

University of Technology
 الجامعة التكنولوجية

Computer Science Department

 قسم علوم الحاسوب

Mathematics Lab
 عملي -الرياضيات

Dr. Khitam A. Salman
 د. ختام عبدالنبي سلمان

 cs.uotechnology.edu.iq

Introduction to MATLAB
MATLAB (MATrix LABoratory) is an interactive software system for

numerical computations and graphics. As the name suggests, MATLAB is

especially designed for matrix computations, solving systems of linear equations,

computing eigenvalues and eigenvectors, factorization of matrices, and so much.

In addition, it has a variety of graphical capabilities, and can be extended

through programs written in its own programming language. Many such

programs come with the system; these extend MATLAB’s capabilities to a wide

range of applications, like solution of nonlinear systems of equations, integration

of ordinary and partial differential equations, and many others.

MATLAB widely used in the engineering. It has many features and it could

take years to learn all of its capabilities. However, it’s basic functionality is quite

easy to learn and in the course of the next few weeks we will be learning how to

manipulate and graph data in MATLAB as well as writing simple programs to

manipulate data. It offers a powerful programming language, excellent graphics,

and a wide range of expert knowledge.

1. Getting Started

Start Matlab by double clicking the icon on the desktop, or from the start

menu. To use Matlab you can simply enter commands after the prompt (the >>

is the Matlab prompt).

Figure 1 below shows the default frame with the three standard Matlab

windows.

1.1 Alternate windows:

The smaller of the two windows is alternate windows that can be accessed

by clicking on the tabs. Figure 2 shows the alternate windows and describes their

functions.

1.2 The command window:

The command window is the active window immediately appears after

launching Matlab. One enters Matlab commands after the ">>" prompt and

presses enter to execute the command. To recall the last commands entered,

simply press the up or down arrows; one can edit the commands before executing

them. Multiple commands may be entered on one line separated by commas.

Separating commands by a semi-colon suppresses output to the command

window.

This window allows a user to enter simple commands. To perform a simple

computations type a command and next press the Enter or Return key. For

instance

>> s = 1 + 2

s =

 3

Note that the results of these computations are saved in variables whose

names are chosen by the user. If you need to obtain their values again, type their

names and pressing Enter key. If you type again:

>> s

s =

 3

Only for short computations it is useful to execute Matlab straightaway from

the command line. The Editor Window is a word processor specifically designed

for MATLAB commands. Files that written in this window are called the m-files.

Another way to do calculations in MATLAB is to create an m-file with a series of

commands and then to run some or all of the commands in that file. To create

an m-file, click file, new and then m-files. The same statements that are entered

in the command window can also be used in an m file. You can also copy a

command you try out in the command window into an m file by using the copy

and paste functions on the computer. Save the file under a name that ends in

.m by clicking file and using “save as” icon. (See Figure 3)

Figure 3: MATLAB Editor Window

1.3 Function Files

Function files are a special kind of script file (M-file) that allow you to define

your own functions for use during a Matlab session. You might think of them as

subroutines that can be called from within a script, or even called directly from

the command line. Many of the "built-in" functions in Matlab are actually stored

as M-files as part of the Matlab package. Function files are created and edited in

identically the same manner as the script files.

2. Numbers, Arithmetic Operations and Special Characters

There are three kinds of numbers used in MATLAB:

• integers

• real numbers

• complex numbers

In addition to these, MATLAB has three variables representing non-

numbers:

(-Inf , Inf , NaN)

The –Inf and Inf are the negative and positive infinity respectively. Infinity

is generated by overflow or by the operation of dividing by zero. The NaN stands

for Not-A-Number and it is obtained as a result of the mathematically undefined

operations such as 0.0/0.0.

The list of basic arithmetic operations in MATLAB includes six operations:

+ : addition

- : substraction

* : multiplication

/ : right division

\ : left division

^ : power

One can use Matlab like a calculator without specifying variables. Matlab

has all the standard mathematical operations. Try type:

>> 2+3

Matlab returns the answer:

ans=

 5

>> 5^3

ans=

 125

>>3.89*4.1

ans =

 15.9490

>>99.3-25

ans =

 74.3000

>> 3*(23+14.7-4/6)/3.5

ans=

 31.7429

The result of these operations is assigned to a default variable called ans

and displayed. Adding a semicolon to the end of the operation suppresses the

output; try it out!

>>25*3;

Also type:

>> 1/0

Warning: Divide by zero.

ans =

 Inf

>> Inf/Inf

ans =

 NaN

3. Relational operations

Relational operators perform element-by-element comparisons between two

numbers as following meaning;

 A < B Less than

A > B Greater than

A <= B Less than or equal

A >= B Greater than or equal

A == B Equal

A ~= B Not equal

 Further, there is a menu of special characters that have specific uses.

Logical AND &

Logical OR |

Logical NOT ~

Colon :

Subscripting ()

Brackets []

Decimal point .

Continuation ...

Separator ,

Semicolon ; (suppresses the output of a calculation)

Assignment =

Quote ' statement '

Transpose '

Comment %

Note: anything after % is a comment and will be ignored by Matlab.

4. Variables

Variable names may be up to 19 characters long. Names must begin with a

letter but may be followed by any combination of letters, digits or underscores.

Variables are storage locations in the computer that are associated with an

alphanumeric name. To assign a value to a variable in MATLAB simply type the

name of the variable, followed by the assignment operator, =, followed by the

value.

As an example, this is one way to compute 2+2:

>> a = 2

a =

 2

>> b = 2

b =

 2

>> c = a + b

c =

 4

It is often annoying to have Matlab always print out the value of each

variable. To avoid this, put a semicolon after the commands:

>> a = 2;

>> b = 2;

>> c = a + b;

>> c

c =

 4

Only the final line produces output. Semicolons can also be used to string

together more than one command on the same line:

>> a = 2; b = 2; c = a + b; c

c =

 4

Of course Matlab will also allow more complicated operations:

>> a = 2;

>> b = -12;

>> c = 16;

>> qu1 = (-b + sqrt(b^2 - 4*a*c)) / (2*a)

qu1 =

 4

Understand that 'matlab' is "case sensitive", that is, it treats the name 'C' and

'c' as two different variables. Similarly, 'MID' and 'Mid' are treated as two

different variables. Assign two different values to the variables and print them

out by entering their names separated by a comma.

>>var=1.2

var =

 1.2000

>>Var=-5.1

Var =

 -5.1000

>>var, Var

var =

 1.2000

Var =

 -5.1000

4.1 Predefined variables

There are several predefined variables which can be used at any time, in

the same manner as user defined variables (ans, pi, j, eps):

I: sqrt(-1)

j: sqrt(-1)

pi: 3.1416...

For example,

>>pi

ans =

 3.1416

>>eps

eps =

 2.2204e-016

>>j

ans =

 0 + 1.0000i

>>y= 2*(1+4*j)

yields:

y=

 2.0000 + 8.0000i

5. Reporting format

By default MATLAB returns numerical expressions as decimals with 4 digits.

The format function is used to change the format of the output. Type format rat

to have MATLAB return rational expressions.

>> format rat

>> 5.1-3.3

 ans =

 9/5

To eliminate the extra spacing type format compact.

>> format compact

>> 5*7

ans =

 35

Now type

>> format long

>> 3*(23+14.7-4/6)/3.5

ans=

 31.74285714285715

>> format short e

>> 3*(23+14.7-4/6)/3.5

ans=

 3.1743e+01

Note that the answer is accurate to four decimal places. Now type

>> format long e

ans=

 3.174285714285715e+01

>> format short

ans=

 31.7429

 Note: format short will return the numerical expression to default. Also,

the format of reporting does not change the accuracy of the calculations only the

appearance of the answer on screen.

6. Mathematical functions

The following functions are defined in MATLAB

6.1. Trigonometric functions

Those known to Matlab are sin, cos, tan and their arguments should be in

radians.

sin() - Sine.

sinh() - Hyperbolic sine.

asin() - Inverse sine.

asinh() - Inverse hyperbolic sine.

cos() - Cosine.

cosh() - Hyperbolic cosine.

acos() - Inverse cosine.

acosh() - Inverse hyperbolic cosine.

tan() - Tangent.

tanh() - Hyperbolic tangent.

atan() - Inverse tangent.

atanh() - Inverse hyperbolic tangent.

sec() - Secant.

sech() - Hyperbolic secant.

asec() - Inverse secant.

asech() - Inverse hyperbolic secant.

csc() - Cosecant.

csch() - Hyperbolic cosecant.

acsc() - Inverse cosecant.

acsch() - Inverse hyperbolic cosecant.

cot() - Cotangent.

coth() - Hyperbolic cotangent.

acot() - Inverse cotangent.

acoth() - Inverse hyperbolic cotangent.

>> x =5*cos(pi/6), y = 5*sin(pi/6)

x =

 4.3301

y =

 2.5000

The inverse of trigonometric functions are called asin, acos, atan (as

opposed to the usual arcsin or sin 1 etc.).

The result is in radians.

>> acos(x/5), asin(y/5)

ans =

 0.5236

ans =

 0.5236

Note: Matlab uses radian scale to calculate trigonometric functions. In

other words, sin(90) is not equal to 1, but sin(pi/2) is.

6.2. Exponential

These include sqrt, exp, log, log10

exp() - Exponential.

log() - Natural logarithm.

log10() - Common (base 10) logarithm.

sqrt() - Square root.

abs() - Absolute value.

Note: log() is ln in Matlab. To get logarithm in base 10, you must write

log10().

>> exp(log(9)), log(exp(9))

ans =

 9

ans =

 9

Most common functions are available to Matlab

>>A=abs(-5), B=cos(3), C=exp(2), D=sqrt(4), E=log(40)

A =

 5

B =

 -0.9900

C =

 7.3891

D =

 2

E =

 3.6889

6.3. Complex Number Functions

conj() - Complex conjugate.

Imag() - Complex imaginary part.

Real() - Complex real part.

>>A=2+4*i, B=conj(A), C=Imag(A), D=real(A)

A =

 2.0000 + 4.0000i

B =

 2.0000 - 4.0000i

C =

 4

D =

 2

7. Help

MATLAB is a huge package. You can’t learn everything about it at once, or

always remember how you have done things before. It is essential that you learn

how to teach yourself more using the online help.

If you need quick help on the syntax of a command, use help. For example,

help plot tells you all the ways in which you can use the plot command. (Of

course, you have to know already the name of the command you want.)
>> help sin

8. Closing Matlab

To close MATLAB type exit in the command window and next press Enter or

Return key. A second way to close your current MATLAB session is to select File

in the MATLAB's toolbar and next click on Exit MATLAB option. All unsaved

information residing in the MATLAB.

Workspace will be lost. You can also exit by typing:

>> quit

or

>> exit

To terminate a running Matlab command you may use [Ctrl]+[c] (Press both

the Ctrl button and the c button simultaneously).

9. Common commands

whos : gives a list of Matlab variables stored in the memory

clear : clears the memory

clear A : clears variable named A from the memory

clc : clears the command window

clf : clears the graphical window

The following example show how to assign values to variables, x and y.

>> x=sin(pi/4), y=log(2)

x =

 0.7071

y =

 0.6931

You can use who command to list the currently active variables. For the

preceding session this results in

>> who

Your variables are:

ans x y

Use clear command to delete variables from computer memory

>> clear x

>> x

??? Undefined function or variable 'x'.

ALGEBRA
1. Symbolic Toolbox

One of the most powerful tools that can be used in Matlab is the “Symbolic

Toolbox”. To use Matlab’s facility for doing symbolic mathematics, it is necessary

to declare the variables to be “symbolic”. The best way to do that is to use the

syms declaration statement:

>>syms a b x y;

>>c = 5;

>>E = a*x^2 + b*x + c;

The syms statement makes all the variables listed with it into symbolic

variables and gives each of the variables a value that is equal to its own name.

Thus, the value of a is a, the value of b is b, etc. The variable E is now symbolic

because it was assigned to be equal to an expression that contained one or more

symbolic variables. Its value is a*x^2 + b*x + 5.

For example, suppose that you need factor x²-3x+2. Note that you must

type 3*x for 3x. Then you type:

>> syms x

By syms you are declaring that x is a variable. Then type

>> factor(x^2-3*x+2)

ans =

(x-1)*(x-2)

To factor x2+2x+1, you write:

>> syms x

>> factor(x^2+2*x+1)

ans =

(x+1)^2

To factor the equation x2-y2;

>>syms x y

>> factor(x^2-y^2)

ans =

(x-y)*(x+y)

Expand command can be used to expand the terms of any power equation.

Let's use expand command to expand the following equation (x2-y2)3.

>> expand((x^2-y^2)^3)

ans =

x^6-3*x^4*y^2+3*x^2*y^4-y^6

The simplify command is useful to simplify some equations like.

>> simplify((x^3-4*x)/(x^2+2*x))

ans =

x-2

2. Solving Equations

2.1 Algebraic Equations

By using Symbolic Toolbox, you can find solutions of algebraic equations

with or without using numerical values. If you need to solve equations, you can

use the command solve. For example, to find the solution of x3+x2+x+1=0 you

write:

>> solve('x^3+x^2+x+1=0')

And Matlab give you the answer in the form

ans =

[-1]

[i]

[-i]

That means the three solutions for the equation are 1, j, and –j.

>>x=solve('sin(x)+x=0.1')

x =

5.001042187833512e-2

In expressions with more than one variable, we can solve for one or more

of the variables in terms of the others. Here we find the roots of the quadratic

ax2+bx+c in x in terms of a, b and c. By default solve sets the given expression

equal to zero if an equation is not given.

>> x=solve('a*x^2+b*x+c','x')

x =

[1/2/a*(-b+(b^2-4*a*c)^(1/2))]

[1/2/a*(-b-(b^2-4*a*c)^(1/2))]

You can solve an equation in two variables for one of them. For example:

>> y=solve('y^2+2*x*y+2*x^2+2*x+1=0', 'y')

y =

[-x+i*(x+1)]

[-x-i*(x+1)]

You can solve more than one equation simultaneously. For example to find

the value of x and y from the equations: 5x+10y=46 and 28x+32y=32, you write:

>> [x,y]=solve('5*x+10*y=46', '28*x+32*y=32')

 And you get the following result:

x =

 -48/5

 y =

 47/5

>> [x,y]=solve('log(x)+x*y=0', 'x*y+5*y=1')

x =

.8631121967939437

y =

.1705578823046945

To solve the system x²+ x+ y² = 2 and 2x-y = 2. We can type:

>> [x,y] = solve('x^2+ x+ y^2 = 2', '2*x-y = 2')

And get the solutions

x =

[2/5]

[1]

y =

[-6/5]

[0]

This means that there are two points which are (2/5, -6/5) and (1, 0).

Now let's find the points of intersection of the circles x2+y2=4 and (x-1)2+(y-

1)2=1.

>>[x,y]=solve('x^2+y^2=4','(x-1)^2+(y-1)^2=1')

x=

[5/4-1/4*7^(1/2)]

[5/4+1/4*7^(1/2)]

y=

[5/4+1/4*7^(1/2)]

[5/4-1/4*7^(1/2)]

In same way if you have more then two equations you can use the same

command to solve them for example:

[x,y,z]=solve('x+y+z=1','x+2*y-z=3','2*x-2*z=2')

 x =

 1/2

 y =

 1

 z =

 -1/2

2.2 DIFFERENTIAL EQUATIONS

2.2.1 First Order Differential Equations

Matlab can solve linear ordinary differential equations with or without

initial/boundary conditions. Do not expect Matlab can solve nonlinear ordinary

differential equations which typically have no analytical solutions. Higher

derivatives can be handled as well. The command for finding the symbolic

solution of differential equations is dsolve. For that command, the derivative of

the function y is represented by Dy. For example, suppose that we want to find

the solution of the equation x y' - y = 1. We will have:

>> dsolve('x*Dy-y=1', 'x')

ans =

-1+x*C1

This means that the solution is any function of the form y = -1+ cx, where c

is any constant. The letter “D” has a special meaning and cannot be used

otherwise inside dsolve. It means “first derivative of”. The C1 is a constant of

integration.

If we have the initial condition y(1) = 5, we can get the particular solution

on the following way:

>>dsolve('Dy+y=cos(t)')

ans =

1/2*cos(t)+1/2*sin(t)+exp(-t)*C1

>> dsolve('x*Dy-y=1', 'y(1)=5', 'x')

ans =

-1+6*x

2.2.2 Second Order Equations

The second order linear equations can be solved similarly as the first order

differential equations by using dsolve. For the command dsolve, the second

derivative of y is represented with D2y. The letters “D2” mean second derivative.

For example, the command for solving y''-3y'+2y = sin x.

>> dsolve('D2y-3*Dy+2*y=sin(x)', 'x')

ans =

3/10*cos(x)+1/10*sin(x)+C1*exp(x)+C2*exp(2*x)

If we have the initial conditions y(0) = 1, y'(0)=-1, we would have:

>> dsolve('D2y-3*Dy+2*y=sin(x)', 'y(0)=1', 'Dy(0)=-1', 'x')

ans =

3/10*cos(x)+1/10*sin(x)+5/2*exp(x)-9/5*exp(2*x)

Example: d2y/dx2 -2dy/dx -3y=x2

>> dsolve('D2y - 2*Dy - 3*y=x^2', 'x')

ans =

-14/27+4/9*x-1/3*x^2+C1*exp(3*x)+C2*exp(-x)

Example: d2y/dx2 -2dy/dx -3y=x2, with y(0)=0, and dy/dx =1 at x=1

>> dsolve('D2y - 2*Dy - 3*y=x^2','y(0)=0, Dy(1)=1','x')

ans =

-1/3*x^2+4/9*x-14/27+1/9*(-11+14*exp(3))/(3*exp(3)+exp(-

1))*exp(-x)

+1/27*(33+1 4*exp(-1))/(3*exp(3)+exp(-1))*exp(3*x)

2.2.3 Higher Order Differential Equations

Similarity you can use the same way to solve the higher order differential

equations.

3. Representing Functions

There is a way to define functions in MATLAB that behave in the usual

manner. To represent a function in Matlab, we use “inline” command. For

example to declare f(x)=x2+3x+1 you write:

>> f=inline('x^2+3*x+1')

f=

Inline function:

f(x) = x^2+3*x+1

Therefore to find f(2), to get the answer you write:

>> f(2)

ans =

11

The function g(x,y)=x2-3xy+2 is defined as follows.

>> g=inline('x^2-3*x*y+2')

g =

Inline function:

g(x,y) = x^2-3*x*y+2

Now we can evaluate g(2,3) in the usual way.

>>g(2,3)

ans =

 -12

In some cases, if we need to define function f as a vector. Then we use:

>> f = inline(vectorize('x^2+3*x-2'))

f =

Inline function:

f(x) = x.^2+3.*x-2

In this case, we can evaluate a function at more than one point at the same

time. For example, to evaluate the above function at 1, 3 and 5 we have:

>> f([1 3 5])

ans =

2 16 38

4. Differentiation

The Matlab function that performs differentiation is diff. These operations

show how it works:

>> syms x

>>diff(x^2)

ans =

2*x

>>diff(sin(x)^2)

ans =

2*sin(x)*cos(x)

For example, let's find the derivative of f(x)=sin(ex).

>> syms x

>> diff(sin(exp(x)))

and get the answer as:

ans =

cos(exp(x))*exp(x)

Note: Instead of using syms to declare of variables you can use two Quotes

' ' to declare that the variable x is the interested variable in equation; you can

use the same example in otherwise

 >>diff('sin(exp(x))')

 ans =

 cos(exp(x))*exp(x)

The nth derivative of f is in the written in the form diff(f,n). then to find the

second derivative we write;

>> diff(sin(exp(x)),2)

ans =

-sin(exp(x))*exp(x)^2+cos(exp(x))*exp(x)

For example to find the first derivative of x3+3x2+8x you simply write:

>> syms x

>> diff(x^3+3*x^2+8*x)

ans =

 3*x^2+6*x+8

Moreover to get the 3rd derivative, write:

>> diff(x^3+3*x^2+8*x ,3)

ans =

6

Note: To get higher derivatives, you can write the degree in place of 3.

To compute the partial derivative of an expression with respect to some

variable we specify that variable as an additional argument in diff. For example

to find the derivative for x in equation f(x,y)=x3y4+ysinx.

>>syms x y

>> diff(x^3*y^4+y*sin(x),x)

ans =

3*x^2*y^4+y*cos(x)

Next we compute diff for y

>> diff(x^3*y^4+y*sin(x),y)

ans =

4*x^3*y^3+sin(x)

Finally we compute d3 fx3.

>> diff(x^3*y^4+y*sin(x),x,3)

ans =

6*y^4-y*cos(x)

5. Integration

By using the Symbolic Toolbox, you can find both definitive and in-definitive

integrals of functions. We can use MATLAB for computing both definite and

indefinite integrals using the command int. If f is a symbolic expression in x, then:

int(f) →  dxxf)(

For the indefinite integrals, consider the following example:

>> int('x^2')

ans =

1/3*x^3

Similarly as for diff command, we do not need the quotes if we declare x to

be a symbolic variable. Therefore the above command can be re-written in

otherwise such as:

>> syms x

>> int(x^2)

ans =

1/3*x^3

For example to find the in-definitive integral of x3+sin(x), you write:

>> syms x

>> int(x^3+sin(x))

ans =

1/4*x^4-cos(x)

A definite integral can be taken by giving three arguments. The second and

third arguments in that case are the first and second limits of integration.

For the definitive integrals:

>> int(x^2, 0, 1)

ans =

1/3

Try these examples,

int(x,1,2)

int(x*sin(x),-2,7)

Moreover to get definitive integral to ln(x)+1/(x+1) from x=1 to x=2 write,

you simply write:

>> int('ln(x) + 1/(x+1)', 1, 2)

ans =

log(6)-1

6. Limits

You can use limit to compute limits. For example, to evaluate the limit when

x goes to 2 of the function (x2-4)/(x-2),we have:

>> syms x

>> limit((x^2-4)/(x-2), x, 2)

ans =

4

Limits at infinity:

>> limit(exp(-x^2-5)+3, x, Inf)

ans =

3

Practice Problems

1) Write required code to solve each of the following:-

a) Factor x³+3x²y+3xy²+y³.

b) Simplify (x³-8)/(x-2).

c) Expand (x²+1)(x-5)(2x+3).

d) Solve sin x = 2-x for x.

e) Solve 5x+2y+4z = 8, -3x+y+2z = -7, 2x+y+z = 3 for x, y and z.

f) Solve y²-5xy-y+6x²+x = 2 for x.

g) Find the first derivative of the function (sinx/(ln(x2+1))-ex and

evaluate it at x=3.

h) Find the 12th derivative of the function (x/2+1)65

i) Find the first and second partial derivatives for x of the function

ex2sinxy

2) Obtain the first and second derivatives of the following functions using

MATLAB’s symbolic mathematics.
a) F(x) = x5 – 8x4 + 5x3 – 7x2 + 11x – 9
b) F(x) = (x3 + 3x – 8)(x2 + 21)
c) F(x) = (3x3 – 8x2 + 5x + 9)/(x + 2)
d) F(x) = (x5 – 3x4 + 5x3 + 8x2 – 13)2
e) F(x) = (x2 + 8x – 11)/(x7 – 7x6 + 5x3 + 9x – 17)

Vectors
An array is a collection of numbers, called elements, referenced by one or

more indices running over different index sets. In MATLAB, the index sets are

always sequential integers starting with 1. The dimension of the array is the

number of indices needed to specify an element. The size of an array is a list of

the sizes of the index sets.

A matrix is a two-dimensional array with special rules for addition,

multiplication, and other operations. The two dimensions are called the rows

and the columns.

A vector is a matrix in which one dimension has only the index 1. A row

vector has only one row and a column vector has only one column.

1. Entering Vectors and Matrices

There are several ways to enter vectors and matrices in Matlab. These

include:

1- Entering an explicit list of elements.

2- Loading matrices from external data files.

3- Generating matrices using functions.

To enter a vector or matrix explicitly, there are a few basic rules to follow:

• Separate the elements of a row with spaces or commas.

• Use a semicolon ; or returns, to indicate the end of each row.

• Surround the entire list of elements with square brackets, [].

For example, to input a 3×1 vector:

>> u=[1 2 3]

u =

 1 2 3

The entries must be enclosed in square brackets.

>> v =[1 3 sqrt(5)]

v =

 1.0000 3.0000 2.2361

Spaces is very important:

>> v2 =[3+ 4 5]

v2 =

 7 5

>> v3 =[3 +4 5]

v3 =

 3 4 5

We can do certain arithmetic operations with vectors of the same length,

such as v and v3 in the previous section.

>> v + v3

ans =

 4.0000 7.0000 7.2361

>> v4 =3*v

v4 =

 3.0000 9.0000 6.7082

>> v5 =2*v -3*v3

v5 =

 -7.0000 -6.0000 -10.5279

We can build row vectors from existing ones:

>> w =[1 2 3], z = [8 9]

w =

 1 2 3

z =

 8 9

>> v6=[w z]

v6 =

 1 2 3 8 9

A vector can be defined by previously defined vectors.

>> x = [2 4 -1]

x =

 2 4 -1

>> x1 = [x 5 8]

x1 =

 2 4 -1 5 8

An special array is the empty matrix, which is entered as [] .and can be used

to delete a part of any matrix or vector.

>> w=[4 5 6 7]

w =

 4 5 6 7

>>w(4)=[];w

w =

 4 5 6

The elements of a matrix can be defined with algebraic expressions placed

at the appropriate location of the element. Thus

>> a = [sin(pi/2) sqrt(2) 3+4 6/3 exp(2)]

a =

 1.0000 1.4142 7.0000 2.0000 7.3891

2. Column Vectors

The column vectors have similar constructs to row vectors. When defining

them, entries are separated by ; or “newlines”.

Note how the column vector is defined, using brackets and semicolons to

separate the different rows. To define a column vector x:

x=[1; -2; 4]

x =

1

-2

4

or write

>>x=[1

2

3]

x =

1

-2

4

>> c =[1; 3; sqrt(5)]

c =

1.0000

3.0000

2.2361

3. Transposing

We can convert a row vector into a column vector (and vice versa) by a

process called transposing, denoted by '

> A=[1 2 3]

A =

 1 2 3

>>B= A'

B =

 1

 2

 3

4. Vectors Addition and subtraction

Addition and subtraction of a number to or from a vector can be made. In

this case, the number is added to or subtracted from all the elements of the

vector. For example

>> x=[-1; 0; 2];

>> y=x-1

y =

 -2

 -1

 1

If we look to make a simple addition and subtraction of vectors. The

notation is the same as found in most linear algebra. We will define two vectors

then add or subtract them:

>> v = [1; 2; 3]

v =

 1

 2

 3

>> b = [2; 4; 6]

b =

 2

 4

 6

>> v+b

ans =

 3

 6

 9

>> v-b

ans =

 -1

 -2

 -3

>> sin(v)

ans =

 0.8415

 0.9093

 0.1411

>> log(v)

ans =

 0

 0.6931

 1.0986

>> pi*v

ans =

 3.1416

 6.2832

 9.4248

5. Vectors multiplication

Multiplication of vectors and matrices must follow special rules. In the

example above, the vectors are both column vectors with three entries. You

cannot add a row vector to a column vector. In the case of multiplication vectors,

the number of columns of the vector on the left must be equal to the number of

rows of the vector on the right.

>> b = [2; 4; 6];

>> v = [1; 2; 3];

>> v*b

??? Error using ==> *

Inner matrix dimensions must agree.

>> v*b'

ans =

 2 4 6

 4 8 12

 6 12 18

>> v'*b

ans =

 28

6. element-wise operation

There are many times where we want to do an operation to every entry in

a vector or matrix. Matlab will allow you to do this with "element-wise"

operations. For example, suppose you want to multiply each entry in vector v

with its corresponding entry in vector b. In other words, suppose you want to

find v(1)*b(1), v(2)*b(2), and v(3)*b(3). It would be nice to use the "*" symbol

since you are doing some sort of multiplication, but since it already has a

definition, we have to come up with something else. The programmers who

came up with Matlab decided to use the symbols ".*" to do this.

>> v.*b

ans =

 2

 8

 18

Also for division we must use "./"

>> v./b

ans =

 0.5000

 0.5000

 0.5000

Note that

v .* b multiplies each element of v by the respective element of b.

v ./ b divides each element of v by the respective element of b.

v .\ b divides each element of b by the respective element of v.

v .^ b raise each element of v by the respective b element.

7. The Colon Operator

The colon operator ' : ' is understood by 'matlab' to perform special and

useful operations. If two integer numbers are separated by a colon, 'matlab' will

generate all of the integers between these two integers.

In particular, you will be able to use it to extract or manipulate elements of

matrices. The following command creates a row vector whose components

increase arithmetically:

>> 1:5

ans =

 1 2 3 4 5

And, if three numbers, integer or non-integer, are separated by two colons,

the middle number is interpreted to be a "step" and the first and third are

interpreted to be "limits". Thus

>> b = 0.0 : 0.2 : 1.0

b =

 0 0.2000 0.4000 0.6000 0.8000 1.0000

Suppose you want to create a vector with elements between 0 and 20

evenly spaced in increments of 2. Then you have to type:

>> t = 0:2:20

t =

 0 2 4 6 8 10 12 14 16 18 20

>> m=0.32:0.1:0.6

m =

 0.3200 0.4200 0.5200

>>w= -1.4:-0.3:-2

w =

 -1.4000 -1.7000 -2.0000

The format is first:step:last. The result is always a row vector.

A negative step is also allowed. The command has similar results; it creates

a vector with linearly spaced entries.
There is another way to create row arrays is to use linspace functions:

>> A=linspace(1,2,5)

A =

 1.0000 1.2500 1.5000 1.7500 2.0000

>> A=linspace(0,20,11)

A =

 0 2 4 6 8 10 12 14 16 18 20

8. Referencing elements

It is frequently necessary to call one or more of the elements of a vector.

Each dimension is given a single index. Some examples using the definitions

above:

Evaluate a vector A:

>> A=0:10:100

A =

 0 10 20 30 40 50 60 70 80 90 100

Now after definition of a vector A, try to type:

>> A(10)

ans =

 90

>> B=A(1:5)

B =

 0 10 20 30 40

>> C=A(1:2:10)

C =

 0 20 40 60 80

>> A(6:2:10)

ans =

 50 70 90

Practice Problems

1. Create a vector of the even whole numbers between 31 and 75.

2. Create a vector x with the elements;
a) 2, 4, 6, 8
b) 8, 6, 4, 2, 0, -2, -4, -6
c) 1, 1/2, 1/3, 1/4, 1/5, 1/6
d) 0, 1/2, 2/3, 3/4, 4/5, 5/6

3. Let x = [2 5 1 6].

a) Add 16 to each element.

b) Add 3 to just the odd-index elements.

c) Compute the square root of each element.

d) Compute the square of each element.

4. Let x = [3 2 6 8] and y = [4 1 3 5]

a) Add the elements in x to y

b) Raise each element of x to the power specified by the

corresponding element in y.

c) Divide each element of y by the corresponding element in x

d) Multiply each element in x by the corresponding element in y,

calling the result "z".

5. When A and B contain the values shown below, give the values of C

vector after executing the following statements.

 A = [2 -1 5 0]; B = [3 2 -1 4]

a) C = A-B

b) C = B + A -3

c) C = B./A

d) C = A.^B

e) C = 2.^B+A

f) C = 2*A+A.^B

6. Use the linspace commands to create 4 vectors a, b, c, d with the

elements:

 a) 2, 4, 6, 8… to 10 elements

 b) 10, 8, 6, 4, 2, 0, -2, -4…to 15 elements

 c) 1, 1/2, 1/3, 1/4, 1/5… to 10 elements

 d) 0, 1/2, 2/3, 3/4, 4/5… to 10 element

Other Operations on Vectors

MATLAB has a large number of built-in functions. You will only become

familiar with them by using them.

Try to make the vector v in command window and use the functions

below.

v=[23 0 3 16 -8 13]

length(v) number of elements in v.

6

size(v) size of matrix v (raw, column).

1 6

find(v) finds indices of non-zero elements.

 1 3 4 5 6

find(v==0) finds indices of elements equal to zero.

2

find(v==16) finds indices of elements equal to 16.

4

find(v>7) finds indices of elements greater than 7.

1 4 6

v(find(v>7)) finds the values of elements greater than 7.

23 16 13

sum(v) sum of elements

47

max(v) maximum element.

23

min(v) minimum element.

-8

mean(v) mean of elements.

7.8333

sort(v) sorts elements from minimum to maximum value.

-8 0 3 13 16 23

all(v) equal to 1 if all elements nonzero, 0 if any element nonzero.

0

abs(v) vector with absolute value of all element

23 0 3 16 8 13

Roots

To calculate the roots of a polynomial, enter the coefficients in an array in

descending order. Be sure to include zeroes where appropriate.

For example to find the roots of the polynomial y= x4 + 6x3 + 7x2 - 6x - 8 = 0

type the command:

p = [1 6 7 -6 -8];

r = roots(p)

yields

r =

 -4.0000

 -2.0000

 -1.0000

 1.0000

Note: The coefficients could be entered directly in the roots command. The

same answer as above would be obtained using the following expression.

 r = roots([1 6 7 -6 -8])

r =

 -4.0000

 1.0000

 -2.0000

 -1.0000

For example finding the roots of y=x4+3x3-15x2-2x+9=0 would be as easy as

entering the following command;

 r=roots([1 3 -15 -2 9])

r =

 -5.5745

 2.5836

 -0.7951

 0.7860

The roots command can find imaginary roots.

p = [1 -6 18 -30 25];

r = roots(p)

r =

 1.0000 + 2.0000i

 1.0000 - 2.0000i

 2.0000 + 1.0000i

 2.0000 - 1.0000i

 It can also find repeated roots. Note the imaginary portion of the repeated

roots is displayed as zero.

 p = [1 7 12 -4 -16];

 r = roots(p)

r =

 -4.0000

 -2.0000 + 0.0000i

 -2.0000 - 0.0000i

 1.0000

13. PolyVal

You can use polyval and the fitted polynomial p to predict the y value of the

data you've fitted for some other x values. The syntax for determining the value

of a polynomial y=x4 + 6x3 + 7x2 - 6x - 8 at any point is as follows.

p = [1 6 7 -6 -8];

y= polyval(p, 3)

y=

 280

Where p is the vector containing the polynomial coefficients, (see above).

Similarly, the coefficients can be entered directly in the polyval command.

 y = polyval([1 6 7 -6 -8], 3)

y =

 280

 The polynomial value at multiple points (vector) can be found.

 z = [3 5 7];

 y = polyval(p,z)

y =

 280 1512 4752

14. Polyfit

To determining the coefficients of a polynomial that is the best fit of a given

data you can use polyfit command. The command is polyfit(x, y, n), where x,

y are the data vectors and 'n' is the order of the polynomial for which the least-

squares fit is desired.

Exercise 4:

Fit x, y vectors to 3 rd order polynomial

 x = [1.0 1.3 2.4 3.7 3.8 5.1];

 y = [-6.3 -8.7 -5.2 9.5 9.8 43.9];

 coeff = polyfit(x,y,3)

coeff =

 0.3124 1.5982 -7.3925 -1.4759

After determining the polynomial coefficients, the polyval command can

be used to predict the values of the dependent variable at each value of the

independent variable.

ypred = polyval(coeff,x)

ypred =

 -6.9579 -7.6990 -5.6943 8.8733 10.6506 43.8273

Its clear that there is a deviation between the actual y points and predicted

y points because that the polynomial is best fit to this actual points.

Matrices
1. Entering matrices

Entering matrices into Matlab is the same as entering a vector, except each

row of elements is separated by a semicolon (;) or a return:

>>B = [1 2 3 4; 5 6 7 8; 9 10 11 12]

B =

 1 2 3 4

 5 6 7 8

 9 10 11 12

Alternatively, you can enter the same matrix as follows:

>>B = [1 2 3 4

5 6 7 8

9 10 11 12]

B =

 1 2 3 4

 5 6 7 8

 9 10 11 12

Note how the matrix is defined, using brackets and semicolons to separate

the different rows.

2. Transpose

The special character prime ' denotes the transpose of a matrix e.g.

>> A=[1 2 3; 4 5 6; 7 8 9]

A =

 1 2 3

 4 5 6

 7 8 9

 >> B=A'

B =

 1 4 7

 2 5 8

 3 6 9

3. Matrix operations

3.1 Addition and subtraction

Addition and subtraction of matrices are denoted by + and -. This

operations are defined whenever the matrices have the same dimensions.

 For example: If A and B are matrices, then Matlab can compute A+B and A-

B when these operations are defined.

>> A = [1 2 3;4 5 6;7 8 9]

A =

 1 2 3

 4 5 6

 7 8 9

>> B = [1 1 1;2 2 2;3 3 3]

B =

 1 1 1

 2 2 2

 3 3 3

>> C = [1 2;3 4;5 6]

C =

 1 2

 3 4

 5 6

>> A+B

ans =

 2 3 4

 6 7 8

 10 11 12

>> A+C

??? Error using ==>+

Matrix dimensions must agree.

Matrices can be joined together by treating them as elements of vectors:

>>D=[A B]

D =

 1 2 3 1 1 1

 4 5 6 2 2 2

 7 8 9 3 3 3

>>A - 2.3

ans =

 -1.3000 -0.3000 0.7000

 1.7000 2.7000 3.7000

 4.7000 5.7000 6.7000

3.2 Matrix multiplication

Matrix operations simply act identically on each element of an array. We

have already seen some vector operations, namely + and - , which are defined

for vectors the same as for matrices. But the operators * , / and ^ have different

matrix interpretations.

>> A=[1,2,3;4,5,6;7,8 0]

A =

 1 2 3

 4 5 6

 7 8 0

>> B=[1,4,7;2,5,8;3,6,0]

B =

 1 4 7

 2 5 8

 3 6 0

>> A*B

ans =

 14 32 23

 32 77 68

 23 68 113

3.3 Matrix division

To recognize how the two operator / and \ work ;

X = A\B is a solution to A*X = B

X = B/A is a solution to X*A = B

>>A=[1,2,3;4,5,6;7,8 0];

>>B=[1,4,7;2,5,8;3,6,0];

>>X= A\B

ans =

 -0.3333 -3.3333 -5.3333

 0.6667 3.6667 4.6667

 0 -0.0000 1.0000

>> X = B/A

X =

 3.6667 -0.6667 0.0000

 3.3333 -0.3333 0.0000

 4.0000 -2.0000 1.0000

3.4 Element-wise operation

You may also want to operate on a matrix element-by-element. To get

element-wise behavior appropriate for an array, precede the operator with a

dot. There are two important operators here .* and ./

 A.*B is a matrix containing the elements of A multiplied by the

corresponding elements of B. Obviously A and B must have the same size. The ./

operation is similar but does a division. There is a similar operator .^ which raises

each element of a matrix to some power.

>> E = [1 2;3 4]

E =

 1 2

 3 4

>> F = [2 3;4 5]

F =

 2 3

 4 5

>> G = E .* F

G =

 2 6

 12 20

If you have a square matrix, like E, you can also multiply it by itself as many

times as you like by raising it to a given power.

>>E^3

ans =

 37 54

 81 118

If wanted to cube each element in the matrix, just use the element-by-

element cubing.

>> E.^3

ans =

 1 8

 27 64

>> A = [1 2 3;4 5 6;7 8 9];

1./A

ans =

 1.0000 0.5000 0.3333

 0.2500 0.2000 0.1667

 0.1429 0.1250 0.1111

>> A./A

ans =

 1 1 1

 1 1 1

 1 1 1

Most elementary functions, such as sin, exp, etc., act element-wise.

>> cos(A*pi)

ans =

 -1 1 -1

 1 -1 1

 -1 1 -1

>> exp(A)

ans =

 1.0e+003 *

 0.0027 0.0074 0.0201

 0.0546 0.1484 0.4034

 1.0966 2.9810 8.1031

4. The Colon Operator

The colon operator can also be used to create a vector from a matrix.

Define:

>> A = [1 2 3;4 5 6;7 8 9];

>> B=A(:,1)

B =

 1

 4

 7

Note that the expressions before the comma refer to the matrix rows and

after the comma to the matrix columns.

>> B=A(:,2)

B =

 2

 5

 8

>> B=A(1,:)

B =

 1 2 3

The colon operator is also useful in extracting smaller matrices from larger

matrices. If the 4 x 3 matrix C is defined by

>> C = [-1 0 0;1 1 0;1 -1 0;0 0 2]

C =

 -1 0 0

 1 1 0

 1 -1 0

 0 0 2

>> D=C(:,2:3)

creates the following 4 x 2 matrix:

D =

 0 0

 1 0

 -1 0

 0 2

>> D= C(3:4,1:2)

Creates a 2 x 2 matrix in which the rows are defined by the 3rd and 4th row

of C and the columns are defined by the 1st and 2nd columns of the matrix, C.

D =

 1 -1

 0 0

5. Referencing elements

The colon is often a useful way to construct these indices.

>> A = [1 2 3;4 5 6;7 8 9];

>> A(:,3)=0

Evaluated the third column to zero.

A =

 1 2 0

 4 5 0

 7 8 0

>> A(:,3)=[]

Deleted the third column.

A =

 1 2

 4 5

 7 8

>> A(3,:)=[]

Deleted the third row.

A =

 1 2

 4 5

>> A(:,3)=5

Expand the matrix into 2× 3 matrix, with a the values of the third column

equal to 5.

A =

 1 2 5

 4 5 5

>> A(3,:)=7:9

Expand the matrix into 3× 3 matrix, with a values of the third column equal

to 7, 8, 9:

A =

 1 2 5

 4 5 5

 7 8 9

An array is resized automatically if you delete elements or make

assignments outside the current size. (Any new undefined elements are made

zero.)

>> A(:,5)=10

Expand the matrix into 3× 5 matrix, with a values of the fourth column

equal to 0 and the last column equal to 10:

A =

 1 2 5 0 10

 4 5 5 0 10

 7 8 9 0 10

6. Matrix Inverse

The function inv is used to compute the inverse of a matrix. Let, for

instance, the matrix A be defined as follows:

>> A = [1 2 3;4 5 6;7 8 10]

A =

1 2 3

4 5 6

7 8 10

Then,

>> B = inv(A)

B =

-0.6667 -1.3333 1.0000

-0.6667 3.6667 -2.0000

1.0000 -2.0000 1.0000

The inverse of matrix A can be found by using either A^(-1) or inv(A).

>> A=[2 1 1; 1 2 2; 2 1 2]

A =

2 1 1

1 2 2

2 1 2

>> Ainv=inv(A)

Ainv =

2/3 -1/3 0

2/3 2/3 -1

-1 0 1

Let’s verify the result of A*inv(A).

>> A*Ainv

ans =

1 0 0

0 1 0

0 0 1

Also let’s verify the result of inv(A)*A

>> Ainv*A

ans =

1 0 0

0 1 0

0 0 1

Note: There are two matrix division symbols in Matlab, / and \ in which

a/b = a*inv(b)

a\b = inv(a)*b.

7. Predefined Matrix

Sometimes, it is often useful to start with a predefined matrix providing

only the dimension. A partial list of these functions is:

zeros: matrix filled with 0.

ones: matrix filled with 1.

eye: Identity matrix.

Finally, here are some examples on this special matrices

>>A=zeros(2,3)

A =

0 0 0

0 0 0

>>B=ones(2,4)

B =

1 1 1 1

1 1 1 1

>>C=eye(3)

C =

1 0 0

0 1 0

0 0 1

8. Other Operations on Matrix

Define a matrix M and examine the effect of each command separately:

>>M=[23 0 3;16 8 5;13 2 4;1 10 7]

M =

 23 0 3

 16 8 5

 13 2 4

 1 10 7

>>length(M) number of rows in M

4

>>size(M) matrix size (rows, columns)

4 3

>>find(M>7) finds indices of elements greater than 7.

 1

 2

 3

 6

 8

>>sum(M) sum of elements in each column

 53 20 19

>>max(M) maximum element in each column.

 23 10 7

>>min(M) minimum element in each column

1 0 3

>>mean(M) mean of elements in each column

13.2500 5.0000 4.7500

>>sort(M) sorts each column prod(M) product of elements in each

column

 1 0 3

 13 2 4

 16 8 5

 23 10 7

>>all(M) 1 if all elements nonzero, 0 if any element nonzero

 1 0 1

>>abs(M) vector with absolute value of all elements

 23 0 3

 16 8 5

 13 2 4

 1 10 7

>>rand returns a random value from 0 to 1.
0.9058

>>rand(2,3) returns a random matrix with 2 rows and 3 columns

0.1270 0.6324 0.2785

0.9134 0.0975 0.5469

>>rand(3) returns a random matrix 3x3

0.9575 0.9706 0.8003

0.9649 0.9572 0.1419

0.1576 0.4854 0.4218

- Given the arrays x = [1 3 5], y = [2 4 6] and A = [3 1 5 ; 5 9 7], Calculate;

a) x + y
b) x' + y'

c) A - [x ; y]
d) [x ; y].*A

e) A – 3

Condition

1. If Statement

What are you doing if you want certain parts of your program to be

executed only in limited circumstances? The way to do that is by putting the code

within an "if" statement. The most basic structure for "if" statement is as

following:

if (relation)

 (matlab commands)

end

More complicated structures are also possible including combinations like

the following:

if (relation)

 (matlab commands)

elseif (relation)

 (matlab commands)

elseif (relation)

 (matlab commands)

.

.

else

 (matlab commands)

end

Standard comparisons can be made by using relations. The relational

operators in MATLAB are;

< less than

> greater than

<= less than or equal

>= greater than or equal

== equal

~= not equal.

For example, the following code will set the variable j to be –1 if a less than

b:

a = 2;

b = 3;

if a<b

 j = -1

end

Additional statements can be added for more decision. The following code

sets the variable j to be 2 when a greater than b.

a = 4;b = 3;

if a < b

 j = -1

elseif a > b

 j = 2

end

The else statement provides all that will be executed if no other condition

is met. The following code sets the variable j to be 3 when a is not greater and

less than b.

a = 4;b = 4;

if a<b

 j = -1

elseif a>b

 j = 2

else

 j = 3

end

Matlab allows you to write together multiple condition expressions using

the standard logic operators, "&" (and), "¦" (or), and "˜" (not).

For example to check if a is less than b and at the same time b is greater

than or equal to c you would use the following commands:

if a < b & b >= c

 Matlab commands

end

For example

x=1; y=0;

if x < 0 & y < 0

z = -x * y

elseif x == 0 ¦ y == 0

z = 0

else

z = x^2

end

The output of the above code is

z=

 0

2.Loop

Many programs require iteration, or repetitive execution of a block of

statements. MATLAB has two loop statements: for and while statements. All of

the loop structures in matlab are started with a keyword such as "for" or "while"

and all of them end with the word "end".

2.1 For loop

If you want to repeat a certain commands in a predetermined way, you can

use the "for" loop. The "for" loop will loop around some statement, and you

must tell Matlab where to start and where to end. Basically, you give a vector in

the "for" statement, and Matlab will loop through for each value in the vector:

The for statements have the following structure:

For variable = expression

 statement

end

For example, a simple loop will go around four times:

for j=1:4

j

end

The output of the above code is

j =

 1

j =

 2

j =

 3

j =

 4

For another example, if we define a vector and later want to change it

elements, we can step though and change each individual entry:

v = [1:3:10];

for j=1:4

v(j) = j;

end

>>v

v =

 1 2 3 4

Matrices may also be constructed by loop. Here is an example using two

"for" loops.

for i=1:10

for j=1:10

t(i,j) = i*j;

end

end

Notice that there isn't any output, since the only line that would produce
any (t(i,j) = i/j;) ends in a semi-colon. Without the semi-colon, Matlab would
print the matrix t 100 times!

Example 1

 Find summations of even numbers between 0 and 100

sum = 0;

for i = 0 : 2 : 100

 sum = sum + i;

end

sum

sum =

 2550

Note: if the increment is one you may write the first and the last limit without

writing a step. In this case, the for-line above would become for i = 0:100.

warning: If you are using complex numbers, you cant use i as the loop index.

2.2 While Loop

If you don't like the "for" loop, you can also use a "while" loop. It is

sometimes necessary to repeat statements based on a condition rather than a

fixed number of times. The "while" loop repeats a sequence of commands as

long as some condition is met. The general form of a while loop is

while relation

statements

end

Example 2

x=1;

while x < 10

x = x+1;

end

>> x

x =

 10

The statements will be repeatedly executed as long as the relation remains

true.

Example 3

x=10;

while x > 1

x = x/2;

end

>>x

x =

 0.6250

The condition is evaluated before the body is executed, so it is possible to

get zero iteration when x equal to 1 or less.

Example 4

sum = 0;

x = 1;

while x < 4

sum = sum + 1/x;

x = x + 1;

end

>>sum

sum =

 1.8333

2.3 Break statement

It’s often a good idea to limit the number of repetitions, to avoid infinite

loops (as could happen in above example if x=Inf). This can be done using break.

A break can be used whenever you need to stop the loop (break statement can

be used to stop both for and while loops in same way), for example.

n = 0;

x=100

while x > 1

x = x/2;

n = n+1;

if n > 50

break

end

end

>> x

x =

 0.7813

A break immediately jumps execution to the first statement after the loop.

Note: When using programs with loops, you should also know how to stop

a program in the middle of its execution, such as in the case of your programs

contains an infinite loop. During a program is running, the Ctrl+C command will

stop it.

Exercise 1:

Use loop in 20 iteration to calculate x in equation x=2sin(x)?

Solution:

format long

x=1

for i=1:20

 x=2*sin(x)

end

The results will be:

x = 1

x = 1.682941969615793

x = 1.987436530272152

x = 1.828907552623580

x = 1.933747642340163

x = 1.869706153630775

x = 1.911316179125262

x = 1.885162348212226

x = 1.901985209663949

x = 1.891312851651419

x = 1.898145620030117

x = 1.893795924017278

x = 1.896575152213355

x = 1.894803506466833

x = 1.895934551140671

x = 1.895213162228076

x = 1.895673549670181

x = 1.895379846173585

x = 1.895567260289186

x = 1.895447688999369

x = 1.895523983862163

You can see the convergence through the digits after the dot. The best

guess for x is

 x = 1.895523983862163

Practice Problems

- Provide the right answers and use MATLAB to check them.

 if 0 < x < 10

 y = 2*x

 elseif 10 < x < 50

 y = 3*x

 else

 y = 200

 end

a) x = -1 y = ?

b) x = 5 y = ?

c) x=10 y = ?

d) x = 45 y = ?

e) x = 100 y = ?

2D Graphics

One of Matlaba most powerful features is the ability to create graphic plots.

There are so many methods of generating graphics in Matlab.

1. X-Y Plots

A Cartesian or x,y plot is based on plotting the x,y data pairs from the

specified vectors. Clearly, the vectors x and y must have the same number of

elements. Given a vector x of x-coordinates x1 through xn and a vector y of y-

coordinates y1 through yn, plot(x,y) graphs the points (x1,y1) through (xn,yn).

For example, to plot the two dimensions corresponding to (0,0), (1,1), (4,2)

, (5,1) and (0,0) points .

x=[0 1 4 5 0]; y=[0 1 2 -1 0];

plot(x,y)

The command plot(x,y) opens a graphics window and draws an x-y plot of

the elements of x versus the elements of y.

To plot the graph of y=x3 on the interval [2,2], first define a row vector

whose components range from -2 to 2 in increments of .05. Then define a vector

y; of the same size as x whose components are the cubes of the components of

x. Finally use the plot function to display the graph.

x=-2:.05:2; y=x.^3;

plot(x,y)

You can, also for example, draw the graph of the sine function over the

interval -4 to 4 with the following commands:

x = -4:.01:4; y = sin(x);

plot(x,y)

The resulting plot is shown in figure 1.

Figure 1. Plotting sine over the interval -4 to 4

Plots of parametrically defined curves can also be made. Try, for example,

t=0:.001:2*pi;

x=cos(3*t);

y=sin(2*t);

plot(x,y)

The resulting plot is shown in figure 2.

2. Grid

A dotted grid may be added to the plot by:

grid on

This grid can be removed using grid off.

grid off

3. Controlling Axes

Once a plot has been created in the graphics window you may wish to

change the range of x and y values, this can be done by using the command “axis”

as follows:

Figure 2. Plotting parametrically curves

x =0:.01:1;

y =sin(3*pi*x);

plot(x,y)

axis([-0.5 1.5 -1.2 1.2])

The axis command has four parameters, the first two are the minimum and

maximum values of x to use on the axis and the last two are the minimum and

maximum values of y.

4. Plotting Line Style

Matlab connects a line between the data pairs described by the vectors.

You may wish to present data points and different type of connecting lines

between these points. Data points can be described by a variety of characters

such as (. , + , * , o and x .).

Various line types, plot symbols and colors may be obtained with plot(x,y,S)

where S is a character string made from one element from any or all the

following 3 columns:

Character color Character symbol character line style

b blue .

g green

r red

c cyan

m magenta

y yellow

k black

. point

o circle

x x-mark

+ plus

* star

s square

d diamond

v triangle (down)

^ triangle (up)

< triangle (left)

> triangle (right)

p pentagram

h hexagram

 - solid

 : dotted

 -. dashdot

 -- dashed

For example,

plot(x,y,'k+:') plots a black dotted line with a plus at each data point.

plot(x,y,'bd') plots blue diamond at each data point but does not draw any

line.

plot(x,y,'y-',x,y,'go') plots the data twice, with a solid yellow line

interpolating green circles at the data points.

5. Annotation

The last step before printing or saving a plot is usually to put a title and

label the axes. You can put labels, titles, and text on a plot by using the

commands:

xlabel('text')

ylabel('text')

zlabel('text')

title('text')

text(x,y,'text') places text at position x,y

gtext('text') use mouse to place text

For example the graphs can be given titles, axes labeled, and text placed

within the graph with the following commands;

t = 0:0.02*pi:2*pi;

plot(t,sin(t))

xlabel('time');ylabel('amplitude');title('Simple Harmonic

Oscillator')

The resulting plot is shown in figure 3.

Figure 3. Using annotation in plot

6. Multi–plots

There are two ways to make multiple plots on a single graph are illustrated

by.

6.1 Multiple Data Vectors Plots

You can create multiple graphs by using multiple data vectors, for example:

x=0:.01:2*pi;

y1=sin(x);y2=sin(2*x);y3=sin(4*x);

plot(x,y1,x,y2,x,y3)

The re resulting plot is shown in figure 4.

Figure 4. Multiple plots of sine vectors

6.2 Multiple Plots with Hold

Another way is with hold on. The command "hold on" holds the old graph

when the new one is plotted. The axes may, however, become rescaled. "hold

on" holds the current picture; "hold off" releases it (but does not clear the

window).

Here is an example. Suppose we want to compare the log function with the

square root function graphically. We can put them on the same plot. By default,

both plots will appear in blue, so we will not know which log. We could make

them different colors using options. Here is the final answer,

x=1:100;

y=log(x);

z=sqrt(x);

plot(x,y,’r’); % plot log in red

hold on;

plot(x,z,’b’); % plot log in blue

hold off;

The resulting plot is shown in figure 5.

The "hold" command will remain active until you turn it off with the

command 'hold off'.

7. Subplot

The graphics window may be split into an m by n array of smaller windows

into which we may plot one or more graphs. The windows are numbered 1 to m

by n row–wise, starting from the top left. All of plot properties such as hold and

grid work on the current subplot individually.

x=0:.01:1;

subplot(221), plot(x,sin(3*pi*x))

xlabel('x'),ylabel('sin (3pix)')

subplot(222), plot(x,cos(3*pi*x))

xlabel('x'),ylabel('cos (3pix)')

subplot(223), plot(x,sin(6*pi*x))

xlabel('x'),ylabel('sin (6pix)')

subplot(224), plot(x,cos(6*pi*x))

xlabel('x'),ylabel('cos (6pix)')

Figure 5. Multiple plots with hold

The resulting plot is shown in figure 6.

Subplot(221) (or subplot(2,2,1)) specifies that the window should be split

into a 2 by 2 array and we select the first sub-window.

Practice Problems

1) Plot the log of the values from 1 to 100.

2) Plot the parametric curve x = t cos(t), y = t sin(t) for 0 < t < 10.

3) Plot the cubic curve y = x³. Label the axis and put a title "a cubic curve"

on the top of the graph.

4) Plot y=(x3+x+1)/x, for –4< x <4 and –10< y < 10.

5) Plot y=ln(x+1) and y=1-x² on the same window for -2 < x <6 and –4 <y <4.

6) Plot cos(x
2
+1) on [-2pi,2pi].

Figure 7. Using subplot

0.05 0.1 0.15 0.2
-1

-0.5

0

0.5

1

-5 0 5

0

10

20

30

40

50

x

x
2
+x+1

-2 -1 0 1 2

2

4

6

x

x
2
+x+1

8. Specialized 2-D plotting functions

MATLAB includes a variety of specialized plotting in addition to the ones

described above. The following below briefly describes some of the other

plotting functions available in MATLAB.

fplot: evaluates a function

and plots the results

Example:

fplot('sin(1/x)', [0.02 0.2]);

ezplot: simplest way to

graph a function (easy plot).

Example: to graph the

function y=x²+x+1, you write:

ezplot('x^2+x+1')

If you want to sketch the

same function in between –2

and 2 you simply write:

ezplot('x^2+x+1', [-2, 2])

0 0.5 1 1.5
0

5

10

15

0 5 10 15
-1

-0.5

0

0.5

1

10
-2

10
-1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

area Filled area plot.

area(X,Y) produces a

stacked area plot suitable for

showing the contributions of

various components to a whole.

For vector X and Y, area(X,Y) is

the same as plot(X,Y) except

that the area between 0 and Y is

filled.

Example:

t = 0:.01:5*pi;

 area(t,sin(t))

Example:

x = 0:0.01:1.5;

area(x,[(x.^2)',(exp(x))',(exp(x.^2))'])

semilogx: log-scaled x axis

semilogx is the same as

plot, except a logarithmic (base

10) scale is used for the X-axis.

Example:

x=0:0.05:5;

y=exp(-x.^2);

semilogx(x,y);

grid

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
10

-15

10
-10

10
-5

10
0

10
-2

10
-1

10
0

10
1

10
-15

10
-10

10
-5

10
0

semilogy: log-scaled y axis

semilogy is the same as

plot, except a logarithmic (base

10) scale is used for the Y-axis.

Example:

x=0:0.05:5;

y=exp(-x.^2);

semilogy(x,y);

grid

Loglog: Log-log scale plot.

Loglog is the same as

plot, except logarithmic scales

are used for both the X- and Y-

axes.

Example:

x=0:0.05:5;

y=exp(-x.^2);

loglog(x,y);

grid

bar: creates a bar graph.

bar(X,Y) draws the

columns of the M-by-N matrix Y

as M groups of N vertical bars.

The vector X must be

monotonically increasing or

decreasing

Example:

x = -2.9:0.2:2.9;

-5 0 5 10
-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3

1 2 3 4 5
-20

0

20

40

60

bar(x,exp(-x.*x));

grid on

Example:

x = 0:0.5:2*pi;

bar(x, sin(x));

barh: horizontal bar graph

barh(X,Y) draws the

columns of the M-by-N matrix Y

as M groups of N horizontal

bars.

Example:

x = -2.9:.2:2.9;

y = exp(-x.*x);

barh(x,y);

errorbar: creates a plot with error bars

errorbar (X,Y,L) plots the

graph of vector X vs. vector Y

with error bars specified by the

vectors L and U.

Example:

x = [1.0 1.3 2.4 3.7 3.8 5.1];

y = [-6.3 -8.7 -5.2 9.5 9.8 43.9];

coeff = polyfit(x,y,1)

yp=polyval(coeff,x)

e=abs(yp-y)

errorbar(x,y,e); grid

e =

 7.6079 1.8509 6.9582 6.8052 7.6242 11.9288

-2 -1 0 1 2
-0.2

0

0.2

0.4

-2 -1 0 1 2
-0.5

0

0.5

1

0 1 2 3 4
-0.2

0

0.2

0.4

0.6

 0.25

 0.5

30

210

60

240

90

270

120

300

150

330

180 0

polar: creates a plot in

polar coordinates of angles

versus radin

polar(theta,rho) makes

a plot using polar coordinates of

the angle theta, in radians,

versus the radius rho.

Example:

t=0:.01:2*pi;

polar(t,sin(2*t).*cos(2*t));

stem: generates stems at each data point

Example:

x = 0:0.1:4;

y = sin(x.^2).*exp(-x);

stem(x,y);

grid

plotyy: graphs with y tick

labels on the left and right

plotyy(X1,Y1,X2,Y2)
plots Y1 versus X1 with y-axis

labeling on the left and plots Y2

versus X2 with y-axis labeling on

the right.

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

5

10

15

UK

USA

CH

Dk
SU

NL

Example:

x=-2:0.1:2;

y1=sin(x);

y2=cos(x);

plotyy(x,y,x,y2);

grid

stairs: creates a graph

similar to a bar graph, but

without internal lines

Example:

x = -2.9:.2:2.9;

y = exp(-x.*x);

stairs(x,y);

title('Stair Chart');

pie: Pie chart.

pie(X) draws a pie plot of

the data in the vector X. The

values in X are normalized via

X/sum(X) to determine the area

of each slice of pie.

Example:

x = [1 6 2 1 3 9];

label = {'UK','USA','CH','Dk','SU','NL'};

pie(x, label)

hist: creates a histogram

Example:

x=rand(1,100);

hist(x);

grid

