

University of Technology
 الجامعة التكنولوجية

Computer Science Department

 قسم علوم الحاسوب

Knowledge Representation

المعرفة تمثيل
Assist. Prof. Dr. Suhad Malallah Kadhem

 كاظم الله مال سهاد .د.م.أ

cs.uotechnology.edu.iq

Introduction to prolog language

Prolog (programming in logic) is one of the most widely used programming

languages in artificial intelligence research.

Programming languages are of two kinds:

– Procedural (BASIC, Fortran, C++, Pascal, Java).

– Declarative (LISP, Prolog, ML).

In procedural programming, we tell the computer how to solve a problem, but

in declarative programming, we tell the computer what problem we want to

solved.

Prolog: is a computer programming language that is used for solving

problems involves objects and relationships between objects.

Example:

 “John owns the book”

 Owns (john,book) relationship(object1,object2)

The relationship has a specific order, johns own the book, but the book dose not

owns john, and this relationship and its representation above called fact.

What is Prolog used for?

Prolog good at:

• Grammars and Language processing.

• Knowledge representation and reasoning.

• Unification.

• Pattern matching.

• Planning and Search.

Some of prolog language characteristics:

1. We can solve a particular problem using prolog in less no of lines of

code.

2. It‟s an important tool to develop AI application and ES.

3. Prolog program consist of fact and rule to solve the problem and the

output is all possible answer to the problem.

4. Prolog language is a descriptive language use the inference depend on

facts and rules we submit to get all possible answer while in other

language the programmer must tell the computer on how to reach the

solution by gives the instruction step by step.

Component of computer programming in prolog

Computer programming in prolog consist of:

1. Declaring some facts about object and their relationships.

2. Declaring some rules about objects and their relationships.

3. Asking questions about objects and their relationships.

We can consider prolog as a store house of facts and rules, and it uses

the facts and rules to answer questions.

Prolog is a conversational language, which means you and the computer carry

out a kind of conversation.

Basic Elements of Prolog

There are only three basic constructs in Prolog: Facts, Rules, and Queries. A

collection of facts and rules is called a knowledge base (or a database) Prolog

programs simply are knowledge bases, collections of facts and rules which

describe some collection of relationships that we find interesting.

• Some are always true (facts):

father(john, jim).

• Some are dependent on others being true (rules):

parent(Person1, Person2) :- father(Person1, Person2).

• To run a program, we ask questions about the database.

Facts

Is the mechanism for representing knowledge in the program.

Syntax of fact:

1. The name of all relationship and objects must begin with a lower-case

letter,

 for example likes (john, mary).

2. The relationship is written first, and the objects are written separated by

commas, and enclosed by a pair of round brackets.

3. The full stop character „.‟ Must come at the end of fact.

Example:

Gold is valuable valuable (gold).

Jane is female female (jane).

John owns gold owns (johns, gold).

Johns is the father of Mary father (john, marry).

The names of objects that are enclosed within the round brackets are called

arguments. And the name of relationship called predicates. Relationship has

arbitrary number of argument. If we want to define predicate called play, were

we mention two players and a game they play

with each other, it can be: Play (john, Mary, football).

In prolog the collection of facts is called database.

Rules

Rules are used when you want to say that a fact depends on a group of other

facts, and we use the following syntax:

1. One fact represents the head (conclusion).

2. The word if used after the head and represented as “:-„.

3. One or more fact represents the requirement (condition).

The syntax of if statement

If (condition) then (conclusion)

Conclusion: - conditions

Example:

I use the umbrella if there is rain

 Conclusion condition

Represent both as fact like:

weather (rain).

use (i,umbrella)

use (i, umberella):-whether (rain).

Example of Rules:

 Person1 is a parent of Person2 if Person1 is the father of Person2 or Person1

is the mother of Person2.

parent(Person1,Person2):- father(Person1,Person2).

parent(Person1,Person2):- mother(Person1,Person2).

 Person1 is a grandparent of Person2 if some Person3 is a parent of Person2

and Person1 is a parent of Person3.

grandparent(Person1,Person2):- parent(Person3,Person2),

 parent(Person1,Person3).

Questions

Question used to ask about facts and rules.

Question looks like the fact and written under the goal program section, while

fact and rule written under clauses section.

Example: for the following fact:

 owns (mary , book).

We can ask: does Mary own the book in the following manner:

Goal

owns (mary,book).

When Question is asked in prolog, it will search through the database you typed

before; it looks for facts that match the fact in the question. Two facts matches if

their predicates are the same and their corresponding arguments are the same,

if prolog finds a fact that matches the question, prolog will respond with Yes,

otherwise the answer is No.

Example questions:

• Who is Jim's father? ?- father(Who, jim).

• Is Jane the mother of Fred? ?- mother(jane, fred).

• Is Jane the mother of Jim? ?- mother(jane, jim).

• Does Jack have a grand parant? ?- grandparent(_, jack).

Variables

If we want to get more interest information about fact or rule, we can use

variable to get more than Yes/No answer.

 Variables dose not name a particular object but stand for object that we

cannot name.

 Variable name must begin with capital letter.

 Using variable we can get all possible answer about a particular fact or

rule.

 Variable can be either bound or not bound.

Variable is bound when there is an object that the variable stands for.

The variable is not bound when what the variable stand for is not yet

known.

Example:

Facts

Like (john, mary).

Like (john, flower).

Like (ali, mary).

Question:

Like (john,X).

X= mary

X = flower

like(X, mary)

X=john

X=ali

Like(X, Y)

X=john Y=flower

X=john Y=mary

X=ali Y=mary

Type of questing in the goal

There are three type of question in the goal summarized as follow:

1.Asking with constant: prolog matching and return Yes/No answer.

2.Asking with constant and variable: prolog matching and produce

result for the Variable.

3.Asking with variable: prolog produce result.

Example:

Age(a,10).

Age(b,20).

Age(c,30).

Goal:

1.Age(a,X). ans:X=10 Type2

2.age(X,20). Ans:X=b Type2

3.age(X,Y). ans: X=a Y=10, X=b Y=20, X=c Y=30. Type3

4.Age(_,X). ans:X=10 , X=20, X=30. „_‟ means don‟t care Type3

5.Age(_,_). Ans:Yes Type1

H.W:

Convert the following paragraphs into facts or rules:

1.a person may steal something if the person is a thief and he likes the

thing and the thing is valuable.

2.Bob likes all kind of game. Football is a game. Anything anyone plays

and not killed by is a game.

Data Type

 Prolog supports the following data type to define program entries:

1. integer: to define numerical value like 1, 20, 0,-3,-50, …ect.

2. real: to define the decimal value like 2.4, 3.0, 5,-2.67, …ect.

3. char: to define single character, the character can be of type small letter

or capital letter or even of type integer under one condition it must be

surrounded by single quota. For example, „a‟,‟C‟,‟1‟,‟3‟,...etc.

4. string : to define a sequence of character like “good” i.e define word or

statement entries the string must be surrounded by double quota for

example “computer”, “134”, “a”. The string can be of any length and

type.

5. symbol: another type of data type to define single character or sequence

of character but it must begin with small letter and don‟t surround with

single quota or double quota.

Program Structure

 Prolog program structure consists of five segments, not all of them must

appear in each program. The following segment must be included in each

program predicates, clauses, and goal.

1. Domains: define global parameter used in the program.

Domains

 I= integer

 C= char

 S = string

 R = real

2. Data base: define internal data base generated by the program

 Database

 greater (integer)

3. Predicates: define rule and fact used in the program.

 Predicates

 mark(symbol,integer).

4. Clauses: define the body of the program.. For the above predicates the

clauses portion may contain mark (a, 20).

5.Goal: can be internal or external, internal goal written after clauses portion

, external goal supported by the prolog compiler if the program syntax is

correct. This portion contains the rule that drive the program execution.

Mathematical and logical operation

a .mathematical operation:

Operation symbol

Addition +

Subtraction -

Multiplication *

Integer part of division div

Remainder of division mod

We can make compound sums using round brackets

for example X = (5+4)*2 then X=18.

B .logical operation

Operation symbol

Greater >

Less than <

Equal =

Not equal <>

Greater or equal >=

Less than or equal <=

Other mathematical function

Function name operation

Cos(X) Return the cosine of its argument

Sine(X) Return the sine of its argument

Tan(X) Return the tan of its argument

Exp(X) Return exp raised to the value to which X is

bound

Ln(X) Return the natural logarithm of X (base e)

Log(X) Return the base 10 logarithm of log 10
x

Sqrt(X) Return the positive square of X

Round(X) Return the rounded value of X. Rounds X up

or down to the nearest integer

Trunc(X) Truncates X to the right of the decimal point

Abs(X) Return the absolute value of X

Tests within clauses

These operators can be used within the body of a clause to manipulate values:

sum(X,Y,Sum):- Sum = X+Y.

Goal: sum(3,5,S)

Output: S=8

sum(X,Y):-Sum=X+Y, write(Sum).

Goal: sum(3,5)

Output: 8

We can write the rule without arguments for example:

Sum:-readint(X),readint(Y),Sum=X+Y, write(Sum).

Goal: sum.

Output: 8

Also, these operators can be used to distinguish between clauses of a predicate

definition:

bigger(N,M):- N < M, write(„The bigger number is „), write(M).

bigger(N,M):- N > M, write(„The bigger number is „), write(N).

bigger(N,M):- N = M, write(„Numbers are the same„).

Goal: bigger(6,7)

Output: The bigger number is 7

Example1: Write a prolog program to check if the given number is positive or

negative.

Basic rule to check the number

If X>=0 then X is positive

 Else X is negative

Domains

 I= integer

Predicates

 pos_neg(i)

Clauses

 pos_neg(X):-X>=0, write(“positive number”),nl.

 pos_neg(_):-write(“negative number”),nl.

Goal

 pos_neg(4).

Output:

 positive number

Note: nl mean new line.

Example2: write a prolog program to check if a given number is odd or even.

Basic rule to check number

If X mod 2=0 then X is even number

 Else X is odd number

Predicates

 odd_even(integer)

Clauses

 odd_even(X):-X mod 2= 0, write (“even number”), nl.

 odd_even(X):- X mod 2 <> 0, write (“odd number”), nl.

Goal

 odd_even(5).

Output:

 odd number

Example3: Write a prolog program to combine both rules in example1 and

example2.

Domains

 I= integer

Predicates

 pos_neg(i)

 odd_even(i)

 oe_pn(i)

Clauses

 oe_pn(X):-pos_neg(X),odd_even(X).

 odd_even(X):-X mod 2= 0, write(“ even number”),nl.

 odd_even(X):- write(“odd number”),nl.

 pos_neg(X):-X>=0, write(“positive number”),nl.

 pos_neg(_):-write(“negative number”),nl.

Goal

 oe_pn(3).

Output:

 odd number

 positive number

Note: the rule of same type must be gathering with each other.

Example4 : Write a prolog program to describe the behavior of the logical And

gate.

Truth table of And gate

X Y Z

0 0 0

1 0 0

0 1 0

1 1 1

Domains

 I= integer

Predicates

 and1(I, I , I)

Clauses

 and1(0,0,0).

 and1(0,1,0).

 and1(1,0,0).

 and1(1,1,1).

Goal

 and1 (0,1,Z).

Output:

 Z =0

Sol 2:

From the truth table we can infer the following rule:

 If X= Y then

 Z= X

 Else

 Z =0

Domains

 I= integer

Predicates

 and1 (I ,I, I)

Clauses

 and1 (X,Y,Z):- X=Y, Z=X.

 and1(X,Y,Z):- X<> Y, Z=0.

Goal

 and1(0,0,Z).

Output

 Z=0

H.W

1. Write prolog program that read character and check if it’s a capital letter,

small letter, digit or special character.

2. Modify prolog program in example 3 such that the value of X is read inside

the program.

3. Write prolog program that describe the operation of logical Or gate.

Read and write function

Read function:

 readint(Var) : read integer variable.

 readchar(Var) : read character variable.

 readreal(Var) : read read (decimal) variable.

 readln(Var) : read string.

readterm(data type,Var): read any specified data type.

Write function

 Write(Var) : write variable of any type.

Example 1: write prolog program to read integer value and print it.

Domains

 I = integer

Predicates

 print.

Clauses

 Print:- write (“please read integer number”), readint(X),

 write(“you read”,X).

Goal

 Print.

Output:

 Please read integer number 4

 You read 4

Example2: write a prolog program that take two integers as input and print

the greater one.

Domains

 i = integer

Predicates

 greater (i,i)

Clauses

 greater(X,Y):- X>Y,write(“the greater is”,X).

 Greater(X,Y):- Y>X, write (“ the greater is “,Y).

Goal

 Greater(4,3).

Output:

 The greater is 4

H.W:

1. write a prolog program that read any phrase then print it.

2.write a prolog program that read an integer number then print it after

multiplying it by any other integer like 5.

Conjunctions

1. Conjunctions

1. and „,‟.

2. or „;‟.

Used to combine facts in the rule , or to combine fact in the goal to answer

questions about more complicated relationship.

Example:

Facts

Like (mary,food).

Like(mary,wine).

Like(john,mary).

Goal

Like(mary,john),like(john,mary).

We can ask does mary like john and does john like mary?

Now, how would prolog answer this complicated question?

Prolog answers the question by attempting to satisfy the first goal. if the first

goal is in the database, then prolog will mark the place in the database, and

attempt to satisfy the second goal. If the second goal is satisfied, then prolog

marks that goal„s place in the database, and we have a solution that satisfy both

goals. It is important to remember that each goal keeps its own place marker. If,

however, the second goals are not satisfied, then prolog will attempt to re-

satisfy the previous goal.

Prolog searches the database in case it has to re-satisfy the goal at a later

time. But when a goal needs to be re-satisfied, prolog will begin the search

database completely for each goal. If a fact in the database happens to match

, satisfying the goal, then prolog will mark the place in the database in case

it has to re-satisfy the goal at the later time. But when a goal needs to be re-

satisfied, prolog will begin the search from the goal‟s own place marker,

rather than from the start of database and this behavior called

“backtracking”.

 Example: about backtracking

Like(mary,food).

Like(mary,wine).

Like(john,wine).

Like(john,mary).

Goal

Like(mary,X),like(john,X).

1. The first goal succeed, bound X to food.

2. Next, attempt to satisfy the second goal.

 ,

X= food

3. The second goal fails.

4. Next, backtrack: forget previous value of X and attempt to resatisfy the first

goal.

Like(mary,X) , like(john,X)

Like(mary ,food).
Like(mary,wine).
Like(john,wine).
Like(john,mary).

Like(mary,X) like(john,X)

Like(mary ,food).
Like(mary,wine).
Like(john,wine).
Like(john,mary).

X= wine

5. The first goal succeed again, bund X to wine.

6. Next, attempt to satisfy the second goal.

7. The second goal succeeds.

8. Prolog notifies you of success.

H.W

Trace the following goal to find the value of X,Y,W,Z.

Mark(a,10).

Mark(b,20).

Mark(c,30).

Goal

Mark(X,Y),Mark(W,Z).

1. Repetition

 In prolog there is a constant formula to generate repetition; this

technique can generate repetition for some operation until the stopping

condition become true.

Example: Prolog program read and write a number of characters continue

until the input character equal to „#‟.

Predicates

repeat.

typewriter.

Clauses

repeat.

repeat:-repeat.

typewriter:-repeat,readchar(C),write(C),nl,C=‟#‟,!.

2.Recursion

Like(mary,X) , like(john,X)
Like(mary ,food).
Like(mary,wine).
Like(john,wine).
Like(john,mary).

Like(mary,X) , like(john,X)

Like(mary ,food).
Like(mary,wine).
Like(john,wine).
Like(john,mary).

 In addition to have rules that use other rules as part of their requirements,

we can have rules that use themselves as part of their requirements.

This kind of rule called “recursive “because the relationship in the

conclusion appears again in the body of the rule, where the requirements are

specified. A recursive rule is a way of generating a chain of relationship for a

recursive rule to be effective. However, there must be some place in the

chain of relationship where the recursion stops. This stopping condition must

be answerable in the database like any other rule.

2.1 Tail Recursion

We place the predicate that cause the recursion in the tail of the rule as shown

below:

 Head :- p1,p2,p3, head.

Example1: program to print number from n to 1.

Predicates

 a (integer)

Clauses

 a(1) :- write (1), nl ,!.

 a(M):- write (M) , nl, M1 = M -1, a(M1).

Goal

a(4).

Output:

4

3

2

1

Yes

Predicates 1

Predicates 2

Predicates 3

Check point

Setup
variables

Output result

Example 2: program to find factorial.

 5! = 5*4*3*2*1

Predicates

 fact (integer, integer, integer)

Clauses

 fact(1, R, R):-!.

 fact(X,F1,R):- F2=F1*X , X1=X-1, fact(X1,F2,R).

Goal

fact (5,1,R).

Output:

 F = 120.

Example 3: program to find power .

3
4
 = 3*3*3*3

Domains

 I= integer

Predicates

 power (I,I,I, I).

Clauses

power (_,0,R,R):-!.

 power (X,Y,R1,R):- R2= R1*X, Y1 =Y-1, power(X,Y1,R2,R).

Goal

power(3,2,1,R).

Output R= 9

2.2 Non –Tail Recursion (Stack Recursion)

This type of recursion us the stack to hold the value of the variables till the

recursion is complete. The statement is self – repeated as many times as the

number of items in the stack.. Below a simple comparison between tail and

non-tail recursion.

Tail recursion Non-tail recursion

1. Call for rule place in the end

of the rule.

2. It is not fast as much as stack

recursion.

3. Use more variable than stack

recursion.

1. Call for the rule place in the

middle in the rule.

2. Stack recursion is fast to

implement.

3. Few parameters are used.

Example 4: factorial program using non-tail recursion.

Predicates

fact(integer,integer).

Clauses

 fact(1,1).

 fact(X,R):- X>1,X1=X-1,fact(X1,R1),R=X*R1.

Goal

fact (4,R).

Output:

Y =24.

Example 5: power program using non-tail recursion.

fact(1,1).
fact(4,Y):- 4>1,
 fact(3,Y1),
 Y=4*Y1.

fact(1,1).
fact(3,Y):- 3>1,
 fact(2,Y1),
 Y=3*Y1.

fact(1,1).
fact(2,Y):- 2>1,
 fact(1,Y1),
 Y=2*Y1.

سيقوم الأستدعاء الأول
3بأستدعاء ذاتي بقيمة

عاء سيتولد لددينا نندا تسدتد
ثدددددداق ثددددددم يقددددددوم بدددددددو

2بإستدعاء بقيمة

ثم أستدعاء ثالث

1ليستدع بقيمة

ننا لا ينطبق

 مع الأول

 6أ جاع قيمة
 Y1للـ

 2أ جاع قيمة
 Y1للـ

 1أ جاع قيمة

Predicates

 power (integer, integer, integer)

 Clauses

 power (_,0,1):-!.

 power (X,Y,R) :- Y> 0, Y1=Y -1, power (X,Y1,R1),R= X*R1.

Goal

 power (3,2,R).

Output

 Z = 9.

H.W

1. Write prolog program to find the sum of 10 integer elements using tail and

non tail recursion.

2. Write prolog program to find the maximum value between 10 elements.

3. Write prolog program to find the minimum value between 10 elements.

4. Find the sum S = 1+2 + 3 ….+N

Pattern Matching

Prolog uses unification to match variables to values. An expression that contains

variables like X+Y*Z describes a pattern where there are three blank spaces to

fill in named X, Y, and Z. The expression 1+2*3 has the same structure

(pattern) but no variables. If we input this query X+Y*Z=1+2*3, then Prolog

will respond that X=1, Y=2, and Z=3. The pattern matching is very powerful

because you can match variables to expressions like this X+Y=1+2*3 and get

X=1 and Y=2*3. You can also match variable to variables: X+1+Y=Y+Z+2.

This sets X=Y=2 and Z=1.

Example 1:

a(1).

a(2).

a(4).

b(2).

b(3).

d(X,Y):-a(X),b(Y), X=4.

Goal: d(X,Y)

X=1, Y=2, 1=4 Fail

X=1, Y=3, 1=4 Fail

X=2, Y=2, 2=4 Fail

X=2, Y=3, 2=4 Fail

X=4, Y=2, 4=4 True

X=4, Y=3, 4=4 True

Output: 2 solutions X=4, Y=2 and X=4 Y=3.

Goal: d(A,2)

X=1, Y=2, 1=4 Fail

X=2, Y=2, 2=4 Fail

X=4, Y=2, 4=4 True

Output: 1solution A=4.

Goal: d(2,2)

Output: no solution.

Backtracking

Backtracking is a systematic method to iterate through all the possible states of

a search space.

Backtracking can easily be used to iterate through all subsets or

permutations of a set. Backtracking ensures correctness by enumerating all

possibilities.

Cut

Represented as “!” is a built in function always True , used to stop

backtracking and can be placed anywhere in the rule, we list the cases where

“!” can be inserted in the rule:

1 .R:-f1, f2,!. “f1, f2 will be deterministic to one solution.

2. R:-f1,!,f2. “ f1 will be deterministic to one solution while f2 to all

.

3. R:- !,f1,f2. “R will be deterministic to one solution.

Example1 : program without using cut.

Domains

 I= integer

Predicates

 no(I)

Clauses

 no (5).

 no (7).

 no (10).

Goal

 no (X).

Output:

 X=5

 X=7

 X=10

Example 2: program using cut.

Domains

 I= integer

Predicates

 no(I)

Clauses

 no (5):-!.

 no (7).

 no (10).

Goal

 no (X).

 Output:

 X=5.

Example3: program without using cut.

Domains

 I =integer

 S = symbol

Predicates

 a (I)

 b (s)

 c (I, s)

Clauses

 a(10).

 a(20)

 b(a)

 b(c)

 c (X,Y):- a(X), b(Y).

Goal

 c(X,Y).

Output:

 X= 10 Y=a

 X=10 Y=c

 X=20 Y=a

 X=20 Y=c

Example 4: using cut at the end of the rule.

Domains

 I =integer

 S = symbol

Predicates

 a(I)

 b (s)

 c (I, s)

Clauses

 a(10).

 a(20)

 b(a)

 b(c)

 c (X, Y):- a (X), b (Y),!.

Goal

 c(X,Y).

Output:

 X= 10 Y=a

Example 5: using cut at the middle of the rule.

Domains

 I =integer

 S = symbol

Predicates

 a(I)

 b (s)

 c (I, s)

Clauses

 a(10).

 a(20)

 b(a)

 b(c)

 c (X,Y):- a(X),!, b (Y).

Goal

 c(X,Y).

Output:

 X=10 Y=a

 Y=c

Example 6:

a(1).

a(2).

a(4).

b(2).

b(3).

d(X,Y):-a(X),b(Y), X=4,!.

Goal: d(X,Y).

X=1, Y=2, 1=4 Fail

X=1, Y=3, 1=4 Fail

X=2, Y=2, 2=4 Fail

X=2, Y=3, 2=4 Fail

X=4, Y=2, 4=4 True

Output: 1 solutions X=4, Y=2.

Example 7:

a(1).

a(2).

a(4).

b(2).

b(3).

d(X,Y):-a(X),!,b(Y), X=4.

Goal: d(X,Y)

X=1, Y=2, 1=4 Fail

X=1, Y=3, 1=4 Fail

Output: no solutions found.

Fail

The fail predicate is provided by Prolog. When it is called, it causes the failure

of the rule. And this will be forever; nothing can change the statement of this

predicate.

Built in function written as word “fail” used to enforce backtracking, place

always in the end of rule, produce false and can be used with internal goal to

produce all possible solution.

Example :

Predicates

 Student (symbol , integer)

 Printout.

Clauses

 Student (aymen,95).

 Student(zainab,44).

 Student(ahmed,60).

 Printout:-student(N,M),write(N,” “,M),nl,fail.

Goal

 Printout.

Output:

 aymen 95

 zainab 44

 ahmed 60

 No

Example 7:

Predicates

 Student (symbol , integer)

 Printout.

Clauses

 Student (aymen,95).

 Student(zainab,44).

 Student(ahmed,60).

 Printout:-student(N,M),write(N,” “,M),nl,fail.

 Printout.

Goal

 Printout.

Output:

 aymen 95

 zainab 44

 ahmed 60

 Yes

Negation

 Exceptions and return false in specific situation. Can be implemented

using:

1. Cut-fail.

2. Not.

1. Cut-fail

Example 8:

 Ahmed likes swimming and he want to visit all middle east seas accept

the dead sea. Write prolog program to describe this situation.

A: using fail.

Predicates

 Visit (symbol)

 Middle_east (symbol)

Clauses

 Visit (Sea) :- middle_east (Sea).

 Middle_east (deadsea):- fail.

 Middle_east(redsea).

 Middle_east(arabsea).

Goal

 1. Visit (deadsea)

 2. Visit (W).

Output:

 1. No

 2. W= redsea

 W=arabsea

B: using cut- fail

Predicates

 Visit (symbol)

Clauses

 Visit (Sea) :- Sea=deadsea,!,fail.

 Visit (X):-middle_east(X).

 Middle_east(redsea).

 Middle_east(arabsea).

Example 9: ban like all animals but snake, write prolog program for this

case.

Predicates

 Like(symbol, symbol)

 Animal(symbol)

Clauses

 Like(ban ,X):- animal(X),X=snake,!,fail.

 Like(ban,X):- animal(X).

 Animal(cat).

 Animal(bird).

 Animal(dog).

2. using not

 For example 8: we can write it using not as follow.

Predicates

 Visit (sym bol)

 Middle_east(symbol).

Clauses

 Visit (X):- middle_east(X),not (X = deadsea).

 Middle_east(redsea).

 Middle_east(arabsea).

H.w:

1. Trace the following clauses and find the output:

 a. clauses

 reading:- readchar(Ch),writ(Ch),Ch=’#’.

 Reading.

 b.clauses

 Go.

 Go:-go.

 Reading:- go,readchar(Ch),write(Ch),Ch=’#,!.

3. Use negation to define the different relation: diff(X,Y) which is true when

X and Y are different numbers.

Example

predicates

a(integer)

begin

clauses

a(1).

a(2).

a(3).

a(4).

begin:-a(X),write(X),fail.

Goal: begin

Output: 1234 NO

clauses

a(1).

a(2).

a(3).

a(4).

begin:-a(X),write(X),fail.

begin.

Goal: begin

Output: 1234 yes

Complete Prolog Programs

domains

i=integer

predicates

counter(i)

clauses

/* counter from 1-10*/

counter(10):-!.

counter(X):-write(X), X1=X+1, counter(X1).

Goal: counter(1)

Output: 1 2 3 4 5 6 7 8 9

/*summation of 10 numbers*/

predicates

sum(integer,integer,integer)

clauses

sum(10,R,R):-!.

sum(X,R1,R):-R2=R1+X,X1=X+1,sum(X1,R2,R).

Goal

 sum(1,0,R).

Output: ?

/* summation of 10 given integer numbers*/

domains

int=integer

predicates

sum_int(int,int,int)

clauses

sum_int(10,R,R):-!.

sum_int(X,R1,R):-readint(Z),Z>0, X1=X+1,R2=R1+Z,sum_int(X1,R2,R).

sum_int(X,R1,R):-X1=X+1,sum_int(X1,R1,R),!.

Goal

 sum_int(1,0,R).

Output: ?

/* factorial program*/

predicates

fact(integer,integer,imteger)

clauses

fact(0,_,1):-!.

fact(1,R,R):-!.

fact(X,R1,R):-R2=X*R1,X1=X-1,fact(X1,R2,R).

Goal

 fact(3,1,R).

Output: R=6

/*power program*/

predicates

power(integer,integer,integer,integer)

clauses

power(_,0,R,R):-!.

power(X,Y,R1,R):-R2=R1*X,Y1=Y-1,power(X,Y1,R2,R).

Goal

 power(5,2,1,R).

Output: R=25

Lists in Prolog

Lists are ordered sequences of elements that can have any length. Lists can be

represented as a special kind of tree. A list is either empty, or it is a structure

that has two components: the head H and tail T. List notation consists of the

elements of the list separated by commas, and the whole list is enclosed in

square brackets.

Lists correspond roughly to array in other languages but unlike array, a list does

not require you to how big it will be before use it.

syntax of list

List always defined in the domains section of the program as follow:

Domains

 list = integer*

 „*‟ refer to list object which can be of length zero or un defined.

 The type of element list can be of any standard defined data type

like integer, char … ect or user defined data type explained later.

 List element surrounded with square brackets and separated by

comma as follow: l = [1, 2, 3, 4].

 List consist of two parts head and tail , the head represent the first

element in the list and the tail represent the remainder (i.e head is

an element but tail is a list) . for the following list :

 L = [1,2,3]

 H = 1 T =[2,3]

 H =2 T =[3]

 H =3 T=[]

[] refer to empty list.

List can be written as [H|T] in the program, if the list is non empty

then this statement decompose the list into Head and tail otherwise

(if the list is empty) this statement add element to the list.

For example:

 [a] and [a,b,c], where a, b and c are symbols type.

 [1], [2,3,4] these are a lists of integer.

 [] is the atom representing the empty list.

 Lists can contain other lists.

Split a list into its head and tail using the operation [X|Y].

Examples about Lists

1. p([1,2,3]).

p([the,cat,sat,on,the,hat]).

Goal: p([X|Y]).

Output:

X = 1 Y = [2,3] ;

X = the Y = [cat,sat,on,the,hat].

2. p([a]).

Goal: p([H | T]).

Output:

H = a, T = [].

3. p([a, b, c, d]).

Goal: p([X, Y | T]).

Output:

X = a, Y = b, T = [c, d].

4. P([[a, b, c], [d, e]]).

Goal: p([H|T])

Output:

H = [a, b, c], T = [[d, e]].

List and Recursion

 As maintained previous list consist of many element, therefore to

manipulate each element in the list we need recursive call to the list until it

become empty.

List Membership

• Member is possibly the most used user-defined predicate (i.e. you have to

define it every time you want to use it!).

• It checks to see if a term is an element of a list.

– it returns yes if it is.

– and fails if it isn‟t.

domains

ilist=integer*

predicates

member (integer,ilist)

clauses

member(X,[X|_]).

member(X,[_|T]) :- member(X,T).

goal

member(3,[1,2,3,4]).

trace

member(3,[1,2,3,4]).

member(3,[2,3,4]).

member(3,[3,4]). yes

 It 1st checks if the Head of the list unifies with the first argument.

If yes then succeed.

If no then fail first clause.

 The 2nd clause ignores the head of the list (which we know doesn‟t match)

and recourses on the Tail.

Goal: member(a, [b, c, a]).

Output: Yes

Goal: member(a, [c, d]).

Output: No.

Print the contents of a list.

domains

ilist=integer*

predicates

print(ilist)

clauses

print([]).

print([X|T]):-write(X),print(T).

Goal: print([3,4,5])

Output: 3 4 5 yes

Program to find sum of integer list.

Domains

 I= integer

L=i*

Predicates

 Sum (L ,I, I)

Clauses

Sum ([],R,R):-!.

Sum([H|T],R1,R):-R2=R1+H,Sum(T,R2,R).

Goal

Sum ([1,4,6,9],0,R).

Output

R = 20 yes

Prolog program to spilt list into positive list and negative list.

Domains

L= integer*

Predicates

Spilt (L,L,L)

Clauses

Spilt ([],[],[]):-!.

Spilt ([H|T],[H|T1],L2):- H>= 0,!,spilt(T,T1,L2).

Spilt ([H|T],L1,[H|T2]) :- spilt(T,L1,T2).

Goal

Spilt ([-1,4,-9,8,0],L1,L2).

Output:

L1 = [4,8,0]

L2 = [-1,-9]

Find the maximum value of the list

domains

ilist=integer*

predicates

list(ilist,integer)

clauses

list([H],H).

list([H1,H2|T],H):-H1>H2,list([H1|T],H).

list([_,H2|T],H):-list([H2|T],H).

Goal: list([3,9,4,5],M)

Output: M=9 yes

[3,9,4,5]

[9,4,5]

[9,5]

[9]

Append two lists

domains

ilist=integer*

predicates

app(ilist,ilist,ilist)

clauses

app([],L,L).

app([H|T],L1,[H|T1]) :-app(T,L1,T1).

Goal

 app([3,4,5],[6,7,8],L).

Output: L=[3,4,5,6,7,8] yes

Write the contents of list inside at the given list

domains

ilist=integer*

lists=ilist*

predicates

list(lists)

clauses

list([]).

list([[]]).

list([[H|T]]):-write(H),list([T]).

list([H|T]):-list([H]),list(T).

Goal

 list([[3,4,5],[6,7,8]]).

Output: 3 4 5 6 7 8 yes

Reveres the contents of the given list.

domains

slist=symbol*

predicates

rev(slist,slist)

app(slist,slist,slist)

clauses

app([],L,L):-!.

app([H|T],L1,[H|T1]):-app(T,L1,T1).

rev([X],[X]):-!.

rev([H|T],L):-rev(T,L1),app(L1,[H],L).

Goal

 rev([a,b,c,d],R).

Output: R=[d,c,b,a]

Delete a particular element from a list

domains

i= integer

l= i*

Predicates

Delall (i,l,l)

Clauses

Delall(_,[],[]):-!.

Delall(X,[X|T],T) :-!.

Delall(X,[H|T],[H|T1]):-Delall(X,T,T1).

Goal

Delall(2,[1,3,2,3,2,1],L).

trace

Delall(2,[1,3,2,3,2,1],L).

Delall(2,[1,3,2,3,2,1],[1|T1])

Delall(2,[3,2,3,2,1],T1)

Delall(2,[3,2,3,2,1],[3|T1])

Delall(2,[2,3,2,1],T1)

Delall(2,[2,3,2,1],[3,2,1])

Output L=[1,3,3,2,1]

domains

i= integer

l= i*

Predicates

Delall (i,l,l)

Clauses

Delall (_,[],[]):-!.

Delall (X,[X|T],T1) :- Delall (X,T,T1).

Delall (X,[H|T],[H|T1]):- Delall (X,T,T1).

Goal

Delall(2,[1,3,2,3,2,1],L).

Delall(2,[1,3,2,3,2,1],[1|T1])

Delall(2,[3,2,3,2,1],T1)

Delall(2,[3,2,3,2,1],[3|T1])

Delall(2,[2,3,2,1],T1)

Delall(2,[3,2,1],T1)

Delall(2,[3,2,1],[3|T1])

Delall(2,[2,1],T1)

Delall(2,[1],T1)

Delall(2,[1],[1|T1])

Delall(2,[],T1)

Delall(_,[],[])

Output X=[1,3,3,1]

Delete an element at a particular location from a list

domains

i=integer

l= i*

predicates

Delatloc (i,l,l)

Clauses

Delatloc (1, [_|T],T):-!.

Delatloc (N,[H|T],[H|T1]):-N1=N-1, Delatloc (N1,T,T1).

Goal

Delatloc(2,[2,4,6,8],X).

trace

Delatloc(2,[2,4,6,8],X).

Delatloc(2,[2,4,6,8],[2|T1])

N1=1

Delatloc(1,[4,6,8],T1)

T1=[6,8]

Output X=[2,6,8]

Collect in a list all the elements that found in list1 and not found in list2

domains

l=integer*

predicates

dif(l,l,l)

member(integer,l)

clauses

Dif ([],_,[]).

Dif ([H|T1],L,[H|T2]):-not(member (H,L)),!, Dif(T1,L,T2).

Dif([_|T1],L1,L2):- Dif(T1,L1,L2).

Member(H,[H|_]):-!.

Member(H,[_|T]):-member(H,T).

Goal

Dif([2,4,6,8],[3,4,8,5],X)

Output X=[2,6]

Tail and non tail Recursive Programs.

Non-tail Summation of 10 integer number:

predicates

sum_nontail(integer,integer)

clauses

sum-nontail(11,0).

sum-nontail(X,S):-X1=X+1, sum-nontail(X1,S1),S=S1+X.

Trace the above program with the goal ? sum-nontail(1,S)

sum-nontail(1,S):-X1=2, sum-nontail(2,S1),S=S1+1.

sum-nontail(2,S):-X1=3, sum-nontail(3,S1),S=S1+2.

sum-nontail(3,S):-X1=4, sum-nontail(4,S1),S=S1+3.

sum-nontail(4,S):-X1=4, sum-nontail(5,S1),S=S1+4.

sum-nontail(5,S):-X1=4, sum-nontail(6,S1),S=S1+5.

sum-nontail(6,S):-X1=4, sum-nontail(7,S1),S=S1+6.

sum-nontail(7,S):-X1=4, sum-nontail(8,S1),S=S1+7.

sum-nontail(8,S):-X1=4, sum-nontail(9,S1),S=S1+8.

sum-nontail(9,S):-X1=4, sum-nontail(10,S1),S=S1+9.

sum-nontail(10,S):-X1=4, sum-nontail(11,S1),S=S1+10.

sum-nontail(11,0).

Then ? sum-nontail(1,S)

S=55.

Non-tail Factorial program:

predicates

fact(integer,integer)

clauses

fact(0,1).

fact(1,1).

fact(X,Y):-X1=X-1,fact(X1,Y1),Y=X*Y1.

Non-tail Power program.

predicates

power(integer,integer,integer)

clauses

power(_,0,1).

power(X,Y,Z):-Y1=Y-1,power(X,Y1,Z1),Z=Z1+X.

H.W

1. Write prolog program to find the union of two lists.

2. Write prolog program to find the intersection between two lists.

3. Write prolog program to find the difference between two lists.

4. Write prolog program that check the equality between two lists.

5. Write prolog program to find the last element in a list.

6. Write prolog program to find the union of two lists.

7. Write prolog program to find the length of a list.

8. Write prolog program to find the index of specified element in a list.

9. Write prolog program to get the element at nth index lists.

10. Write prolog program that replace specified element in a list with value 0.

11. Write prolog program that delete a specified element in a lists.

12. Write prolog program that take two lists as input and produce a third list

as output, this list is the sum of the two lists.

13. Write prolog program that multiply each element in the list by 5.

14. Write prolog program that sort a list descending.

15. Write prolog program that convert any given decimal number to its binary

representation and store it in a list.

Standard String Predicates

Prolog provides several standard predicates for powerful and efficient string

manipulations. In this section, we summarize the standard predicates available

for string manipulating and type conversion.

1. str_len (String,Length) (string,integer) (i,o): Determines the length of String.

Succeeds if the length could be matched with Len.

str_len(“prolog”,X)

X=6.

 Str_len("ab",3) no

 Str_len(X,3) X="---"

2. str_char (string,char) (i,o) (o,i): Converts a string (of one char) into a

character or vice versa. If string is bound, it must have length 1 for the predicate

to succeed.

str_char(“A”,X)

X=‟A‟.

3. str_int (string,integer) (i,o) (o,i): Converts a string of one character to ASCII

code or vice versa. If string is bound, it must contain a single number for the

predicate to succeed.

str_int(“A”,X)

X=65 .

Str_int(X,65)

X=”A”

Str_int(“33”,X)

X=33

Str_int(X,33)

X=”33”

4. str_real (string,real) (i,o) (o,i): Converts the string (of real) to real and the

opposit

 Str_real("0.5",X)

 X=0.5

 Str_real(X,0.5)

 X="0.5"

Str_real(“5”,X)

X=5.0

5. char_int (char,integer) (i,o) (o,i): Converts a character to ASCII code or vice

versa.

char_int(„A‟,X)

X=65.

6. isname (string) (i): Tests whether a string would match a prolog symbol in

other words test if the content of the string is name or not.

isname(“s2”) return YES.

isname(“4r”) return NO.

Isname("abc") yes

Isname("123"). No

7. frontchar (String,FrontChar,RestString) (string,char,string) (i,o,o) (o,i,i):

Extracts the first character from a string, the remainder is matched with

RestString.

frontchar (“prolog”,C,R)

C=‟p‟, R=”rolog”.

8. fronttoken (String,Token,Rest) (string,string,string) (I,o,o)(i,o,i) (i,i,o) (o,i,i):

Skips all white space characters (blanks,tabs) and separates from the resulting

string the first valid token. The remainder is matched with RestString. A valid

token is either a variable or name 'A'...'Z','a'...'z',' ','0'...'9', a number '0'...'9' or a

single character. It fails if String was

empty or contained only whitespace.

fronttoken (“complete prolog program”,T,R)

T=”complete”, R=”prolog program”.

9. frontstr (StrLen,String,FrontStr,RestStr) (i,i,o,o): Extracts the first n

characters from a string. This establishes a relation between String, Count,

FronStr, and RestString, thus that String = FrontStr+RestString and

str_len(FronStr,Count) is true. The String and Count arguments must be

initialized.

frontstr(3,”cdab 2000”,T,R)

T=”cda”, R=”b 2000”.

10. concat (Str1,Str2,ResStr) (string,string,string) (i,i,o): Merges to strings to

one by appending the second argument to the first.

concat (“prolog”,”2011”,R)

R=”prolog2011”.

11. Upper_lower(string,string)

Convert the string in upper case(in capital letter) to the lower case

(small letter) and the opposite.

upper_lower(capital_letter,small_letter)

upper_lower("ABC",X)

 X="abc"

 upper_lower("Abc",X)

 X="abc"

 upper_lower(X,"abc")

 X="ABC"

Examples:

Program that read two strings and concat them in one string as upper case.

predicates

start(string)

clauses

start(X):-readln(S),readln(S1),concat(S,S1,S2),upper_lower(X,S2).

Goal

 Start(X).

 Output:

Ahmed

Ali

X=AHMEDALI yes

program that read string of one character then print the integer value of

this char.

predicates

start

clauses

start:-readln(S),str_int(S,X), write(X).

goal

start.

 Output:

a

97 yes

Program that take a string of words and print each word in a line as upper

case.

predicates

start(string).

Clauses

start("").

start(S):-fronttoken(S,S3,S2), upper_lower(S1,S3), write(S1), nl,

start(S2).

Goal

Start("ali is a good boy").

Trace

Start("ali is a good boy").

fronttoken(("ali is a good boy",S3,S2)

S3=”ali”

S2=”is a good boy”

upper_lower(S1,”ali”)

S1=”ALI”

Start(”is a good boy”)

fronttoken(("is a good boy",S3,S2)

S3=”is”

S2=”a good boy”

upper_lower(S1,”is”)

S1=”IS”

Start(“a good boy”)

.

.

.

Sart(“”)

 Output:

ALI

IS

A

GOOD

BOY

yes

Program that take a string and convert each character it contains to its

corresponding integer value.

Predicates

start(string).

clauses

start(S):-frontchar(S,S3,S2), char_int(S3,I), write(I), nl , start(S2).

start("").

Goal

Start("abc").

 Output:

97

98

99

Yes

Program that return the number of names in a specific string.

predicates

start(string,intger,integer).

clauses

start(S,X1,X):-

fronttoken(S,S1,S2),isname(S1),!,X2=X1+1,start(S2,X2,X).

start(S,X1,X):-fronttoken(S,_,S2),start(S2,X1,X).

start("",X,X).

goal

start("ali has 2 cars",0,X), write(“the no. is “,X).

 Output:

 The no. of names is 3

Yes

Program that split a specific string to small string with length 3 char.

predicates

start(string).

clauses

start("").

start(S):-str_len(S,I), I MOD 3=0,!, frontstr(3,S,S1,S2), write(S1),

nl,start(S2).

start(S):-concat(S," ",S1),start(S1).

Goal

Start("abcdefg").

Output:

abc

def

g

yes

Convert the string of words into a list of words:

domains

slist=string*

predicates

split(string,slist)

clauses

split("",[]).

split(S,[H|T]):-fronttoken(S,H,R),split(R,T).

goal

split("list of words",L).

fronttoken("list of words",H,R)

H=”list”

R=”of words”

Split(“of words”,T)

fronttoken("of words",H,R)

H=”of”

R=”words”

Split(“words”,T)

fronttoken("words",H,R)

H=”words”

R=””

Split(“”,T).

output: L=[List","of","words"]

Count the number of words in the given string.

Predicates

counts(string,integer)

clauses

counts("",0).

counts(S,C):-fronttoken(S,_,R), counts(R,C1),C=C1+1.

Goal

counts("number of words",N)

fronttoken("number of words",_,R),

R=”of words”

counts(“of words”,C1), stack C=C1+1

fronttoken("of words",_,R),

R=”words”

counts(“words”,C1), stack C=C1+1

fronttoken("words",_,R),

R=””

counts(“”,C1), stack C=C1+1

C1=0

C=C1+1

C=1

C=1+1

C=2+1

output N=3

Count the number of characters in the given string.

Predicates

counts(string,integer)

clauses

counts("",0).

counts(S,C):-frontchar(S,_,R), counts(R,C1),C=C1+1.

Goal

counts("no of char",N)

output

N=10

Reverse the given string.

rev("","").

rev(Str,R_Str):-frontstr(1,Str,C,RemStr), rev(RemStr,L1),concat(L1,C,R_Str).

Goal

Rev(“abc”,R).

frontstr(1,”abc”,C,RemStr),

C=”a”

RemStr=”bc”

Rev(“bc”,L1) stack concat(L1,”a”,R_Str)

frontstr(1,”bc”,C,RemStr),

C=”b”

RemStr=”c”

Rev(“c”,L1) stack concat(L1,”b”,R_Str)

frontstr(1,”c”,C,RemStr),

C=”c”

RemStr=””

Rev(“”,L1) stack concat(L1,”c”,R_Str)

L1=””

concat(“”,”c”,R_Str)

R_Str=”c”

concat(“c”,”b”,R_Str)

R_Str=”cb”

concat(“cb”,”a”,R_Str)

R_Str=”cba”

Convert a list of words to a string

con([],"").

con([H|T],Str):-con(T,Str1),concat(H,Str1,Str).

Count the number of words that contain “tion” in the given list.

count(S):-frontstr(4,S,X,_),X="tion".

count(S):-frontchar(S,_,R),count(R).

set([],0).

set([H|T],L):-count(H),set(T,L1),L=L1+1,!.

set([_|T],L):-set(T,L).

 H.W

1- Write a prolog program that do the following: convert the string such as

"abcdef" to 65 66 67 68 69 70.

2-Program tofind the number of tokens and the number of character in a

specific string such as: "ab c def" the output is tokens and 6 character.

Examples

1. Count the number of words that contain “tion” in a given list.

Domains

slist=string*

Predicates

count(string)

set(slist,integer)

clauses

count(S):-frontstr(4,S,X,_),X="tion",!.

count(S):-frontchar(S,_,R),count(R).

set([],0).

set([H|T],L):-count(H),set(T,L1),L=L1+1,!.

set([_|T],L):-set(T,L).

goal

set(["ab","tion"],X).

trace

set(["ab","tion"],X).

count("ab")

frontstr(4,"ab",X,_) --- fail

frontchar("ab",_,R),

count("b")

frontstr(4,"b",X,_) --- fail

frontchar("b",_,R)

count("")

frontstr(4,"",X,_) ---- fail

frontchar("",_,X) ---- fail

count("ab") ---- fail

set(["tion"],L)

count("tion")

frontstr(4,"tion",X,_),

X="tion" ---- true

Count("tion") ---- true

Set([],L1) --- true

L1=0

L=0+1

L=1

Set(["ab","tion"],X) ---- true

X=1.

2. Count the number of characters in a given string using external database.

database

single sum(integer)

predicates

count(string)

clauses

count(""):-sum(X),write(X),!.

count(S):-frontchar(S,_,S1),sum(X),X1=X+1,assert(sum(X1)),count(S1).

Goal

assert(sum(0)),

count("yes").

trace

count("yes")

 frontchar("yes",_,S1) --- true

S1="es"

sum(X)

X=0

X1=1

sssert(sum(1))

count("es")

frontchar("es",_,S1) --- true

S1="s"

sum(X)

X=1

X1=2

assert(sum(2))

count("s")

frontchar("s",_,S1) --- true

S1=""

sum(X)

X=2

X1=3

assert(sum(3))

count("")

sum(X)

X=3

write(3) ---- output

count("yes") --- true

3. Find how many times an element occurs in a list using non tail recursion.

domains

ilist=integer*

predicates

count(integer,ilist, integer)

clauses

count(_,[],0):-!.

count(H,[H|T],S):-count(H,T,S1), S=S1+1,!.

count(X,[_|T],S):-count(X,T,S).

Goal

count(3,[2,3,4,3],X).

trace

count(3,[2,3,4,3],X)

count(3,[3,4,3],S)

count(3,[4,3],S1)

count(3,[3],S)

count(3,[],S1)---- true

S1=0

S=S1+1

S=0+1

S=S1+1

S=1+1

count(3,[2,3,4,3],X) ---- true

X=2.

4. Find the average of the even numbers in a given list using non tail recursion.

domains

ilist=integer*

predicates

sum_count(ilist, integer,integer)

average(ilist)

clauses

average(L):-sum_count(L,S,N), A=S/N,

 write("The average is ",A).

sum_count([],0,0):-!.

sum_count([H|T],S,N):-H mod 2 = 0, sum_count(T,S1,N1),

 S=S1+H, N=N1+1,!.

sum_count([_|T],S,N):-sum_count(T,S,N).

Goal

average([2,4,3,6,7]).

trace

average([2,4,3,6,7])

sum_count([2,4,3,6,7],S,N)

2 mod 2=0 true

sum_count([4,3,6,7],S1,N1)

4 mod 2 =0 true

sum_count([3,6,7],S1,N1)

3 mod 2 =0 fail

sum_count([6,7],S,N)

6 mod 2 =0 true

sum_count([7],S1,N1)

7 mod 2 =0 fail

sum_count([],S,N)

S=0, N=0

S=0+2

N=0+1

S=2+4

N=1+1

S=6+6

N=2+1

A=12/3

Output

The average is 4

5. Create a list that contains the result of adding pairs of elements in a given list, such

as if your input list is [2, 5, -5, 2, 1, 4,9], then the output list will be [7,-3,5,9].

domains

ilist=integer*

predicates

add(ilist,ilist)

clauses

add([],[]):-!.

add([H],[H]):-!.

add([H1,H2|T],[H3|T1]):-H3=H1+H2,add(T,T1).

Goal

add([2, 5, -5, 2, 1, 4,9],L).

Trace

add([2,5,-5,2,1,4,9],L)

H3=2+5

add([-5,2,1,4,9],T1)

H3=-5+2

add([1,4,9],T1)

H3=1+4

add([9],T1)

T1=[9]

T1=[5,9]

T1=[-3,5,9]

L=[7,-3,5,9]

6. Reverse the contains of a given list.

domains

slist=symbol*

predicates

app(slist, slist,slist)

rev(slist)

clauses

app([],X,X).

app([H|T1],X,[H|T]):-app(T1,X,T).

rev([X],[X]).

rev([H|T],L):-rev(T,L1),app(L1,[H],L).

Goal: rev([a,b,c],R)

Trace

rev([a,b,c],R)

rev([b,c],L1)

rev([c],L1)

L1=[c]

app([c],[b],L)

app([],[b],T)

T=[b]

L=[c,b]

app([c,b],[a],L)

app([b],[a],T)

app([],[a],T)

T=[a]

L=[c,b,a]

7. Write a prolog program that can split a string to two strings according to a given

number (without using the library function frontstr), such as if your input is the

string "hello" and the number is 3 then the output will be the two strings "hel" and

"lo".

predicates

split(string,integer,string,string)

clauses

split(S,0,"",S):-!.

Split(S,N,S1,S2):-frontchar(S,Ch,S3), N1=N-1,

 split(S3,N1,S4,S2),

 str_char(SS,Ch),concat(SS,S4,S1).

Goal

split("hello",3,S1,S2)

trace

split("hello",3,S1,S2)

frontchar("hello",Ch,S3)

Ch='h'

S3="ello"

N1=2

Split("ello",2,S4,S2)

frontchar("ello",Ch,S3)

Ch='e'

S3="llo"

N1=1

Split("llo",1,S4,S2)

frontchar("llo",Ch,S3)

Ch='l'

S3="lo"

N1=0

Split("lo",0,S4,S2)

S4=""

S2="lo"

Str_char(SS,'l')

SS="l"

Concat("l","",S1)

S1="l"

Str_char(SS,'e')

SS="e"

Concat("e","l",S1)

S1="el"

Str_char(SS,'h')

SS="h"

Concat("h","el",S1)

S1="hel"

Introduction to Artificial Intelligence

INTRODUCTION

The term AI was first introduced by john McCarthy in 1956, since then, several

areas of applications and researches have been developed, (expert systems,

knowledge based system,…).

What is Intelligence?

Intelligence is the ability to learn about, to learn from, to understand about, and

interact with one‟s environment.

What is Artificial Intelligence (AI)?

AI:- Is simply a way of making a computer think.

AI: it is the part of the computer science concerned in designing intelligent

computers, that is, computers that exhibits the characteristics we associate with

intelligence in human behavior (understanding language, learning, reasoning,

solving problems, …).

AI: is the study of how to make a computer do thing at which, at the moment

people do them better.

AI: is a field of study that it's goal is to make the computer perform tasks that

require intelligence when performed by humans.

AI applications
AI programs fall into three basic categories:

• Natural language processing systems (like machine translation).

• Perception systems (vision, speech, touch).

• Expert systems (like chemical analysis, medical diagnoses).

What are the goals of AI research?

The central problems (or goals) of AI research include reasoning,

knowledge, planning, learning, natural language processing

(communication), perception and the ability to move and manipulate objects.

Fundamental issues of AI involves

• Knowledge representation

• Search strategy

• Perception and inference.

What are Knowledge Representation Schemes ?

In Al, there are four basic categories of representational schemes: logical,

procedural, network and structured representation schemes.

1) Logical representation uses expressions in formal logic to represent its

knowledge base. Predicate Calculus is the most widely used

representation scheme.

2) Procedural representation represents knowledge as a set of instructions

for solving a problem. These are usually if-then rules we use in rule-based

systems.

3) Network representation captures knowledge as a graph in which the

nodes represent objects or concepts in the problem domain and the arcs -

represent relations or associations between them.

4) Structured representation extends network representation schemes by

allowing each node to have complex data structures named slots with

attached values.

1) The Prepositional and Predicates Calculus:

1.1 The Prepositional Calculus:

 The propositional calculus and predicate calculus are first of all languages.

Using their words, phrases, and sentences, we can represent and reason about

properties and relationships in the world. The first step in describing a language

is to produce the pieces that make it up: its set of symbols.

Propositional Calculus Symbols

 The symbols of propositional calculus are: {P, Q, R, S, …}

 Truth symbols: {True, false}

 Connectives: { , ,  ,  , }

Propositional symbols denote propositions, or statements about the world that

may be either true or false, Propositions are denoted by uppercase letters near

the end of the English alphabet Sentences, For example:

P: It is sunny today.

Q: The sun shines on the window.

R: The blinds are brought down.

(PQ): If it is sunny today, then the sun shines on the window

(QR): If the sun shines on the window, the blinds are brought down.

(R): The blinds are not brought down.

Propositional Calculus Sentence

 Every propositional symbol and truth symbol is a sentence.

For example: true, P, Q, and R are sentences.

 The negation of a sentence is a sentence.

For example: P and false are sentences.

 The conjunction, AND, of two sentences is a sentence.

For example: P  P is a sentence.

 The disjunction, OR of two sentences is a sentence.

For example: P  P is a sentence.

 The implication of one sentence from another is a sentence.

For example: P  Q is a sentence.

 The equivalence of two sentences is a sentence.

For example: P  Q  R is a sentence.

 Legal sentences are also called well-formed formulas or WFFs.

In expressions of the form P  Q, P and Q are called the conjuncts. In P 

Q, P and Q are referred to as disjuncts. In an implication, P  Q, P is the

premise and Q, the conclusion or consequent.

 In propositional calculus sentences, the symbols () and [] are used to group

symbols into sub-expressions and so to control their order of evaluation and

meaning.

For Example: (P  Q)  R is quite different from P  (Q  R) as can be

demonstrated using truth tables. An expression is a sentence, or well-formed

formula, of the propositional calculus if and only if it can be formed of legal

symbols through some sequence of these rules.

For Example: ((P  Q)  R)  P  Q  R is a well-formed sentence in

the propositional calculus because:

P, Q, and R are propositions and thus sentences.

P  Q, the conjunction of two sentences, is a sentence.

(P  Q)  R, the implication of a sentence for another, is a sentence.

P and Q, the negations of sentences, are sentences.

P  Q the disjunction of two sentences, is a sentence.

P  Q  R, the disjunction of two sentences, is a sentence.

((P  Q)  R)  P  Q  R, the equivalence of two sentences, is a

sentence.

 This is our original sentence, which has been constructed through a series of

applications legal rules and is therefore "well formed".

Example: Convert the following engilsh sentences to propositional calculus

sentences:

 It is hot.

 It is not hot.

 If it is raining, then will not go to mountain.

 The food is good and the service is good.

 If the food is good and the service is good then the restaurant is good.

Answer:

1.2 The Predicate Calculus (Also known as First-Order Logic):

In prepositional calculus, each atomic symbol (P, Q, etc.) denotes a proposition

of some complexity. There is no way to access the components of an individual

assertion. In other words, the prepositional calculus has its limitations that you

cannot deal properly with general statements because it represents each

statement by using some symbols jointed with connectivity tools. To solve the

limitations in the prepositional calculus, you need to analyze propositions into

predicates and arguments, and deal explicitly with quantification. Predicate

calculus provides formalism for performing this analysis of prepositions and

additional methods for reasoning with quantified expressions. For example,

instead of letting a single prepositional symbol, P, denotes the entire sentence

"it rained on Tuesday," we can create a predicate weather that describes a

relationship between a date and the weather:

weather (rain, Tuesday)

through inference rules we can manipulate predicate calculus expression

accessing their individual components and inferring new sentences. Predicate

calculus also allows expressions to contain variables. Variables let us create

general assertions about classes of entities. For example, we could state that for

all values, of X, where X is a day of the week, the statement:

weather (rain, X) is true ;

I,e., it rains it rains every day. As with propositional calculus, we will first

define the syntax of the language and then discuss its semantics.

Example: Convert the following engilsh sentences to predicate calculus

sentences:

1. If it is raining, tom will not go to mountain

2. If it doesn't rain tomorrow, Tom will go to the mountains.

3. All basketball players are tall.

4. Some people like anchovies.

5. John like anyone who likes books.

6. Nobody likes taxes.

7. There is a person who writes computer class.

8. All dogs are animals.

9. All cats and dogs are animals.

10. John did not study but he is lucky.

11. There are no two adjacent countries have the same color.

12. All blocks supported by blocks that have been moved have also been

moved. Note: you can use the following predicates:

• block(X) means X is a block

• supports(X, Y) means X supports Y

• moved(X) means X has been moved

Answer:

1. weather (rain) → ¬ go(tom,mountain)

2. ¬ weather (rain, tomorrow) →go(tom, mountains).

3. ∀ X (basketball _ player(X) → tall (X))

4. ∃ X (person(X) ⋀ likes(X, anchovies)).

5. ∃ X like(X,book) →like(john,X)

6. ¬ ∃ X likes(X,taxes).

7. ∃X write(X,computer_class)

8. ∀X dogs(X) →animals(X)

9. ∀X∀Y cats(X)∧dogs(Y) →animals(X)∧animals(Y).

10. ¬ study(john)∧ lucky(john)

11. ∀X∀Y (county(X) ∧ county(Y) ∧ adjacent(X,Y)) → ¬ (color(X) 

color(Y)). Or we say: ∀X∀Y ¬ county(X)  ¬county(Y)  ¬adjacent(X,Y) 

¬ (color(X)  color(Y)).

12. ∀X∀Y block(X) ∧ block(Y) ∧ supports(X,Y) ∧ moved(X) → moved(Y)

2. Resolution:

Resolution is a technique for proving theorems in the predicate calculus using

the resolution by refutation algorithm. The resolution refutation proof procedure

answers a query or deduces a new result by reducing the set of clauses to a

contradiction.

The Resolution by Refutation Algorithm includes the following steps:-

a) Convert the statements to predicate calculus (predicate logic).

b) Convert the statements from predicate calculus to clause forms.

c) Add the negation of what is to be proved to the clause forms.

d) Resolve the clauses to producing new clauses and producing a contradiction

by generating the empty clause.

Clause Forms
The statements that produced from predicate calculus method are nested and

very complex to understand, so this will lead to more complexity in resolution

stage , therefore the following algorithm is used to convert the predicate

calculus to clause forms:-

1. Eliminate all (→) by replacing each instance of the form (P → Q) by

expression (ךP˅Q)

2. Reduce the scope of negation.

 a≡ (aך)ך

 b(X) ך b(X)≡∃X (X∀)ך

 b(X)ך b(X)≡∀X (X∃)ך

 bך˅aך≡(a∧b)ך

 bך˄aך≡(a˅b)ך

3. Standardize variables: rename all variables so that each quantifier has its

own unique variable name. For example,

∀X a(X) ˅ ∀X b(X) ≡ ∀X a(X) ˅ ∀Y b(Y)

4. Move all quantifiers to the left without changing their order. For example,

 ∀X a(X) ˅ ∀Y b(Y)

 ∀X ∀Y a(X) ˅ b(Y)

5. Eliminate existential quantification by using the equivalent function. For

example,

∀X ∃Y (mother(X,Y))≡ ∀X (mother(X,m(X)))

∀X ∀Y ∃Z (p(X,Y,Z)≡ ∀X ∀Y (p(X,Y,f(X,Y))

6. Remove universal quantification symbols. For example,

∀X ∀Y (p(X,Y, f(X,Y))) ≡ p(X,Y, f(X,Y))

7. Use the associative and distributive properties to get a conjunction of

disjunctions called conjunctive normal form. For example,

a˅(b˅c)≡(a˅b)˅c

a∧(b∧c)≡(a∧b)∧c

a˅(b∧c)≡(a˅b)∧(a˅c)

a∧(b˅c)≡(a∧b)˅(a∧c)

8. Split each conjunct into a separate clause. For example,

 (d(X,f(X))˅e(W)ך˅b(X)ך)∧(b(X)˅e(W) ך˅a(X)ך)

 b(X)˅e(W) ך˅a(X)ך

 d(X,f(X))˅e(W)ך˅b(X)ך

9. Standardize variables apart again so that each clause contains variable

names that do not occur in any other clause. For example,

 (d(X,f(X))˅e(W)ך˅b(X)ך)∧(b(X)˅e(W) ך˅a(X)ך)

 b(X)˅e(W) ך˅a(X)ך

 d(X,f(X))˅e(V)ך˅b(Y)ך

Example: Use the Resolution Algorithm for proving that John is happy with

regard the following story:

Everyone passing his AI exam and winning the lottery is happy. But everyone who

studies or lucky can pass all his exams, John did not study but he is lucky.

Everyone who is lucky wins the lottery. Prove that John is happy.

Solution:

a) Convert all statement to predicate calculus.

∀X pass(X,ai_exam)∧win(X,lottery)→happy(X)

∀Y∀E study(Y)˅lucky(E)→pass(Y,E)

 study(john)∧lucky(john)ך

∀Z lucky(Z)→win(Z,lottery)

happy(john)?

b) Convert the statements from predicate calculus to clause forms:

1.

∀X ך(pass(X,ai_exam)∧win(X,lottery))˅ happy(X)

∀Y∀E ך(study(Y)˅lucky(Y))˅ pass(Y,E)

 study(john)∧lucky(john)ך

∀Z ך(lucky(Z))˅ win(Z,lottery)

happy(john)?

2.

∀X (ךpass(X,ai_exam)˅ךwin(X,lottery))˅ happy(X)

∀Y∀E ך) study(Y)∧ךlucky(Y))˅ pass(Y,E)

 study(john)∧lucky(john)ך

∀Z ךlucky(Z)˅win(Z,lottery)

happy(john)?

3. Nothing to do here.

4. Nothing to do here.

5. Nothing to do here.

6.

(ך pass(X,ai_exam)˅ךwin(X,lottery))˅ happy(X)

(ך study(Y)∧ךlucky(Y))˅ pass(Y,E)

 study(john)∧lucky(john)ך

 lucky(Z)˅win(Z,lottery)ך

happy(john)?

7.

 win(X,lottery)˅ happy(X)ך˅pass(X,ai_exam)ך

(ך study(Y)∧ךlucky(Y))˅ pass(Y,E) ≡ (a∧b)˅c ≡ c˅(a∧b)

The second statement become: pass(Y,E)˅ךstudy(Y)∧pass(Y,E)˅ךlucky(Y)

 study(john)∧lucky(john)ך

 lucky(Z)˅win(Z,lottery)ך

happy(john)?

8.

 win(X,lottery)˅ happy(X)ך˅pass(X,ai_exam)ך

pass(Y,E)˅ךstudy(Y)

pass(Y,E)˅ךlucky(Y)

 study(john)ך

lucky(john)

 lucky(Z)˅win(Z,lottery)ך

happy(john)?

9.

 win(X,lottery)˅ happy(X)ך˅pass(X,ai_exam)ך

pass(Y,E)˅ךstudy(Y)

pass(M,G)˅ךlucky(M)

 study(john)ך

lucky(john)

 lucky(Z)˅win(Z,lottery)ך

happy(john)?

c) Add the negation of what is to be proved to the clause forms.

 .happy(john)ך

d) Resolve the clauses to producing new clauses and producing a

contradiction by generating the empty clause.

There are two ways to do this, the first is backward resolution and the second is

forward resolution.

d_1) Backward Resolution

The proving for happy(john) using Backward Resolution is shown as follows:

d_2) Forward Resolution

The proving for happy(john) using Backward Resolution is shown as follows:

Homework

Everyone has a parent. The parent of a parent is a grandparent. Prove that Ali has a

grandparent using Backward Resolution.

Semantic Nets

 The term semantic nets is used to describe a knowledge representation

method based on a network structure. Semantic nets were originally developed

for use as psychological models of human memory but are now a standard

representation method for AI and expert systems.

— It is consist of a set of nodes and arcs , each node is represented as a

rectangle to describe the objects, the concepts and the events. The arcs are

used to connect the nodes and they divided to three parts:-

— Is a: for objects & types

— Is : To define the object or describe it

— Has a

— can To describe the properties of

objects or the actions that the object can do

—

To represent the actions, events and objects

 To represent the relation among objects

Example1: Computer has many part like a CPU and the computer divided into

two type, the first one is the mainframe and the second is the personal computer

,Mainframe has line printer with large sheet but the personal computer has laser

printer , IBM as example to the mainframe and PIII and PIV as example to the

personal computer.

— Example2: Create the semantic network for the following facts (Note:

You must append new indirect facts if they exist):

— A trout is a fish.

— A fish has gills.

— A fish has fins.

— Fish is food.

— Fish is animal.

— Solution:

— There is a fact must be added that is “A trout has gills” because all the

fishes have gills. The semantic network is shown below:

Example 2: Layla gave Selma a book

Example 3: Layla told Suha that she gave Selma a book

Example 4: Ali gave Ban a disk which is Zaki bought

2) The Conceptual Graph

— Conceptual Graphs is a logical formalism that includes classes, relations,

individuals and quantifiers. This formalism is based on semantic

networks, but it has direct translation to the language of first order

predicate logic, from which it takes its semantics. The main feature is

standardized graphical representation that like in the case of semantic

networks allows human to get quick overview of what the graph means.

Conceptual graph is a bipartite orientated graph where instances of

concepts are displayed as rectangle and conceptual relations are displayed

as ellipse. Oriented edges then link these vertices and denote the existence

and orientation of relation. A relation can have more than one edges, in

which case edges are numbered.

It is similar to semantic net with two parts:

Is used to describe the nouns, the adjectives , the verbs(actions) and the

objects.

Is used to represent the relations among objects

Example 1: Ahmed read a letter yesterday

Example 2:- The dog Scratch it ear with is paw

3) Frame:

— Consideration of the use of cases suggests how we can tighten up on the

semantic net notation to give something which is more consistent, known

as the frame notation. In the place of an arbitrary number of arcs leading

from a node there are a fixed number of slots representing

attributes of an object.

— Every object is a member or instance of a class, which it may be

thought of as linking to with an is_a link as we saw before. The class

indicates the number of slots that an object has, and the name of each

slot. In the case of a giving object, for instance, the class of giving

objects will indicate that it has at least three slots: the donor, the

recipient and the gift. There may be further slots indicated as necessary

in the class, such as ones to give the time and location of the action. The

time slot may be considered a formalization of the tense of the verb in a

sentence.

— In our example we have a general class of birds, and all birds

have attributes flying, feathered and color. The attributes flying and

feathered are Boolean values and are fixed to true at this level,

which means that for all birds the attribute flying is true and the

attribute feathered is true. The attribute color, though defined at this

level is not filled, which means that though all birds have a color,

their color varies.

— Two subclasses of birds, pet canaries and ravens are defined. Both have

the color slot filled in, pet canaries with yellow, ravens with black. The

class pet canaries has an additional slot, owner, meaning that all pet

canaries have an owner, though it is not filled at this level since it is

obviously not the case that all pet canaries have the same owner.

— We can therefore say that any instance of the class pet_canary has

attributes color yellow, feathered true, flying true, and owner any

instance of class raven has color black, feathered true, flying true, but

no attribute owner.

— The two instances of pet canary shown, Tweety and Cheepy have owners

John and Mary who are separate instances of the class person, for

simplicity no attributes have been given for class person. , the last

of these varying among instances.

— The instance of pet canary Cheepy has an attribute which is restricted

to itself, vet (since not all pet canaries have their own vet), which is a

link to another person instance, but in this case we have subclass

of person, vet. The frame diagram for this is:

— We can define a general set of rules for making inferences on this sort

of frame system. We can say that an object is an instance of a class if

it is a member of that class, or if it is a member of a class which is a

subclass of that class. A class is a subclass of another class if it is a

kind of that class, or if it is a kind of some other class which is a

subclass of that class. An object has a particular attribute if it has

that attribute itself, or if it is an instance of a class that has that

attribute. In Prolog:

— aninstance(Obj,Class) :– is_a(Obj,Class).

— aninstance(Obj,Class) :– is_a(Obj,Class1), subclass(Class1,Class).

— subclass(Class1,Class2) :– a_kind_of(Class1,Class2).

— subclass(Class1,Class2) :– a_kind_of(Class1,Class3),

subclass(Class3,Class2).

— We can then say that an object has a property with a particular value

if the object itself has an attribute slot with that value, or it is an

instance of a class which has an attribute slot with that value, in

Prolog:

— value(Obj,Property,Value) :– attribute(Obj,Property,Value).

— value(Obj,Property,Value):–

— aninstance(Obj,Class), attribute(Class,Property,Value).

— The diagram above is represented by the Prolog facts

attribute(birds,flying,true).

— attribute(birds,feathered,true).

— attribute(pet_canaries,colour,yellow).

— attribute(ravens,colour,black).

— attribute(tweety,owner,john).

— attribute(cheepy,owner,mary).

— attribute(cheepy,vet,sally).

— a_kind_of(pet_canaries,birds).

— a_kind_of(ravens,birds).

— a_kind_of(vet,person).

— is_a(edgar,ravens).

— is_a(tweety,pet_canaries).

— is_a(cheepy,pet_canaries).

— is_a(sally,vet).

— is_a(john,person).

— is_a(mary,person).

— Note in particular how we have used reification leading to a

representation of classes like birds, pet_canaries and so on by object

constants, rather than by predicates as would be the case if we

represented this situation in straightforward predicate logic. The term

superclass may also be used, with X being a superclass of Y whenever Y

is a subclass of X.

— Using the Prolog representation, we can ask various queries about the

situation represented by the frame system, for example if we made the

Prolog query:

— Goal: value(tweety,colour,V).

— we would get the response:

— V = yellow

— while

— Goal: value(john,feathered,V).

— gives the response:

— no

—

— This indicating that feathered is not an attribute of John. Note that

the no indicates that this is something which is not recorded in the

system. If we wanted to actually store the information that persons are

not feathered we would have to add:

— attribute(person,feathered,true).

— then the response would have been:

— V = false

— The only thing that has not been captured in this Prolog representation is

the way that an attribute can be defined at one level and filled in lower

down, like the colour attribute of birds.

—

