory is very high. The computer uses a hierarchy of memory

that is organized in a manner to enable the fastest speed and largest capacity of

memory.

The hierarchy of the different memory types is shown in Figure 14.

The Internal Memory and External Memory are the two broad categories of

memory used in the computer. The Internal Memory consists of the CPU

registers, cache memory and primary memory. The internal memory is used by

the CPU to perform the computing tasks. The External Memory is also called

the secondary memory. The secondary memory is used to store the large

amount of data and the software.

Figure 14 Memory hierarchy

35

Microprocessor class: 2nd stage

In general, referring to the computer memory usually means the internal

memory.

 Internal Memory

The key features of internal memory are:

1. Limited storage capacity.

2. Temporary storage.

3. Fast access.

4. High cost.

Registers, cache memory, and primary memory constitute the internal memory.

The primary memory is further of two kinds: RAM and ROM. Registers are the

fastest and the most expensive among all the memory types. The registers are

located inside the CPU, and are directly accessible by the CPU. The speed of

registers is between 1-2 ns (nanosecond). The sum of the size of registers is

about 200B. Cache memory is next in the hierarchy and is placed between the

CPU and the main memory. The speed of cache is between 2-10 ns. The cache

size varies between 32 KB to 4MB. Any program or data that has to be executed

must be brought into RAM from the secondary memory. Primary memory is

relatively slower than the cache memory. The speed of RAM is around 60ns.

The RAM size varies from 512KB to 64GB.

 Secondary Memory

The key features of secondary memory storage devices are:

1. Very high storage capacity.

2. Permanent storage (non-volatile), unless erased by user.

3. Relatively slower access.

4. Stores data and instructions that are not currently being used by CPU

but may be required later for processing.

5. Cheapest among all memory.

To get the fastest speed of memory with largest capacity and least cost, the fast

memory is located close to the processor. The secondary memory, which is not

as fast, is used to store information permanently, and is placed farthest from the

processor.

With respect to CPU, the memory is organized as follows:

 Registers are placed inside the CPU (small capacity, high cost, very high

speed)

 Cache memory is placed next in the hierarchy (inside and outside the

36

Microprocessor class: 2nd stage

CPU)

 Primary memory is placed next in the hierarchy

 Secondary memory is the farthest from CPU (large capacity, low cost,

low speed) The speed of memories is dependent on the kind of technology

used for the memory. The registers, cache memory and primary memory

are semiconductor memories. They do not have any moving parts and

are fast memories. The secondary memory is magnetic or optical

memory has moving parts and has slow speed.

III. CPU Registers

Registers are very high-speed storage areas located inside the CPU. After CPU

gets the data and instructions from the cache or RAM, the data and instructions

are moved to the registers for processing. Registers are manipulated directly by

the control unit of CPU during instruction execution. That is why registers are

often referred to as the CPU’s working memory. Since CPU uses registers for

the processing of data, the number of registers in a CPU and the size of each

register affect the power and speed of a CPU. The more the number of registers

(ten to hundreds) and bigger the size of each register (8 bits to 64 bits), the

better it is.

IV. Cache Memory

Cache memory is placed in between the CPU and the RAM. Cache memory is

a fast memory, faster than the RAM. When the CPU needs an instruction or

data during processing, it first looks in the cache. If the information is present

in the cache, it is called a cache hit, and the data or instruction is retrieved from

the cache. If the information is not present in cache, then it is called a cache

miss and the information is then retrieved from RAM.

Type of Cache memory

Cache memory improves the speed of the CPU, but it is expensive. Type of

Cache Memory is divided into different levels that are L1, L2, L3:

Level 1 (L1) cache or Primary Cache

L1 is the primary type cache memory. The Size of the L1 cache very small

comparison to others that is between 2KB to 64KB, it depends on computer

processor. It is an embedded register in the computer microprocessor

(CPU).The Instructions that are required by the CPU that are firstly searched in

L1 Cache. Example of registers are accumulator, address register, Program

http://ecomputernotes.com/fundamental/input-output-and-memory/what-is-registers-function-performed-by-registers-types-of-registers

37

Microprocessor class: 2nd stage

counter etc.

Level 2 (L2) cache or Secondary Cache

L2 is secondary type cache memory. The Size of the L2 cache is more capacious

than L1 that is between 256KB to 512KB. L2 cache is located on computer

microprocessor. After searching the Instructions in L1 Cache, if not found then

it searched into L2 cache by computer microprocessor. The high-speed system

bus interconnecting the cache to the microprocessor.

Level 3 (L3) cache or Main Memory

The L3 cache is larger in size but also slower in speed than L1 and L2, its size

is between 1MB to 8MB. In Multicore processors, each core may have separate

L1 and L2, but all cores share a common L3 cache. L3 cache double speed than

the RAM.

The advantages and disadvantages of cache memory are as follows:

Advantages

The advantages of cache memory are as follows:

 Cache memory is faster than main memory.

 It consumes less access time as compared to main memory.

 It stores the program that can be executed within a short period of time.

 It stores data for temporary use.

Disadvantages

The disadvantages of cache memory are as follows:

 Cache memory has limited capacity.

 It is very expensive.

V. PRIMARY MEMORY (Main Memory)

Primary memory is the main memory of computer. It is a chip mounted on the

motherboard of computer. Primary memory is categorized into two main types:

Random access memory (ram) and read only memory (rom). RAM is used for

the temporary storage of input data, output data and intermediate results. The

38

Microprocessor class: 2nd stage

input data entered into the computer using the input device, is stored in RAM

for processing. After processing, the output data is stored in RAM before being

sent to the output device. Any intermediate results generated during the

processing of program are also stored in RAM. Unlike RAM, the data once

stored in ROM either cannot be changed or can only be changed using some

special operations. Therefore, ROM is used to store the data that does not

require a change.

Types of Primary Memory

1. RAM (Random Access Memory)

The Word “RAM” stands for “random access memory” or may also refer to

short- term memory. It’s called “random” because you can read store data

randomly at any time and from any physical location. It is a temporal storage

memory. RAM is volatile that only retains all the data as long as the computer

powered. It is the fastest type of memory. RAM stores the currently processed

data from the CPU and sends them to the graphics unit.

There are generally two broad subcategories of RAM:

• Static RAM (SRAM): Static RAM is the form of RAM and made with flip-

flops and used for primary storage are volatile. It retains data in latch as

long as the computer powered. SRAM is more expensive and consumes

more power than DRAM. It used as Cache Memory in a computer system.

As technically, SRAM uses more transistors as compared to DRAM. It is

faster compared to DRAM due to the latching arrangement, and they use 6

transistors per data bit as compared to DRAM, which uses one transistor

per bit.

• Dynamic Random Access Memory (DRAM): It is another form of RAM

used as Main Memory, its retains information in Capacitors for a short

period (a few milliseconds) even though the computer powered. The Data

is Refreshed Periodically to maintain in it. The DRAM is cheaper, but it can

store much more information. Moreover, it is also slower and consumes less

power than SRAM.

2. ROM (Read Only Memory)

ROM is the long-term internal memory. ROM is “Non-Volatile Memory” that

retains data without the flow of electricity. ROM is an essential chip with

http://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information

39

Microprocessor class: 2nd stage

permanently written data or programs. It is similar to the RAM that is accessed

by the CPU. ROM comes with pre-written by the computer manufacturer to

hold the instructions for booting-up the computer.

There is generally three broad type of ROM:

• PROM (Programmable Read Only Memory): PROM stands for

programmable ROM. It can be programmed only be done once and read

many. Unlike RAM, PROMs retain their contents without the flow of

electricity. PROM is also nonvolatile memory. The significant difference

between a ROM and a PROM is that a ROM comes with pre-written by the

computer manufacturer whereas PROM manufactured as blank memory.

PROM can be programmed by PROM burner and by blowing internal fuses

permanently.

• EPROM (Erasable Programmable Read Only Memory): EPROM is

pronounced ee-prom. This memory type retains its contents until it exposed

to intense ultraviolet light that clears its contents, making it possible to

reprogram the memory.

• EEPROM (Electrically Erasable Programmable Read Only Memory):

EEPROM can be burned (programmed) and erased by first electrical waves

in a millisecond. A single byte of a data or the entire contents of device can

be erased. To write or erase this memory type, you need a device called a

PROM burner.

Physical Addressing

Addresses are group of bits which are arranged sequentially in memory, to enable

direct access, a number called address is associated with each group. Addresses

start at 0 and increase for successive groups. The term location refers to a group

of bits with a unique address.

Addresses type

There are three types of addresses.

1- Physical address.

2- Offset address.

3- Logical address.

40

Microprocessor class: 2nd stage

1. Physical Address (PA)

The physical address is the 20- bit address that actually put on the address pins of

the 8086 microprocessors. The 8086 microprocessor handles 1 MB of memory

and has an address range from 00000 H to FFFFF H. Since each hexadecimal

digit is represented by 4-bits, so each memory address requires 20-bits to

represent the 5 digits of physical address.

Physical address Generation

A 2-byte register can only store 4 hexadecimal digits (16 bits). So, the address

stored in the segment register (Base address) is multiplied by 10 H (or shifting it

4 digits to the left or adding zeros to the bottom 4 bits) to get 5 hexadecimal digits

of the physical address (20 bits) and then the offset address is added as in the

following equation. Figure 15 shows how the physical address is generated.

Physical address = Base address x 10 + Offset address.

Example:

Figure 15 Physical address Generation

Offset address

Offset is the displacement of the memory location from the starting location of

the memory segment (Data, Extra, Stack, or Code). The complete physical

address which is 20-bits long is generated using segment and offset registers each

of the size 16-bit. So, the addresses stored in these registers range from 0000 H

to FFFF H. In Other word, offset address is the number of address locations

added to a base address in order to get to a specific absolute address. See

figure 16.

41

Microprocessor class: 2nd stage

Figure 16 the implementation of offset address

Segment and Offset Registers

Segment registers contain base addresses for segments and each of these registers

handles a specific type of register that contains offset addresses. By combining

the base address and the offset address, the physical address is generated as shown

in the following table:

Table 6 physical address

Segment register Offset register Physical address

CS IP Instruction address

SS SP, BP Stack address

DS BX, DI, SI Data address

ES BX, DI, SI String destination address for string instruction

Logical address (virtual address)

A logical address is an address generated by the CPU during program execution

that refers to a location in the memory space. It acts as a reference point for where

data or instructions are stored within a program. The logical address consists of

the segment base address (located in the segment register) and the offset address

and it is represented by the following format (Segment :Offset).

Q:/ What is the difference between logical and physical address in 8086?

Answer

Logical address is generated by CPU in perspective of a program whereas the

physical address is a location that exists in the memory unit.

Examples shows how to add numbers in hexadecimal system which is used to

calculate memory locations

42

Microprocessor class: 2nd stage

Figure 17 adding numbers

Q8: How physical address is calculated in 8086 explain with example?

The 8086 addresses a segmented memory. The complete physical address which

is 20-bits long is generated using segment and offset registers each of the size

16-bit. The content of a segment registers also called as segment address, and

content of an offset register also called as offset address.

Example:

If CD = 0100 H and IP = 9F2C H, determine the physical address.

Solution (steps are shown in figure 18):

Physical address = Base address × 10 + Offset address

 = 0100 × 10 + 9F2C

 = 01000 + 9F2C

 = 0AF2C H

Figure 18 Determining the physical address

Example 1:

If DS= 24F6 H and SI = 634A H, determine:

a- The offset address

b- The physical address

43

Microprocessor class: 2nd stage

c- The logical address

d- The lower range of the Data segment

e- The upper range of the Data segment

Solution:

a- 634A H

b- 24F6 x 10 + 634A = 2B2AA H

c- 24F6: 634A

d- 24F6 x 10 + 0000 = 24F60 H

e- 24F6 x 10 + FFFF = 34F5F H

Example 2:

If SS=7FA2 H and SP= 438E H, determine:

a- The offset address

b- The physical address

c- The logical address

d- The lower range of the Stack segment

e- The upper range of the Stack segment

Solution:

a- 438E H

b- 7FA20 + 438E = 83DAE H

c- 7FA2: 438E

d- 7FA20 + 0000 = 7FA20 H

e- 7FA20 + FFFF = 8FA1F H

44

Microprocessor class: 2nd stage

Input/ Output devices
Input / Output (I/O) devices provide the means by which the computer system

can interact with the outside world. Computers use I/O devices (also called

peripheral devices) for two major purposes:

1. To communicate with the outside world and,

2. Store data.

Input devices (even output devices) can be distinguished from each other by their

data processing rate which means the average number of characters that can be

processed by a device per second.

For example, the data processing rate for the keyboard is about 10 characters

(bytes)/second, a scanner can send data at a rate of about 200,000

characters/second. Similarly, while a laser printer can output data at a rate of

about 100,000 characters/second, a graphic display can output data at a rate of

about 30,000,000 characters/second.

A simple arrangement for connecting the processor and the memory in a given

computer system to an input device, for example, a keyboard and an output device

such as a graphic display. A single bus consisting of the required address, data,

and control lines is used to connect the system’s components is shown in Figure

19.

Figure 19 A single bus system

I/O protocol is a simple way of communication between the processor and I/O

devices, it requires the availability of the input and output registers. In a typical

computer system, there is a number of input registers, each belonging to a specific

45

Microprocessor class: 2nd stage

input device. There is also a number of output registers, each belonging to a

specific output device.

More than one arrangement exists to satisfy these requirements. Among these,

two particular methods are Isolated I/O and Memory-Mapped I/O.

Isolated I/O

Isolated I/O also called Shared I/O, is a method for managing I/O devices in a

computer system. In the isolated I/O configuration, a distinct address space is

assigned for I/O devices separated from the memory address space. the CPU uses

specific instructions (like IN and OUT) to communicate with I/O devices, these

instructions are different from the ones used to access memory. Isolated I/O often

utilizes separate control lines for I/O operations, distinguishing them from

memory operations.

The main advantage of Isolated I/O is the separation between the memory

address space and that of the I/O devices. While the main disadvantage is the

need to have special input and output instructions in the processor instruction

set. Figure 20 shows the arrangement of Isolated I/O devices.

Figure 20 Isolated I/O arrangement

46

Microprocessor class: 2nd stage

Memory mapped I/O

Memory-mapped I/O is a technique where input/output (I/O) devices and main

memory share the same address space. This means that the CPU can interact with

I/O devices using the same instructions it uses to access memory (like LOAD,

Store. In this configuration there is no dedicated control lines for I/O operations.

Instead, the same control lines used for memory access are also used for I/O.

figure 21 show the memory mapped arrangement.

The main advantage of the memory-mapped I/O is the use of the read and write

instructions of the processor to perform the input and output operations,

respectively. It eliminates the need for introducing special I/O instructions. The

main disadvantage of the memory-mapped I/O is the need to reserve a certain

part of the memory address space for addressing I/O devices, that is, a reduction

in the available memory address space.

Figure 21 the memory mapped arrangement

47

Microprocessor class: 2nd stage

Modes of Transfer

Data transfer between the processor and I/O devices may be handled in a variety

of modes. three possible modes are Programmed I/O, Interrupt I/O and Direct

Memory Access (MDA).

Programmed I/O

In this mode of the data transfer, the I/O operations are performed under the

control of the CPU. A complete instruction fetches, decode, and execute cycle

will have to be executed for every input and every output operation. The CPU

sends commands to the I/O device, waits for the device to become ready, and then

transfers the data. It is a simple method but its main disadvantage is that, the CPU

is heavily involved and spends a lot of time waiting for the I/O device (wasting

the CPU time), which is inefficient.

Interrupt-Driven I/O

Before we explain this mode of data transfer between the processor and I/O

device, we will know what is an interrupt and how the CPU responds to it.

An interrupt is a signal to the processor that an event has occurred that requires

its attention. This event can be triggered by various sources, such as: I/O devices

(data transfer), hardware errors (disk failure) or software events (a program

making a system call).

When the CPU is interrupted, it is required to discontinue its current activity,

attend to the interrupting condition (serve the interrupt), and then resume its

activity from wherever it stopped. Discontinuity of the processor’s current

activity requires finishing executing the current instruction, saving the processor

status (mostly in the form of pushing register values onto a stack), and

transferring control (jump) to what is called the interrupt service routine (ISR).

The service offered to an interrupt will depend on the source of the interrupt. For

example, in the case of an I/O interrupt, serving an interrupt means to perform

the required data transfer. Upon finishing serving an interrupt, the processor

should restore the original status by popping the relevant values from the stack.

Once the processor returns to the normal state, it can enable sources of interrupt

again.

48

Microprocessor class: 2nd stage

In the interrupt-Driven I/O the CPU initiates the I/O operation and then goes on

to perform other tasks. When the I/O device is ready to transfer data, it sends an

interrupt signal to the CPU. The CPU then handles the interrupt and transfers the

data. The advantage of this transfer mode, it is more efficient than programmed

I/O as the CPU is not constantly waiting. Its disadvantage is that it still requires

the CPU intervention for each data transfer, which can be overhead for large data

transfers.

Direct Memory Access (DMA)

The main idea of direct memory access (DMA) is to enable peripheral devices to

transfer data directly from and to memory without the intervention of the CPU.

This mechanism allows the CPU to do other work, which would lead to improved

performance, especially in the cases of large transfers.

The DMA controller is a piece of hardware that controls one or more I/O devices.

It allows direct data transfer between I/O devices and the system’s memory

without the help of the processor. In a typical DMA transfer, some event notifies

the DMA controller that data needs to be transferred to or from memory. Both the

DMA and CPU use memory bus and only one or the other can use the memory at

the same time. The DMA controller requests CPU permission to use a bus, which

is granted by the CPU. The DMA then conducts memory transfer independently,

and after completion it leaves the control to the CPU. Figure 22 shows how the

DMA controller shares the CPU’s memory bus.

Figure 22 DMA controller shares the CPU’s memory bus

49

Microprocessor class: 2nd stage

Instruction Set and Format
Microprocessor - 8086 Instruction Sets

Instructions can be classified based on the number of operands as: three-address,

two-address, one-and-half-address, one-address, and zero-address.

A three-address instruction takes the form operation add-1, add-2, add-3. In this

form, each of add-1, add-2, and add-3 refers to a register or to a memory location.

For example, the instruction ADD R1, R2, R3. This instruction indicates that the

operation to be performed is addition. It also indicates that the values to be added

are those stored in registers R1 and R2 and the results should be stored in register

R3.

A two-address instruction takes the form operation add-1, add-2. In this form,

each of add-1 and add-2 refers to a register or to a memory location. For example,

the instruction ADD R1,R2. This instruction adds the contents of register R1 to the

contents of register R2 and stores the results in register R2. The original contents

of register R2 are lost due to this operation while the original contents of register

R1 remain intact.

A one-address instruction takes the form ADD R1. In this case the instruction

implicitly refers to a register, called the Accumulator Racc, such that the contents

of the accumulator is added to the contents of the register R1 and the results are

stored back into the accumulator Racc.

The 8086 microprocessor supports 8 types of instructions

1. Data Transfer Instructions

2. Arithmetic Instructions

3. Bit Manipulation Instructions

4. String Instructions

5. Branch Instructions

6. Processor Control Instructions

7. Loop & Iteration Instructions

8. Interrupt Instructions

Let us now discuss these instruction sets in detail.

1. Data Transfer Instructions

These instructions are used to transfer the data from the source operand to the

destination operand. The data can be of any type. They are classified into four

groups as explain in table 7.

50

Microprocessor class: 2nd stage

Table 7 data transfer instructions

General-purpose Byte

or word transfer

instructions

Special address

transfer

instructions

Simple input/output

port transfer

instructions

Flag transfer

instructions

MOV

XCHG

XLAT

PUSH

POP

LEA

LDS

LES

IN

OUT

LAHF

SAHF

PUSHF

POPF

a) MOV − Used to copy a byte or a word from a specified source to specified

destination. Data can be moved between general-purpose register, between a

general-purpose register and a segment register, between a general-purpose

register or a segment register and a memory, or between a memory location

and the accumulator. Details of this instruction is shown in table 8.

Table 8 move instruction

Mnemonic Meaning Format Operation Flags effected

MOV Move MOV D, S (S)  (D) None

Example1: MOV CX, 037AH; it means move 037AH into CX, 037A -> CX

Example2: MOV AX, BX; it means copy the content of register BX to AX;

BX-> AX

Example3: MOV DL, [BX]; it means copy byte from memory at BX to DL;

DS*10+BX-> DL

b) XCHG- exchange the content of a register with the content of another register

(or) the content of the register with the content of a memory location. Direct

memory to memory exchange is not supported. Both operands must be of

the same size and one operand must be a register. Table 9 shows the

instruction details.

Table 9 XCHG instruction

Mnemonic Meaning Format Operation Flags effected

XCHG Exchange XCHG D, S (D)  (S) None

Example1: CX, [037A]H ; [[DS*10]+037A]  CX

Example2: AX, [BX] ; [[DS*10]+BX]  AX

51

Microprocessor class: 2nd stage

Example3: CX, [BP+200H] ; [[DS*10]+BP+200]  CX

Example 4: what is the result of executing the following instruction?

XCHG AX, [0002]

Solution: figure 23 shows the solution

Figure 23 Solution of example 4

c) LEA, LDS and LES (Load Effective Address) Instructions

These instructions load a segment and general-purpose registers with an address

directly from the memory. These instructions described in table 10.

Table 10 Load effective address instructions

Mnemonic Meaning Format Operation Flags effected

LEA Load register

with Effective

Address

LEA reg16,

EA

EA 

(reg16)

none

LDS Load register

and DS with

words from

memory

LDS reg16,

EA

[PA]

(reg16)

[PA+2] 

[DS]

None

LES Load register

and ES with

word from

memory

LES reg16,

EA

[PA]

(reg16)

[PA+2] 

[ES]

Example1: LEA BX, PRICE ; load BX with offset of PRICE in DS

Example2: LEA BP, SS:STAK ; Load BP with offset of STACK in SS

52

Microprocessor class: 2nd stage

Example3: LEA CX, [BX][DI] ; Load CX with EA= BX + DI

Example4: LDS BX, [4326] ; copy the content of the memory at displacement

4326H in DS to BL, the content of the 4327H to BH, copy the content the content

of the 4328H and 4329H in DS to DS register.

Example 5: Assuming that (BX)=100H, DI==200H, DS=1200H, SI=F002H,

AX=0105H and the following memory content. What is the result of executing

the following instructions?

Solution: is explained in figure 24

Figure 24 solution of example 4

d) XLAT/XLATB Instruction- Translate a byte in AL

XLAT exchanges the byte in AL register from the user table index to the table

entry, addressed by BX. It transfers 16-bit information at a time. The no-operands

form XLAT provides a short form of XLAT instructions which explained in

table11.

Table 11 XLAT instruction

Mnemonic Meaning Format Operation Flags

effected

XLAT Translate XLAT EA  (DS*10

+(AL)+(BX))

none

53

Microprocessor class: 2nd stage

Example: for the figure below, the result of executing the following instruction

XLAT

Solution: is explained in figure 25.

Figure 25 solution of XLAT instruction

The Stack

The stack is implemented in the memory and it is used for temporary storage of

information such as data and addresses. The stack is 64kbutes long and is

organized from a software point of view as 32kwords

- SS register points to the lowest address word in the stack.

- SP and BP point to the address within the stack.

- Data transferred to and from the stack are word-wide, not byte-wide.

- The first address in the stack segment (SS:0000) is called End of Stack.

- The last address in the stack segment (SS: FFFE) is called Bottom of Stack.

- The address (SS:SP) is called Top of Stack.

Figure 26 shows the stack representation diagram.

Figure 26 the Stack

54

Microprocessor class: 2nd stage

e) PUSH and POP Instructions

The PUSH and POP instructions are important instructions that store and retrieve

data from the stack memory. The instruction formats are as in table 12.

Table 12 Push and Pop instructions

Mnemonic Meaning Format Operation Flags

effected

PUSH Push a word into a

stack

PUSH S (SP)  (SP-2)

((SP))  (S)

none

POP Pop a word off a

stack

POP D (d)  ((SP))

(SP)  (SP+2)

None

- POP instruction is used to read word from the stack

- PUSH instruction is used to write word to the stack

- When a word to be pushed into the top of the stack

 The value of SP is first automatically decremented by two this is because the

stack typically grows downwards in memory (towards lower addresses) and

then the content of the register written into the stack.

- When a word is to be popped from the top of the stack

 The content is first moved from the top of the stack to a specific register then

the value of SP is incremented by two.

Example: let AX= 1234H, SS = 0105H and SP= 0006H. Below is the state of stack

prior and after the execution of next program instruction

PUSH AX,

POP BX,

POP AX

Solution: is shown in figure 27

55

Microprocessor class: 2nd stage

Figure 27 solution of stack example

f) INPUT/ OUTPUT Instructions

There are two different forms of Input and Output instructions: the direct I/O

instructions and variable I/O instructions. These two types of instructions can

be used to transfer a byte or word of data. The data transfer takes place between

the I/O device and the microprocessor unit’s (MPU) accumulator register. Table

13 shows these instructions.

Table 13 Input and Output Instructions

Mnemonic Meaning Format Operation Flags

effected

IN Input direct

Input variable

IN Acc, Port

IN Acc, DX

(Acc) 

(Port)

(Acc) 

(DX)

none

OUT Output direct

Output variable

OUT Port,

Acc

Out DX, Acc

(Port) 

(Acc)

None

56

Microprocessor class: 2nd stage

(DX) 

(Acc)

Example1: IN AL, 0C8H ; Input a byte from port 0C8H to AH

Example1: IN AX, 34H ; Input a byte from port 34H to AX

Example1: OUT 3BH, AL ; Copy the content of AL to port 3BH

Example1: OUT 2CH, AX ; Copy the content of AX to port 2CH

g) LAHF Instruction- Load Register AH from Flags

LAHF instruction copies the values of SF, ZF, AF, PF and CF into 7,6,4,2 and 0

respectively of AH register the LAHF was provided to make conversion of

assembly language programs written for 8080 and 8085 to 8986 easier.

h) SAHF instruction AH Register into FLAGS

SAHF instruction transfers the bits 0-7 of AH of SF, ZF, AF, PF and CF into the

flag register

i) PUSHF Instruction- Push flag register on the stack

This instruction decrements the SP by 2 and copies the word in flag register to

the memory location pointed by SP.

j) POPF −Pop word from top of stack to flag- register

This instruction copies a word from the two-memory location at the top of the

stack to flag register and increments the stack pointer by 2.

1. Arithmetic Instructions

These instructions are used to perform arithmetic operations like addition,

subtraction, multiplication, division, etc.

An 8-bit number system can be used to create 256 combinations from (0-255).

The first 128 combination represent the positive numbers from (0-127) and the

next 128 combination from (128-255) represent the negative numbers ((-128) -

(-1)). The binary numbers are shown in figure 28.

57

Microprocessor class: 2nd stage

Figure 28 the binary numbers

In binary, when the Most Significant Bit (MSB) position set to 1 then the number

is negative otherwise it is a positive number. Table 14 explain the classification

of the arithmetic instructions

Table 14 arithmetic instructions

Addition

instructions

Subtraction

instructions

Multiplication

instruction

Division

instruction

ADD

ADC

INC

AAA

DAA

SUB

SBB

DEC

NEG

CMP

AAS

DAS

MUL

IMUL

AAM

DIV

IDIV

AAD

CBW

CWD

The result of the execution of an arithmetic instruction is recorded in the flags

registers. the C, A, S, Z, P and O flags are affected by the arithmetic instructions.

58

Microprocessor class: 2nd stage

a) Addition Instruction: these instructions are described in table 15.

Table 15 addition instructions

Mnemonic Meaning Format Operation Flags

effected

ADD Addition ADD D, S (S)+(D)  (D)

carry  (CF)

O,S,Z,A,P,C

ADC Add with

carry

ADC D, S (S)+(D)+(CF)

(D)

CARRY  (CF)

O,S,Z,A,P,C

INC Increment by 1 INC D (D) +1  D O,S,Z,A,P

DAA Decimal adjust

for addition

DAA S,Z,A,P,C

AAA ASCII adjust

for addition

AAA A, C

Examples

ADD AL, 74H /add immediate number 74H to the content of AL

ADC CL, BL /add the content of BL plus carry status to the content of CL

ADD DX, [SI] /add a word from a memory at offset [SI] in DS to the

content of DX

When adding unsigned numbers

ADD, CL, BL

Assuming that Cl= 01110011= 115(decimal); BL= 01001111 =79(decimal) the

result in CL= 11000010 = 194(decimal)

Now assume we add two signed numbers

ADD CL, BL

Assume that CL= 01110011 = +115(decimal); BL = 01001111 = +79(decimal)

The result in CL= 11000010 = -62 (decimal); incorrect result because it is too

large to fit in 7 bits.

More examples

7. ADD AX, 2

ADC AX,2

8. INC BX

INC WORD PTR [BX]

59

Microprocessor class: 2nd stage

9. If you know the ASCII code FOR 0-9 = 30-39H

ADD CL, DL

suppose that [CL]=32 (ASCII for 2) AN [DL] = 35 (ASCII for 5) the result

[CL] = 67

MOV AL, CL // move the ASCII result into AL since AAA adjust only [AL]

AAA // [AL] = 07, unpacked BCD for 7

b) Subtraction instruction: table 16 explain the detail of these instructions.

Table 16 subtraction instructions

Mnemonic Meaning Format Operation Flags

effected

SUB Subtraction SUB D, S (S)-(D)  (D)

borrow  (CF)

O,S,Z,A,P,C

SBB Subtract with

borrow

SBB D, S (S)-(D)-(CF)

(D)

borrow  (CF)

O,S,Z,A,P,C

DEC Decrement by

1

DEC D (D) – 1  (D) O,S,Z,A,P

NEG Negative NEG 0 - (D)  D

1 (CF)

S,Z,A,P,C

CMP Compare CMP D,S (S) – (D) A, C

DAS Decimal adjust

for Subtraction

DAS S,Z,A,P,C

AAS ASCII adjust

for Subtraction

AAS A, C

c) NEG instruction

This instruction performs the 2’s complement subtraction of the operand from

zero and sets the flags according to the results

Example:

MOV AX, 2CBh

NEG AX // after executing NEG the result AX= FD35h

d) CMP Instruction- Compare byte or word-CMP destination, source

This instruction compares the destination and the source i.e., it subtracts the source

from the destination. The result is not stored anywhere. It neglects the result, but

60

Microprocessor class: 2nd stage

sets the flags accordingly. This instruction is usually used before conditional

JUMP instruction

Example:

MOV AL, 5

MOV BL, 5

CMP AL, BL // AL= 5, ZF= 1  EQUAL

3. Multiplication And Division Instructions

The instructions format and operation are in table 17.

Table 17 multiplication and division instructions

Mnemonic Meaning Format Operation

MUL Multiply

(unsigned)

MUL S (AL)*(S8)  (AX); (AX) *(S16)

(DX)(AX)

DIV Division

(Unsigned)

DIV S Q((AX) / (S8)) (AL);

R((AX)/(S8))(AH)

Q((DX,AX) / (S16))  (AX);

R((DX,AX) / (S16))  (DX)

IMUL Integer Divide

(signed)

IMUL S (AL) * (S8)  (AX)* (S16) 

(DX)(AX)

IDIV Integer Divide

(Signed)

NEG Q((AX) / (S8)) (AL);

R((AX)/(S8))(AH)

Q((DX,AX) / (S16))  (AX);

R((DX,AX) / (S16))  (DX)

AAM Adjust AL FOR

Multiplication

AAM Q(AL) /(10)  (AH); R((AL)

/(10))(AL)

AAD Adjust AL FOR

Division

AAD (AH)*10 + (AL) (AL) ; 00(AH)

CBW Convert byte to

word

CBW (MSB of AL) (All bits of AH)

CWD Convert word to

double word

CWD (MSB of AX) (All bits of DX)

Examples:

1. Assume that each instruction starts these values, AL=85H, BL = 35H, AH= 0H.

MUL BL AL. BL= 85H*35H = 1B89H  AX = 1B89H)

2. IMUL BL AL.BL = 85H-2’S AL= 2’S(85H) *(35H)

= 7BH*35H = 1977H 2’S comp E689HAX

AH AL

61

Microprocessor class: 2nd stage

3. DIV BL = = 02 (85-02*35=1B) 

4. IDIV BL = =

Example 2: Al= F3H, BL=91H, AH=00H

1. MUL BL AL*BL = F3H* 91H = 89A3HAX = 89A3

2. IMUL BL AL*BL = 2’S AL *2’S BL = 2’S(F3H)* 2’S(91H)

 = 0DH*6FH = 05A3H

3. IDIV BL  =
()

 = = 2(00F3- 2 *6F=1FH)

4. DSF  = 푁퐸퐺−→ 2 푠(표2) = 퐹퐸퐻 →

4. DIV BL  = = 01(F3-1*91 = 62)

AAA (ASCII Adjust after Addition)

- The data entered from the terminal in ASCII format.

- In ASCII, 0-9 are represented by 30H-39H

- This instruction allowed to add the ASCII codes

- This instruction does not have any operand.

Other ASCII Instructions:

- AAS (ASCII Adjust after Subtraction)

- AAM (ASCII Adjust after Multiplication)

- AAD (ASCII Adjust after Division)

DAA (Decimal Adjust after Addition)

- It is used to make sure that the result of adding two BCD numbers is

adjusted to be a correct BCD number

- It only works on AL register

DAS (Decimal Adjust after Subtraction)

- It is used to make sure that the result of subtracting two BCD numbers is

adjusted to be a correct BCD number

- It only works on AL register

R Q

AH AL

1B 02

1B 02

AH AL

15 02
AH AL

15 FE

R Q

AH AL

62 01

62

Microprocessor class: 2nd stage

NEG Source

- It creates 2’s complement of a given number. That means, it changes the

sign of the number

CMP Destination, Source

- It compares two specified bytes or words.

- The source and the destination can be a constant, a register or a memory

location.

- Both operands cannot be a memory location at the same time.

- The comparison is done simply by internally subtracting the source from

the destination.

- The value of the source and the destination does not change. But the flags

are updated to indicate the result.

CBW (Convert Byte to Word)

- This instruction converts a byte in AL to Word into AX.

- The conversion is done by extending the sign bit of AL throughout AH.\

CWD (Convert Word to Byte)

- This instruction converts a word in AX to Double word in DX:AX.

- The conversion is done by extending the sign bit of AX throughout DX.

3. Bit Manipulation Instructions
These instructions are used to perform operations on bit level. These

instructions are used for testing a zero bit, set or reset a bit, shift bit across

registers. Table 18 shows the classification of these instruction.

Table 18 bit manipulation instructions

Logical instructions Shift instruction Rotate instructions

NOT

AND

OR

XOR

TEST

SHL/SAL

SHR

SAT

ROL

ROR

RCL

RCR

a) Logical instructions

Details about these instructions is provided in table 19.

63

Microprocessor class: 2nd stage

Table 19 logical instructions

Mnemo

nic

Meaning Format Operation Flags effected

NOT Logical NOT NOT D (D-)  (D) Non

AND Logical AND AND D, S (S).(D)  (D) O, S, Z, P, C

OR Logical Inclusive OR OR D, S (S)+(D) (D) O, S, Z, P, C

XOR Logical Exclusive OR XOR D, S (S) ⊕ (D)  (D) O, S, Z, P, C

Examples of logical instructions are shown in figure 29

Figure 29 examples of logical instructions

Shift instructions
These instructions are used to

- Align data

- Isolate bit or a byte of a word so that it can be tested

- Perform simple multiplication and division computations. The meaning

and the format of these instruction is shown table 20.

-

64

Microprocessor class: 2nd stage

Table 20 shift instruction format

Mnemonic Meaning Format Operation Flags effected
SAL/SHL Shift arithmetic

left/shift

logical left

SAL D, Count

SHL D, Count

Shift the (D) left by the

number of bit positions

equal to Count and fill the

vacated bits positions on

the right with zeros

C, P, S, Z

A undefined

O undefined if

count =1

SHR shift logical

right

SHR D, Count Shift the (D) right by the

number of bit positions

equal to Count and fill the

vacated bits positions on

the left with zeros

C, P, S, Z

A undefined

O undefined if

count =1

SAR shift arithmetic

right

OR D, S Shift the (D) right by the

number of bit positions

equal to Count and fill the

vacated bits positions on

the right with the original

most significant bit

C, P, S, Z

A undefined

O undefined if

count =1

Examples on shift instructions

Let AX= 1234H what is the value of AX after execution of this instruction

AHL AX, 1

Solution:

65

Microprocessor class: 2nd stage

Rotate Instructions
Mnemonic Meaning Format Operation Flags effected
ROL Rotate left ROL D, Count

rotate the (D) left by the

number of bit positions

equal to Count. Each bit

shifted out from the

leftmost goes back into the

rightmost bit position.

C,

O undefined if

count =1

ROR Rotate right ROR D, Count Rotate the (D) right by the

number of bit positions

equal to Count. Each bit

shifted out from the

rightmost goes back into

the leftmost bit position

C and O undefined

if count =1

RCL Rotate left

through carry

RCL D, S Same as ROL with an

addition that the carry is

attached to (D) for rotation.

C and O undefined

if count =1

RCR Rotate right

through carry

RCR D, Count Same as ROR with an

addition that the carry is

attached to (D) for rotation.

C and O undefined

if count =1

66

Microprocessor class: 2nd stage

Example: if CL =04H and AX=1234H. determine the new content of AX and

the carry flag after executing the instruction

a) ROL AX, 1

b) ROR AX, CL

solution

Process Control Instructions
These instructions are used to control the processor action by setting/resetting

the flag values. They are described in details in table 21.

Table 21 Flag Instruction

Mnemonic Meaning Format Operation Flags

effected
CLC Clear Carry Flag (CF) 0 CF

STC Set Carry Flag (CF) 1 CF

CMC Complement Carry Flag (CF) (CF)’

CLD Clear Direction Flag (DF) 0

SI& DI will be auto

incremented while string

instruction are executed

DF

STD Set Direction Flag (DF) 1 DF

CLI Clear Interrupt Flag (IF) 0 IF

STI Set Interrupt Flag (IF) 1 IF

Test instruction
This instruction is similar to AND instruction with a difference that the AND

instruction change the destination operand while test instruction does not

67

Microprocessor class: 2nd stage

change it. The instruction affects the condition of the flag register, which

indicates the test result. The same addressing modes that used with AND

instruction are used with TEST instruction.

5. String Instructions
String is a group of bytes/words and their memory is always allocated in a

sequential order. Table 22 shows the instructions under this group.

Notes: consider the following tips when deal with string instructions.

- The source (DS:SI), the destination (ES:DI).

- You must ensure that SI and DI are offsets into DS and ES respectively.

- The direction flag (0=up, 1=down)

5. CLC-increment address (left to right)

6. STD- decrement address (right to left)

Table 22 string instructions

Mnemonic Meaning Format Operation Flags

effected
MOVS Move string MOVSB/

MOVEW

((DS)*10+(SI))((ES)*10+(DI))

(SI)± 1(SI);(DI)± 1(DI)[byte]

(SI)± 2(SI);(DI)± 2(DI)[word]

NONE

CMPS Compare string CMPS/

CMPW

((DS)*10+(SI)) - ((ES)*10+(DI))

(SI) ± 1(SI);(DI) ± 1(DI)[byte]

(SI) ± 2(SI);(DI) ± 2(DI)[word]

O,S,Z,A,P,

C

SCAS Scan string SCASB/

SCASW

(AL) or (AX) – ((ES)*10+ (DI))

(DI) ± 1(DI)[byte]

(DI) ± 2(DI)[word]

O,S,Z,A,P,

C

LODS Load string LODSB/

LODSW

((DS)*10+(SI))  (AL) or (AX))

(SI) ± 1(SI)[byte]

(SI) ± 2(SI)[word]

NONE

STOS Store string STOSB/

STOSW

(AL) or (AX))  (ES)*10+(DI)

(DI) ± 1(DI)[byte]

(DI) ± 2(DI)[word]

NOOE

Executing these instruction causes the address indices in SI and DI to be either

increased or decreased automatically. The status of direction flag during the string

operations determines whether to increase or decrease the SI and DI. When (D=0)

it will be auto incremented while (D=1) decide to be decremented.

In most applications, the string operations must be repeated in order to process

arrays of data. The following repeat prefixes are used to repeat the instructions.

68

Microprocessor class: 2nd stage

- REP – is used with (MOVS, STOS, LODS) to repeat them while not end of

the string CX ≠ 0.

- REPE/REPZ – is used with (CMPS, SCAS) instructions to repeat them

while not the end of the string and strings are equal, CX ≠ 0 or zero flag ZF

= 1.

- REPNE/REPNZ – is used with (CMPS, SCAS) to repeat them while not

the end of the string and strings are not equal CX ≠ 0 or zero flag ZF = 0.

- INS/INSB/INSW − Used as an input string/byte/word from the I/O port to

the provided memory location.

- OUTS/OUTSB/OUTSW − Used as an output string/byte/word from the

provided memory location to the I/O port.

6. Control Transfer Instructions

These instructions are used to branch the instructions during an execution, i.e.

transfer the program control from one address to other address (not in sequence

address). The classification of these instructions is shown in table 23.

Table 23 control transfer instructions

Unconditional

Transfer

Instructions

Conditional Transfer

Instructions

Iteration Control

Instructions

Interrupt

Instructions

JMP

CALL

RET

JA/JNBE

JAE/JNB

JB/JNAE

JBE/JNA

JC

JE/JZ

JG/JNLE

JGE/JNL

JL/JNGE

JLE/JNG

JNC

JNE/JNZ

JNO

JNP/JPO

JNS

JO

JP/JPE

JS

LOOP

LOOP/LOOPZ

LOOPNE/LOOPNZ

INT

INTO

IRET

Jump Instructions

Two types of jump operation are allowed in 8086. Conditional jump

and unconditional jump.

a) Unconditional Jump

69

Microprocessor class: 2nd stage

The instruction is (JMP) that means unconditional jump. A simple

illustration of unconditional jump is shown in figure 30.

Figure 30 unconditional jump

The unconditional jump instruction has two types:

- Intrasegment jump: which is short, near jump instruction. It is limited to

addresses within the current code segment and achieved by just

modifying the value in IP

- Intersegment jump: far jump instruction that requires modification of the

content of both CS and IP. It permits jump from one code segment into

another.

Example:
Assume the following state of 8086: (CS)=1075H, (IP)=0300H, (SI)=A00H,

(DS)=400H, (DS:A00)=10H. (DS:A01)=B3H, (DS:A02)=22H, (DS:A03)=1AH.

To what address is the program control pass if each of the following JMP

instruction is executed:

a) JMP 85 b) JMP 1000H c) JMP [SI]

70

Microprocessor class: 2nd stage

d) JMP SI e) JMP FAR[SI] f) JMP 3000:1000

Solution:

1. JMP 85  1075: 85  short jump

2. JMP 1000H  1075: 1000  Near jump

3. JMP [SI]  1075:B310  Near jump

4. JMP SI  1075: 0A00  Near jump

5. JMP FAR[SI]  1A22:B310  Far jump

6. JMP 3000:1000  3000:1000  Far jump

b) Conditional Jump

This type of jump instructions tests the flags bits (S, Z, C, P and O). if the tested

condition is TRUE, then a brunch to the label associated with jump instruction

occurs. Otherwise, the next subsequential step in the program will be execute. An

illustration of unconditional jump is shown in figure 31.

Figure 31 Unconditional jump

These instructions are explained below.

- JMP − Used to jump to the provided address to proceed to the next

instruction.

- JA/JNBE − Used to jump if above/not below/equal instruction satisfies.

- JAE/JNB − Used to jump if above/not below instruction satisfies.

- JBE/JNA − Used to jump if below/equal/ not above instruction satisfies.

71

Microprocessor class: 2nd stage

- JC − Used to jump if carry flag CF = 1.

- JE/JZ − Used to jump if equal/zero flag ZF = 1.

- JG/JNLE − Used to jump if greater/not less than/equal instruction satisfies.

- JGE/JNL − Used to jump if greater than/equal/not less than instruction

satisfies.

- JL/JNGE − Used to jump if less than/not greater than/equal instruction

satisfies.

- JLE/JNG − Used to jump if less than/equal/if not greater than instruction

satisfies.

- JNC − Used to jump if no carry flag (CF = 0)

- JNE/JNZ − Used to jump if not equal/zero flag ZF = 0

- JNO − Used to jump if no overflow flag OF = 0

- JNP/JPO − Used to jump if not parity/parity odd PF = 0

- JNS − Used to jump if not sign SF = 0

- JO − Used to jump if overflow flag OF = 1

- JP/JPE − Used to jump if parity/parity even PF = 1

- JS − Used to jump if sign flag SF = 1

- JCXZ − Used to jump to the provided address if CX = 0

Call Subroutine Instructions

A subroutine is a special segment of the program that can be called for execution

from any point in the program. Two basics instructions for handling the

subroutine which are.

- CALL this instruction is used to call a subroutine and save their return

address to the stack.

- RET this instruction is used to return from the subroutine to the main

program. It should be included at the end of the subroutine to initiate the

return sequence to the main program environment.

Every subroutine must be ended by executing of (RET) instruction which returns

the control to the main program. Executing this instruction causes the original

value of IP and CS to be POPOed from the stack. The illustration of subroutine

and how to handle it is figured out in figure 32.

72

Microprocessor class: 2nd stage

Figure 32 subroutine handling

Example: write a procedure to square the content of BL and places the result in

BX.

Solution:

Let we name the procedure Square, the procedure is as follow

 Square PUSH AX

 MOV AL, BL

 MUL BL

 MOV BX, AX

 POP AX

RET

Now we can call this procedure to compute y= (AL)2 + (AH)2+(DL)2and place

the result in CX (assuming that y doesn’t exceed 16bit)

The code will be.

73

Microprocessor class: 2nd stage

MOV CX, 0000H

 MOV BL, AL

 CALL Square

 ADD CX, BX

 MOV BL, AH

 CALL Square

ADD CX, BX

MOV BL, DL

CALL Square

ADD CX, BX

HLT

Loop & Iteration Instructions
These instructions are used to execute the given instructions for number of times.

Following is the list of instructions under this group −

- LOOP − Used to loop a group of instructions until the condition satisfies,

i.e., CX = 0

- LOOPE/LOOPZ − Used to loop a group of instructions till it satisfies ZF

= 1 & CX = 0

- LOOPNE/LOOPNZ − Used to loop a group of instructions till it satisfies

ZF = 0 & CX = 0

Interrupt Instructions
These instructions are used to call the interrupt during program execution.

- INT − Used to interrupt the program during execution and calling service

specified.

- INTO − Used to interrupt the program during execution if OF = 1

- IRET − Used to return from interrupt service to the main program.

74

Microprocessor class: 2nd stage

Addressing Modes
Information involved in any operation performed by the CPU needs to be

addressed. In computer terminology, such information is called the operand.

Therefore, any instruction issued by the processor must carry at least two

types of information. These are the operation to be performed, encoded in

what is called the op-code field, and the address information of the operand

on which the operation is to be performed, encoded in what is called the

address field.

The different ways in which operands can be addressed are called the

addressing modes. Addressing modes differ in the way the address

information of operands is specified.

There are 8 different addressing modes in 8086 programming:

1. Immediate addressing mode.

2. Register addressing mode.

3. Direct addressing mode.

4. Register indirect addressing mode.

5. Based addressing mode.

6. Indexed addressing mode.

7. Based-index addressing mode.

8. Based indexed with displacement mode.

These modes are explained as follows.

1. Immediate addressing mode

Immediate addressing transfers data from a register or memory location to a

destination register or memory location. the data operand is a part of the

instruction itself. The data can be of different types: decimal data is

represented as it is without adding any symbol or letter, the hexadecimal data

which is indicated by adding H at the end of the data value, the ASCII coded

data is represented by enclosing it in the apostrophes ‘ ’, which differs from

the single quote ’ ’, the binary data is represented by adding B at the end.

Below examples of different versions of MOV instruction shown in table 24.
Table 24 immediate addressing mode examples

Instruction Size Operation

MOV AL, 20 8 bit Copies 20 decimal (14H) into register AL

MOV BL, 44 8 bit Copies 44 decimal (2CH) into register BL

MOV AX, 44H 16 bit Copies 0044H into register AX

MOV BX, 55H 16 bit Copies a 0055H into register BX

MOV SI, 0 16 bit Copies 0000H into register SI

MOV CH, 100 8 bit Copies 100 decimal (64H) into register CH

MOV AL, 'A' 8 bit Copies ASCII of A into register AL

MOV AH, 1 8 bit Copies 1 decimal (01H) into register AH

75

Microprocessor class: 2nd stage

Instruction Size Operation

MOV AX, 'AB' 16 bit Copies ASCII of AB into register AX

MOV DX, 'Ahmed' 16 bit Copies an ASCII Ahmed into register DX

MOV CL, 11001110B 8 bit Copies 11001110 binary into register CL

Note that if t h e hexadecimal data begins with a letter, the assembler

requires that the data start with a 0. For example, to move F2H to AL, the

instruction will be MOV AL, 0F2H

2. Register addressing mode

This addressing mode transfers data from the source register or a memory

location to the destination register or a memory location. This is one of

the fastest addressing modes because the CPU can access registers very

quickly. Registers are located directly within the CPU, so there's no need to

fetch data from main memory.

Notes:

- There is no need to compute the effective address because the

operand is in a register and no memory access involved.
- CS (code segment register) cannot be as the destination operand.
- You cannot move data from one segment register to another with a

single MOV instruction. So, only one of the operands can be a segment

register.
- Segment registers cannot be used to hold arbitrary values, they contain

segment address only.
- Transfer data should be done within registers of the same sizes. Different

registers sizes are not allowed. For example, MOV AX, AL will indicate an

error because AX is 16-bit register while AL is 8-bit register.

Table 25 shows some examples of register addressing mode
Table 25 register addressing mode examples

Instruction Size Operation

MOV AL, 20 8 bit Copies 20 decimal (14H) into register AL

MOV BL, 44 8 bit Copies 44 decimal (2CH) into register BL

MOV AX, 44H 16 bit Copies 0044H into register AX

MOV BX, 55H 16 bit Copies a 0055H into register BX

MOV SI, 0 16 bit Copies 0000H into register SI

MOV CH, 100 8 bit Copies 100 decimal (64H) into register CH

MOV AL, 'A' 8 bit Copies ASCII of A into register AL

MOV AH, 1 8 bit Copies 1 decimal (01H) into register AH

MOV AX, 'AB' 16 bit Copies ASCII of AB into register AX

MOV DX, 'Ahmed' 16 bit Copies an ASCII Ahmed into register DX

MOV CL, 11001110B 8 bit Copies 11001110 binary into register CL

76

Microprocessor class: 2nd stage

3. Direct addressing mode

In this type of the addressing modes, the address of the memory location that

holds the operand is included in the instruction. Figure 33 shows a simple

illustration of this mode. There are two basic forms of direct data

addressing:

Direct addressing: this form specifically involves transferring data between a

memory location and the AL(8-bit) or AX (16-bit0. The instruction directly

contains the memory address of the data.

Example: MOV AX, [1234H] (Move the word from memory location 1234H into

the AX register).

- The effective address is the displacement value.

- The segment register that is used by default is the data segment register

(DS).

Displacement addressing: this is a more versatile form that can be used with

almost any instruction that involves memory access. It involves a displacement

value (a constant offset) that is added to the base address. The base address is

typically determined by the default data segment (DS) or can be overridden by

specifying another segment register (CS, SS, ES, FS, GS).

Example: MOV BX, [DI + 10H] (Move the word from the memory location

pointed to by DI + 10H into the BX register).

- In that example, 10H is the displacement.

- DI is an index register, and by default, if an index register is used without a

segment override, the DS register is used.

Example of segment override:

MOV BX, ES:[DI + 10H] (In this case, the ES segment register is used)

- The effective address is the sum of the displacement and the contents of the

index or base register, and then offset by the segment register.

Figure 33 illustration of direct addressing mode

77

Microprocessor class: 2nd stage

Table 26, some examples of using direct and displacement addressing mode

Table 26 direct addressing mode instructions
Instruction Size Operation

MOV AL, NUMBER 8 bit Copies the byte contents of data segment

memory location NUMBER into register AL

MOV AX, COW 16 bit Copies the word contents of data segment

memory location COW into register AX

MOV NEWS, AL 8 bit Copies AL into byte memory location NEWS

MOV THERE, AX 16 bit Copies AX into word memory location THERE

MOV ES:[2000H], AL 8 bit Copies AL into extra segment memory at

offset address 2000H

MOV AL, MOUSE 8 bit Copies the contents of location MOUSE into

MOV CH, DOG 8 bit Copies the byte contents of data

 segment

memory location DOG into register CH

MOV CH, DS:[1000H] 8 bit Copies the byte contents of data

 segment
memory offset address 1000H into register CH

MOV ES, DATA6 16 bit Copies the word contents of data

 segment
memory location DATA6 into register ES

MOV DATA7, BP 16 bit Copies BP into data segment memory

 location

DATA7

MOV NUMBER, SP 16 bit Copies SP into data segment memory

 location

NUMBER

4. Register indirect addressing mode
transfers a byte or word between a register and a memory location through

an offset address held by in any of the following registers: BP, BX, DI &

SI.

The DS is used by default with register indirect addressing or any other

addressing mode that uses BX, DI, or SI to address memory. If the BP

register addresses memory, the S S is used by default. For example, the

MOV AL, [DI] instruction is clearly a byte-sized move instruction,

but the MOV [DI], 10H instruction is ambiguous. Does the MOV [DI],

10H instruction address a byte-, or word-sized memory location? The

assembler can’t determine the size of the 10H. The instruction MOV

DI],10H clearly designates the location addressed by DI as a byte-sized

memory location.

The [BX], [SI], and [DI] modes use the DS segment by default (1000H). The

[BP] addressing mode uses the stack segment (SS) by default (3400H). You

can use the segment override prefix symbols if you wish to access data in

78

Microprocessor class: 2nd stage

different segments. The following instructions demonstrate the use of these

overrides:

MOV AL, CS:[BX]

MOV AL, DS:[BP]

MOV AL, SS:[SI]

MOV AL, ES:[DI]

For example: MOV SI, 1234H

 MOV AL, [SI]

If SI contains 1234H and DS contains 0200H the result produced by

executing the instruction is that the contents of the memory location at

address:

PA = 02000H + 1234H = 03234 are moved to the AL register

5. Based addressing mode

In this addressing mode, the offset address is located in the base registers

(BX/BP) and deals with an 8-bit/16-bit displacement number. In this type of

the addressing mode the offset address that is found in (BX/BP) are used to

access the memory locations. The effective memory address is calculated by

adding the contents of a base register to a displacement value.

Example 1

ORG 100h

MOV DX, [BX+4]

MOV AX, [BX+7]

ADD CL, [BX+8]

RET

The registers address can be increased using another way as shown in

example2

Example 2

ORG 100h

MOV DX, [BX]+4

MOV AX,7[BX]

ADD CL, [BX]+8

RET

Q:/What is the displacement number?

The displacement is an 8 bit/16-bit number that is contained in the

instruction.

6. Indexed addressing mode

In this addressing mode, the offset address is located in the index registers

(SI/DI) and deals with an 8-bit/16-bit displacement number. In this type the

79

Microprocessor class: 2nd stage

offset address that is found in (SI/DI) is used to access the memory locations.

It is used to access the one-dimensional array items

Example

MOV AL, [DI+16]

MOV [DI]+12, AL

MOV BX, [SI+16]

MOV [SI]+10, BX

ADD [SI],5

INC SI ; Incremented SI by 1

DCR SI ; Decremented SI by 1

Example: Program to print an array using loop

. STACK 100 ;stack segment

.DATA ;data segment

ARR1 DB 'A','B','C','D' ; Array definition

CODE ;code segment

MOV AX, @DATA ; Initialize data segment

MOV DS, AX

LEA SI, ARR1 ; Storing the offset address of array arr1 in

SI

MOV CX, 4 ; Initializing counter register loop to 4

C: MOV DX, [SI] ; Storing address value at DX

INC SI ; Incrementing SI by 1

MOV AH, 2 ; Printing DX Contain

INT 21H

 LOOP C ; loop to c and decrement CX by 1 until CX =0 then stop

 MOV AH,4CH

 INT 21H

END

Q3:/ What is the main difference between base and index register

addressing modes?

Answer

In the 8086 through the 80286, this type of addressing uses one base register

(BP/BX), and one index register (DI/SI) to indirectly address memory. The

base register often holds the beginning of array locations in memory, while

the index register holds the relative position of an element in the array.

7. Based-index addressing mode

In this addressing mode, the offset address of the operand is computed by

summing the base register to the contents of an Index register.

80

Microprocessor class: 2nd stage

This addressing mode is used to handle one-dimensional arrays (including

character strings). The base register contains the memory address of the first

element of the array, and the index register contains the offset of the desired

element. By adding them together (base + offset), the desired element is

accessed.

Example

ADD CX, [BX+SI]

MOV AX, [BX+DI]

; Or

MOV AX, [BX][DI]

Note that: BX and BP can be used together in the same instruction. Also,

SI and DI cannot be used together in one instruction. Such as shown in the

following wrong examples.

MOV AX, [BX+BP]

MOV AX, [SI+DI]

8. Based indexed with displacement mode.

In this addressing mode, the operands offset is computed by adding the base

register contents. An Index registers contents and 8 or 16-bit displacement

number. This addressing mode is used to handle two-dimensional arrays.

Example

MOV AX, [BX+DI+08]

ADD CX, [BX+SI+16]

MOV AX, [BX+SI+20]

MOV AX, [SI+BX+20]

Or

MOV AX, [SI][BX]+20

Q:/ How is Effective Address (EA) calculated in 8086?

Answer

The (EA) is used as an offset for the physical address of the destination data.

In 8086 we have base and index registers. Thus, the execution unit (EU)

calculates the effective address by adding the displacement number to the

contents of the base and index registers as in the following equation:

EA = [Base Register] + [Index Register] + [8/16-bit displacement]

81

Microprocessor class: 2nd stage

Introduction To Assembly Language
Assembly language unlocks the secret of your computer's hardware and

software. It teaches you about the way the computer's hardware and

operating system work together and how, the application programs

communicate with the operating system. Assembly language, unlike high

level languages, is machine dependent. Each microprocessor has its own set

of instructions, that it can support. Here we will discuss, only the IBM-PC

assembly language. It consists of the Intel 8086/8088 instruction set. The

instructions for the Intel 8088 may be used without modification on all its

enhancements - 80186,80286,80386,80486 and Pentium.

Why learn Assembly Language?
You must learn assembly language for various reasons:

1. It helps you understand the computer architecture and operating system.

2. Certain programs, requiring close interaction with computer hardware,

are sometimes difficult or impossible to do in high level languages.

Example: a telecommunication program for the IBM-PC.

3. High level languages, out of necessity, impose rules about what is

allowed in a program. For example, Pascal does not allow, a character

value to be assigned to an integer variable. Assembly language, in

contrast, has very few restrictions or rules; nearly everything is left to

the discretion of the programmer. The price for such freedom is the

need to handle many details that would otherwise be taken care by the

programming language itself.

4. One of the most important advantages of assembly language, is that the

programs written in assembly language are at least 30% dense than the

same program written in high level language. The reason for this is,

that as of today the compilers are still not so intelligent to take

advantage of some of the complex instructions of the assembly

language. Example: if you write a high-level program to compare two

strings, it will translate the code, using simple instruction like MOV,

CMP, JMP etc. While the same thing can be written in assembly, by

using REPE and CMPSB. Obviously, the code is much smaller.

We can summaries the above reasons by:

1. Accessibility to system hardware.

2. Space and time efficiency.

82

Microprocessor class: 2nd stage

Assembly Language Syntax and Program Structure

Introduction
A processor can directly execute a machine language program. Though it is

possible to program directly in machine language, assembly language uses

mnemonics to make programming easier. An assembly language program

uses mnemonics to represent symbolic instructions and the raw data that

represent variables and constants.

A machine language program consists of: a list of numbers representing the

bytes of machine instructions to be executed and data constants to be used

by the program.

Assembly Language Syntax

An assembly language program consists of statements. The syntax of an

assembly language program statement obeys the following rules:

- Only one statement is written per line.

- Each statement is either an instruction or an assembler directive.

- Each instruction has an opcode and possibly one or more operands.

- An opcode is known as a mnemonic.

- Each mnemonic represents a single machine instruction.

- Operands provide the data to work with.

Assembler Directives
Pseudo instructions or assembler directives are instructions that are directed

to the assembler. Assembler directives affect the generated machine code,

but are not translated directly into machine code. Directives can be used to

declare variables, constants, segments, macros, and procedures as well as

supporting conditional assembly.

In general, a directive contains pseudo-operation code, tells the assembler

to do a specific thing, and is not translated into machine code.

Segment directives
Segments are declared using directives. The following directives are used

to specify the following segments:

- .stack

- .data

- .code

Stack Segment

83

Microprocessor class: 2nd stage

- Used to set aside storage for the stack.

- Stack addresses are computed as offsets into this segment.

- Use: .stack followed by a value that indicates the size of the stack.

Data Segment
- Used to set aside storage for variables.

- Constants are defined within this segment in the program source.

- Variable addresses are computed as offsets from the start of this

segment.

- Use: .data followed by declarations of variables or definitions of

constants.

Code Segment
The code segment contains executable instructions macros and calls to

procedures. Use: .code followed by a sequence of program statements.

Memory Models
The memory model specifies the memory size assigned to each of the

different parts or segments of a program. There exist different memory

models for the 8086 processor.

The .MODEL Directive

The memory model directive specifies the size of the memory the program

needs. Based on this directive, the assembler assigns the required amount of

memory to data and code. Each one of the segments (stack, data and code),

in a program, is called a logical segment.

Depending on the model used, segments may be in one or in different

physical segments. This directive is placed at the very beginning of the

program.

The general structure for this directive is:

.MODEL memory_model

Where memory_model can

be :

• TINY

• SMALL

• COMPACT

• MEDIUM

• LARGE

• HUGE

SMALL Model

84

Microprocessor class: 2nd stage

In the SMALL model all code is placed in one physical segment and all data

in another physical segment. In this model, all procedures and variables are

addressed as NEAR by pointing to their offsets only.

Instructions

Definition:

An instruction in assembly language is a symbolic representation of a single

machine instruction. In its simplest form, an instruction consists of a

mnemonic and a list of operands.

A mnemonic is a short alphabetic code that assists the CPU in remembering

an instruction. This mnemonic can be followed by a list of operands. Each

instruction in assembly language is coded into one or more bytes. The first

byte is generally an OpCode, i.e. a numeric code representing a particular

instruction. Additional bytes may affect the action of the instruction or

provide information about the data needed by the instruction.

Instruction Semantics:

The following rules have to be strictly followed in order to write

correct code.

1. Both operands have to be of the same size:

Instruction Correct Reason

MOV AX, BL No Operands of different sizes

MOV AL, BL Yes Operands of same sizes

MOV AH, BL Yes Operands of same sizes

MOV BL, CX No Operands of different sizes

2. Both operands cannot be memory operands simultaneously:

Instruction Correct Reason

MOV i , j No Both operands are memory variables

MOV AL, i Yes Move memory variable to register

MOV j, CL Yes Move register to memory variable

3. First operand, or destination, cannot be an immediate value:

Instruction Correct Reason

ADD 2, AX No Move register to constant

ADD AX, 2 yes Move constant to register

Writing a Program
How to write an assembly language program?

These are the steps that should be followed for writing an assembly

language program:

85

Microprocessor class: 2nd stage

1. Define the problem.

2. Write the algorithm.

3. Translate into assembly mnemonics.

4. Test and debug the program in case of

errors.

The translation phase consists of the following steps:

- Define type of data the program will deal with.

- Write appropriate instructions to implement the algorithm.

Assembly Language Program Development Tools

Now that you have some idea, about how to go about writing assembly

language programs, you might want to write your own programs, and try

them out on the machine. To do that, there are some developmental tools

required. Let us study them now. The discussion is from the point of view

of the end user, and not the system programmer.

7. Editor

An editor is a program which, when run on a system, lets you type in text,

and store in a file. This text could also be your assembly language program.

There are a number of editors available on PC. The editor helps you type

the program in required format. This form of the program is called as the

source program. The editor gives you all the flexibility, to insert lines, delete

lines, insert words, characters, delete words, characters etc. In short all the

features that you can think of while writing text, and more. After the

program is typed, it can be stored in some secondary storage, like hard disk,

floppy diskette etc, for permanent storage.

2. Assembler
An assembler program is used to translate assembly language mnemonics

to the binary code for each instruction. After the complete program has been

written, with the help of an editor, it is then assembled with the help of an

assembler.

An assembler works in two phases, i.e., it reads your source code two times.

In the first pass, the assembler, collects all the symbols defined in the

program, along with their offsets, in symbol table. On a second pass through

the source program, it produces a binary code for each instruction of the

program, and give all the symbols an offset with respect to the segment,

from the symbol table.

The assembler generates two files: the object file and the list file. The object

86

Microprocessor class: 2nd stage

file contains the binary code for each instruction in the program. It is created

only when your program has been successfully assembled, with no errors.

The errors that are detected by the assembler, are called the syntax errors.

These are like:

MOVE AX,BX ; undeclared identifier

MOVE. MOV AX,BL ; illegal operands

These are just two of the syntax errors that you can get when your program

contains such kind of mistakes. (Exact description of the errors defer from

assembler to assembler). In the first statement, it reads the word MOVE, it

tries to match with its mnemonics set, as there is no mnemonic with this

spelling, it assumes it to be an identifier, and looks for its entry in the symbol

table. It does not even find it there, therefore, gives an error 'undeclared

identifier'. In the second error, the two operands are of different kind. 8086

expects, both the identifier to be of the same kind, byte or word. But in the

above case, one is a byte variable, while the other is a word variable. An

assembler does not detect logical errors in your programs, that is your

responsibility. List file is optional, and contains, the source code, the binary

equivalent of each instruction, and the offsets of the symbols in the program.

This file is for documentation purposes. Some of the assemblers available

on PC are, MASM (Microsoft Assembler), TASM (TURBO) etc.

3. Linker
For modularity of your program, it is better to break your programs, into

several subroutines. It is even better, to put the common routine, like reading

a hexadecimal number, writing a hexadecimal number etc., which could he

used by a lot of your other programs also, into a separate file. These files

are assembled separately. After each, has been successfully assembled, they

can be linked together to form a large file, which constitutes your complete

program. The file containing the common routines, can be linked to your

other programs also. The program that links your programs is called the

linker. The linker produces a link file which contains the binary codes for

all compound modules. The linker also produces a link map which contains

the address information about the linked files. The linker, however, does not

assign absolute addresses to your program. It only assigns continuous

relative addresses to all the modules linked, starting from zero. This form

of program is said to be relocatable, because it can be put anywhere in

memory to be run. This form of code can be even be carried to other

machines, of the same kind, or compatible to the present machine, to be

87

Microprocessor class: 2nd stage

run successfully. The linker available on your PC is LINK ,TURBO has

a built in linker.

4. Loader
Loader is a program, which assigns absolute addresses to the program.

These addresses are generated, by adding to all the offsets, the address from

where the program is loaded into the memory. Loader comes into action,

when you execute your program. This program is brought from the

secondary memory, like disk, or floppy diskette, into the main memory at a

specific address. Let us assume the program was loaded at address 1000h,

then 1000h is added to all the offsets to get the absolute address. Once the

program has been loaded, it is now ready to run.

5. Debugger
If your program requires no external hardware or requires hardware directly

accessible from your system, then you can use a debugger to debug your

program. Debugger allows you to load your program into just like a loader,

and, troubleshoot your program. While debugging, you can run your

program in single step, set breakpoints, view the contents of registers or

memory locations. You can even change the contents of the register or

memory location, and run your program with new value. This helps you to

isolate the problems in your programs. The problems can be corrected with

the help of an editor, and the whole procedure of assembling, linking and

executing your program can be repeated. Debugger helps you detect the

logical errors, that could not be detected by the assembler.

The following steps showed the process of translating an assembly program

into executable file:

1. The assembler produces an object file from the assembly language source.

2. The object file contains machine language code with some external and

relocatable addresses that will be resolved by the linker. Their values are

88

Microprocessor class: 2nd stage

undetermined at that stage.

3. The linker extract object modules (compiled procedures) from a library

and links them with the object file to produce the executable file.

4. The addresses in the executable file are all resolved but they are still

virtual addresses.

