
 

 
 
 

 
University of Technology 

 ةيجولونكتلا ةعماجلا 
 

Computer Science Department 
 بوساحلا مولع مسق

    
Database 

 تانايبلا دعاوق

Lect. Nada Najel & Lect. Osama Younis 
  سنوي ةماسأ .م و ليجن ىدن .م

 
 
 
 
 
 
 
 
 
 
  

cs.uotechnology.edu.iq 
 



1 

 

 
 
 
 
 

 
 

Preface  
(Fundamentals of Database Systems, Third Edition)  

  

 
 

Contents of This Edition 

 
 

  
Guidelines for Using This Book   
Acknowledgment
s 
This book introduces the fundamental concepts necessary for designing, using, and implementing 
database systems and applications. Our presentation stresses the fundamentals of database modeling and 
design, the languages and facilities provided by database management systems, and system 
implementation techniques. The book is meant to be used as a textbook for a one- or two-semester 
course in database systems at the junior, senior, or graduate level, and as a reference book. We assume 
that readers are familiar with elementary programming and data-structuring concepts and that they have 
had some exposure to basic computer organization.   

We start in Part 1 with an introduction and a presentation of the basic concepts from both ends of the 
database spectrum—conceptual modeling principles and physical file storage techniques. We conclude 
the book in Part 6 with an introduction to influential new database models, such as active, temporal, 
and deductive models, along with an overview of emerging technologies and applications, such as data 
mining, data warehousing, and Web databases. Along the way—in Part 2 through Part 5—we provide 
an indepth treatment of the most important aspects of database fundamentals.   

The following key features are included in the third edition:   

  

 • The entire book has a self-contained, flexible organization that can be tailored to 
individual needs.   

 • Complete and updated coverage is provided on the relational model—including new 
material on Oracle and Microsoft Access as examples of relational systems—in Part 2.   

 • A comprehensive new introduction is provided on object databases and object-relational 
systems in Part 3, including the ODMG object model and the OQL query language, as 
well as an overview of object-relational features of SQL3, INFORMIX, and ORACLE 8.   

 • Updated coverage of EER conceptual modeling has been moved to Chapter 4 to follow 
the basic ER modeling in Chapter 3, and includes a new section on notation for UML 
class diagrams.   

 • Two examples running throughout the book—called COMPANY and UNIVERSITY—
allow the reader to compare different approaches that use the same application.   

 

• Coverage has been updated on database design, including conceptual design, 
normalization techniques, physical design, and database tuning.   

© Copyright 2000 by Ramez Elmasri and Shamkant B. Navathe  

   

   

 
  
  
  

 



2 

 

    

Part 1: Basic Concepts  
(Fundamentals of Database Systems, Third Edition)  

Chapter 1: Databases and Database Users 

  

 
 
 
 

  
Chapter 2: Database System Concepts and Architecture 

 
 
 
 

  
Chapter 3: Data Modeling Using the Entity-Relationship Model 

 
 
 
 

  
Chapter 4: Enhanced Entity-Relationship and Object Modeling 

 
 

  
Chapter 5: Record Storage and Primary File Organizations 

 
 

  
Chapter 6: Index Structures for Files 

 
 

Chapter 1: Databases and Database Users  

 
 

1.1 Introduction 

 
 

  
1.2 An Example 

 
 
 
 

  
1.3 Characteristics of the Database Approach 

 
 
 
 

  
1.4 Actors on the Scene 

 
 
 
 

  
1.5 Workers behind the Scene 

 
 
 
 

  
1.6 Advantages of Using a DBMS 

 
 
 
 

  
1.7 Implications of the Database Approach 

 
 
 

  
1.8 When Not to Use a DBMS 

 
 

  
1.9 Summary 

 
 

  
Review Questions 

 
 

  
Exercises 

 
 

  
Selected Bibliography 

 
 

  Footnotes 

 
 

Databases and database systems have become an essential component of everyday life in modern 
society. In the course of a day, most of us encounter several activities that involve some interaction with 
a database. For example, if we go to the bank to deposit or withdraw funds; if we make a hotel or airline 
reservation; if we access a computerized library catalog to search for a bibliographic item; or if we 
order a magazine subscription from a publisher, chances are that our activities will involve someone 
accessing a database. Even purchasing items from a supermarket nowadays in many cases involves an 
automatic update of the database that keeps the inventory of supermarket items.   

The above interactions are examples of what we may call traditional database applications, where 
most of the information that is stored and accessed is either textual or numeric. In the past few years, 
advances in technology have been leading to exciting new applications of database systems. 
Multimedia databases can now store pictures, video clips, and sound messages. Geographic 
information systems (GIS) can store and analyze maps, weather data, and satellite images. Data 
warehouses and on-line analytical processing (OLAP) systems are used in many companies to 
extract and analyze useful information from very large databases for decision making. Real-time and 
active database technology is used in controlling industrial and manufacturing processes. And 
database search techniques are being applied to the World Wide Web to improve the search for 
information that is needed by users browsing through the Internet.   

 
  
  
  

 



3 

 

 

To understand the fundamentals of database technology, however, we must start from the basics of 
traditional database applications. So, in Section 1.1 of this chapter we define what a database is, and 
then we give definitions of other basic terms. In Section 1.2, we provide a simple UNIVERSITY database 
example to illustrate our discussion. Section 1.3 describes some of the main characteristics of database 
systems, and Section 1.4 and Section 1.5 categorize the types of personnel whose jobs involve using 
and interacting with database systems. Section 1.6, Section 1.7, and Section 1.8 offer a more thorough 
discussion of the various capabilities provided by database systems and of the implications of using the 
database approach. Section 1.9 summarizes the chapter.   

The reader who desires only a quick introduction to database systems can study Section 1.1 through 
Section 1.5, then skip or browse through Section 1.6, Section 1.7 and Section 1.8 and go on to Chapter 
2.   

   

1.1 Introduction  

Databases and database technology are having a major impact on the growing use of computers. It is 
fair to say that databases play a critical role in almost all areas where computers are used, including 
business, engineering, medicine, law, education, and library science, to name a few. The word database 
is in such common use that we must begin by defining a database. Our initial definition is quite general.   

A database is a collection of related data (Note 1). By data, we mean known facts that can be recorded 
and that have implicit meaning. For example, consider the names, telephone numbers, and addresses of 
the people you know. You may have recorded this data in an indexed address book, or you may have 
stored it on a diskette, using a personal computer and software such as DBASE IV or V, Microsoft 
ACCESS, or EXCEL. This is a collection of related data with an implicit meaning and hence is a 
database.   

The preceding definition of database is quite general; for example, we may consider the collection of 
words that make up this page of text to be related data and hence to constitute a database. However, the 
common use of the term database is usually more restricted. A database has the following implicit 
properties:   

 
• A database represents some aspect of the real world, sometimes called the miniworld or 

the Universe of Discourse (UoD). Changes to the miniworld are reflected in the 
database.   

 • A database is a logically coherent collection of data with some inherent meaning. A 
random assortment of data cannot correctly be referred to as a database.   

 • A database is designed, built, and populated with data for a specific purpose. It has 
an intended group of users and some preconceived applications in which these 
users are interested.   

) bytes (400 gigabytes). This huge amount of information must be organized and managed so that 
users can search for, retrieve, and update the data as needed.   

)*200*5 characters (bytes) of information. If the IRS keeps the past three returns for each taxpayer in 
addition to the current return, we would get a database of 4*(10 

ample, the list of names and addresses referred to earlier may consist of only a few hundred records, 
each with a simple structure. On the other hand, the card catalog of a large library may contain half a 
million cards stored under different categories—by primary author’s last name, by subject, by book 
title—with each category organized in alphabetic order. A database of even greater size and complexity 
is maintained by the Internal Revenue Service to keep track of the tax forms filed by U.S. taxpayers. If 
we assume that there are 100 million tax-payers and if each taxpayer files an average of five forms with 
approximately 200 characters of information per form, we would get a database of 100*(10 

A database can be of any size and of varying complexity. For ex 

In other words, a database has some source from which data are derived, some degree of interaction 
with events in the real world, and an audience that is actively interested in the contents of the database.   

6 

1
1 

 
 
 
 



4 

 

 

 

A database may be generated and maintained manually or it may be computerized. The library card 
catalog is an example of a database that may be created and maintained manually. A computerized 
database may be created and maintained either by a group of application programs written specifically 
for that task or by a database management system.   

A database management system (DBMS) is a collection of programs that enables users to create and 
maintain a database. The DBMS is hence a general-purpose software system that facilitates the 
processes of defining, constructing, and manipulating databases for various applications. Defining a 
database involves specifying the data types, structures, and constraints for the data to be stored in the 
database. Constructing the database is the process of storing the data itself on some storage medium 
that is controlled by the DBMS. Manipulating a database includes such functions as querying the 
database to retrieve specific data, updating the database to reflect changes in the miniworld, and 
generating reports from the data.   

It is not necessary to use general-purpose DBMS software to implement a computerized database. We 
could write our own set of programs to create and maintain the database, in effect creating our own 
special-purpose DBMS software. In either case—whether we use a general-purpose DBMS or not—we 
usually have to employ a considerable amount of software to manipulate the database. We will call the 
database and DBMS software together a database system. Figure 01.01 illustrates these ideas.   

  

   

1.2 An Example  

Let us consider an example that most readers may be familiar with: a UNIVERSITY database for 
maintaining information concerning students, courses, and grades in a university environment. Figure 
01.02 shows the database structure and a few sample data for such a database. The database is 
organized as five files, each of which stores data records of the same type (Note 2). The STUDENT file 
stores data on each student; the COURSE file stores data on each course; the SECTION file stores data on 
each section of a course; the GRADE_REPORT file stores the grades that students receive in the various 
sections they have completed; and the PREREQUISITE file stores the prerequisites of each course.   

  

   

To define this database, we must specify the structure of the records of each file by specifying the 
different types of data elements to be stored in each record. In Figure 01.02, each STUDENT record 
includes data to represent the student’s Name, StudentNumber, Class (freshman or 1, sophomore or 2, . 
. .), and Major (MATH, computer science or CS, . . .); each COURSE record includes data to represent 
the CourseName, CourseNumber, CreditHours, and Department (the department that offers the course); 
and so on. We must also specify a data type for each data element within a record. For example, we 
can specify that Name of STUDENT is a string of alphabetic characters, StudentNumber of STUDENT is an 
integer, and Grade of GRADE_REPORT is a single character from the set {A, B, C, D, F, I}. We may also 
use a coding scheme to represent a data item. For example, in Figure 01.02 we represent the Class of a 
STUDENT as 1 for freshman, 2 for sophomore, 3 for junior, 4 for senior, and 5 for graduate student.   

To  construct  th
e 

  UNIVERS
ITY 

 database, we store data to represent each student, course, section, grade report, and prerequisite as a 
record in the appropriate file. Notice that records in the various files may  

 
  

 

 
  

 



5 

 

be related. For example, the record for "Smith" in the  STUDE
NT 

 file is related to two records in the  
GRADE_REPORT  file that specify Smith’s grades in two sections. Similarly, each record in the  

PREREQUISITE file relates two course records: one representing the course and the other representing 
the prerequisite. Most medium-size and large databases include many types of records and have  

many relationships among the records.    

Database manipulation involves querying and updating. Examples of queries are "retrieve the 
transcript—a list of all courses and grades—of Smith"; "list the names of students who took the section 
of the Database course offered in fall 1999 and their grades in that section"; and "what are the 
prerequisites of the Database course?" Examples of updates are "change the class of Smith to 
Sophomore"; "create a new section for the Database course for this semester"; and "enter a grade of A 
for Smith in the Database section of last semester." These informal queries and updates must be 
specified precisely in the database system language before they can be processed.   
   

1.3 Characteristics of the Database Approach  

 
 

1.3.1 Self-Describing Nature of a Database System 

 
 

  
1.3.2 Insulation between Programs and Data, and Data Abstraction 

 
 
 
 

  
1.3.3 Support of Multiple Views of the Data 

 
 

  
1.3.4 Sharing of Data and Multiuser Transaction Processing 

 
 

A number of characteristics distinguish the database approach from the traditional approach of 
programming with files. In traditional file processing, each user defines and implements the files 
needed for a specific application as part of programming the application. For example, one user, the 
grade reporting office, may keep a file on students and their grades. Programs to print a student’s 
transcript and to enter new grades into the file are implemented. A second user, the accounting office, 
may keep track of students’ fees and their payments. Although both users are interested in data about 
students, each user maintains separate files—and programs to manipulate these files—because each 
requires some data not available from the other user’s files. This redundancy in defining and storing 
data results in wasted storage space and in redundant efforts to maintain common data up-to-date.   

In the database approach, a single repository of data is maintained that is defined once and then is 
accessed by various users. The main characteristics of the database approach versus the file-processing 
approach are the following.   

   

1.3.1 Self-Describing Nature of a Database System  

A fundamental characteristic of the database approach is that the database system contains not only the 
database itself but also a complete definition or description of the database structure and constraints. 
This definition is stored in the system catalog, which contains information such as the structure of each 
file, the type and storage format of each data item, and various constraints on the data. The information 
stored in the catalog is called meta-data, and it describes the structure of the primary database (Figure 
01.01).   

The catalog is used by the DBMS software and also by database users who need information about the 
database structure. A general purpose DBMS software package is not written for a specific database 
application, and hence it must refer to the catalog to know the structure of the files in a specific 
database, such as the type and format of data it will access. The DBMS software must work equally 
well with any number of database applications—for example, a university database, a banking 
database, or a company database—as long as the database definition is stored in the catalog.   



6 

 

 

In traditional file processing, data definition is typically part of the application programs themselves. 
Hence, these programs are constrained to work with only one specific database, whose structure is 
declared in the application programs. For example, a PASCAL program may have record structures 
declared in it; a C++ program may have "struct" or "class" declarations; and a COBOL program has 
Data Division statements to define its files. Whereas file-processing software can access only specific 
databases, DBMS software can access diverse databases by extracting the database definitions from the 
catalog and then using these definitions.   
In the example shown in Figure 01.02, the DBMS stores in the catalog the definitions of all the files 
shown. Whenever a request is made to access, say, the Name of a STUDENT record, the DBMS software 
refers to the catalog to determine the structure of the STUDENT file and the position and size of the 
Name data item within a STUDENT record. By contrast, in a typical file-processing application, the file 
structure and, in the extreme case, the exact location of Name within a STUDENT record are already 
coded within each program that accesses this data item.   
   

1.3.2 Insulation between Programs and Data, and Data Abstraction  

In traditional file processing, the structure of data files is embedded in the access programs, so any 
changes to the structure of a file may require changing all programs that access this file. By contrast, 
DBMS access programs do not require such changes in most cases. The structure of data files is stored 
in the DBMS catalog separately from the access programs. We call this property program-data 
independence. For example, a file access program may be written in such a way that it can access only 
STUDENT records of the structure shown in Figure 01.03. If we want to add another piece of data to each 
STUDENT record, say the Birthdate, such a program will no longer work and must be changed. By 
contrast, in a DBMS environment, we just need to change the description of STUDENT records in the 
catalog to reflect the inclusion of the new data item Birthdate; no programs are changed. The next time 
a DBMS program refers to the catalog, the new structure of STUDENT records will be accessed and used.   

  

   

In object-oriented and object-relational databases (see Part III), users can define operations on data as 
part of the database definitions. An operation (also called a function) is specified in two parts. The 
interface (or signature) of an operation includes the operation name and the data types of its 
arguments (or parameters). The implementation (or method) of the operation is specified separately 
and can be changed without affecting the interface. User application programs can operate on the data 
by invoking these operations through their names and arguments, regardless of how the operations are 
implemented. This may be termed program-operation independence.   

The characteristic that allows program-data independence and program-operation independence is 
called data abstraction. A DBMS provides users with a conceptual representation of data that does 
not include many of the details of how the data is stored or how the operations are implemented. 
Informally, a data model is a type of data abstraction that is used to provide this conceptual 
representation. The data model uses logical concepts, such as objects, their properties, and their 
interrelationships, that may be easier for most users to understand than computer storage concepts. 
Hence, the data model hides storage and implementation details that are not of interest to most database 
users.   

For example, consider again Figure 01.02. The internal implementation of a file may be defined by its 
record length—the number of characters (bytes) in each record—and each data item may be specified  

 
  

 



7 

 

 
 
1.3.4 Sharing of Data and Multiuser Transaction Processing  

 
 
 
A multiuser DBMS, as its name implies, must allow multiple users to access the database at the same 
time. This is essential if data for multiple applications is to be integrated and maintained in a single 
database. The DBMS must include concurrency control software to ensure that several users trying to 
update the same data do so in a controlled manner so that the result of the updates is correct. For 
example, when several reservation clerks try to assign a seat on an airline flight, the DBMS should 
ensure that each seat can be accessed by only one clerk at a time for assignment to a passenger. These 
types of applications are generally called on-line transaction processing (OLTP) applications. A 
fundamental role of multiuser DBMS software is to ensure that concurrent transactions operate correctly.   
 
 
The preceding characteristics are most important in distinguishing a DBMS from traditional file-
processing software. In Section 1.6 we discuss additional functions that characterize a DBMS. First, 
however, we categorize the different types of persons who work in a database environment
 

by its starting byte within a record and its length in bytes. The  STUDENT 

 record would thus be represented as shown in Figure 01.03. But a typical database user is not 
concerned with the location of each data item within a record or its length; rather the concern is that, 
when a reference is made to Name of  STUDENT , the correct value is returned. A conceptual 
representation of the STUDENT  records is shown in Figure 01.02. 
 
 

Many other details of file-storage organization—such as the access paths specified on a file—can be 
hidden from database users by the DBMS;  

we will discuss storage details in Chapter 5 and Chapter 6.   

In the database approach, the detailed structure and organization of each file are stored in the catalog. 
Database users refer to the conceptual representation of the files, and the DBMS extracts the details of 
file storage from the catalog when these are needed by the DBMS software. Many data models can be 
used to provide this data abstraction to database users. A major part of this book is devoted to 
presenting various data models and the concepts they use to abstract the representation of data.   

With the recent trend toward object-oriented and object-relational databases, abstraction is carried one 
level further to include not only the data structure but also the operations on the data. These operations 
provide an abstraction of miniworld activities commonly understood by the users. For example, an 
operation CALCULATE_GPA can be applied to a student object to calculate the grade point average. 
Such operations can be invoked by the user queries or programs without the user knowing the details of 
how they are internally implemented. In that sense, an abstraction of the miniworld activity is made 
available to the user as an abstract operation.      

1.3.3 Support of Multiple Views of the Data  

A database typically has many users, each of whom may require a different perspective or view of the 
database. A view may be a subset of the database or it may contain virtual data that is derived from 
the database files but is not explicitly stored. Some users may not need to be aware of whether the data 
they refer to is stored or derived. A multiuser DBMS whose users have a variety of applications must 
provide facilities for defining multiple views. For example, one user of the database of Figure 01.02 
may be interested only in the transcript of each student; the view for this user is shown in Figure 
01.04(a). A second user, who is interested only in checking that students have taken all the 
prerequisites of each course they register for, may require the view shown in Figure 01.04(b).   

  



8 

 

 
DATABASE 
SYSTEM CONCEPTS 
S I XTH E D I T I ON 
Abraham Silberschatz 
Yale University 
Henry F. Korth 
Lehigh University 
S. Sudarshan 
Indian Institute of Technology, Bombay 
 
 
 
 
Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue 
of the Americas, New York, NY 10020. Copyright © 2011 by The McGraw-Hill Companies, Inc. 
All rights reserved. Previous editions © 2006, 2002, and 1999. No part of this publication may 
be reproduced or distributed in any form or by any means, or stored in a database or retrieval 
system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but 
not limited to, in any network or other electronic storage or transmission, or broadcast for distance 
learning. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   



9 

 

 
 
 
 
4 Chapter 1 Introduction 
• Data redundancy and inconsistency. Since different programmers create 
the files and application programs over a long period, the various files are 
likely to have different structures and the programs may bewritten in several 
programming languages. Moreover, the same information may be duplicated 
in several places (files). For example, if a student has a double major (say, 
music and mathematics) the address and telephone number of that student 
may appear in a file that consists of student records of students in the Music 
department and in a file that consists of student records of students in the 
Mathematics department. This redundancy leads to higher storage and access 
cost. In addition, it may lead to data inconsistency; that is, the various copies 
of the same datamayno longer agree. For example, a changed student address 
may be reflected in the Music department records but not elsewhere in the 
system. 
• Difficulty in accessing data. Suppose that one of the university clerks needs 
to find out the names of all students who live within a particular postal-code 
area. The clerk asks the data-processing department to generate such a list. 
Because the designers of the original system did not anticipate this request, 
there is no application program on hand to meet it. There is, however, an 
application program to generate the list of all students. The university clerk 
has now two choices: either obtain the list of all students and extract the 
needed information manually or ask a programmer to write the necessary 
application program. Both alternatives are obviously unsatisfactory. Suppose 
that such a program is written, and that, several days later, the same clerk 
needs to trim that list to include only those students who have taken at least 
60 credit hours. As expected, a program to generate such a list does not 
exist. Again, the clerk has the preceding two options, neither of which is 
satisfactory. 
The point here is that conventional file-processing environments do not 
allow needed data to be retrieved in a convenient and efficientmanner. More 
responsive data-retrieval systems are required for general use. 
• Data isolation. Because data are scattered in various files, and files may 
be in different formats, writing new application programs to retrieve the 
appropriate data is difficult. 
 
• Integrity problems. The data values stored in the database must satisfy certain 
types of consistency constraints. Suppose the university maintains an 
account for each department, and records the balance amount in each account. 
Suppose also that the university requires that the account balance of a 
department may never fall below zero. Developers enforce these constraints 
in the system by adding appropriate code in the various application programs. 
However, when new constraints are added, it is difficult to change 
the programs to enforce them. The problem is compoundedwhen constraints 
involve several data items from different files. 
 
• Atomicity problems. A computer system, like any other device, is subject 
to failure. In many applications, it is crucial that, if a failure occurs, the data 



10 

 

5 
be restored to the consistent state that existed prior to the failure. Consider 
a program to transfer $500 from the account balance of department A to 
the account balance of department B. If a system failure occurs during the 
execution of the program, it is possible that the $500 was removed from the 
balance of department A butwas not credited to the balance of department B, 
resulting in an inconsistent database state. Clearly, it is essential to database 
consistency that either both the credit and debit occur, or that neither occur. 
That is, the funds transfer must be atomic—it must happen in its entirety or 
not at all. It is difficult to ensure atomicity in a conventional file-processing 
system. 
• Concurrent-access anomalies. For the sake of overall performance of the system 
and faster response, many systems allow multiple users to update the 
data simultaneously. Indeed, today, the largest Internet retailers may have 
millions of accesses per day to their data by shoppers. In such an environment, 
interaction of concurrent updates is possible and may result in inconsistent 
data. Consider department A, with an account balance of $10,000. If 
two department clerks debit the account balance (by say $500 and $100, respectively) 
of department A at almost exactly the same time, the result of the 
concurrent executions may leave the budget in an incorrect (or inconsistent) 
state. Suppose that the programs executing on behalf of each withdrawal read 
the old balance, reduce that value by the amount beingwithdrawn, and write 
the result back. If the two programs run concurrently, they may both read the 
value $10,000, and write back $9500 and $9900, respectively. Depending on 
which one writes the value last, the account balance of department A may 
contain either $9500 or $9900, rather than the correct value of $9400. To guard 
against this possibility, the system must maintain some form of supervision. 
But supervision is difficult to provide because data may be accessed by many 
different application programs that have not been coordinated previously. 
As another example, suppose a registration program maintains a count of 
students registered for a course, in order to enforce limits on the number of 
students registered.When a student registers, the program reads the current 
count for the courses, verifies that the count is not already at the limit, adds 
one to the count, and stores the count back in the database. Suppose two 
students register concurrently, with the count at (say) 39. The two program 
executions may both read the value 39, and both would then write back 40, 
leading to an incorrect increase of only 1, even though two students successfully 
registered for the course and the count should be 41. Furthermore, 
suppose the course registration limit was 40; in the above case both students 
would be able to register, leading to a violation of the limit of 40 students. 
 
• Security problems. Not every user of the database system should be able 
to access all the data. For example, in a university, payroll personnel need 
to see only that part of the database that has financial information. They do 
not need access to information about academic records. But, since application 
programs are added to the file-processing system in an ad hoc manner, 
enforcing such security constraints is difficult. 



11 

 

 
6  
These difficulties, among others, prompted the development of database systems. 
In what follows, we shall see the concepts and algorithms that enable 
database systems to solve the problems with file-processing systems. In most of 
this book, we use a university organization as a running example of a typical 
data-processing application. 
 
1.3 View of Data 
A database system is a collection of interrelated data and a set of programs that 
allow users to access and modify these data. A major purpose of a database 
system is to provide users with an abstract view of the data. That is, the system 
hides certain details of how the data are stored and maintained. 
1.3.1 Data Abstraction 
For the system to be usable, it must retrieve data efficiently. The need for efficiency 
has led designers to use complex data structures to represent data in the database. 
Since many database-system users are not computer trained, developers hide the 
complexity from users through several levels of abstraction, to simplify users’ 
interactions with the system: 
• Physical level. The lowest level of abstraction describes how the data are actually 
stored. The physical level describes complex low-level data structures 
in detail. 
• Logical level. The next-higher level of abstraction describes what data are 
stored in the database, and what relationships exist among those data. The 
logical level thus describes the entire database in terms of a small number of 
relatively simple structures. Although implementation of the simple structures 
at the logical level may involve complex physical-level structures, the 
user of the logical level does not need to be aware of this complexity. This 
is referred to as physical data independence. Database administrators, who 
must decide what information to keep in the database, use the logical level 
of abstraction. 
• View level. The highest level of abstraction describes only part of the entire 
database. Even though the logical level uses simpler structures, complexity 
remains because of the variety of information stored in a large database. 
Many users of the database system do not need all this information; instead, 
they need to access only a part of the database. The view level of abstraction 
exists to simplify their interaction with the system. The system may provide 
many views for the same database. 
 
Figure 1.1 shows the relationship among the three levels of abstraction. 
An analogy to the concept of data types in programming languages may 
clarify the distinction among levels of abstraction. Many high-level programming 
 
 
 



12 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1 The three levels of data abstraction. 
 
 
 
 
 
 
languages support the notion of a structured type. For example, we may describe 
a record as follows:1 
type instructor = record 
ID : char (5); 
name : char (20); 
dept name : char (20); 
salary : numeric (8,2); 
end; 
This code defines a new record type called instructor with four fields. Each field 
has a name and a type associated with it. A university organization may have 
several such record types, including 
• department, with fields dept name, building, and budget 
• course, with fields course id, title, dept name, and credits 
• student, with fields ID, name, dept name, and tot cred 
At the physical level, an instructor, department, or student record can be described 
as a block of consecutive storage locations. The compiler hides this level 
of detail from programmers. Similarly, the database system hides many of the 
lowest-level storage details from database programmers. Database administrators, 
on the other hand, may be aware of certain details of the physical organization 
of the data. 
1The actual type declaration depends on the language being used. C and C++ use struct 
declarations. Java does not have 
such a declaration, but a simple class can be defined to the same effect. 
 
 

View Level 

 View  1 View  2 View  n 

Logical Level 

Physical Level 



13 

 

 
8  
At the logical level, each such record is described by a type definition, as 
in the previous code segment, and the interrelationship of these record types is 
defined as well. Programmers using a programming language work at this level 
of abstraction. Similarly, database administrators usually work at this level of 
abstraction. 
Finally, at the view level, computer users see a set of application programs 
that hide details of the data types. At the view level, several views of the database 
are defined, and a database user sees some or all of these views. In addition 
to hiding details of the logical level of the database, the views also provide a 
security mechanism to prevent users from accessing certain parts of the database. 
For example, clerks in the university registrar office can see only that part of the 
database that has information about students; they cannot access information 
about salaries of instructors. 
 
1.3.2 Instances and Schemas 
Databases change over time as information is inserted and deleted. The collection 
of information stored in the database at a particular moment is called an instance 
of the database. The overall design of the database is called the database schema. 
Schemas are changed infrequently, if at all. 
 
The concept of database schemas and instances can be understood by analogy 
to a program written in a programming language.Adatabase schema corresponds 
to the variable declarations (along with associated type definitions) in a program. 
Each variable has a particular value at a given instant. The values of the variables 
in a program at a point in time correspond to an instance of a database schema. 
Database systems have several schemas, partitioned according to the levels 
of abstraction. The physical schema describes the database design at the physical 
level, while the logical schema describes the database design at the logical level. 
A database may also have several schemas at the view level, sometimes called 
subschemas, that describe different views of the database. 
Of these, the logical schema is by far the most important, in terms of its effect 
on application programs, since programmers construct applications by using the 
logical schema. The physical schema is hidden beneath the logical schema, and can 
usually be changed easily without affecting application programs. Application 
programs are said to exhibit physical data independence if they do not depend 
on the physical schema, and thus need not be rewritten if the physical schema 
changes. 
We study languages for describing schemas after introducing the notion of 
data models in the next section. 
 
1.3.3 Data Models 
Underlying the structure of a database is the data model: a collection of conceptual 
tools for describing data, data relationships, data semantics, and consistency 
constraints. A data model provides a way to describe the design of a database at 
the physical, logical, and view levels. 



14 

 

9 
There are a number of different data models that we shall cover in the text. 
The data models can be classified into four different categories: 
 
• Relational Model. The relational model uses a collection of tables to represent 
both data and the relationships among those data. Each table has multiple 
columns, and each column has a unique name. Tables are also known 
as relations. The relational model is an example of a record-based model. 
Record-based models are so named because the database is structured in 
fixed-format records of several types. Each table contains records of a particular 
type. Each record type defines a fixed number of fields, or attributes. 
The columns of the table correspond to the attributes of the record type. The 
relational data model is the most widely used data model, and a vast majority 
of current database systems are based on the relational model. 
 
 Chapters 2 through 8 cover the relational model in detail. 
 
• Entity-Relationship Model. The entity-relationship (E-R) data model uses a 
collection of basic objects, called entities, andrelationships among these objects. 
An entity is a “thing” or “object” in the real world that is distinguishable 
from other objects. The entity-relationship model is widely used in database 
design, and Chapter 7 explores it in detail. 
• Object-Based Data Model.Object-oriented programming (especially in Java, 
C++, or C#) has become the dominant software-development methodology. 
This led to the development of an object-oriented data model that can be 
seen as extending the E-R model with notions of encapsulation, methods 
(functions), and object identity. The object-relational data model combines 
features of the object-oriented data model and relational data model. Chapter 
22 examines the object-relational data model. 
• Semistructured Data Model. The semistructured data model permits the 
specification of data where individual data items of the same type may have 
different sets of attributes. This is in contrast to the data models mentioned 
earlier, where every data item of a particular type must have the same set 
of attributes. The Extensible Markup Language (XML) is widely used to 
represent semistructured data. Chapter 23 covers it. 
Historically, the network data model and the hierarchical data model preceded 
the relational data model. These modelswere tied closely to the underlying 
implementation, and complicated the task of modeling data. As a result they are 
used little now, except in old database code that is still in service in some places. 
They are outlined online in Appendices D and E for interested readers. 
1.4 Database Languages 
A database system provides a data-definition language to specify the database 
schema and a data-manipulation language to express database queries and up 
 
 
 
262 Chapter 7 Database Design and the E-R Model 



15 

 

 
information is updated without taking precautions to update all copies of 
the information. For example, different offerings of a course may have the 
same course identifier, but may have different titles. It would then become 
unclear what the correct title of the course is. Ideally, information should 
appear in exactly one place. 
2. Incompleteness: A bad design may make certain aspects of the enterprise 
difficult or impossible to model. For example, suppose that, as in case (1) 
above, we only had entities corresponding to course offering, without having 
an entity corresponding to courses. Equivalently, in terms of relations, 
suppose we have a single relation where we repeat all of the course information 
once for each section that the course is offered. It would then be 
impossible to represent information about a new course, unless that course 
is offered. We might try to make do with the problematic design by storing 
null values for the section information. Such a work-around is not only 
unattractive, but may be prevented by primary-key constraints. 
Avoiding bad designs is not enough. There may be a large number of good 
designs from which we must choose. As a simple example, consider a customer 
whobuys a product. Is the sale of this product a relationship between the customer 
and the product? Alternatively, is the sale itself an entity that is related both to the 
customer and to the product? This choice, though simple, may make an important 
difference in what aspects of the enterprise can bemodeledwell. Considering the 
need to make choices such as this for the large number of entities and relationships 
in a real-world enterprise, it is not hard to see that database design can be a 
challenging problem. Indeed we shall see that it requires a combination of both 
science and “good taste.” 
 
7.2 The Entity-Relationship Model 
The entity-relationship (E-R) data model was developed to facilitate database 
design by allowing specification of an enterprise schema that represents the 
overall logical structure of a database. 
The E-R model is very useful in mapping the meanings and interactions of 
real-world enterprises onto a conceptual schema. Because of this usefulness, 
many database-design tools draw on concepts from the E-R model. The E-R 
data model employs three basic concepts: entity sets, relationship sets, and 
attributes, which we study first. The E-R model also has an associated 
diagrammatic representation, 
the E-R diagram, which we study later in this chapter. 
 
7.2.1 Entity Sets 
An entity is a “thing” or “object” in the real world that is distinguishable from 
all other objects. For example, each person in a university is an entity. An entity 
has a set of properties, and the values for some set of properties may uniquely 
identify an entity. For instance, a person may have a person id property whose 
 
 
 
 
 
 
 
 



16 

 

value uniquely identifies that person. Thus, the value 677-89-9011 for person id 
would uniquely identify one particular person in the university. Similarly, 
courses can be thought of as entities, and course id uniquely identifies a course 
entity in the university. An entity may be concrete, such as a person or a book, 
or it may be abstract, such as a course, a course offering, or a flight reservation. 
 
An entity set is a set of entities of the same type that share the same properties, 
or attributes. The set of all people who are instructors at a given university, for 
example, can be defined as the entity set instructor. Similarly, the entity set student 
might represent the set of all students in the university. 
In the process of modeling, we often use the term entity set in the abstract, 
without referring to a particular set of individual entities. We use the term extension 
of the entity set to refer to the actual collection of entities belonging to 
the entity set. Thus, the set of actual instructors in the university forms the extension 
of the entity set instructor. The above distinction is similar to the difference 
between a relation and a relation instance, which we saw in Chapter 2. 
Entity sets do not need to be disjoint. For example, it is possible to define the 
entity set of all people in a university (person). A person entity may be an instructor 
entity, a student entity, both, or neither. 
 
An entity is represented by a set of attributes. Attributes are descriptive 
properties possessed by each member of an entity set. The designation of an 
attribute for an entity set expresses that the database stores similar information 
concerning each entity in the entity set; however, each entity may have its own 
value for each attribute. Possible attributes of the instructor entity set are ID, 
name, dept name, and salary. In real life, there would be further attributes, such 
as street number, apartment number, state, postal code, and country, but we omit 
them to keep our examples simple. Possible attributes of the course entity set are 
course id, title, dept name, and credits. 
Each entity has a value for each of its attributes. For instance, a particular 
instructor entity may have the value 12121 for ID, the valueWu for name, the 
value Finance for dept name, and the value 90000 for salary. 
 
The ID attribute is used to identify instructors uniquely, since there may 
be more than one instructor with the same name. In the United States, many 
enterprises find it convenient to use the social-security number of a person2 as an 
attribute whose value uniquely identifies the person. In general the enterprise 
would have to create and assign a unique identifier for each instructor. 
A database thus includes a collection of entity sets, each of which contains 
any number of entities of the same type. Figure 7.1 shows part of a university 
database that consists of two entity sets: instructor and student. To keep the figure 
simple, only some of the attributes of the two entity sets are shown. 
A database for a university may include a number of other entity sets. For 
example, in addition to keeping track of instructors and students, the university 
also has information about courses, which are represented by the entity set course 
 
2In the United States, the government assigns to each person in the country a unique number, 
called a social-security number, to identify that person uniquely. Each person is supposed to 
have only one social-security number, and no two 
people are supposed to have the same social-security number. 
 
264 Chapter 7 Database Design and the E-R Model 



17 

 

 
 
 

     
     
     
     
     
     
     

 
                            Instructor                                                                    student          
 
                           Figure 7.1 Entity sets instructor and student. 
 
with attributes course id, title, dept name and credits. In a real setting, a university 
database may keep dozens of entity sets. 
 
 
7.2.2 Relationship Sets 
A relationship is an association among several entities.  
 
For example, we can 
define a relationship advisor that associates instructor Katz with student Shankar. 
This relationship specifies that Katz is an advisor to student Shankar. 
 
A relationship set is a set of relationships of the same type. 
 
 Formally, it is a 
mathematical relation on n ≥ 2 (possibly nondistinct) entity sets. If E1, E2, . . . , En 
are entity sets, then a relationship set R is a subset of 
{(e1, e2, . . . , en) | e1 ∈ E1, e2 ∈ E2, . . . , en ∈ En} 
where (e1, e2, . . . , en) is a relationship. 
Consider the two entity sets instructor and student in Figure 7.1. We define 
the relationship set advisor to denote the association between instructors and 
students. Figure 7.2 depicts this association. 
As another example, consider the two entity sets student and section. We can 
define the relationship set takes to denote the association between a student and 
the course sections in which that student is enrolled. 
The association between entity sets is referred to as participation; that is, the 
entity sets E1, E2, . . . , En participate in relationship set R. A relationship instance 
in an E-R schema represents an association between the named entities in 
the real-world enterprise that is being modeled. As an illustration, the individual 
instructor entity Katz,who has instructor ID 45565, and the student entity Shankar, 
who has student ID 12345, participate in a relationship instance of advisor. This relationship 
instance represents that in the university, the instructor Katz is advising 
student Shankar. 
The function that an entity plays in a relationship is called that entity’s role. 
Since entity sets participating in a relationship set are generally distinct, roles 
 
 
 
 
 



18 

 

 

ER Model Relationships in general 

 Relationship:  Interaction between entities  
 Indicator        : an attribute of one entity refers to another entity (Represent such references 
as  
                           relationships not attributes) 
 

 
                                                                            Figure 1 
Diagramming Relationship : Diamond for relationship type , connected to each participating 
entity type 

                                        

                                                                                  Figure 2 



19 

 

     Example 1  :      In a company, there are three entity : 

         1- Employees :  E_NO ,E_NAME, E_ADDRESS 
         2- Departments : D_NO ,D_NAME 
         3-Projects :  P_NAME , P_NO 
    
    Each employee belongs to a department and each project has many employees works on it.  
      There are two relations that connect the three entities  
    

                            
                                                                              
 
                                        

Example 2 : A  chemical factory producing chemical materials , each material identified by a  
name and a formula . 

                     The supplier , identified by his name and his ID , purchase from the factory by an 
order . The order has  date , amount and total. 

 
                    To draw  the  ER model  
                     Each supplier can have any material , and any material can go to any supplier . 

The relation is of type   many-to-many. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Order Supplier Chemical 

name 

ID 

name 

formul
a 

amount Purchase date 

total 

 

 

 

 

                                                                  N                                              M 

 

 



20 

 

Cardinality 
http://ion.uwinnipeg.ca/~rmcfadye/2914/relationships.pdf(ACS 2914 ERD: Relationships Ron McFadyen) 

Cardinality is a constraint on a relationship specifying the number of entity instances that a 
specific entity may be related to via the relationship. Consider the relationship "works in".  

                      

When we ask How many employees can work in a single department? or How many 
departments can an employee work in? we are asking questions regarding the cardinality of 
the relationship. The three classifications are: one-to-one, one-to-many, and many-to-many. 
Below, the ERD shows a relationship between invoice lines and products. 

                   

 The "n" represents an "arbitrary number of instances", and the "1" represents "at most one 
instance". We interpret the cardinality specifications with the following business rule 
statements:  

 The "n" indicates that the same Product entity can be specified on "any number of" 
Invoice Lines.  

  The "1" indicates that an Invoice Line entity specifies "at most one" Product entity 
 

Exercise: Consider the University and entity types: Class, Course, Department, Student. What 
relationship types exist and what cardinalities apply to the various relationships and entities?  

One-to-One Relationships  

One-to-one relationships have 1 specified for both cardinalities, and do not seem to arise very 
often. To illustrate a one-to-one, we require very specific business rules. 

 Suppose we have People and Vehicles. Assume that we are only concerned with the current 
driver of a vehicle, and that we are only concerned with the current vehicle that a driver is 
operating. Then, we have a one-to-one relationship between Vehicle and Person (note the 
role shown for Person in this relationship):  

                    

 

 



21 

 

One-to-Many Relationships  

This type of relationship has 1 and n specified for cardinalities, and is very common in 
database designs. Suppose we have customers and orders and the business rules:  

 An order is related to one customer, and  
  A customer can have any number (zero or more) of orders. 

 We say there is a one-to-many relationship between customer and order, and we draw this 
as: 

             

 

Many-to-Many Relationships  

Many-to-many relationships have "many" specified for both cardinalities, and are also very 
common. However, should you examine a data model in some business, there is a good 
chance you will not see any many-to-many relationships on the diagram. In those cases, the 
data modeler has resolved the many-to-many relationships into two one-tomany 
relationships. Suppose we are interested in courses and students and the fact that students 
register for courses: Any student may take several courses, A course may be taken by several 
students. This situation is represented with a many-to-many relationship between Course and 
Student: 

                

 

 

 

 

 

 

 

 

 



22 

 

ER Model to Relational Model 
https://www.tutorialspoint.com/dbms/er_model_to_relational_model.htm 

 

ER Model, when conceptualized into diagrams, gives a good overview of entity-relationship, 

which is easier to understand. ER diagrams can be mapped to relational schema, that is, it is 

possible to create relational schema using ER diagram. We cannot import all the ER 

constraints into relational model, but an approximate schema can be generated. 

There are several processes and algorithms available to convert ER Diagrams into Relational 

Schema. Some of them are automated and some of them are manual. We may focus here on 

the mapping diagram contents to relational basics. 

ER diagrams mainly comprise of − 

 Entity and its attributes 

 Relationship, which is association among entities. 

 

 

Mapping Entity 
An entity is a real-world object with some attributes. 

 
Mapping Process  

 Create table for each entity. 

 Entity's attributes should become fields of tables with their respective data types. 

 Declare primary key. 

 
 

 

 

https://www.tutorialspoint.com/dbms/er_model_to_relational_model.htm


23 

 

Mapping Relationship 

 
A relationship is an association among entities. 

 
Mapping Process 

 Create table for a relationship. 

 Add the primary keys of all participating Entities as fields of table with 

their respective data types. 

 If relationship has any attribute, add each attribute as field of table. 

 Declare a primary key composing all the primary keys of participating 

entities. 

 Declare all foreign key constraints. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



24 

 

• student (ID, name, dept name, tot cred) 
• advisor (s id, i id) 
• takes (ID, course id, sec id, semester, year, grade) 
• classroom (building, room number, capacity) 
• time slot (time slot id, day, start time, end time) 
 
2.3 Keys 
We must have a way to specify how tuples within a given relation are 
distinguished.  This is expressed in terms of their attributes. That is, the values 
of the attribute values of a tuple must be such that they can uniquely identify the 
tuple. In other words, no two tuples in a relation are allowed to have exactly the 
same value for all attributes. 
 
 
A superkey is a set of one or more attributes that, taken collectively, allow us to 
identify uniquely a tuple in the relation. For example, the ID attribute of the relation 
instructor is sufficient to distinguish one instructor tuple from another. 
Thus, ID is a superkey. The name attribute of instructor, on the other hand, is not 
a superkey, because several instructors might have the same name. 
Formally, let R denote the set of attributes in the schema of relation r. If we 
say that a subset K of R is a superkey for r , we are restricting consideration to 
instances of relations r in which no two distinct tuples have the same values on 
all attributes in K. That is, if t1 and t2 are in r and t1 _= t2, then t1.K _= t2.K. 
A superkey may contain extraneous attributes. For example, the combination 
of ID and name is a superkey for the relation instructor. If K is a superkey, then so 
is any superset of K. We are often interested in superkeys for which no proper 
subset is a superkey. Such minimal superkeys are called candidate keys. 
It is possible that several distinct sets of attributes could serve as a candidate 
key. Suppose that a combination of name and dept name is sufficient to distinguish 
among members of the instructor relation. Then, both {ID} and {name, dept name} are 
candidate keys. Although the attributes ID and name together can distinguish 
instructor tuples, their combination, {ID, name}, does not form a candidate key, 
since the attribute ID alone is a candidate key. 
 
We shall use the term primary key to denote a candidate key that is chosen by 
the database designer as the principal means of identifying tuples within a 
relation.  
 
A key (whether primary, candidate, or super) is a property of the entire 
relation, rather than of the individual tuples. 
 
 Any two individual tuples in the relation are prohibited from having the same 
value on the key attributes at the same time.  
 
The designation of a key represents a constraint in the real-world 
enterprise being modeled. 
Primary keys must be chosen with care. As we noted, the name of a person is 
obviously not sufficient, because there may be many people with the same name. 
In the United States, the social-security number attribute of a person would be 
a candidate key. Since non-U.S. residents usually do not have social-security 



25 

 

46 Chapter 2 Introduction to the Relational Model 
numbers, international enterprises must generate their own unique identifiers. 
An alternative is to use some unique combination of other attributes as a key. 
The primary key should be chosen such that its attribute values are never, 
or very rarely, changed. For instance, the address field of a person should not be 
part of the primary key, since it is likely to change. Social-security numbers, on 
the other hand, are guaranteed never to change. Unique identifiers generated by 
enterprises generally do not change, except if two enterprises merge; in such a case 
the same identifier may have been issued by both enterprises, and a reallocation 
of identifiers may be required to make sure they are unique. 
It is customary to list the primary key attributes of a relation schema before 
the other attributes; for example, the dept name attribute of department is listed 
first, since it is the primary key. Primary key attributes are also underlined. 
 
A relation, say r1, may include among its attributes the primary key of another 
relation, say r2. This attribute is called a foreign key from r1, referencing r2. 
 
The relation r1 is also called the referencing relation of the foreign key dependency, 
and r2 is called the referenced relation of the foreign key. For example, the 
attribute dept name in instructor is a foreign key frominstructor, referencing 
department, 
since dept name is the primary key of department. In any database instance, 
given any tuple, say ta, from the instructor relation, there must be some tuple, say 
tb, in the department relation such that the value of the dept name attribute of ta is 
the same as the value of the primary key, dept name, of tb . 
Now consider the section and teaches relations. It would be reasonable to 
require that if a section exists for a course, it must be taught by at least one 
instructor; however, it could possibly be taught by more than one instructor. 
To enforce this constraint, we would require that if a particular (course id, sec id, 
semester, year) combination appears in section, then the same combination must 
appear in teaches. However, this set of values does not form a primary key for 
teaches, since more than one instructor may teach one such section. As a result, 
we cannot declare a foreign key constraint from section to teaches (although we 
can define a foreign key constraint in the other direction, from teaches to section). 
The constraint from section to teaches is an example of a referential integrity 
constraint; a referential integrity constraint requires that the values appearing in 
specified attributes of any tuple in the referencing relation also appear in specified 
attributes of at least one tuple in the referenced relation. 
2.4 Schema Diagrams 
A database schema, along with primary key and foreign key dependencies, can 
be depicted by schema diagrams. Figure 2.8 shows the schema diagram for our 
university organization. Each relation appears as a box, with the relation name at 
the top in blue, and the attributes listed inside the box. Primary key attributes are 
shown underlined. Foreign key dependencies appear as arrows from the foreign 
key attributes of the referencing relation to the primary key of the referenced 
relation. 
 
 
 
 
 



26 

 

Table Joining 

Joining Tables (https://www.zoho.com/reports/help/table/joining-tables.html) 

In a reporting system often you might require to combine data from two or more tables to get 
the required information for analysis and reporting. To retrieve data from two or more tables, 
you have to combine the tables through the operation known as "Joining of tables". Joining is a 
method of establishing a relationship between tables using a common column. 

 

https://en.wikipedia.org/wiki/Join_(SQL) 

An SQL join clause combines columns from one or more tables in a relational database. It 
creates a set that can be saved as a table or used as it is. A JOIN is a means for 
combining columns from one (self-join) or more tables by using values common to 
each. ANSI-standard SQL specifies five types of JOIN: INNER, LEFT OUTER, RIGHT 
OUTER, FULL OUTER and CROSS. As a special case, a table (base table, view, or joined 
table) can JOIN to itself in a self-join. 

Relational databases are usually normalized to eliminate duplication of information such as 
when entity types have one-to-many relationships. For example, a Department may be 
associated with a number of Employees. Joining separate tables for Department and Employee 
effectively creates another table which combines the information from both tables. 

All subsequent explanations on join types in this article make use of the following two tables. 
The rows in these tables serve to illustrate the effect of different types of joins and join-
predicates. In the following tables the DepartmentID column of the Department table (which 
can be designated as Department.DepartmentID) is the primary key, 
while Employee.DepartmentID is a foreign key. 

 

Employee table 

LastName DepartmentID 

Rafferty 31 

Jones 33 

Heisenberg 33 

Robinson 34 

Smith 34 

Williams NULL 

 

 

Note: In the Employee table above, the employee "Williams" has not been assigned to any 
department yet. Also, note that no employees are assigned to the "Marketing" department. 

 

Department table 

DepartmentID DepartmentName 

31 Sales 

33 Engineering 

34 Clerical 

35 Marketing 

https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Column_(database)
https://en.wikipedia.org/wiki/Table_(database)
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Column_(database)
https://en.wikipedia.org/wiki/American_National_Standards_Institute
https://en.wikipedia.org/wiki/View_(database)
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Column_(database)
https://en.wikipedia.org/wiki/Primary_key
https://en.wikipedia.org/wiki/Foreign_key


27 

 

1- Cross join 
CROSS JOIN returns the Cartesian product of rows from tables in the join. In other words, it 
will produce rows which combine each row from the first table with each row from the second 
table.[1] 

Example of an implicit cross join: 

SELECT * FROM employee, department; 

Employee.LastName Employee.DepartmentID Department.DepartmentName Department.DepartmentID 

Rafferty 31 Sales 31 

Jones 33 Sales 31 

Heisenberg 33 Sales 31 

Smith 34 Sales 31 

Robinson 34 Sales 31 

Williams NULL Sales 31 

Rafferty 31 Engineering 33 

Jones 33 Engineering 33 

Heisenberg 33 Engineering 33 

Smith 34 Engineering 33 

Robinson 34 Engineering 33 

Williams NULL Engineering 33 

Rafferty 31 Clerical 34 

Jones 33 Clerical 34 

Heisenberg 33 Clerical 34 

Smith 34 Clerical 34 

Robinson 34 Clerical 34 

Williams NULL Clerical 34 

Rafferty 31 Marketing 35 

Jones 33 Marketing 35 

Heisenberg 33 Marketing 35 

Smith 34 Marketing 35 

Robinson 34 Marketing 35 

Williams NULL Marketing 35 

The cross join does not itself apply any predicate to filter rows from the joined table. The 
results of a cross join can be filtered by using a WHERE clause which may then produce the 
equivalent of an inner join. 

 

 

 

https://en.wikipedia.org/wiki/Cartesian_product
https://en.wikipedia.org/wiki/Join_(SQL)#cite_note-1


28 

 

2- Inner join 

 

 
A Venn Diagram representing an Inner Join SQL statement between the tables A and B. 

 

An inner join requires each row in the two joined tables to have matching column values, and 
is a commonly used join operation in applications but should not be assumed to be the best 
choice in all situations. Inner join creates a new result table by combining column values of 
two tables (A and B) based upon the join-predicate. The query compares each row of A with 
each row of B to find all pairs of rows which satisfy the join-predicate. When the join-predicate 
is satisfied by matching non-NULL values, column values for each matched pair of rows of A 
and B are combined into a result row. 

The "explicit join notation" uses the JOIN keyword, optionally preceded by 
the INNER keyword, to specify the table to join, and the ON keyword to specify the predicates 
for the join, as in the following example: 

SELECT employee.LastName, employee.DepartmentID, department.DepartmentName  
FROM employee  
INNER JOIN department ON 
employee.DepartmentID = department.DepartmentID 

Employee.LastName Employee.DepartmentID Department.DepartmentName 

Robinson 34 Clerical 

Jones 33 Engineering 

Smith 34 Clerical 

Heisenberg 33 Engineering 

Rafferty 31 Sales 

 

 

 

 

 

https://en.wikipedia.org/wiki/File:SQL_Join_-_07_A_Inner_Join_B.svg
https://en.wikipedia.org/wiki/Application_software


29 

 

The "implicit join notation" simply lists the tables for joining, in the FROM clause of 
the SELECT statement, using commas to separate them. Thus it specifies a cross join, and 
the WHERE clause may apply additional filter-predicates (which function comparably to the 
join-predicates in the explicit notation). 

The following example is equivalent to the previous one, but this time using implicit join 
notation: 

SELECT * 
FROM employee, department 
WHERE employee.DepartmentID = department.DepartmentID; 

The queries given in the examples above will join the Employee and Department tables using 
the DepartmentID column of both tables.  

Where the DepartmentID of these tables match (i.e. the join-predicate is satisfied), the query 
will combine the LastName, DepartmentID and DepartmentName columns from the two tables 
into a result row. Where the DepartmentID does not match, no result row is generated. 

Thus the result of the execution of the query above will be: 

Employee.LastName Employee.DepartmentID Department.DepartmentName Department.DepartmentID 

Robinson 34 Clerical 34 

Jones 33 Engineering 33 

Smith 34 Clerical 34 

Heisenberg 33 Engineering 33 

Rafferty 31 Sales 31 

The employee "Williams" and the department "Marketing" do not appear in the query 
execution results. Neither of these has any matching rows in the other respective table: 
"Williams" has no associated department, and no employee has the department ID 35 
("Marketing").  

Programmers should take special care when joining tables on columns that can 
contain NULL values, since NULL will never match any other value (not even NULL itself), 
unless the join condition explicitly uses a combination predicate that first checks that the joins 
columns are NOT NULL before applying the remaining predicate condition(s).  

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Join_(SQL)#Cross_join
https://en.wikipedia.org/wiki/Query_plan
https://en.wikipedia.org/wiki/Null_(SQL)


30 

 

3- Left outer join 

 

A Venn Diagram representing the Left Join SQL statement between tables A and B. 

 

The result of a left outer join (or simply left join) for tables A and B always contains all 
rows of the "left" table (A), even if the join-condition does not find any matching row in the 
"right" table (B). This means that if the ON clause matches 0 (zero) rows in B (for a given 
row in A), the join will still return a row in the result (for that row) ,but with NULL in each 
column from B. 

 A left outer join returns all the values from an inner join plus all values in the left table 
that do not match to the right table, including rows with NULL (empty) values in the link 
column. 

For example, this allows us to find an employee's department, but still shows employees 
that have not been assigned to a department (contrary to the inner-join example above, 
where unassigned employees were excluded from the result). 

Example of a left outer join (the OUTER  keyword is optional), with the additional result row 
(compared with the inner join) italicized: 

SELECT * FROM employee LEFT OUTER JOIN department ON 

employee.DepartmentID = department.DepartmentID; 

Employee.LastName Employee.DepartmentID Department.DepartmentName Department.DepartmentID 

Jones 33 Engineering 33 

Rafferty 31 Sales 31 

Robinson 34 Clerical 34 

Smith 34 Clerical 34 

Williams NULL  NULL  NULL  

Heisenberg 33 Engineering 33 

 
Alternative syntaxes 

Oracle supports the deprecated[8] syntax: 

SELECT *FROM employee, department 

WHERE employee.DepartmentID = department.DepartmentID(+) 

https://en.wikipedia.org/wiki/File:SQL_Join_-_01_A_Left_Join_B.svg
https://en.wikipedia.org/wiki/Join_(SQL)#cite_note-deprecated_plus_sign-8


31 

 

4- Right outer join 

 

A Venn Diagram representing the Right Join SQL statement between tables A and B. 

 

A right outer join (or right join) closely resembles a left outer join, except with the 
treatment of the tables reversed. Every row from the "right" table (B) will appear in the 
joined table at least once. If no matching row from the "left" table (A) exists, NULL will 
appear in columns from A for those rows that have no match in B. 

A right outer join returns all the values from the right table and matched values from the 
left table (NULL in the case of no matching join predicate). For example, this allows us to 
find each employee and his or her department, but still show departments that have no 
employees. 

Below is an example of a right outer join (the OUTER  keyword is optional), with the 
additional result row italicized: 

SELECT * 

FROM employee RIGHT OUTER JOIN department 

  ON employee.DepartmentID = department.DepartmentID; 

Employee.LastName Employee.DepartmentID Department.DepartmentName Department.DepartmentID 

Smith 34 Clerical 34 

Jones 33 Engineering 33 

Robinson 34 Clerical 34 

Heisenberg 33 Engineering 33 

Rafferty 31 Sales 31 

NULL  NULL  Marketing 35 

 
 
 

 

https://en.wikipedia.org/wiki/File:SQL_Join_-_03_A_Right_Join_B.svg


32 

 

5- Full outer join 
 

 

A Venn Diagram representing the Full Join SQL statement between tables A and B. 

 

Conceptually, a full outer join combines the effect of applying both left and right outer 
joins. Where rows in the FULL OUTER JOINed tables do not match, the result set will 
have NULL values for every column of the table that lacks a matching row. For those rows 
that do match, a single row will be produced in the result set (containing columns 
populated from both tables). 

For example, this allows us to see each employee who is in a department and each 
department that has an employee, but also see each employee who is not part of a 
department and each department which doesn't have an employee. 

Example of a full outer join (the OUTER  keyword is optional): 

SELECT * 

FROM employee FULL OUTER JOIN department 

  ON employee.DepartmentID = department.DepartmentID; 

Employee.LastName Employee.DepartmentID Department.DepartmentName Department.DepartmentID 

Smith 34 Clerical 34 

Jones 33 Engineering 33 

Robinson 34 Clerical 34 

Williams NULL  NULL  NULL  

Heisenberg 33 Engineering 33 

Rafferty 31 Sales 31 

NULL  NULL  Marketing 35 

 
 
 
 
 
 
 

https://en.wikipedia.org/wiki/File:SQL_Join_-_05b_A_Full_Join_B.svg


33 

 

Example: Consider  the following three tables : 
  
  teachers table 

 id |  name   
----+-------- 
  1 | Volker 
  2 | Elke 
(2 rows) 
 

  Projects table 
 id |   name   | duration | teacher  
----+----------+----------+--------- 
  1 | compiler |      180 |       1 
  2 | xpaint   |      120 |       1 
  3 | game     |      250 |       2 
  4 | Perl     |       80 |       4 
(4 rows) 

  
  Assign table 

 project | stud | percentage  
---------+------+------------ 
       1 |    2 |         10 
       1 |    4 |         60 
       1 |    1 |         30 
       2 |    1 |         50 
       2 |    4 |         50 
       3 |    2 |         70 
       3 |    4 |         30 
(7 rows) 

1.  SELECT * FROM teachers, projects where teachers.id = projects.id; 
 id |  name  | id |   name   | duration | teacher  
----+--------+----+----------+----------+--------- 
  1 | Volker |  1 | compiler |      180 |       1 
  2 | Elke   |  2 | xpaint   |      120 |       1 

 

2.  inner join of tables teachers and project if  the condition is  teachers.id ! =   projects.id   will be  

SELECT * FROM teachers, projects where teachers.id != projects.id; 

 id |  name  | id |   name   | duration | teacher  
----+--------+----+----------+----------+--------- 
  1 | Volker |  2 | xpaint   |      180 |       1 
  1 | Volker |  3 | game     |      180 |       1 
  1 | Volker |  4 | Perl     |      180 |       1 
  2 | Elke   |  1 | compiler |      120 |       1 
  2 | Elke   |  3 | game     |      120 |       1 
  2 | Elke   |  4 | Perl     |      120 |       1 

 

 

 
 
 
 
 
 



34 

 

6 Indexing and Hashing 
 
Many queries reference  only a small proportion of the records in a file. For 
example , the queries “ Find  all accounts at the Tech branch” reference only a 
fraction of the account records. It is inefficient for the system to have to read 
every record and to check the branch names.  The system should be able to 
locate these records directly. To allow that, we design additional structures 
with the files. 
 
An index for a file in the system works like a catalog for a book in a library, if 
we are looking for a book , the catalog of the name of the books  tells us 
where to find the book. 
 
To assist us searching the catalog, the names in the catalog listed in an 
alphabetic order. 
 
There are two basic kinds of indices : 
 Ordered indices: such  indices are based on a sorted ordering of the 

values. 
 Hash index    : such indices are based on  some values , these values 

calculated by a function called hash function. 
 
 
We often want to have more than one index for the file.  Return to the 
example of the library, there can be a catalog for the names of the books and 
another catalog for the others of the books and third one for the subjects of 
the books.  
 
6.1 Ordered  Indices : 
 
These are used to gain fast random access to records in a file. Each index 
structure is associated with a particular search key. The index stores the 
values of the search keys in sorted order.  
 
The record in the indexed file may themselves be sorted in some way. The file 
may have several indices of different search key. 
 
Primary index : if the file containing the record is sequentially ordered , the 

index whose search key specifies the sequential order of the file , 
this index is a primary index for that file. 

 
Secondary index : is the index of the file whose search key specifies an order 

different from   the order of the file. 
 



35 

 

 
6.1.1 : Ordered Primary Index 
 
Figure  6.1 shows an ordered file for account records.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The file of figure  6.1  is sorted on a search key order, with branch name is used as 
the search key. 
 
6.1.1.1 : Indices Types : There are two types of ordered indices : Dense  and  Sparse 
indices. 
 
Dense index : an index entry appears for every search key value in the file. The 

index record contains the  search key value and a pointer to the first 
data record with that search key value, as shown in figure (6.2) for the 
account file. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Index                                                                         Account  File 

Brighton    Brighton A-217 750  
Downtown    Downtown A-101 500  
Mianus   Downtown A-110 600  
Perryridge   Mianus A-215 700  
Redwood   Perryridge A-102 400  
Round Hill   Perryridge A-201 900  
   Perryridge A-218 700  
   Redwood A-222 700  
   Round Hill A-305 350  

     

Figure  (6.2) 
Dense Index  for  account  file 

Brighton A-217 750  
Downtown A-101 500  
Downtown A-110 600  
Mianus A-215 700  
Perryridge A-102 400  
Perryridge A-201 900  
Perryridge A-218 700  
Redwood A-222 700  
Round Hill A-305 350  
 

        Figure  ( 6.1)  Sequential file for account records 

 

 

 

 

 



36 

 

Suppose that we are locking up records for the PEERYIDGE branch using the dense 
index of figure (6.2),  we follow the pointer directly to the first PEERYIDGE record . 
We process this record  and follow the pointer in that record to locate the next 
record in search key (branch name) order. We continue processing  records until we 
encounter a record for a branch other than PEERYIDGE.    
 
 
Spars index : An index record is created  for only some of the values. To locate a 

record we find the index entry with the largest search key value that is 
less than or equal to the search key value for which we are locking . We 
start at the record pointed to by that index entry, and follow the 
pointer in the file until we find the desired record. As shown in figure 
(6.3) for the account file. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If we are using the spars index  of figure (6.3)  to  find  PEERYIDGE , we do not find 
an index entry for PEERYIDGE in the index. Since the last entry (in alphabetic order) 
before BEERYIDGE  is MIANUS , we follow that pointer. 
 We then read the account file  in sequential order until we find the first PEERYIDEG 
record and begin processing at that point. 
 
As we have seen , it is faster to locate a record by  using a dense  index rather than a 
sparse index., but sparse  indices require less space. 
 
 
 
 
 
 
 

       Index                                                                         Account  File 

Brighton    Brighton A-217 750  
Mianus   Downtown A-101 500  
Redwood   Downtown A-110 600  
   Mianus A-215 700  
   Perryridge A-102 400  
   Perryridge A-201 900  
   Perryridge A-218 700  
   Redwood A-222 700  
   Round Hill A-305 350  

     

Figure  (6.3) 
Spars Index  for  account  file 



37 

 

 
 
6.1.1.2 Index Update  
 
Every index must be updated  whenever a record is inserted into the file or deleted 
from the file . 
 
Deletion : To delete a record we first look up the record to be deleted . 

 In dense indices ,if the deleted record was the only record with its 
particular search key value, then the search key value is deleted from the 
index.   
For  sparse indices , we delete a key value by replacing its entry (if one exist) 
in the index with the next search key value . if the next search key value 
already has an index entry , the entry is deleted instead of being replace.  

 
Insertion : First we perform a lookup using the search key value that appears in the 

record to be inserted . 
In dense index and the value does not appear in the index, the value is 
inserted in the index. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



38 

 

 
 
6.1.2 : Ordered Secondary Index  
 
A secondary index looks like dense primary index except that the records pointed to 
by successive values in the index are not stored sequentially.  
It is not enough to point to just the first record with each search key value because 
the remaining records with the same search key value could be anywhere in the file, 
since the records are ordered by a search key of the primary index rather than by 
the search key of the secondary index. Therefore a secondary index must contain 
pointers to all the records.  
The pointers in the secondary index do not point directly to the file , instead each 
pointer points to a bucket that contains pointers to the file . Figure (6.4) shows the 
account file sorted by the  balance field, which is not a primary key. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure (6.4) 
Secondary index for account file on balance as the secondary key 

 

350  
400  
500  
600  
700  
750  
900  
 

 

 

 

 

 

 

 

 

 

 

 

Account File  

  Balance  
Brighton A-217 750  
Downtown A-101 500  
Downtown A-110 600  
Mianus A-215 700  
Perryridge A-102 400  
Perryridge A-201 900  
Perryridge A-218 700  
Redwood A-222 700  
Round Hill A-305 350  
 

 

 

 

 

 



39 

 

6.2 : Hash Index 
 

One disadvantage of sequential file is that we must access an index structure to 
locate data or must use binary search. 
File organization based on technique of hashing allow us to avoid accessing an index 
structure. 
Hashing also provide a way of constructing indices. 
 
6.2.1 Hash File Organization 
In a hash file organization, we obtain the address of the disk block containing the 
desired record directly by computing a function on the search key value of the 
record. 
 
Let ( K ) denote the set of all search key values. Let ( B ) denote the set of all blocks 
addresses. 
A hash function ( H ) is a function from  ( K ) to ( B ) . 
 
To insert a record with search key ( Ki ) , we compute [ H(Ki) ] which gives the 
address of the block for that record and the record stores in that block. 
 
To perform a lockup on the search key value ( Ki ) , we compute  [  H(Ki) ] , then 
search the block with that address. Suppose that  to search keys , K5 and  K7 , have 
the same hash value; that is   H(K5)=H(K7),  thus we have to check  the search key 
value of every record in the block to find the desired record. Figure (6.5) shows 
Hash organization for the account file. 
 
 
    
    

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Block 0                                                                                       Block 5 
    Perryridge A-102 400 

 Perryridge A-201 900 
 Perryridge A-218 700 
    

 
Block 1                                                                                       Block  6 
       

 
Block 2                                                                                       Block 7 
    Mianus A-215 700 

 
Block 3                                                                                      Block 8 
Brightton A-217 750  Downtown A-101 500 
Round Hill A-305 350  Downtown A-110 600 
 
Block 4                                                                                      Block 9 
Redwood A-222 700     

 
Figure (6.5) 

Hash organization of account file using branch name as the key 



40 

 

6.2.2 Hash Index 
 
Hashing can be used for index structure creation. A hash index organize the search 
keys with their associated pointers into a hash file structure. 
 
We construct a hash index as follow , we apply a hash function on a search key value 
to identify the block, and store the key and its pointer in that block as shown in 
figure (6.6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure  (6.6) 
Hash index on search key account-number of account file 

 
 
 

 
 
 
 
 
 

Block 0                                                                                                                                      
  

Block 1  

A-215  

A-305  

Block 2  

A-101  

A-110  

Block 3  

A-217  

A-102  

A-201  

. 

. 

. 

Brighton A-217 750 

Downtown A-101 500 

Downtown A-110 600 

Mianus A-215 700 

Perryridge A-102 400 

Perryridge A-201 900 

Perryridge A-218 700 

Redwood A-222 700 

Round Hill A-305 350 

 



Database Design – Second Course 
 

1 
 

 

28 Chapter 1 Introduction ( Database System Concepts) 
 
department A invokes a program called new hire. This program asks the clerk for the name 
of the new instructor, her new ID, the name of the department (that is, A), and the salary. 
The typical user interface for na¨ıve users is a forms interface, where the user can fill in 
appropriate fields of the form. Na¨ıve users may also simply read reports generated from 
the database. 
As another example, consider a student, who during class registration period, wishes to 
register for a class by using a Web interface. Such a user connects to a Web application 
program that runs at a Web server. The application first verifies the identity of the user, and 
allows her to access a form where she enters the desired information. The form information 
is sent back to the Web application at the server, which then determines if there is room in 
the class (by retrieving information from the database) and if so adds the student 
information to the class roster in the database. 
• Application programmers are computer professionalswho write application 
programs. Application programmers can choose frommany tools to develop 
user interfaces. Rapid application development (RAD) tools are tools that enable 
an application programmer to construct forms and reportswith minimal 
programming effort. 
• Sophisticated users interact with the system without writing programs. Instead, 
they form their requests either using a database query language or by 
using tools such as data analysis software. Analysts who submit queries to 
explore data in the database fall in this category. 
• Specialized users are sophisticated users who write specialized database 
applications that do not fit into the traditional data-processing framework. 
Among these applications are computer-aided design systems, knowledgebase 
and expert systems, systems that store data with complex data types (for 
example, graphics data and audio data), and environment-modeling systems. 
Chapter 22 covers several of these applications. 
 
1.12.2 Database Administrator 
One of the main reasons for using DBMSs is to have central control of both the data and 
the programs that access those data. A person who has such central control over the system 
is called a database administrator (DBA). The functions of a DBA 
include: 
 
• Schema definition. The DBA creates the original database schema by executing a set of 
data definition statements in the DDL. 
 
• Storage structure and access-method definition. 
 
• Schema and physical-organization modification. TheDBAcarries out changes to the 
schema and physical organization to reflect the changing needs of the organization, or to 
alter the physical organization to improve performance. 
( Database System Concepts) 



Database Design – Second Course 
 

2 
 

 
• Granting of authorization for data access. By granting different types of authorization, 
the database administrator can regulate which parts of the database various users can 
access. The authorization information is kept in a special system structure that the database 
system consults whenever someone attempts to access the data in the system. 
 
• Routine maintenance. Examples of the database administrator’s routine maintenance 
activities are: 
 
◦ Periodically backing up the database, either onto tapes or onto remote servers, to prevent 
loss of data in case of disasters such as flooding. 
◦ Ensuring that enough free disk space is available for normal operations, and upgrading 
disk space as required. 
◦ Monitoring jobs running on the database and ensuring that performance is not degraded 
by very expensive tasks submitted by some users. 
 
1.13 History of Database Systems 
Information processing drives the growth of computers, as it has from the earliest days of 
commercial computers. In fact, automation of data processing tasks predates computers. 
Punched cards, invented by Herman Hollerith, were used at the very beginning of the 
twentieth century to record U.S. census data, and mechanical systemswere used to process 
the cards and tabulate results. Punched cards were later widely used as a means of entering 
data into computers.  
Techniques for data storage and processing have evolved over the years: 
• 1950s and early 1960s:Magnetic tapes were developed for data storage. Data processing 
tasks such as payroll were automated, with data stored on tapes. 
Processing of data consisted of reading data from one or more tapes and writing data to a 
new tape. Data could also be input from punched card decks, and output to printers. For 
example, salary raises were processed by entering the raises on punched cards and reading 
the punched card deck in synchronization with a tape containing the master salary details. 
The records had to be in the same sorted order. The salary raises would be added to the 
salary read from the master tape, and written to a new tape; the new tape would become the 
new master tape. 
Tapes (and card decks) could be read only sequentially, and data sizeswere 
much larger than main memory; thus, data processing programs were forced 
to process data in a particular order, by reading and merging data fromtapes 
and card decks. 
• Late 1960s and 1970s:Widespread use of hard disks in the late 1960s changed the 
scenario for data processing greatly, since hard disks allowed direct access to data. The 
position of data on disk was immaterial, since any location on disk could be accessed in 
just tens of milliseconds. Data were thus freed from 
 

 



Database Design – Second Course 
 

3 
 

 
The Design Process (http://en.wikipedia.org/wiki/Database_design#cite_note-3  “Database design – Wikipedia”) 

The design process consists of the following steps 

1- Determine the purpose of your database - This helps prepare you for the 
remaining steps.  

2- Find and organize the information required - Gather all of the types of 
information you might want to record in the database, such as product name and 
order number.  

3- Divide the information into tables - Divide your information items into major 
entities or subjects, such as Products or Orders. Each subject then becomes a table.  

4- Turn information items into columns - Decide what information you want to 
store in each table. Each item becomes a field, and is displayed as a column in the 
table. For example, an Employees table might include fields such as Last Name and 
Hire Date.  

5- Specify primary keys - Choose each table’s primary key. The primary key is a 
column that is used to uniquely identify each row. An example might be Product ID 
or Order ID.  

6- Set up the table relationships - Look at each table and decide how the data in one 
table is related to the data in other tables. Add fields to tables or create new tables to 
clarify the relationships, as necessary.  

7- Refine your design - Analyze your design for errors. Create the tables and add a 
few records of sample data. See if you can get the results you want from your 
tables. Make adjustments to the design, as needed.  

 

 

 

 

 

 

 

 

 



Database Design – Second Course 
 

4 
 

 

 Normalization 

 

Normalization In relational database , is the process of organizing data to 

minimize redundancy . The goal of database normalization is to decompose 

complex relations(tables)  in order to produce smaller, well-structured 

relations(tables).  

 

Normalization usually involves dividing large, badly-formed tables into 

smaller, well-formed tables and defining relationships between them. The 

objective is to isolate data so that additions, deletions, and modifications of a 

field can be made in just one table and then propagated through the rest of the 

database via the defined relationships 

 

 

 

 

 

 

 

 

 

 

 



Database Design – Second Course 
 

5 
 

Free the database of modification anomalies 

When an attempt is made to modify (update, insert into, or delete from) a table, undesired 
side-effects may follow. Not all tables can suffer from these side-effects; rather, the side-
effects can only arise in tables that have not been sufficiently normalized. An 
insufficiently normalized table might have one or more of the following characteristics: 

 The same information can be expressed on 
multiple rows; therefore updates to the table may 
result in logical inconsistencies. For example, each 
record in an "Employees' Skills" table might contain 
an Employee ID, Employee Address, and Skill; thus 
a change of address for a particular employee will 
potentially need to be applied to multiple records 
(one for each of his skills). If the update is not 
carried through successfully—if, that is, the 
employee's address is updated on some records but 
not others—then the table is left in an inconsistent 
state. Specifically, the table provides conflicting 
answers to the question of what this particular 
employee's address is. This phenomenon is known 
as an update anomaly.  
 There are circumstances in which certain facts 
cannot be recorded at all. For example, each record 
in a "Faculty and Their Courses" table might 
contain a Faculty ID, Faculty Name, Faculty Hire 
Date, and Course Code—thus we can record the 
details of any faculty member who teaches at least 
one course, but we cannot record the details of a 
newly-hired faculty member who has not yet been 
assigned to teach any courses except by setting the 
Course Code to null. This phenomenon is known as 
an insertion anomaly.  
 There are circumstances in which the deletion of 
data representing certain facts necessitates the 
deletion of data representing completely different 
facts. The "Faculty and Their Courses" table 
described in the previous example suffers from this 
type of anomaly, for if a faculty member 
temporarily ceases to be assigned to any courses, 
we must delete the last of the records on which that 
faculty member appears, effectively also deleting 
the faculty member. This phenomenon is known as 
a deletion anomaly 

 

 



Database Design – Second Course 
 

6 
 

 
  : Levels of normalization 
 
To normalize a database, there are three levels : 

 First Normal Form (1NF)        
 Second Normal Form (2NF) 
 Third Normal Form (3NF)  
 

1: First Normal Form (1NF) 
The role of (1NF) is:  No repeating elements or groups of elements, this mean: 

 Eliminate duplicative columns from the same table.  
 Create separate tables for each group of related data and identify each row with a unique 

column or set of columns (the primary key).  
 
The first rule dictates that we must not duplicate data within the same row of a table. For example 
consider the table of figure (7.4) of a bank. 
 

Person ID Name City Name City Number Account Type Balance Account Notes 
123 Nader Baghdad 1 A 4556 $ ****** 
123 Nader Baghdad 1 B 7654 $ ###### 
123 Nader Baghdad 1 C 1287 $ &&&&& 
150 Muna Basra 2 A 654 $ ****** 
150 Muna Basra 2 B 66743 $ ###### 

Figure  (7.4) Accounts table of a bank 
 
 
The table of figure (7.4) consists of repeated information.  
The meaning of repeated information is all the information belong for a single person. For 
person “NADER” there are three records repeated for him. 
For “Muna” there are two record repeated for her. 
 
The table  must be  separated from the repeated  information into  two  tables  as  shown  in 
figure (7.5). The two tables are joined by the Person ID as a key. For table 2 the primary key is the 
combination of the first two fields  ‘Person Id + Account Type’ 
 
Primary 
Key 

     The Primary Key   

Person 
ID 

Name City Name City 
Number 

 Person ID Account 
Type 

Balance Account 
Notes 

123 Nader Baghdad 1  123 A 4556 $ ****** 
150 Muna Basra 2  123 B 7654 $ ###### 
    123 C 1287 $ &&&&& 
 Table 1   150 A 654 $ ****** 
    150 B 66743 $ ###### 
                                                                                                                     Table 2 

Figure (7.5) the new two tables of (1NF) 
 

http://databases.about.com/library/glossary/bldef-column.htm
http://databases.about.com/library/glossary/bldef-row.htm
http://databases.about.com/library/glossary/bldef-primarykey.htm


Database Design – Second Course 
 

7 
 

 
2: Second Normal Form (2NF) 

A table that has a concatenated primary key, each column in the table that is not part of the 
primary key must depend upon the entire concatenated key for its existence. If any column only 
depends upon one part of the concatenated key, then we say that the entire table has failed 
Second Normal Form and we must create another table to rectify the failure 
 
We looks at the tables with a primary key made from many fields, for each non key fields that do 
not depends of the primary key (with all the fields of the primary key), this non key fields must be 
separated in another table.  
Table 1 of figure (7.5) have a primary key with single fields, this mean it is in (2NF). 
 
Table 2 of figure (7.5) , field BALANCE depends on both the fields of the primary key, because each 
balance we must know the person and the account for it. 
 
But  “ACCOUNT NOTS” depends only on the second field (Account Type) because the not of the 
account is the same for all the persons . 
 
Figure (7.6) shows the (2NF) 
 
 
 
Person ID Name City Name City Number 
123 Nader Baghdad 1 
150 Muna Basra 2 
Table 1 with no change 
 
Person ID Account Type Balance  Account 

Type 
Account 
Notes 

123 A 4556 $  A ****** 
123 B 7654 $  B ###### 
123 C 1287 $  C &&&&& 
150 A 654 $         Table 3 
150 B 66743 $    
                  Table 2                            
                                    
                                       Table 2 of figure (7.5) is separated into two tables 
 
                                          Figure (7.6)  the Second Normal Form (2NF) 

 
 

 

 



Database Design – Second Course 
 

8 
 

 

3 : Third Normal Form (3NF) 

Third normal form (3NF) is to remove columns that are not dependent upon the primary key. This 
means we look at the non key fields and try to find a relation between them. 
 
Table 2 and table 3 of figure (7.6) are in the (3NF). But table 1 is not. 
 
In table 1 we find that  City Number depends on City Name , not on the key. We separate these 
two fields on a table and link this new table with the exist one as shown in figure (7.7) 
 
 
 
 

Person ID Name City Number  City Number City Name 
123 Nader 1  1 Baghdad 
150 Muna 2  2 Basra 

 
The new two tables in (3NF) of table1 of figure (7.6) 

 
Figure (7.7) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Database Design – Second Course 
 

9 
 

 
Example: Find the appropriate tables in 3NF for the following inventory form 
 
 
Store Inventory form 
 
   Store No : 
   Store Address : 
  Date of inventory : 
 
 

Part No. Description Location Quantity 
    
    
    
 
Solution: 
First we must find the unnormalized  table : 
 
Store no Store address Date of 

inventory 
Location Part No Desc Qty 

     
 

1- The 1NF  will be: 
 
Table 1                                                          Table 2 
Store 
no 

Store 
address 

Date of 
inventory  

 Store 
no 

Location Part No Desc Qty 

Primary                                                               Primary  Key  
Key 
 

2- The  2NF  : (non-key fields depends on Key-field) 
Table 1 of 1Nf is the  2NF with no change.  
Table 2 has the following problem: when we look at the non-key fields, we find that two 
fields (Part No) and  (Qty) depends on the entire primary key, but (Desc) don’t depend on 
any part of the primary key. instead (Desc) depends on non-key field (Part No). 
 
 
 



Database Design – Second Course 
 

10 
 

The 2Nf will be 
 
Table 1 
Store no Store address Date of inventory  
Primary Key 
 
(table 2 of 1NF will be) 
 
 Table 2 on 2NF                                                                                Table 3 of  2NF 
Store no Location Part No Qty  Part No Desc 
       Primary   Key                                                               Primary Key 

 
 
 
 

3- The 3NF : (Non-key field depends on non-key field) 
 
3NF is the same as 2NF. 

 
Problem : look at table 1 of 3NF (or 2NF) , if any store have many inventory bill, each bill 
with a deferent date. In table 1 , we must sore a record for each date and repeat the store 
no and the address . This is a problem. 
It is better to split table 1 into two tables as bellow : 
 
Table  1-1                         Table 1-2 
Store no Store address  Store no Date of inventory 
  
Another problem arise  : in table 2 how we will know each record belong to which date, 
i.e. how we shall link table 2 with table  1-2 ? 
 
 

 

 

 

 

When we splits (Desc) on a new 
table 3 , we put with it (Part No) 
to connect it with table 2  



Database Design – Second Course 
 

11 
 

 

CHAPTER17 ( Database System Concepts) 
 
Database-System Architectures 
 
The architecture of a database system is greatly influenced by the underlying 
computer system on which it runs, in particular by such aspects of computer 
architecture as networking, parallelism, and distribution: 
 
• Networking of computers allows some tasks to be executed on a server system and 
some tasks to be executed on client systems. This division of work has led to client–
server database systems. 
 
• Parallel processing within a computer system allows database-system activities to 
be speeded up, allowing faster response to transactions, as well as more transactions 
per second. Queries can be processed in a way that exploits the parallelism offered 
by the underlying computer system. The need for parallel query processing has led 
to parallel database systems. 
 
• Distributing data across sites in an organization allows those data to reside where 
they are generated ormost needed, but still to be accessible from other sites and from 
other departments. Keeping multiple copies of the database across different sites 
also allows large organizations to continue their database operations even when one 
site is affected by a natural disaster, such as flood, fire, or earthquake. Distributed 
database systems handle geographically or administratively distributed data spread 
across multiple database systems. 
We study the architecture of database systems in this chapter, starting with the 
traditional centralized systems, and covering client–server, parallel, and distributed 
database systems. 
 
17.1 Centralized and Client–Server Architectures 
Centralized database systems are those that run on a single computer system and do 
not interact with other computer systems. Such database systems span a range from 
single-user database systems running on personal computers to high-performance 
database systems running on high-end server systems. Client–server systems, on the 
other hand, have functionality split between a server system and multiple client 
systems. 
 



Database Design – Second Course 
 

12 
 

17.1.1 Centralized Systems 
 

A modern, general-purpose computer system consists of one to a few processors and 
a number of device controllers that are connected through a common bus that 
provides access to shared memory (Figure 17.1). 
  

The processors have local cache memories that store local copies of parts of the memory, to 
speed up access to data. Each processor may have several independent cores, each of 
which can execute a separate instruction stream. Each device controller is in charge of a 
specific type of device (for example, a disk drive, an audio device, or a video display). 
The processors and the device controllers can execute concurrently, competing for memory 
access. Cache memory reduces the contention for memory access, since it reduces the 
number of times that the processor needs to access the shared memory. 
 

We distinguish two ways in which computers are used: as single-user systems and 
as multiuser systems. Personal computers and workstations fall into the first 
category. A typical single-user system is a desktop unit used by a single person, 
usually with only one processor and one or two hard disks, and usually only one 
person using the machine at a time. A typical multiuser system, on the other hand, 
has more disks and more memory and may have multiple processors. It serves a 
large number of users who are connected to the system remotely. 
 
Database systems designed for use by single users usually do not provide many of 
the facilities that a multiuser database provides. In particular, they may not support 
concurrency control, which is not required when only a single user can generate 
updates.  
 
Provisions for crash recovery in such systems are either absent or primitive—for example, 
they may consist of simply making a backup of the database before any update. Some such 
systems do not support SQL, and they provide a simpler query language, such as a variant 
of QBE. In contrast,  
 

 
 
                               Figure 17.1 A centralized computer system. 



Database Design – Second Course 
 

13 
 

17.1 Centralized and Client–Server Architectures 771 
database systems designed for multiuser systems support the full transactional features that 
we have studied earlier. 
Although most general-purpose computer systems in use today have multiple processors, 
they have coarse-granularity parallelism, with only a few processors (about two to four, 
typically), all sharing the main memory. Databases running on such machines usually do 
not attempt to partition a single query among the processors; instead, they run each query 
on a single processor, allowing multiple queries to run concurrently. Thus, such systems 
support a higher throughput; that is, they allow a greater number of transactions to run per 
second, although individual transactions do not run any faster. 
Databases designed for single-processor machines already provide multitasking, allowing 
multiple processes to run on the same processor in a time-shared manner, giving a view to 
the user of multiple processes running in parallel. Thus, coarse-granularity parallel 
machines logically appear to be identical to single processor machines, and database 
systems designed for time-shared machines can be easily adapted to run on them. 
In contrast, machines with fine-granularity parallelism have a large number of 
processors, and database systems running on such machines attempt to parallelize single 
tasks (queries, for example) submitted by users. We study the architecture of parallel 
database systems in Section 17.3.  
Parallelism is emerging as a critical issue in the future design of database systems. Whereas 
today those computer systems with multicore processors have only a few cores, future 
processors will have large numbers of cores.1 As a result, parallel database systems, which 
once were specialized systems running on specially designed hardware, will become the 
norm. 
 
17.1.2 Client–Server Systems 
As personal computers became faster, more powerful, and cheaper, there was a shift 
away from the centralized system architecture. Personal computers supplanted 
terminals connected to centralized systems.  
 
Correspondingly, personal computers assumed the user-interface functionality that used to 
be handled directly by the centralized systems. As a result, centralized systems today act as 
server systems that satisfy requests generated by client systems.  
 
Figure 17.2 shows the general structure of a client–server system.  
 
Functionality provided by database systems can be broadly divided into two parts—
the front end and the back end. The back end manages access structures, query 
evaluation and optimization, concurrency control, and recovery. The front end of a 
database system consists of tools such as the SQL user interface, forms interfaces, 
report generation tools, and data mining and analysis tools (see Figure 17.3). The 
interface between the front end and the back end is through SQL, or through an 
application program. 
 
 



Database Design – Second Course 
 

14 
 

 
 

 
 
 
                   Figure 17.2 General structure of a client–server system. 
 
Standards such as ODBC and JDBC,whichwe saw inChapter 3,were developed to interface 
clients with servers. Any client that uses the ODBC or JDBC interface can connect to any 
server that provides the interface. Certain application programs, such as spreadsheets and 
statistical-analysis packages, use the client–server interface directly to access data from a 
back-end server. In effect, they provide front ends specialized for particular tasks. Systems 
that deal with large numbers of users adopt a three-tier architecture, which we saw earlier 
in Figure 1.6 (Chapter 1), where the front end is a Web browser that talks to an application 
server. The application server, in effect, acts as a client to the database server. 
Some transaction-processing systems provide a transactional remote procedure 
call interface to connect clients with a server. These calls appear like ordinary procedure 
calls to the programmer, but all the remote procedure calls from a client are enclosed in a 
single transaction at the server end. Thus, if the transaction aborts, the server can undo the 
effects of the individual remote procedure calls. 
17.2 Server System Architectures 
Server systems can be broadly categorized as transaction servers and data servers. 
 
 

 
 
                        Figure 17.3 Front-end and back-end functionality. 
 

 



Database Design – Second Course 
 

15 
 

17.2.3 Cloud-Based Servers 
Servers are usually owned by the enterprise providing the service, but there is an increasing 
trend for service providers to rely at least in part upon servers that are owned by a “third 
party” that is neither the client nor the service provider. One model for using third-party 
servers is to outsource the entire service 
to another company that hosts the service on its own computers using its own 
software. This allows the service provider to ignore most details of technology 
and focus on the marketing of the service. 
Another model for using third-party servers is cloud computing, in which the service 
provider runs its own software, but runs it on computers provided by another company. 
Under this model, the third party does not provide any of the application software; it 
provides only a collection of machines. These machines are not “real” machines, but rather 
simulated by software that allows a single real computer to simulate several independent 
computers. Such simulated machines are called virtual machines. The service provider 
runs its software (possibly including a database system) on these virtual machines. A major 
advantage of cloud computing is that the service provider can add machines as needed to 
meet demand and release them at times of light load. This can prove to be highly cost-
effective in terms of both money and energy. 
Athird model uses a cloud computing service as a data server; such cloud-based data 
storage systems are covered in detail in Section 19.9. Database applications using cloud-
based storage may run on the same cloud (that is, the same set of machines), or on another 
cloud. The bibliographical references provide more information about cloud-computing 
systems. 
 
17.3 Parallel Systems 
Parallel systems improve processing and I/O speeds by using multiple 
processors and disks in parallel. Parallel machines are becoming increasingly 
common, making the study of parallel database systems correspondingly more 
important. The driving force behind parallel database systems is the demands 
of applications that have to query extremely large databases (of the order of 
terabytes—that is, 1012 bytes) or that have to process an extremely large 
number of transactions per second 
(of the order of thousands of transactions per second). Centralized and client–
server database systems are not powerful enough to handle such applications. 
In parallel processing, many operations are performed simultaneously, as 
opposed to serial processing, in which the computational steps are performed 
sequentially. 
 
 
Acoarse-grain parallelmachine consists of a small number of powerful processors; a 
massively parallel or fine-grain parallel machine uses thousands of smaller processors. 



Database Design – Second Course 
 

16 
 

Virtually all high-end machines today offer some degree of coarse-grain parallelism: at 
least two or four processors.  
 
Massively parallel computers can be distinguished from the coarse-grain parallelmachines 
by the much larger degree of parallelism that they support. Parallel computers with 
hundreds of processors and disks are available commercially. 
 
There are two main measures of performance of a database system:  
(1) throughput, the number of tasks that can be completed in a given time interval, 
and 
 (2) response time, the amount of time it takes to complete a single task from the 
time it is submitted. A system that processes a large number of small transactions 
can improve throughput by processing many transactions in parallel. A system that 
processes large transactions can improve response time as well as throughput by 
performing subtasks of each transaction in parallel. 
 
 
17.3.1 Speedup and Scaleup 
Two important issues in studying parallelism are speedup and scaleup. Running 
a given task in less time by increasing the degree of parallelism is called speedup. 
Handling larger tasks by increasing the degree of parallelism is called scaleup. 
Consider a database application running on a parallel system with a certain 
number of processors and disks. Now suppose that we increase the size of the 
system by increasing the number of processors, disks, and other components of 
the system. The goal is to process the task in time inversely proportional to the 
number of processors and disks allocated. Suppose that the execution time of a 
task on the larger machine is TL , and that the execution time of the same task on 
the smaller machine is TS. The speedup due to parallelism is defined as TS/TL. The 
parallel system is said to demonstrate linear speedup if the speedup is N when 
the larger system has N times the resources (processors, disk, and so on) of the 
smaller system. If the speedup is less than N, the system is said to demonstrate 
sublinear speedup. Figure 17.5 illustrates linear and sublinear speedup. 
Scaleup relates to the ability to process larger tasks in the same amount of time 
by providing more resources. Let Q be a task, and let QN be a task that is N times 
bigger than Q. Suppose that the execution time of task Q on a given machine 
linear speedup 
sublinear speedup 
resources 
speed 
 
 
 
 
 



Database Design – Second Course 
 

17 
 

17.3.3.4 Hierarchical 
The hierarchical architecture combines the characteristics of shared-memory, shared-
disk, and shared-nothing architectures. At the top level, the system consists of nodes that 
are connected by an interconnection network and do not share disks or memory with one 
another. Thus, the top level is a shared-nothing architecture. 
 
Each node of the system could actually be a shared-memory system with a few processors. 
Alternatively, each node could be a shared-disk system, and each of the systems sharing a 
set of disks could be a shared-memory system. Thus, a system could be built as a hierarchy, 
with shared-memory architecture with a few processors at the base, and a shared-nothing 
architecture at the top, with possibly a shared-disk architecture in the middle. Figure 17.8d 
illustrates a hierarchical architecture with shared-memory nodes connected together in a 
shared-nothing architecture. Commercial parallel database systems today run on several of 
these architectures. 
Attempts to reduce the complexity ofprogramming such systems have yielded distributed 
virtual-memory architectures, where logically there is a single shared memory, but 
physically there are multiple disjoint memory systems; the virtual memory-mapping 
hardware, coupled with system software, allows each processor to view the disjoint 
memories as a single virtual memory. Since access speeds differ, depending on whether the 
page is available locally or not, such anarchitecture is also referred to as a nonuniform 
memory architecture (NUMA). 
 
17.4 Distributed Systems 
 
In a distributed database system, the database is stored on several computers. The 
computers in a distributed system communicate with one another through various 
communication media, such as high-speed private networks or the Internet. They do not 
share main memory or disks.  
 
The computers in a distributed system may vary in size and function, ranging from 
workstations up to mainframe systems. 
The computers in a distributed system are referred to by a number of different 
names, such as sites or nodes, depending on the context in which they are mentioned. 
We mainly use the term site, to emphasize the physical distribution of these systems. The 
general structure of a distributed system appears in Figure 17.9. 
 
The main differences between shared-nothing parallel databases and distributed databases 
are that distributed databases are typically geographically separated, are separately 
administered, and have a slower interconnection. Another major difference is that, 
 
 in a distributed database system, we differentiate between local and global 
transactions. A local transaction is one that accesses data only from sites where the 
transaction was initiated. A global transaction, on the other hand, is one that either 
accesses data in a site different from the one at which the transaction was initiated, 
or accesses data in several different sites. 



Database Design – Second Course 
 

18 
 

 
 

 
 
                                 Figure 17.9 A distributed system. 
 
 
There are several reasons for buildingdistributeddatabase systems, including 
sharing of data, autonomy, and availability. 
• Sharing data. Themajor advantage inbuilding a distributeddatabase system 
is the provision of an environment where users at one site may be able to 
access the data residing at other sites. For instance, in a distributeduniversity 
system, where each campus stores data related to that campus, it is possible 
for a user in one campus to access data in another campus. Without this 
capability, the transfer of student records fromone campus toanother campus 
would have to resort to some external mechanism that would couple existing 
systems. 
• Autonomy. The primary advantage of sharing data by means of data distribution 
is that each site is able to retain a degree of control over data that 
are stored locally. In a centralized system, the database administrator of the 
central site controls the database. In a distributed system, there is a global 
database administrator responsible for the entire system. A part of these responsibilities 
is delegated to the local database administrator for each site. 
Depending on the design of the distributed database system, each administratormay 
have a different degree of local autonomy. The possibility of local 
autonomy is often a major advantage of distributed databases. 
• Availability. If one site fails in a distributed system, the remaining sites may 
be able to continue operating. In particular, if data items are replicated in 
several sites, a transaction needing a particular data itemmay find that item 
in any of several sites. Thus, the failure of a site does not necessarily imply 
the shutdown of the system. 



Database Design – Second Course 
 

19 
 

 
9 Transactions 

9.1 : Definition :A transaction is unit of program execution that accesses and possibly updates  
         various data items. 
Often a collection of several operations on the database is considered to be a single unit from the 
point of view of the user. For example a transfer of funds from  a checking account to a saving 
account is a single operation for the user , but for the database it comprise several operations. 
A database system must ensure proper execution of transaction, either the entire transaction is 
executed or none of it does. 
 To ensure integrity of the data, the database system maintains the following properties of the 
transaction: 

1- Atomicity : either all operations of the transaction are executed of none are. 
2- Consistency : execution of the transaction in isolation to preserve the consistency of the 

database 
3- Isolation : if there are two transaction Ta  and  Tb  ; it appear for  Ta  that  Tb either 

finished before  Ta  started ,  or  Tb  start execution after  Ta  finished. 
Thus each transaction unaware of other transactions executing concurrently in the 
system. 

4- Durability : after a transaction completes successfully , the change it has made to the 
database persist even if there are a system failures. 

For example , access to the database is accomplished by the two operation: 

 Read (X)  : is to read X from the database to a local buffer belonging to the transaction. 
 Write (X) : is to write X  to the database from the local buffer. 

        Let  Ta  be a transaction that transfer  50$ from account  A  to  account  B as follow: 

        Ta :  Read(A) 
                A=A – 50; 
                Write (A) 
                Read(B) 
                B=B + 50; 
                Write(B) 
 

Let us consider Atomicity : the database system keeps track (on disk) of the old values of any data 
on which a transaction performs a write, and if the transaction does not complete its execution, 
the old value is restored to make it appear as though the transaction never executed. 

Let us consider Consistency : the consistency required here is the sum of A and  B be unchanged. 

Without this consistency, money could be created or destroyed by the transaction. If the database 
is consistent before the execution of the transaction then the database must remain consistent 
after the execution of the transaction. 



Database Design – Second Course 
 

20 
 

Let us consider Durability : we assume that system failure may result of losing data in main 
memory but data written to disk are never lost. We can guarantee durability by: 

1- The update carried by the transaction have been written to disk before the 
transaction completes. 

2- There are sufficient Information about the update to enable the database to 
reconstruct the update when the system is restarted after the failure. 

Let us consider Isolation : while executing the Ta  transaction , the Ta transaction execute the third  
statement (Write (A))  and before executing the last statement (Write (B)), another transaction Tb  
read the values of  A and B , and calculate the sum ( A+B ), then the consistency of transaction Tb  
will discover  an error of the values of  A and B. 

The solution of the problem of concurrently execution  is to execute the transaction in sequence, 
one after another. 

 9.2 : Implementation of atomicity and durability 

The recovery-management system is the one responsible of atomicity and durability. One 
way to implement them is to use a copy of the database, and a pointer that point at the current 
copy as shown in figure (9.1). 

 

 

 

 

 

 

 

 

 

If a transaction want to update the database , all updates are done on the copy database. If an 
error occur during the execution of the transaction then the copy is deleted and the system return 
to the original database.   

 

 

 

 

 

 

 

Figure (9.1) 

Copy the database for Atomicity and Durability 

 

Original DB Copy of the  
DB 

Pointer 



Database Design – Second Course 
 

21 
 

9.3  :  Concurrent Execution 

Transaction processing system usually allow multiple transaction to run concurrently. When 
several transaction run concurrently, database consistency can be destroyed. 

The database system must control the interaction among the concurrent transaction to prevent 
them from destroying the consistency of the database. 

As an example , consider a banking system which has several accounts, and a set of transactions 
that access and updates these accounts. 

Let  T1  and  T2 be two transactions that transfer funds from one account to another, they can be 
executed one after another  T1  then  T2  as shown in figure (9.2)  or  T2  then  T1  as shown in 
figure  (9.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T1 T2 
Read(A) 
A=A-50 
Write(A) 
Read (B) 
B=B+50 
Write (B) 

 

 Read (A) 
temp=A * 0.1 
A=A-temp 
Write (A) 
Read(B) 
B=B+temp 
Write(B) 

 

Figure (9.2) 
Execution of T1 then T2 



Database Design – Second Course 
 

22 
 

 

 

 

 

 

 

 

 

 

 

 

When several transactions are executed concurrently , the system may execute one transaction 
for a little while , then switch to another transaction and execute it for a while then switch back to 
the first one, and so on as shown in figure (9.4) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T1 T2 
 Read (A) 

temp=A * 0.1 
A=A-temp 
Write (A) 
Read(B) 
B=B+temp 
Write(B) 

Read(A) 
A=A-50 
Write(A) 
Read (B) 
B=B+50 
Write (B) 

 

 

Figure (9.3) 
Execution of T2 then T1 

 

T1 T2 
Read(A) 
A=A-50 
Write(A) 
 

 

 Read (A) 
temp=A * 0.1 
A=A-temp 
Write (A) 
 

Read (B) 
B=B+50 
Write (B) 

 

 Read(B) 
B=B+temp 
Write(B) 

Figure (9.4) 
Execution of two transaction 



Database Design – Second Course 
 

23 
 

10 : Database Security 

10.1 : Introduction 
 
There is a need  to secure computer systems ,and securing data must be part of an overall computer 
security plan. Growing amounts of sensitive data are being retained in databases and more of these 
databases are being made accessible via the Internet. As more data is made available electronically, 
it can be assumed that threats and vulnerabilities to the integrity of that data will increase as well. 
 

10.2 : Security objective  

The primary objectives of database security are: 

 Confidentiality : access control 
 Integrity :  data corruption  
 Availability :  

 

To preserve the data confidentiality, enforcing access control policies on the data, these policies are 
defined on the database management system (DBMS).  Access control is to insure that only 
authorized users perform authorized activities at authorized time. 

There are two points of concern in access control: 

- Authentication 
- Authorization 

To preserve data integrity, we must guaranty that the data cannot be corrupted in an invisible way. 

Availability property is to ensure timely and reliable access to the database. 

10.3 Access control 

Access control is the process by which rights and privileges are assigned to users and database 
objects. Database objects include tables, views, rows and columns. To ensure proper access to the 
data, authentication and authorization are applied. 

Authentication is the process by which you verify that someone is who they claim they are. This 
usually involves a user name and a password, but can include any other method of demonstrating 
identity, such as a smart card, voice recognition or fingerprints. 

Authentication is equivalent to showing your driver license or your ID. 

Authorization is finding out that the person, once identified , is permitted to have the resource. This 
is usually determined by finding out if that person has paid admission or has a particular level of 
security clearness.  



Database Design – Second Course 
 

24 
 

 Authorization is equivalent to checking your name in a list of names, or checking your ticket for 
something. 

For Example, student A may be given login rights to the university database with authorization 
includes read only for the course listing data table.  

10.4 Database encryption 

Application data security has to deal with several security threats and issues beyond hose handle by 
SQL authorization. For example , data must be protected while they are being transmitted, data may  
need be protected from intruders. 

Encryption is the process of  transferring a clear text (plain text) into disguised  text (cipher text) by 
using a key. Decryption is the process to transfer the cipher text back to plain text  as shown in 
figure 10.1 

 

 

 

 

 

 

 

 

 

 

Database encryption refers to the use of encryption techniques to transform a plain text into 
encrypted database, thus making it unreadable to anyone except those who possess the knowledge 
of the encryption.  

The purpose of database encryption is to ensure the database opacity by keeping the information 
hidden to any unauthorized persons. Even if someone get through and bypass the access control 
policies , he/she still unable to  read the encrypted database.   

There are a vast number of techniques for the encryption of data. An example for simple encryption 
techniques is to substitute of each character with the next character in the alphabet. For example   
'Perryridge'  becomes 'Qfsszsjehf'. 

 

Plain text                                          Cipher text 

 

 

                                            

Cipher text                                         Plain text 
 
 
 
 
 

Figure  10.1 
Encryption and Decryption 

Encryption 

Ke

Decryption 

Ke



Database Design – Second Course 
 

25 
 

 

A good encryption techniques has the following properties: 

1- It is relatively simple for authorized users to encrypt and decrypt data. 
2- It depends not on the security of the algorithm, but rather on a parameter of the 

algorithm called the encryption key. 
3- Its encryption key is extremely difficult for an intruder to determine. 

10.5 Database encryption level 

10.5.1 Application-Level Encryption: 

When you encrypt information at the application level, you can protect sensitive data. In many 
ways the application is the obvious place to encrypt and decrypt data because the application knows 
exactly which data is sensitive and can apply protection selectively. 
You can task a given application with encrypting its own data. This encryption capability is 
designed into the application itself. By the time the database receives the data, it has already been 
encrypted and then stored in the database in this encrypted state. As the traffic travels from the 
application to the database, the data can also be encrypted across the network. 
 
 
10.5.2 Database Encryption  Level: 
 
In this case the information is encrypted in the database. As an example, we’ll discuss Oracle 
Advanced Security’s transparent data encryption (TDE), which automatically encrypts and 
decrypts the data stored in the database and provides this capability without having to write 
additional code. 
With TDE, the encryption process and associated encryption keys are created and managed by the 
database. This is transparent to database users who have authenticated to the database. At the 
operating system, however, attempts to access database files return data in an encrypted state. 
Therefore, for any operating system level users, the data remains inaccessible. Additionally, 
because the database is doing the encryption, there is no need to change the application(s), and 
there is a minimal performance overhead when changes occur in the database. TDE is designed into 
the database itself: Oracle has integrated the TDE syntax with its data definition language (DDL). 
If you encrypt on the database, that means the data is sent to and from the database in unencrypted 
form. This potentially allows for snooping/tampering between the application and the encryption 
routines on the database. 
 
 
 
 
 
 
 
 
 
 



Database Design – Second Course 
 

26 
 

 
11 : Fundamental of relational algebra: 
Relational algebra consists of a set of operations that takes one or two relations as input and 
produce a new relation as their result. In the relational algebra, symbols are used to denote an 
operation. 

 For SELECT we use the sigma letter σ . The relation(table name) is written in parentheses: 
Select  * from Loan where B_name="Perryridge: 
will be :  σ B_name="Perryridge (Loan) 
 

 For projection we use the pi letter π . projection mean select some fields from the table , 
not all the fields. 
If we have : Student (S-Id,S-Name,S-Address) 
    To display only the names  Select S-Name from student 
    will be  : π S-Name (Student) 
 

 Selection (σ) and Projection (π) can be used together to select some of the fields with a 
condition. 
To display only the names whose address in Baghdad from student table: 

 Select S-Name from student where S-Address='Baghdad' 

Will be : π S-Name (σ s-address='Baghdad' (Student) ) 
 

 Cartesian product (Cross Join) between two tables denoted by  X. 
It is used to combine information from any two relations. It will produce a tuple from each 
possible pair of tuples: one from the first table and one from the second.  
 

Ex 1 :  To Cross Join  between  Student and Class ; with the condition  only for level 2 
   σ  LVL=2 (Student X Class) 

Example  2:   we have two tables as shown in figure (11.1) 

 

 

 

 

 

 

 

                      tables1 :                                                                                         tables2 : 
                Loan (loan-no ,branch-name, amount)                                        Borrower (customer-name, loan-number) 

loan-no Branch-name amount  Customer-name Loan-number 
L-11 Round hill 900  Adams L-16 
L-14 Downtown 1500  Curry L-93 
L-15 Perryridge 1500  Hayes L-15 
L-16 Perryridge 1300  Jackson L-14 
L-17 Downtown 1000  Jones L-17 
L-23 Redwood 2000  Smith L-11 
L-93 Minus 500  Smith L-23 
    Williams L-17 

 

                                                                           Figure (11.1) 



Database Design – Second Course 
 

27 
 

If we want to know the names of all customers who have a lone at the Perryridge branch. So if we 
write :     σ branch-name=' Perry ridge' (Borrower X Loan)    ; the result of this cross join shown in figure 
(11.2). 

customer-name Borrower. loan-number Loan. loan-number branch-name amount 
Adams L-16 L-15 Perry ridge 1500 
Adams L-16 L-16 Perry ridge 1300 
Curry L-93 L-15 Perry ridge 1500 
Curry L-93 L-16 Perry ridge 1300 
Hayes L-15 L-15 Perry ridge 1500 
Hayes L-15 L-16 Perry ridge 1300 
Jackson L-14 L-15 Perry ridge 1500 
Jackson L-14 L-16 Perry ridge 1300 
Jones L-17 L-15 Perry ridge 1500 
Jones L-17 L-16 Perry ridge 1300 
Smith L-11 L-15 Perry ridge 1500 
Smith L-11 L-16 Perry ridge 1300 
Smith L-23 L-15 Perry ridge 1500 
Smith L-23 L-16 Perry ridge 1300 
Williams L-17 L-15 Perry ridge 1500 
Williams L-17 L-16 Perry ridge 1300 

Figure (11.2) 
the result of cross join σ branch-name=' Perry ridge' (Borrower X Loan) 

 

THE RESULT IS NOT RIGHT!!. 
 
The Cross Join links every record from Borrower with all the records of Loan who have Perry ridge 
in branch-name.    
The correct answer will be :   
         σ borrower. loan-number=loan.loan-number  ( σ branch-name=' Perry ridge' (Borrower X Loan)  ) 
 

Adams L-16 L-16 Perry ridge 1300 
Hayes L-15 L-15 Perry ridge 1500 

 
 
 
 
 
 
 
 
 
 



Database Design – Second Course 
 

28 
 

 
 The natural join operation  

It allows us to combine certain selections and a Cartesian product into one operation.  It is 
denoted by the join symbol   (⋈). The natural join operation do the following: 
- Cartesian product of its arguments  ( ex: two tables) 
- Perform selection forcing equality on those attributes that appear in both tables. 
- Remove duplicate attributes. 
 

Example 11.1: Consider the borrower and loan tables in figure (11. 1 ), to find the names 
of all customers who have a loan at the bank, and find the amount of the loan: 

 
Π customer-name,loan-number,amount(borrower  ⋈  loan) 
 

Because borrower and loan tables both have the attribute loan-number, the natural 
join operation considers only pairs of tuples from the two tables that have the same 
value on loan-number. The result will be as shown in figure (11.3) : 
 
 
 
 
 
 
 
  
 
 

 
 

Example 11.2 : Notes:  the natural join  usually required that the two relations  must have at least 
one common attribute, but if this constraint is omitted, and  the two relations have no common 
attributes, then the natural join becomes exactly the Cartesian product as shown in figure (11.4) 

Car 

CarModel CarPrice 

CarA 20,000 

CarB 30,000 
 

Boat 

BoatModel BoatPrice 

Boat1 10,000 

Boat2 40,000 
 

Car  ⋈ Boat 
CarModel CarPrice BoatModel BoatPrice 

CarA 20,000 Boat1 10,000 

CarA 20,000 Boat2 40,000 

CarB 30,000 Boat1 10,000 

CarB 30,000 Boat2 40,000 
 

                                                                    Figure  (11.4)  
                     Natural join becomes a cross join because there are no common attribute 

 

Customer-name Loan-number amount 
Adams L-16 1300 
Curry L-93 500 
Hayes L-15 1500 
Jackson L-14 1500 
Jones L-17 1000 
Smith L-11 900 
Smith L-23 2000 
Williams L-17 1000 

Figure (11.3) 
The result of natural join  Π customer-name,loan-number,amount(borrower  ⋈  loan) 



Database Design – Second Course 
 

29 
 

Example 11.3 : find the names of all branches with customers who have an account in the 
bank and who live in Harrison for the relations shown in figure (11.5). 
 
 
 
 
 
 

               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The result will be : Πbranch-name(σcustomer-city='Harrison'(customer ⋈  account ⋈  depositor)) 
     

Branch-name 
Perryridge 
Brighton 

 

 

Customer relation 
Customer-name Customer-street Customer-city 
Adams Spring Pittsfield 
Brooks Senator Brooklyn 
Curry North Rye 
Glenn Sand hill Woodside 
Green Walnut Stamford 
Hayes Main Harrison 
Johnson Alma Palo alto 
Jones Main Harrison 
Lindsay Park Pittsfield 
Smith North Rye 
Turner Putnam Stamford 
Williams Nassau Princeton 

 

Account relation 
Account-number Branch-name Balance 
A-101 Downtown 500 
A-215 Minus 700 
A-102 Perryridge 400 
A-305 Round hill 350 
A-201 Brighton 900 
A-222 Redwood 700 
A-217 Brighton 750 

 

Depositor relation 
Customer-name Account-number 
Hayes A-102 
Johnson A-101 
Johnson A-201 
Jones A-217 
Lindsay A-222 
Smith A-215 
Turner A-305 

Figure (  11.5  )   . Three Tebles 
 



Database Design – Second Course 
 

30 
 

12 : Query processing 

Query processing refers to the number of activities involved in extracting data from a database. 
The steps involved in query processing are : 

1- Parsing and translation 
2- Optimization 
3- Evaluation 

 
12.1- Parsing and translation 

Before query processing can begin, the system must translate the query into a usable form. A 
language such as SQL is suitable for human use , but it is not suitable for the internal 
representation of the query in the system, thus the query must translated into its internal form, 
and this is the work of the PARSER. 
The PARSER  check for : 

 The syntax of the query 
 The relation names appearing in the query are exist in the database 
 Generate the relational-algebra expression. 

 
 
12.2- Optimization 
The query optimizer is the component of a database management system that attempts to 
determine the most efficient way to execute a query. 
The optimizer considers the possible query plans for a given input query, and attempts to 
determine which of those plans will be the most efficient. [A query plan (or query execution plan) 
is an ordered set of steps used to access or modify information in a database.] 
 Cost-based query optimizers assign an estimated "cost" to each possible query plan, and choose 
the plan with the smallest cost.  
[Costs are used to estimate the runtime cost of evaluating the query, in terms of the number of 
I/O operations required, the CPU requirements(CPU time to execute a query), the cost of memory 
used for the query and the cost of communication (in distributed or client-server DB)] 
 
12.2-1 : Equivalent  expression 
To find the least-costly query evaluation plan, the optimizer generates alternative plan (by 
generating alternative algebra expression) that produce the same result but with deferent costs.  
The rules of equivalence are : 

 Rule (1) : Selection operations are commutative 
σ a(σb(E)) = σb(σa(E))   
 
 
 
 



Database Design – Second Course 
 

31 
 

 Rule (2): Natural Join operations are commutative 
E1  ⋈  E2  =  E2  ⋈  E1 
 

 
 
 
 
 
 

 Rule(3): Natural join operations are associative 
( E1  ⋈  E2) ⋈  E3   = E1  ⋈ (E2  ⋈  E3) 
 
 
 
 
 
 
 

 Rule(4) :The selection operation distributes over the join operation under the 
following two condition: 
a- It distribute when all the attributes in selection condition (b) involves only the 

attributes of one of the expressions (say E1) being joined. 
σb (E1 ⋈ E2) = (σb(E1)) ⋈ E2 

 
 
 
 
 

 
b- It distributes when selection condition (b1) involves only the attributes of  E1 

And  (b2) involves only the attributes of E2 

σb1^b2 (E1  ⋈ E2) = (σb1 (E1))  ⋈   (σb2 (E2)) 
 

Example 12.1 : consider the relational algebra  
                 Πcustomer-name(σbranch-city='Brooklyn'(branch ⋈ ( account ⋈  depositor))) 

This expression construct a large intermediate relation ,  branch ⋈  account ⋈  depositor. 
However we are interesting in only a few tuples  of this relation (branch in Brooklyn) and one 
attribute of the relation (customer-name).  
Since we are concerned with only tuples  those in Brooklyn in the branch relation, we do not need 
to consider those tuples that do not have branch-city="Brooklyn" from the branch relation.  

               ⋈                               ⋈ 

          E1       E2                  E2           E1 

                    ⋈                                      ⋈ 

              ⋈       E3                         E1            ⋈ 

        E1        E2                                         E2         E3 

                    σ b                                                     ⋈ 

               ⋈                              σ b             E2  

    E1               E2                              E1 



Database Design – Second Course 
 

32 
 

By reducing the number of tuples of the branch relation that we need to access, we reduce the 
size of  the intermediate  result. By using rule (4.a) our query is now represented by the relational 
expression: (figure 12.1) 
                 Πcustomer-name((σbranch-city='Brooklyn'(branch))  ⋈ ( account ⋈  depositor)) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Example12. 2: We have three relations 
              Branch (branch-name,branch-city,assets) 
             Account (account-number,branch-name,balance) 
             Depositor (customer-name,account-number) 
To find customer names in Brooklyn and have balance over 1000$. The relational algebra is: 
            Π customer-name(σbranch-city='Brooklyn' ^ balance>1000 (branch ⋈ ( account ⋈ depositor))) 
 We cannot apply rule (4)  directly because the condition involves attributes of both the branch 

and account relations. We can apply rule (3) to transform the join (branch ⋈ ( account ⋈  
depositor)) 

Into  (branch ⋈ account ) ⋈  depositor) : 

         Π customer-name(σbranch-city='Brooklyn' ^ balance>1000 ((branch ⋈  account)  ⋈  depositor) ) 
Then using rule (4.a) to take depositor relation out from the condition: 
         Π customer-name((σbranch-city='Brooklyn' ^ balance>1000 (branch ⋈  account))  ⋈  depositor) 
 

Then using rule (4.b) : 
        Π customer-name( (σbranch-city='Brooklyn'  branch  ⋈ σ balance>1000  account)  ⋈  depositor) 
 
 
 
 
 

                            Πcustomer-name                                           Πcustomer-name  

                   σbranch-city='Brooklyn'                                                 ⋈ 

                                           ⋈                                     σbranch-city='Brooklyn'               ⋈ 

             Branch                ⋈                       branch             account     depositor   

                                 Account    depositor  

                     Initial expression tree                       Transformed expression tree 

     

                                                              Figure ( 12.1 ) 
                                                  Expression transformation 



Database Design – Second Course 
 

33 
 

12.2-2 : Disk I/O cost 
In the database, the cost to access data from disk is important, since disk accesses are slow 
compared to in memory operation. Disk access  measured by taking into account:  
 
  * Number of disk seeks ( average-seek-cost ) 
  * Number of blocks transfers from disk  ( average-block-read-cost  ) 
 
If the disk subsystem takes an average of  
 tT – seconds to transfer one block of data 
 tS – seconds for one seek (block access time) 
 
then the operation of transfers N blocks and performs S seeks would take : 
  
               N * tT + S * tS    seconds 
 
When calculating disk I/O cost, some system need one seek to transfer many block. For example if 
there are 10 blocks need to be transfer from disk to memory  with one seek , then the time will be  
tS + 10 * tT. 
 
12.2-3 :Projection Example 
 
Projections produce a result tuple for every argument tuple. Change in the output size is the 
change in the length of tuples . 
 
Let’s take a relation ‘R’ : R(a, b, c), the number of tuples in this relation are  (20,000 tuples). 
Each Tuple (190 bytes size) : header = 24 bytes, a = 8 bytes, b = 8 bytes, c = 150 bytes. 
Each Block (1024): header = 24 bytes 
We can fit 5 tuples into 1 block 

- 5 tuples * 190 bytes(size of the tuple) = 950 bytes can fit into 1 block  
- For 20,000 tuples, we would require 4,000 blocks (20,000 / 5 tuples per block) 

 
With a projection resulting in elimination of column c (150 bytes), we could estimate that each 
tuple would decrease to 40 bytes (190 – 150 bytes) 
Now, the new estimate will be 25 tuples in 1 block. (25 tuples * 40 byte= 1000) 

- 25 tuples * 40 bytes/tuple = 1000 bytes will be able to fit into 1 block  
- With 20,000 tuples, the new estimate is 800 blocks (20,000 tuples / 25 tuples per block = 

800 blocks) 
Result is reduction by a factor of 5 
 
12.3- Evaluation 
 

Query evaluation is the process of executing the plan for that query and return the result to query. 
The query-execution engine is the subsystem of the DBMS that execute the query plan. 
 


