

University of Technology

 الجامعة التكنولوجية

Computer Science Department

 قسم علوم الحاسوب

Distributed Database

Lect. Ragheed Dawood

 م.د. رغيد داود سالم

cs.uotechnology.edu.iq

Distributed DBMS - Concepts

For proper functioning of any organization, there’s a need for a well-maintained

database. In the recent past, databases used to be centralized in nature. However,

with the increase in globalization, organizations tend to be diversified across the

globe. They may choose to distribute data over local servers instead of a central

database. Thus, arrived the concept of Distributed Databases.

This chapter gives an overview of databases and Database Management Systems

(DBMS). A database is an ordered collection of related data. A DBMS is a software

package to work upon a database. A detailed study of DBMS is available in our

tutorial named “Learn DBMS”. In this chapter, we revise the main concepts so that

the study of DDBMS can be done with ease. The three topics covered are database

schemas, types of databases and operations on databases.

Database and Database Management System

A database is an ordered collection of related data that is built for a specific purpose.

A database may be organized as a collection of multiple tables, where a table

represents a real world element or entity. Each table has several different fields that

represent the characteristic features of the entity.

For example, a company database may include tables for projects, employees,

departments, products and financial records. The fields in the Employee table may

be Name, Company_Id, Date_of_Joining, and so forth.

A database management system is a collection of programs that enables creation

and maintenance of a database. DBMS is available as a software package that

facilitates definition, construction, manipulation and sharing of data in a database.

Definition of a database includes description of the structure of a database.

Construction of a database involves actual storing of the data in any storage medium.

Manipulation refers to the retrieving information from the database, updating the

database and generating reports. Sharing of data facilitates data to be accessed by

different users or programs.

Examples of DBMS Application Areas

 Automatic Teller Machines

 Train Reservation System

 Employee Management System

 Student Information System

Examples of DBMS Packages

 MySQL

 Oracle

 SQL Server

 dBASE

 FoxPro

 PostgreSQL, etc.

Database Schemas

A database schema is a description of the database which is specified during database

design and subject to infrequent alterations. It defines the organization of the data,

the relationships among them, and the constraints associated with them.

Databases are often represented through the three-schema

architecture or ANSISPARC architecture. The goal of this architecture is to

separate the user application from the physical database. The three levels are −

 Internal Level having Internal Schema − It describes the physical structure,

details of internal storage and access paths for the database.

 Conceptual Level having Conceptual Schema − It describes the structure of

the whole database while hiding the details of physical storage of data. This

illustrates the entities, attributes with their data types and constraints, user

operations and relationships.

 External or View Level having External Schemas or Views − It describes

the portion of a database relevant to a particular user or a group of users while

hiding the rest of database.

Types of DBMS

There are four types of DBMS.

Hierarchical DBMS

In hierarchical DBMS, the relationships among data in the database are established

so that one data element exists as a subordinate of another. The data elements have

parent-child relationships and are modelled using the “tree” data structure. These are

very fast and simple.

Network DBMS

Network DBMS in one where the relationships among data in the database are of

type many-to-many in the form of a network. The structure is generally complicated

due to the existence of numerous many-to-many relationships. Network DBMS is

modelled using “graph” data structure.

Relational DBMS

In relational databases, the database is represented in the form of relations. Each

relation models an entity and is represented as a table of values. In the relation or

table, a row is called a tuple and denotes a single record. A column is called a field

or an attribute and denotes a characteristic property of the entity. RDBMS is the most

popular database management system.

For example − A Student Relation −

Object Oriented DBMS

Object-oriented DBMS is derived from the model of the object-oriented

programming paradigm. They are helpful in representing both consistent data as

stored in databases, as well as transient data, as found in executing programs. They

use small, reusable elements called objects. Each object contains a data part and a

set of operations which works upon the data. The object and its attributes are

accessed through pointers instead of being stored in relational table models.

For example − A simplified Bank Account object-oriented database −

Distributed DBMS

A distributed database is a set of interconnected databases that is distributed over the

computer network or internet. A Distributed Database Management System

(DDBMS) manages the distributed database and provides mechanisms so as to make

the databases transparent to the users. In these systems, data is intentionally

distributed among multiple nodes so that all computing resources of the organization

can be optimally used.

Operations on DBMS

The four basic operations on a database are Create, Retrieve, Update and Delete.

 CREATE database structure and populate it with data − Creation of a

database relation involves specifying the data structures, data types and the

constraints of the data to be stored.

Example − SQL command to create a student table −

CREATE TABLE STUDENT (

 ROLL INTEGER PRIMARY KEY,

 NAME VARCHAR2(25),

 YEAR INTEGER,

 STREAM VARCHAR2(10)

);

 Once the data format is defined, the actual data is stored in accordance with

the format in some storage medium.

Example SQL command to insert a single tuple into the student table −

INSERT INTO STUDENT (ROLL, NAME, YEAR, STREAM)

VALUES (1, 'ANKIT JHA', 1, 'COMPUTER SCIENCE');

 RETRIEVE information from the database – Retrieving information

generally involves selecting a subset of a table or displaying data from the

table after some computations have been done. It is done by querying upon the

table.

Example − To retrieve the names of all students of the Computer Science

stream, the following SQL query needs to be executed −

SELECT NAME FROM STUDENT

WHERE STREAM = 'COMPUTER SCIENCE';

 UPDATE information stored and modify database structure – Updating a

table involves changing old values in the existing table’s rows with new

values.

Example − SQL command to change stream from Electronics to Electronics

and Communications −

UPDATE STUDENT

SET STREAM = 'ELECTRONICS AND COMMUNICATIONS'

WHERE STREAM = 'ELECTRONICS';

 Modifying database means to change the structure of the table. However,

modification of the table is subject to a number of restrictions.

Example − To add a new field or column, say address to the Student table, we

use the following SQL command −

ALTER TABLE STUDENT

ADD (ADDRESS VARCHAR2(50));

 DELETE information stored or delete a table as a whole – Deletion of specific

information involves removal of selected rows from the table that satisfies

certain conditions.

Example − To delete all students who are in 4th year currently when they are

passing out, we use the SQL command −

DELETE FROM STUDENT

WHERE YEAR = 4;

 Alternatively, the whole table may be removed from the database.

Example − To remove the student table completely, the SQL command used

is −

DROP TABLE STUDENT;

Distributed DBMS - Distributed Databases

This chapter introduces the concept of DDBMS. In a distributed database, there are

a number of databases that may be geographically distributed all over the world. A

distributed DBMS manages the distributed database in a manner so that it appears

as one single database to users. In the later part of the chapter, we go on to study the

factors that lead to distributed databases, its advantages and disadvantages.

A distributed database is a collection of multiple interconnected databases, which

are spread physically across various locations that communicate via a computer

network.

Features

 Databases in the collection are logically interrelated with each other. Often

they represent a single logical database.

 Data is physically stored across multiple sites. Data in each site can be

managed by a DBMS independent of the other sites.

 The processors in the sites are connected via a network. They do not have any

multiprocessor configuration.

 A distributed database is not a loosely connected file system.

 A distributed database incorporates transaction processing, but it is not

synonymous with a transaction processing system.

Distributed Database Management System

A distributed database management system (DDBMS) is a centralized software

system that manages a distributed database in a manner as if it were all stored in a

single location.

Features

 It is used to create, retrieve, update and delete distributed databases.

 It synchronizes the database periodically and provides access mechanisms by

the virtue of which the distribution becomes transparent to the users.

 It ensures that the data modified at any site is universally updated.

 It is used in application areas where large volumes of data are processed and

accessed by numerous users simultaneously.

 It is designed for heterogeneous database platforms.

 It maintains confidentiality and data integrity of the databases.

Factors Encouraging DDBMS

The following factors encourage moving over to DDBMS −

 Distributed Nature of Organizational Units − Most organizations in the

current times are subdivided into multiple units that are physically distributed

over the globe. Each unit requires its own set of local data. Thus, the overall

database of the organization becomes distributed.

 Need for Sharing of Data − The multiple organizational units often need to

communicate with each other and share their data and resources. This demands

common databases or replicated databases that should be used in a

synchronized manner.

 Support for Both OLTP and OLAP − Online Transaction Processing

(OLTP) and Online Analytical Processing (OLAP) work upon diversified

systems which may have common data. Distributed database systems aid both

these processing by providing synchronized data.

 Database Recovery − One of the common techniques used in DDBMS is

replication of data across different sites. Replication of data automatically

helps in data recovery if database in any site is damaged. Users can access data

from other sites while the damaged site is being reconstructed. Thus, database

failure may become almost inconspicuous to users.

 Support for Multiple Application Software − Most organizations use a

variety of application software each with its specific database support.

DDBMS provides a uniform functionality for using the same data among

different platforms.

Advantages of Distributed Databases

Following are the advantages of distributed databases over centralized databases.

Modular Development − If the system needs to be expanded to new locations or

new units, in centralized database systems, the action requires substantial efforts and

disruption in the existing functioning. However, in distributed databases, the work

simply requires adding new computers and local data to the new site and finally

connecting them to the distributed system, with no interruption in current functions.

More Reliable − In case of database failures, the total system of centralized

databases comes to a halt. However, in distributed systems, when a component fails,

the functioning of the system continues may be at a reduced performance. Hence

DDBMS is more reliable.

Better Response − If data is distributed in an efficient manner, then user requests

can be met from local data itself, thus providing faster response. On the other hand,

in centralized systems, all queries have to pass through the central computer for

processing, which increases the response time.

Lower Communication Cost − In distributed database systems, if data is located

locally where it is mostly used, then the communication costs for data manipulation

can be minimized. This is not feasible in centralized systems.

Disadvantages of Distributed Databases

Following are some of the adversities associated with distributed databases.

 Need for complex and expensive software − DDBMS demands complex and

often expensive software to provide data transparency and co-ordination

across the several sites.

 Processing overhead − Even simple operations may require a large number

of communications and additional calculations to provide uniformity in data

across the sites.

 Data integrity − The need for updating data in multiple sites pose problems

of data integrity.

 Overheads for improper data distribution − Responsiveness of queries is

largely dependent upon proper data distribution. Improper data distribution

often leads to very slow response to user requests.

Distributed DBMS - Database Environments

In this part of the tutorial, we will study the different aspects that aid in designing

distributed database environments. This chapter starts with the types of distributed

databases. Distributed databases can be classified into homogeneous and

heterogeneous databases having further divisions. The next section of this chapter

discusses the distributed architectures namely client – server, peer – to – peer and

multi – DBMS. Finally, the different design alternatives like replication and

fragmentation are introduced.

Types of Distributed Databases

Distributed databases can be broadly classified into homogeneous and

heterogeneous distributed database environments, each with further sub-divisions,

as shown in the following illustration.

Homogeneous Distributed Databases

In a homogeneous distributed database, all the sites use identical DBMS and

operating systems. Its properties are −

 The sites use very similar software.

 The sites use identical DBMS or DBMS from the same vendor.

 Each site is aware of all other sites and cooperates with other sites to process

user requests.

 The database is accessed through a single interface as if it is a single database.

Types of Homogeneous Distributed Database

There are two types of homogeneous distributed database −

 Autonomous − Each database is independent that functions on its own. They

are integrated by a controlling application and use message passing to share

data updates.

 Non-autonomous − Data is distributed across the homogeneous nodes and a

central or master DBMS co-ordinates data updates across the sites.

Heterogeneous Distributed Databases

In a heterogeneous distributed database, different sites have different operating

systems, DBMS products and data models. Its properties are −

 Different sites use dissimilar schemas and software.

 The system may be composed of a variety of DBMSs like relational, network,

hierarchical or object oriented.

 Query processing is complex due to dissimilar schemas.

 Transaction processing is complex due to dissimilar software.

 A site may not be aware of other sites and so there is limited co-operation in

processing user requests.

Types of Heterogeneous Distributed Databases

 Federated − The heterogeneous database systems are independent in nature

and integrated together so that they function as a single database system.

 Un-federated − The database systems employ a central coordinating module

through which the databases are accessed.

Distributed DBMS Architectures

DDBMS architectures are generally developed depending on three parameters −

 Distribution − It states the physical distribution of data across the different

sites.

 Autonomy − It indicates the distribution of control of the database system and

the degree to which each constituent DBMS can operate independently.

 Heterogeneity − It refers to the uniformity or dissimilarity of the data models,

system components and databases.

Architectural Models

Some of the common architectural models are −

 Client - Server Architecture for DDBMS

 Peer - to - Peer Architecture for DDBMS

 Multi - DBMS Architecture

Client - Server Architecture for DDBMS

This is a two-level architecture where the functionality is divided into servers and

clients. The server functions primarily encompass data management, query

processing, optimization and transaction management. Client functions include

mainly user interface. However, they have some functions like consistency checking

and transaction management.

The two different client - server architecture are −

 Single Server Multiple Client

 Multiple Server Multiple Client (shown in the following diagram)

Peer- to-Peer Architecture for DDBMS

In these systems, each peer acts both as a client and a server for imparting database

services. The peers share their resource with other peers and co-ordinate their

activities.

This architecture generally has four levels of schemas −

 Global Conceptual Schema − Depicts the global logical view of data.

 Local Conceptual Schema − Depicts logical data organization at each site.

 Local Internal Schema − Depicts physical data organization at each site.

 External Schema − Depicts user view of data.

Multi - DBMS Architectures

This is an integrated database system formed by a collection of two or more

autonomous database systems.

Multi-DBMS can be expressed through six levels of schemas −

 Multi-database View Level − Depicts multiple user views comprising of

subsets of the integrated distributed database.

 Multi-database Conceptual Level − Depicts integrated multi-database that

comprises of global logical multi-database structure definitions.

 Multi-database Internal Level − Depicts the data distribution across

different sites and multi-database to local data mapping.

 Local database View Level − Depicts public view of local data.

 Local database Conceptual Level − Depicts local data organization at each

site.

 Local database Internal Level − Depicts physical data organization at each

site.

There are two design alternatives for multi-DBMS −

 Model with multi-database conceptual level.

 Model without multi-database conceptual level.

Design Alternatives

The distribution design alternatives for the tables in a DDBMS are as follows −

 Non-replicated and non-fragmented

 Fully replicated

 Partially replicated

 Fragmented

 Mixed

Non-replicated & Non-fragmented

In this design alternative, different tables are placed at different sites. Data is placed

so that it is at a close proximity to the site where it is used most. It is most suitable

for database systems where the percentage of queries needed to join information in

tables placed at different sites is low. If an appropriate distribution strategy is

adopted, then this design alternative helps to reduce the communication cost during

data processing.

Fully Replicated

In this design alternative, at each site, one copy of all the database tables is stored.

Since, each site has its own copy of the entire database, queries are very fast

requiring negligible communication cost. On the contrary, the massive redundancy

in data requires huge cost during update operations. Hence, this is suitable for

systems where a large number of queries is required to be handled whereas the

number of database updates is low.

Partially Replicated

Copies of tables or portions of tables are stored at different sites. The distribution of

the tables is done in accordance to the frequency of access. This takes into

consideration the fact that the frequency of accessing the tables vary considerably

from site to site. The number of copies of the tables (or portions) depends on how

frequently the access queries execute and the site which generate the access queries.

Fragmented

In this design, a table is divided into two or more pieces referred to as fragments or

partitions, and each fragment can be stored at different sites. This considers the fact

that it seldom happens that all data stored in a table is required at a given site.

Moreover, fragmentation increases parallelism and provides better disaster recovery.

Here, there is only one copy of each fragment in the system, i.e. no redundant data.

The three fragmentation techniques are −

 Vertical fragmentation

 Horizontal fragmentation

 Hybrid fragmentation

Mixed Distribution

This is a combination of fragmentation and partial replications. Here, the tables are

initially fragmented in any form (horizontal or vertical), and then these fragments

are partially replicated across the different sites according to the frequency of

accessing the fragments.

Distributed DBMS - Design Strategies

In the last chapter, we had introduced different design alternatives. In this chapter,

we will study the strategies that aid in adopting the designs. The strategies can be

broadly divided into replication and fragmentation. However, in most cases, a

combination of the two is used.

Data Replication

Data replication is the process of storing separate copies of the database at two or

more sites. It is a popular fault tolerance technique of distributed databases.

Advantages of Data Replication

 Reliability − In case of failure of any site, the database system continues to

work since a copy is available at another site(s).

 Reduction in Network Load − Since local copies of data are available, query

processing can be done with reduced network usage, particularly during prime

hours. Data updating can be done at non-prime hours.

 Quicker Response − Availability of local copies of data ensures quick query

processing and consequently quick response time.

 Simpler Transactions − Transactions require less number of joins of tables

located at different sites and minimal coordination across the network. Thus,

they become simpler in nature.

Disadvantages of Data Replication

 Increased Storage Requirements − Maintaining multiple copies of data is

associated with increased storage costs. The storage space required is in

multiples of the storage required for a centralized system.

 Increased Cost and Complexity of Data Updating − Each time a data item

is updated, the update needs to be reflected in all the copies of the data at the

different sites. This requires complex synchronization techniques and

protocols.

 Undesirable Application – Database coupling − If complex update

mechanisms are not used, removing data inconsistency requires complex co-

ordination at application level. This results in undesirable application –

database coupling.

Some commonly used replication techniques are −

 Snapshot replication

 Near-real-time replication

 Pull replication

Fragmentation

Fragmentation is the task of dividing a table into a set of smaller tables. The subsets

of the table are called fragments. Fragmentation can be of three types: horizontal,

vertical, and hybrid (combination of horizontal and vertical). Horizontal

fragmentation can further be classified into two techniques: primary horizontal

fragmentation and derived horizontal fragmentation.

Fragmentation should be done in a way so that the original table can be reconstructed

from the fragments. This is needed so that the original table can be reconstructed

from the fragments whenever required. This requirement is called

“reconstructiveness.”

Advantages of Fragmentation

 Since data is stored close to the site of usage, efficiency of the database system

is increased.

 Local query optimization techniques are sufficient for most queries since data

is locally available.

 Since irrelevant data is not available at the sites, security and privacy of the

database system can be maintained.

Disadvantages of Fragmentation

 When data from different fragments are required, the access speeds may be

very low.

 In case of recursive fragmentations, the job of reconstruction will need

expensive techniques.

 Lack of back-up copies of data in different sites may render the database

ineffective in case of failure of a site.

Vertical Fragmentation

In vertical fragmentation, the fields or columns of a table are grouped into fragments.

In order to maintain reconstructiveness, each fragment should contain the primary

key field(s) of the table. Vertical fragmentation can be used to enforce privacy of

data.

For example, let us consider that a University database keeps records of all registered

students in a Student table having the following schema.

STUDENT

Regd_No Name Course Address Semester Fees Marks

Now, the fees details are maintained in the accounts section. In this case, the designer

will fragment the database as follows −

CREATE TABLE STD_FEES AS

 SELECT Regd_No, Fees

 FROM STUDENT;

Horizontal Fragmentation

Horizontal fragmentation groups the tuples of a table in accordance to values of one

or more fields. Horizontal fragmentation should also confirm to the rule of

reconstructiveness. Each horizontal fragment must have all columns of the original

base table.

For example, in the student schema, if the details of all students of Computer Science

Course needs to be maintained at the School of Computer Science, then the designer

will horizontally fragment the database as follows −

CREATE COMP_STD AS

 SELECT * FROM STUDENT

 WHERE COURSE = "Computer Science";

Hybrid Fragmentation

In hybrid fragmentation, a combination of horizontal and vertical fragmentation

techniques are used. This is the most flexible fragmentation technique since it

generates fragments with minimal extraneous information. However, reconstruction

of the original table is often an expensive task.

Hybrid fragmentation can be done in two alternative ways −

 At first, generate a set of horizontal fragments; then generate vertical

fragments from one or more of the horizontal fragments.

 At first, generate a set of vertical fragments; then generate horizontal

fragments from one or more of the vertical fragments.

DDBMS - Distribution Transparency

Distribution transparency is the property of distributed databases by the virtue of

which the internal details of the distribution are hidden from the users. The DDBMS

designer may choose to fragment tables, replicate the fragments and store them at

different sites. However, since users are oblivious of these details, they find the

distributed database easy to use like any centralized database.

The three dimensions of distribution transparency are −

 Location transparency

 Fragmentation transparency

 Replication transparency

Location Transparency

Location transparency ensures that the user can query on any table(s) or fragment(s)

of a table as if they were stored locally in the user’s site. The fact that the table or its

fragments are stored at remote site in the distributed database system, should be

completely oblivious to the end user. The address of the remote site(s) and the access

mechanisms are completely hidden.

In order to incorporate location transparency, DDBMS should have access to

updated and accurate data dictionary and DDBMS directory which contains the

details of locations of data.

Fragmentation Transparency

Fragmentation transparency enables users to query upon any table as if it were

unfragmented. Thus, it hides the fact that the table the user is querying on is actually

a fragment or union of some fragments. It also conceals the fact that the fragments

are located at diverse sites.

This is somewhat similar to users of SQL views, where the user may not know that

they are using a view of a table instead of the table itself.

Replication Transparency

Replication transparency ensures that replication of databases are hidden from the

users. It enables users to query upon a table as if only a single copy of the table

exists.

Replication transparency is associated with concurrency transparency and failure

transparency. Whenever a user updates a data item, the update is reflected in all the

copies of the table. However, this operation should not be known to the user. This is

concurrency transparency. Also, in case of failure of a site, the user can still proceed

with his queries using replicated copies without any knowledge of failure. This is

failure transparency.

Combination of Transparencies

In any distributed database system, the designer should ensure that all the stated

transparencies are maintained to a considerable extent. The designer may choose to

fragment tables, replicate them and store them at different sites; all oblivious to the

end user. However, complete distribution transparency is a tough task and requires

considerable design efforts.

Distributed DBMS - Database Control

Database control refers to the task of enforcing regulations so as to provide correct

data to authentic users and applications of a database. In order that correct data is

available to users, all data should conform to the integrity constraints defined in the

database. Besides, data should be screened away from unauthorized users so as to

maintain security and privacy of the database. Database control is one of the primary

tasks of the database administrator (DBA).

The three dimensions of database control are −

 Authentication

 Access rights

 Integrity constraints

Authentication

In a distributed database system, authentication is the process through which only

legitimate users can gain access to the data resources.

Authentication can be enforced in two levels −

 Controlling Access to Client Computer − At this level, user access is

restricted while login to the client computer that provides user-interface to the

database server. The most common method is a username/password

combination. However, more sophisticated methods like biometric

authentication may be used for high security data.

 Controlling Access to the Database Software − At this level, the database

software/administrator assigns some credentials to the user. The user gains

access to the database using these credentials. One of the methods is to create

a login account within the database server.

Access Rights

A user’s access rights refers to the privileges that the user is given regarding DBMS

operations such as the rights to create a table, drop a table, add/delete/update tuples

in a table or query upon the table.

In distributed environments, since there are large number of tables and yet larger

number of users, it is not feasible to assign individual access rights to users. So,

DDBMS defines certain roles. A role is a construct with certain privileges within a

database system. Once the different roles are defined, the individual users are

assigned one of these roles. Often a hierarchy of roles are defined according to the

organization’s hierarchy of authority and responsibility.

For example, the following SQL statements create a role "Accountant" and then

assigns this role to user "ABC".

CREATE ROLE ACCOUNTANT;

GRANT SELECT, INSERT, UPDATE ON EMP_SAL TO ACCOUNTANT;

GRANT INSERT, UPDATE, DELETE ON TENDER TO ACCOUNTANT;

GRANT INSERT, SELECT ON EXPENSE TO ACCOUNTANT;

COMMIT;

GRANT ACCOUNTANT TO ABC;

COMMIT;

Semantic Integrity Control

Semantic integrity control defines and enforces the integrity constraints of the

database system.

The integrity constraints are as follows −

 Data type integrity constraint

 Entity integrity constraint

 Referential integrity constraint

Data Type Integrity Constraint

A data type constraint restricts the range of values and the type of operations that

can be applied to the field with the specified data type.

For example, let us consider that a table "HOSTEL" has three fields - the hostel

number, hostel name and capacity. The hostel number should start with capital letter

"H" and cannot be NULL, and the capacity should not be more than 150. The

following SQL command can be used for data definition −

CREATE TABLE HOSTEL (

 H_NO VARCHAR2(5) NOT NULL,

 H_NAME VARCHAR2(15),

 CAPACITY INTEGER,

 CHECK (H_NO LIKE 'H%'),

 CHECK (CAPACITY <= 150)

);

Entity Integrity Control

Entity integrity control enforces the rules so that each tuple can be uniquely

identified from other tuples. For this a primary key is defined. A primary key is a set

of minimal fields that can uniquely identify a tuple. Entity integrity constraint states

that no two tuples in a table can have identical values for primary keys and that no

field which is a part of the primary key can have NULL value.

For example, in the above hostel table, the hostel number can be assigned as the

primary key through the following SQL statement (ignoring the checks) −

CREATE TABLE HOSTEL (

 H_NO VARCHAR2(5) PRIMARY KEY,

 H_NAME VARCHAR2(15),

 CAPACITY INTEGER

);

Referential Integrity Constraint

Referential integrity constraint lays down the rules of foreign keys. A foreign key is

a field in a data table that is the primary key of a related table. The referential

integrity constraint lays down the rule that the value of the foreign key field should

either be among the values of the primary key of the referenced table or be entirely

NULL.

For example, let us consider a student table where a student may opt to live in a

hostel. To include this, the primary key of hostel table should be included as a foreign

key in the student table. The following SQL statement incorporates this −

CREATE TABLE STUDENT (

 S_ROLL INTEGER PRIMARY KEY,

 S_NAME VARCHAR2(25) NOT NULL,

 S_COURSE VARCHAR2(10),

 S_HOSTEL VARCHAR2(5) REFERENCES HOSTEL

);

Relational Algebra for Query Optimization

When a query is placed, it is at first scanned, parsed and validated. An internal

representation of the query is then created such as a query tree or a query graph.

Then alternative execution strategies are devised for retrieving results from the

database tables. The process of choosing the most appropriate execution strategy for

query processing is called query optimization.

Query Optimization Issues in DDBMS

In DDBMS, query optimization is a crucial task. The complexity is high since

number of alternative strategies may increase exponentially due to the following

factors −

 The presence of a number of fragments.

 Distribution of the fragments or tables across various sites.

 The speed of communication links.

 Disparity in local processing capabilities.

Hence, in a distributed system, the target is often to find a good execution strategy

for query processing rather than the best one. The time to execute a query is the sum

of the following −

 Time to communicate queries to databases.

 Time to execute local query fragments.

 Time to assemble data from different sites.

 Time to display results to the application.

Query Processing

Query processing is a set of all activities starting from query placement to displaying

the results of the query. The steps are as shown in the following diagram −

Relational Algebra

Relational algebra defines the basic set of operations of relational database model.

A sequence of relational algebra operations forms a relational algebra expression.

The result of this expression represents the result of a database query.

The basic operations are −

 Projection

 Selection

 Union

 Intersection

 Minus

 Join

Projection

Projection operation displays a subset of fields of a table. This gives a vertical

partition of the table.

Syntax in Relational Algebra

π<AttributeList>(<TableName>)π<AttributeList>(<TableName>)

For example, let us consider the following Student database −

STUDENT

Roll_No Name Course Semester Gender

2 Amit Prasad BCA 1 Male

4 Varsha Tiwari BCA 1 Female

5 Asif Ali MCA 2 Male

6 Joe Wallace MCA 1 Male

8 Shivani Iyengar BCA 1 Female

If we want to display the names and courses of all students, we will use the following

relational algebra expression −

πName,Course(STUDENT)πName,Course(STUDENT)

Selection

Selection operation displays a subset of tuples of a table that satisfies certain

conditions. This gives a horizontal partition of the table.

Syntax in Relational Algebra

σ<Conditions>(<TableName>)σ<Conditions>(<TableName>)

For example, in the Student table, if we want to display the details of all students

who have opted for MCA course, we will use the following relational algebra

expression −

σCourse="BCA"(STUDENT)σCourse="BCA"(STUDENT)

Combination of Projection and Selection Operations

For most queries, we need a combination of projection and selection operations.

There are two ways to write these expressions −

 Using sequence of projection and selection operations.

 Using rename operation to generate intermediate results.

For example, to display names of all female students of the BCA course −

 Relational algebra expression using sequence of projection and selection

operations

πName(σGender="Female"ANDCourse="BCA"(STUDENT))πName(σGender="F

emale"ANDCourse="BCA"(STUDENT))

 Relational algebra expression using rename operation to generate

intermediate results

FemaleBCAStudent←σGender="Female"ANDCourse="BCA"(STUDENT)Femal

eBCAStudent←σGender="Female"ANDCourse="BCA"(STUDENT)

Result←πName(FemaleBCAStudent)Result←πName(FemaleBCAStudent)

Union

If P is a result of an operation and Q is a result of another operation, the union of P

and Q (p∪Qp∪Q) is the set of all tuples that is either in P or in Q or in both without

duplicates.

For example, to display all students who are either in Semester 1 or are in BCA

course −

Sem1Student←σSemester=1(STUDENT)Sem1Student←σSemester=1(STUDENT

)

BCAStudent←σCourse="BCA"(STUDENT)BCAStudent←σCourse="BCA"(STU

DENT)

Result←Sem1Student∪BCAStudentResult←Sem1Student∪BCAStudent

Intersection

If P is a result of an operation and Q is a result of another operation, the intersection

of P and Q (p∩Qp∩Q) is the set of all tuples that are in P and Q both.

For example, given the following two schemas −

EMPLOYEE

EmpID Name City Department Salary

PROJECT

PId City Department Status

To display the names of all cities where a project is located and also an employee

resides −

CityEmp←πCity(EMPLOYEE)CityEmp←πCity(EMPLOYEE)

CityProject←πCity(PROJECT)CityProject←πCity(PROJECT)

Result←CityEmp∩CityProjectResult←CityEmp∩CityProject

Minus

If P is a result of an operation and Q is a result of another operation, P - Q is the set

of all tuples that are in P and not in Q.

For example, to list all the departments which do not have an ongoing project

(projects with status = ongoing) −

AllDept←πDepartment(EMPLOYEE)AllDept←πDepartment(EMPLOYEE)

ProjectDept←πDepartment(σStatus="ongoing"(PROJECT))ProjectDept←πDepart

ment(σStatus="ongoing"(PROJECT))

Result←AllDept−ProjectDeptResult←AllDept−ProjectDept

Join

Join operation combines related tuples of two different tables (results of queries) into

a single table.

For example, consider two schemas, Customer and Branch in a Bank database as

follows −

CUSTOMER

CustID AccNo TypeOfAc BranchID DateOfOpening

BRANCH

BranchID BranchName IFSCcode Address

To list the employee details along with branch details −

Result←CUSTOMER⋈Customer.BranchID=Branch.BranchIDBRANCHResult←

CUSTOMER⋈Customer.BranchID=Branch.BranchIDBRANCH

Translating SQL Queries into Relational Algebra

SQL queries are translated into equivalent relational algebra expressions before

optimization. A query is at first decomposed into smaller query blocks. These blocks

are translated to equivalent relational algebra expressions. Optimization includes

optimization of each block and then optimization of the query as a whole.

Examples

Let us consider the following schemas −

EMPLOYEE

EmpID Name City Department Salary

PROJECT

PId City Department Status

WORKS

EmpID PID Hours

Example 1

To display the details of all employees who earn a salary LESS than the average

salary, we write the SQL query −

SELECT * FROM EMPLOYEE

WHERE SALARY < (SELECT AVERAGE(SALARY) FROM EMPLOYEE) ;

This query contains one nested sub-query. So, this can be broken down into two

blocks.

The inner block is −

SELECT AVERAGE(SALARY)FROM EMPLOYEE ;

If the result of this query is AvgSal, then outer block is −

SELECT * FROM EMPLOYEE WHERE SALARY < AvgSal;

Relational algebra expression for inner block −

AvgSal←IAVERAGE(Salary)EMPLOYEEAvgSal←ℑAVERAGE(Salary)EMPL

OYEE

Relational algebra expression for outer block −

σSalary<AvgSal>EMPLOYEEσSalary<AvgSal>EMPLOYEE

Example 2

To display the project ID and status of all projects of employee 'Arun Kumar', we

write the SQL query −

SELECT PID, STATUS FROM PROJECT

WHERE PID = (SELECT FROM WORKS WHERE EMPID = (SELECT

EMPID FROM EMPLOYEE

 WHERE NAME = 'ARUN KUMAR'));

This query contains two nested sub-queries. Thus, can be broken down into three

blocks, as follows −

SELECT EMPID FROM EMPLOYEE WHERE NAME = 'ARUN KUMAR';

SELECT PID FROM WORKS WHERE EMPID = ArunEmpID;

SELECT PID, STATUS FROM PROJECT WHERE PID = ArunPID;

(Here ArunEmpID and ArunPID are the results of inner queries)

Relational algebra expressions for the three blocks are −

ArunEmpID←πEmpID(σName="ArunKumar"(EMPLOYEE))ArunEmpID←πEm

pID(σName="ArunKumar"(EMPLOYEE))

ArunPID←πPID(σEmpID="ArunEmpID"(WORKS))ArunPID←πPID(σEmpID="

ArunEmpID"(WORKS))

Result←πPID,Status(σPID="ArunPID"(PROJECT))Result←πPID,Status(σPID="

ArunPID"(PROJECT))

Computation of Relational Algebra Operators

The computation of relational algebra operators can be done in many different ways,

and each alternative is called an access path.

The computation alternative depends upon three main factors −

 Operator type

 Available memory

 Disk structures

The time to perform execution of a relational algebra operation is the sum of −

 Time to process the tuples.

 Time to fetch the tuples of the table from disk to memory.

Since the time to process a tuple is very much smaller than the time to fetch the tuple

from the storage, particularly in a distributed system, disk access is very often

considered as the metric for calculating cost of relational expression.

Computation of Selection

Computation of selection operation depends upon the complexity of the selection

condition and the availability of indexes on the attributes of the table.

Following are the computation alternatives depending upon the indexes −

 No Index − If the table is unsorted and has no indexes, then the selection

process involves scanning all the disk blocks of the table. Each block is

brought into the memory and each tuple in the block is examined to see

whether it satisfies the selection condition. If the condition is satisfied, it is

displayed as output. This is the costliest approach since each tuple is brought

into memory and each tuple is processed.

 B+ Tree Index − Most database systems are built upon the B+ Tree index. If

the selection condition is based upon the field, which is the key of this B+ Tree

index, then this index is used for retrieving results. However, processing

selection statements with complex conditions may involve a larger number of

disk block accesses and in some cases complete scanning of the table.

 Hash Index − If hash indexes are used and its key field is used in the selection

condition, then retrieving tuples using the hash index becomes a simple

process. A hash index uses a hash function to find the address of a bucket

where the key value corresponding to the hash value is stored. In order to find

a key value in the index, the hash function is executed and the bucket address

is found. The key values in the bucket are searched. If a match is found, the

actual tuple is fetched from the disk block into the memory.

Computation of Joins

When we want to join two tables, say P and Q, each tuple in P has to be compared

with each tuple in Q to test if the join condition is satisfied. If the condition is

satisfied, the corresponding tuples are concatenated, eliminating duplicate fields and

appended to the result relation. Consequently, this is the most expensive operation.

The common approaches for computing joins are −

Nested-loop Approach

This is the conventional join approach. It can be illustrated through the following

pseudocode (Tables P and Q, with tuples tuple_p and tuple_q and joining attribute

a) −

For each tuple_p in P

For each tuple_q in Q

If tuple_p.a = tuple_q.a Then

 Concatenate tuple_p and tuple_q and append to Result

End If

Next tuple_q

Next tuple-p

Sort-merge Approach

In this approach, the two tables are individually sorted based upon the joining

attribute and then the sorted tables are merged. External sorting techniques are

adopted since the number of records is very high and cannot be accommodated in

the memory. Once the individual tables are sorted, one page each of the sorted tables

are brought to the memory, merged based upon the joining attribute and the joined

tuples are written out.

Hash-join Approach

This approach comprises of two phases: partitioning phase and probing phase. In

partitioning phase, the tables P and Q are broken into two sets of disjoint partitions.

A common hash function is decided upon. This hash function is used to assign tuples

to partitions. In the probing phase, tuples in a partition of P are compared with the

tuples of corresponding partition of Q. If they match, then they are written out.

Query Optimization in Centralized Systems

Once the alternative access paths for computation of a relational algebra expression

are derived, the optimal access path is determined. In this chapter, we will look into

query optimization in centralized system while in the next chapter we will study

query optimization in a distributed system.

In a centralized system, query processing is done with the following aim −

 Minimization of response time of query (time taken to produce the results to

user’s query).

 Maximize system throughput (the number of requests that are processed in a

given amount of time).

 Reduce the amount of memory and storage required for processing.

 Increase parallelism.

Query Parsing and Translation

Initially, the SQL query is scanned. Then it is parsed to look for syntactical errors

and correctness of data types. If the query passes this step, the query is decomposed

into smaller query blocks. Each block is then translated to equivalent relational

algebra expression.

Steps for Query Optimization

Query optimization involves three steps, namely query tree generation, plan

generation, and query plan code generation.

Step 1 − Query Tree Generation

A query tree is a tree data structure representing a relational algebra expression. The

tables of the query are represented as leaf nodes. The relational algebra operations

are represented as the internal nodes. The root represents the query as a whole.

During execution, an internal node is executed whenever its operand tables are

available. The node is then replaced by the result table. This process continues for

all internal nodes until the root node is executed and replaced by the result table.

For example, let us consider the following schemas −

EMPLOYEE

EmpID EName Salary DeptNo DateOfJoining

DEPARTMENT

DNo DName Location

Example 1

Let us consider the query as the following.

πEmpID(σEName="ArunKumar"(EMPLOYEE))πEmpID(σEName="ArunKumar"

(EMPLOYEE))

The corresponding query tree will be −

Example 2

Let us consider another query involving a join.

πEName,Salary(σDName="Marketing"(DEPARTMENT))⋈DNo=DeptNo(EMPL

OYEE)πEName,Salary(σDName="Marketing"(DEPARTMENT))⋈DNo=DeptNo(

EMPLOYEE)

Following is the query tree for the above query.

Step 2 − Query Plan Generation

After the query tree is generated, a query plan is made. A query plan is an extended

query tree that includes access paths for all operations in the query tree. Access paths

specify how the relational operations in the tree should be performed. For example,

a selection operation can have an access path that gives details about the use of B+

tree index for selection.

Besides, a query plan also states how the intermediate tables should be passed from

one operator to the next, how temporary tables should be used and how operations

should be pipelined/combined.

Step 3− Code Generation

Code generation is the final step in query optimization. It is the executable form of

the query, whose form depends upon the type of the underlying operating system.

Once the query code is generated, the Execution Manager runs it and produces the

results.

Approaches to Query Optimization

Among the approaches for query optimization, exhaustive search and heuristics-

based algorithms are mostly used.

Exhaustive Search Optimization

In these techniques, for a query, all possible query plans are initially generated and

then the best plan is selected. Though these techniques provide the best solution, it

has an exponential time and space complexity owing to the large solution space. For

example, dynamic programming technique.

Heuristic Based Optimization

Heuristic based optimization uses rule-based optimization approaches for query

optimization. These algorithms have polynomial time and space complexity, which

is lower than the exponential complexity of exhaustive search-based algorithms.

However, these algorithms do not necessarily produce the best query plan.

Some of the common heuristic rules are −

 Perform select and project operations before join operations. This is done by

moving the select and project operations down the query tree. This reduces the

number of tuples available for join.

 Perform the most restrictive select/project operations at first before the other

operations.

 Avoid cross-product operation since they result in very large-sized

intermediate tables.

Query Optimization in Distributed Systems

This chapter discusses query optimization in distributed database system.

Distributed Query Processing Architecture

In a distributed database system, processing a query comprises of optimization at

both the global and the local level. The query enters the database system at the client

or controlling site. Here, the user is validated, the query is checked, translated, and

optimized at a global level.

The architecture can be represented as −

Mapping Global Queries into Local Queries

The process of mapping global queries to local ones can be realized as follows −

 The tables required in a global query have fragments distributed across

multiple sites. The local databases have information only about local data. The

controlling site uses the global data dictionary to gather information about the

distribution and reconstructs the global view from the fragments.

 If there is no replication, the global optimizer runs local queries at the sites

where the fragments are stored. If there is replication, the global optimizer

selects the site based upon communication cost, workload, and server speed.

 The global optimizer generates a distributed execution plan so that least

amount of data transfer occurs across the sites. The plan states the location of

the fragments, order in which query steps needs to be executed and the

processes involved in transferring intermediate results.

 The local queries are optimized by the local database servers. Finally, the local

query results are merged together through union operation in case of horizontal

fragments and join operation for vertical fragments.

For example, let us consider that the following Project schema is horizontally

fragmented according to City, the cities being New Delhi, Kolkata and Hyderabad.

PROJECT

PId City Department Status

Suppose there is a query to retrieve details of all projects whose status is “Ongoing”.

The global query will be &inus;

σstatus="ongoing"(PROJECT)σstatus="ongoing"(PROJECT)

Query in New Delhi’s server will be −

σstatus="ongoing"(NewD−PROJECT)σstatus="ongoing"(NewD−PROJECT)

Query in Kolkata’s server will be −

σstatus="ongoing"(Kol−PROJECT)σstatus="ongoing"(Kol−PROJECT)

Query in Hyderabad’s server will be −

σstatus="ongoing"(Hyd−PROJECT)σstatus="ongoing"(Hyd−PROJECT)

In order to get the overall result, we need to union the results of the three queries as

follows −

σstatus="ongoing"(NewD−PROJECT)∪σstatus="ongoing"(kol−PROJECT)∪σstat

us="ongoing"(Hyd−PROJECT)σstatus="ongoing"(NewD−PROJECT)∪σstatus="o

ngoing"(kol−PROJECT)∪σstatus="ongoing"(Hyd−PROJECT)

Distributed Query Optimization

Distributed query optimization requires evaluation of a large number of query trees

each of which produce the required results of a query. This is primarily due to the

presence of large amount of replicated and fragmented data. Hence, the target is to

find an optimal solution instead of the best solution.

The main issues for distributed query optimization are −

 Optimal utilization of resources in the distributed system.

 Query trading.

 Reduction of solution space of the query.

Optimal Utilization of Resources in the Distributed System

A distributed system has a number of database servers in the various sites to perform

the operations pertaining to a query. Following are the approaches for optimal

resource utilization −

Operation Shipping − In operation shipping, the operation is run at the site where

the data is stored and not at the client site. The results are then transferred to the

client site. This is appropriate for operations where the operands are available at the

same site. Example: Select and Project operations.

Data Shipping − In data shipping, the data fragments are transferred to the database

server, where the operations are executed. This is used in operations where the

operands are distributed at different sites. This is also appropriate in systems where

the communication costs are low, and local processors are much slower than the

client server.

Hybrid Shipping − This is a combination of data and operation shipping. Here, data

fragments are transferred to the high-speed processors, where the operation runs.

The results are then sent to the client site.

Query Trading

In query trading algorithm for distributed database systems, the controlling/client

site for a distributed query is called the buyer and the sites where the local queries

execute are called sellers. The buyer formulates a number of alternatives for

choosing sellers and for reconstructing the global results. The target of the buyer is

to achieve the optimal cost.

The algorithm starts with the buyer assigning sub-queries to the seller sites. The

optimal plan is created from local optimized query plans proposed by the sellers

combined with the communication cost for reconstructing the final result. Once the

global optimal plan is formulated, the query is executed.

Reduction of Solution Space of the Query

Optimal solution generally involves reduction of solution space so that the cost of

query and data transfer is reduced. This can be achieved through a set of heuristic

rules, just as heuristics in centralized systems.

Following are some of the rules −

 Perform selection and projection operations as early as possible. This reduces

the data flow over communication network.

 Simplify operations on horizontal fragments by eliminating selection

conditions which are not relevant to a particular site.

 In case of join and union operations comprising of fragments located in

multiple sites, transfer fragmented data to the site where most of the data is

present and perform operation there.

 Use semi-join operation to qualify tuples that are to be joined. This reduces

the amount of data transfer which in turn reduces communication cost.

 Merge the common leaves and sub-trees in a distributed query tree.

DDBMS - Transaction Processing Systems

This chapter discusses the various aspects of transaction processing. We’ll also study

the low level tasks included in a transaction, the transaction states and properties of

a transaction. In the last portion, we will look over schedules and serializability of

schedules.

Transactions

A transaction is a program including a collection of database operations, executed

as a logical unit of data processing. The operations performed in a transaction

include one or more of database operations like insert, delete, update or retrieve data.

It is an atomic process that is either performed into completion entirely or is not

performed at all. A transaction involving only data retrieval without any data update

is called read-only transaction.

Each high level operation can be divided into a number of low level tasks or

operations. For example, a data update operation can be divided into three tasks −

 read_item() − reads data item from storage to main memory.

 modify_item() − change value of item in the main memory.

 write_item() − write the modified value from main memory to storage.

Database access is restricted to read_item() and write_item() operations. Likewise,

for all transactions, read and write forms the basic database operations.

Transaction Operations

The low level operations performed in a transaction are −

 begin_transaction − A marker that specifies start of transaction execution.

 read_item or write_item − Database operations that may be interleaved with

main memory operations as a part of transaction.

 end_transaction − A marker that specifies end of transaction.

 commit − A signal to specify that the transaction has been successfully

completed in its entirety and will not be undone.

 rollback − A signal to specify that the transaction has been unsuccessful and

so all temporary changes in the database are undone. A committed transaction

cannot be rolled back.

Transaction States

A transaction may go through a subset of five states, active, partially committed,

committed, failed and aborted.

 Active − The initial state where the transaction enters is the active state. The

transaction remains in this state while it is executing read, write or other

operations.

 Partially Committed − The transaction enters this state after the last

statement of the transaction has been executed.

 Committed − The transaction enters this state after successful completion of

the transaction and system checks have issued commit signal.

 Failed − The transaction goes from partially committed state or active state to

failed state when it is discovered that normal execution can no longer proceed

or system checks fail.

 Aborted − This is the state after the transaction has been rolled back after

failure and the database has been restored to its state that was before the

transaction began.

The following state transition diagram depicts the states in the transaction and the

low level transaction operations that causes change in states.

Desirable Properties of Transactions

Any transaction must maintain the ACID properties, viz. Atomicity, Consistency,

Isolation, and Durability.

 Atomicity − This property states that a transaction is an atomic unit of

processing, that is, either it is performed in its entirety or not performed at all.

No partial update should exist.

 Consistency − A transaction should take the database from one consistent

state to another consistent state. It should not adversely affect any data item in

the database.

 Isolation − A transaction should be executed as if it is the only one in the

system. There should not be any interference from the other concurrent

transactions that are simultaneously running.

 Durability − If a committed transaction brings about a change, that change

should be durable in the database and not lost in case of any failure.

Schedules and Conflicts

In a system with a number of simultaneous transactions, a schedule is the total order

of execution of operations. Given a schedule S comprising of n transactions, say T1,

T2, T3………..Tn; for any transaction Ti, the operations in Ti must execute as laid

down in the schedule S.

Types of Schedules

There are two types of schedules −

 Serial Schedules − In a serial schedule, at any point of time, only one

transaction is active, i.e. there is no overlapping of transactions. This is

depicted in the following graph −

 Parallel Schedules − In parallel schedules, more than one transactions are

active simultaneously, i.e. the transactions contain operations that overlap at

time. This is depicted in the following graph −

Conflicts in Schedules

In a schedule comprising of multiple transactions, a conflict occurs when two active

transactions perform non-compatible operations. Two operations are said to be in

conflict, when all of the following three conditions exists simultaneously −

 The two operations are parts of different transactions.

 Both the operations access the same data item.

 At least one of the operations is a write_item() operation, i.e. it tries to modify

the data item.

Serializability

A serializable schedule of ‘n’ transactions is a parallel schedule which is equivalent

to a serial schedule comprising of the same ‘n’ transactions. A serializable schedule

contains the correctness of serial schedule while ascertaining better CPU utilization

of parallel schedule.

Equivalence of Schedules

Equivalence of two schedules can be of the following types −

 Result equivalence − Two schedules producing identical results are said to be

result equivalent.

 View equivalence − Two schedules that perform similar action in a similar

manner are said to be view equivalent.

 Conflict equivalence − Two schedules are said to be conflict equivalent if

both contain the same set of transactions and has the same order of conflicting

pairs of operations.

 Relations as unit of distribution:

– If the relation is not replicated, we get a high volume of remote data accesses.

– If the relation is replicated, we get unnecessary replications, which cause

problems in executing updates and waste disk space

– Might be an Ok solution, if queries need all the data in the relation and data stays

at the only sites that uses the data.

• Fragments of relations as unit of distribution:

– Application views are usually subsets of relations.

– Thus, locality of accesses of applications is defined on subsets of relations.

– Permits a number of transactions to execute concurrently, since they will access

different portions of a relation.

– Parallel execution of a single query (intra-query concurrency).

– However, semantic data control (especially integrity enforcement) is more

difficult.

Fragments of relations are (usually) the appropriate unit of distribution.

Fragmentation aims to improve:

– Reliability.

– Performance.

– Balanced storage capacity and costs.

– Communication costs.

– Security.

• The following information is used to decide fragmentation:

– Quantitative information: frequency of queries, site, where query is run,

selectivity of the queries, etc.

– Qualitative information: types of access of data, read/write, etc.

Types of Fragmentation

– Horizontal: partitions a relation along its tuples

– Vertical: partitions a relation along its attributes

– Mixed/hybrid: a combination of horizontal and vertical fragmentation

Example:

Branch-name account-number customer-name balance

Baghdad 305 Salem 500

Baghdad 226 Ahmed 336

Mousel 177 Ahmed 205

Mousel 402 Hassan 1000

Baghdad 155 Hassan 62

Mousel 408 Hassan 1123

Mousel 639 Ali 750

Table (1)

Horizontal fragmentations

 Consists of partitioning the tuples of a global relation r into subsets r1, r2… rn

each subset can contain data with common properties. The reconstruction of

relation r can be obtained by taking the union of all fragments, that is: r = r1 Ur2 U

…… Urn For example, suppose that the relation r is the deposit relation of table (1)

this relation has only two branches, Baghdad and Mosul, and if we choose the

attribute branch-name for horizontal fragmentation the relation, then the result are

two different fragment shows in Table (2).

Branch-name account-number customer-name balance

Baghdad 305 Salem 500

 Baghdad 226 Ahmad 336

 Baghdad 155 Hassan 62

deposit1

Branch-name customer-number account-name balance

Mosul 117 Ahmad 205

 Mosul 402 Hassan 1000

 Mosul 408 Hassan 1123

 Mosul 639 Ali 750

deposit2

Table (2)

Vertical Fragmentations

Vertical Fragmentation for global relation is the subdivision of its attributes

into groups; subdivision is accomplished by adding a special attribute called a

tuple-id to the scheme R. A tuple-id is a physical or logical address for a tuple

since each tuple in r must have a unique address; the tuple-id attribute is a key for

the scheme.

 Deposit-scheme3 = (branch-name, customer-name, tuple-id)

 Deposit-scheme4 = (account-number, balance, tuple-id)

Branch-name account-number customer-name balance tuple-id

Baghdad 305 Salem 500 1

 Baghdad 226 Ahmad 336 2

 Mosul 177 Ahmad 205 3

 Mosul 402 Hassan 1000 4

Baghdad 155 Hassan 62 5

Mosul 408 Hassan 1123 6

Mosul 639 Ali 750 7

Table (3)

Branch-name customer-name tuple-id

Baghdad Salem 1

 Baghdad Ahmad 2

Mosul Ahmad 3

Mosul Hassan 4

Baghdad Hassan 5

Mosul Hassan 6

Mosul Ali 7

Deposit3

Account-number blanance tuple-id

 305 500 1

 226 336 2

 177 205 3

 402 1000 4

 155 62 5

 408 1123 6

 639 75 7

Deposit 4

Table (4)

3- Distribution Design Issues

In the preceding section we indicated that the relations in a database schema

are usually decomposed into smaller fragments, but we did not offer any

justification or details for this process. The objective of this section is to fill in

these details. The following set of interrelated questions covers the entire issue.

We will therefore seek to answer them in the remainder of this section.

1. Why fragment at all?

2. How should we fragment?

3. How much should we fragment?

4. Is there any way to test the correctness of decomposition?

5. How should we allocate?

6. What is the necessary information for fragmentation and allocation?

1.8. Architectural Alternatives

 Architecturally, a distributed database system consists of a (possibly empty)

set of query sites and a non-empty set of data sites. The data sites have data storage

capability while the query sites do not. The latter only run the user interface (in

addition to applications) in order to facilitate data access at data sites.

Client/Server Systems

 Client/server DBMSs entered the computing scene at the beginning of

1990’s and have made a significant impact on both the DBMS technology and the

way we do computing. The general idea is very simple and elegant: distinguish the

functionality that needs to be provided and divide these functions into two classes:

server functions and client functions. This provides a two-level architecture which

makes it easier to manage the complexity of modern DBMSs and the complexity of

distribution. As with any highly popular term, client/server has been much abused

and has come to mean different things

Client/Server Reference Architecture

Data base server approach

Distributed Database Servers

