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Chapter Four  

Data Encryption Standard (DES)  

 

Block Cipher 

Block Cipher - An encryption scheme that "the clear text is broken up into blocks 

of fixed length, and encrypted one block at a time". Usually, a block cipher 

encrypts a block of clear text into a block of cipher text of the same length. In this 

case, a block cipher can be viewed as a simple substitute cipher with character size 

equal to the block size.  

 

 

 

ECB Operation Mode - Blocks of clear text are encrypted independently. ECB 

stands for Electronic Code Book. Main properties of this mode:  

 Identical clear text blocks are encrypted to identical cipher text blocks.  

 Re-ordering clear text blocks results in re-ordering cipher text blocks.  

 An encryption error affects only the block where it occurs.  
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CBC Operation Mode - The previous cipher text block is XORed with the 

clear text block before applying the encryption mapping. Main properties of 

this mode:  

An encryption error affects only the block where is occurs and one next block.  

 

 

 

 

Cipher FeedBack (CFB) Message is treated as a stream of bits , Bitwise-

added to the output of the block cipher , Result is feedback for next stage 

(hence name) 
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Output Feedback Mode (OFM)- The block cipher is used as a stream cipher, it 

produces the random key stream. 

 

 



 

Data security lectures                                                                               Prof. Dr. Soukaena Hassan Hasheem 

 

5 
 

Product Cipher - An encryption scheme that "uses multiple ciphers in which the 

cipher text of one cipher is used as the clear text of the next cipher". Usually, 

substitution ciphers and transposition ciphers are used alternatively to construct a 

product cipher.  

 

Iterated Block Cipher - A block cipher that "iterates a fixed number of times of 

another block cipher, called round function, with a different key, called round key, 

for each iteration".  

 

Feistel Cipher - An iterate block cipher that uses the following algorithm:  
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DES Cipher - A 16-round Feistel cipher with block size of 64 bits. DES stands for 

Data Encryption Standard.  

 

Data Encryption Standard (DES) 

The Data Encryption Standard (DES), known as the Data Encryption Algorithm 

(DEA) by ANSI and the DEA-1 by the ISO, has been  most widely used block 

cipher in world, especially in financial industry. It encrypts 64-bit data, and uses 

56-bit key with 16 48-bit sub-keys. 

 

Description of  DES 

DES is a block cipher; it encrypts data in 64-bit blocks. A 64-bit block of plaintext  

goes in one end of the algorithm and a 64-bit block of ciphertext comes out  

the other end. DES is a symmetric algorithm: The same algorithm and key are used 

for both encryption and decryption (except for minor differences in the key  

schedule). 

The key length is 56 bits. (The key is usually expressed as a 64-bit number, but  

every eighth bit is used for parity checking and is ignored. These parity bits are 

the least- significant bits of the key bytes.) The key can be any 56-bit number and 

can be changed at any time. All security rests within the key. 

At its simplest level, the algorithm is nothing more than a combination of the two  

basic techniques of encryption: confusion and diffusion. The fundamental building 

block of DES is a single combination of these techniques (a substitution followed 

by a permutation) on the text, based on the key. This is known as a round. DES has 

16 rounds; it applies the same combination of techniques on the plaintext block 16 

times (see Figure 1). 
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Figure 1   DES 
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Outline of the Algorithm 

The basic process in enciphering a 64-bit data block using the DES consists of:  

 

 an initial permutation (IP)  

 16 rounds of a complex key dependent calculation f    

  final permutation, being the inverse of IP   

 

In each round (see Figure 2,3,4,5), the key bits are shifted, and then 48 bits are 

selected from the 56 bits of the key. The right half of the data is expanded to 48 

bits via an expansion permutation, combined with 48 bits of a shifted and permuted 

key via an XOR, sent through 8 S-boxes producing 32 new bits, and permuted 

again. These four operations make up Function f. The output of Function f is then 

combined with the left half via another XOR. The result of these operations 

becomes the new right half; the old right half becomes the new left half. 

If Bi is the result of the ith iteration, Li and Ri are the left and right halves of Bi, Ki 

is the 48-bit key for round i, and f is the function that does all the substituting and 

permuting and XORing with the key, then a round looks like: 

 

       Li = R j-1 

       Ri = L i-1 Xor  f (Ri-1, Ki) 
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              Figure 2   One round of DES 

 

 

 

Figure 3. 16
th
 key generation 
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Figure 4. f-function 

 

 

Figure 5. S-Boxes in F-function 
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The Initial Permutation 

The initial permutation occurs before round 1; it transposes the input block as 

described in Table 1. This table, like all the other tables in this lecture, should be 

read left to right, top to bottom. For example, the initial permutation moves bit 58 

of the plaintext to bit position 1, bit 50 to bit position 2, bit 42 to bit position 3, and 

so forth. 

The initial permutation and the corresponding final permutation do not improve 

DES's security, just make DES more complex. 

Example: 

     

   IP(675a6967 5e5a6b5a) = (ffb2194d 004df6fb) 

 

Note that all numbers are written in hexadecimal as a "short-form" version of the 

binary actually used, since 1 Hex digit = 4 Binary bits. The digit mapping is: 

0=0000 1=0001 2=0010 3=0011 4=0100 5=0101 6=0110 7=0111 

8=1000 9=1001 a=1010 b=1011 c=1100 d=1101 e=1110 f=1111  

 

 

The Key Transformation 

Initially, the 64-bit DES key is reduced to a 56-bit key by ignoring every eighth bit. 

Let us call this operation PC1.  This is described in Table 2.  

 

PC2 is the operation which reduces the 56-bits key to a 48-bits subkey  for each of 

the 16 rounds of DES. These subkeys, Ki, are determined in the following manner.  

PC1  splits the key bits into 2 halves (C and D), each 28-bits. The halves C and D 

are circularly shifted left by either one or two bits, depending on the round. This 

shift is given in Table 3. ِِAfter being shifted, 48 out of the 56 bits are selected. This 

is done by an operation called compression permutation,  it  permutes the order of 

the bits as well as selects a subsets of  bits.  Table 4 defines the compression 

permutation.  
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Example:  

  keyinit(5b5a5767, 6a56676e)  

  PC1(Key)   C=00ffd820,      D=ffec9370 

  KeyRnd01  C1=01ffb040,    D1=ffd926f0,    PC2(C,D)=(38 09 1b 26 2f 3a 27 0f) 

  KeyRnd02  C2=03ff6080,    D2=ffb24df0,    PC2(C,D)=(28 09 19 32 1d 32 1f 2f) 

  KeyRnd03  C3=0ffd8200,    D3=fec937f0,   PC2(C,D)=(39 05 29 32 3f 2b 27 0b) 

  KeyRnd04  C4=3ff60800,    D4=fb24dff0,    PC2(C,D)=(29 2f 0d 10 19 2f 1d 3f) 

  KeyRnd05  C5=ffd82000,    D5=ec937ff0,   PC2(C,D)=(03 25 1d 13 1f 3b 37 2a) 

  KeyRnd06  C6=ff608030,    D6=b24dfff0,    PC2(C,D)=(1b 35 05 19 3b 0d 35 

3b) 

  KeyRnd07  C7=fd8200f0,    D7=c937ffe0,   PC2(C,D)=(03 3c 07 09 13 3f 39 3e) 

  KeyRnd08  C8=f60803f0,    D8=24dfffb0,    PC2(C,D)=(06 34 26 1b 3f 1d 37 38) 

  KeyRnd09  C9=ec1007f0,   D9=49bfff60,    PC2(C,D)=(07 34 2a 09 37 3f 38 3c) 

  KeyRnd10  C10=b0401ff0,  D10=26fffd90,  PC2(C,D)=(06 33 26 0c 3e 15 3f 38) 

  KeyRnd11  C11=c1007fe0, D11=9bfff640,  PC2(C,D)=(06 02 33 0d 26 1f 28 3f) 

  KeyRnd12  C12=0401ffb0,  D12=6fffd920,  PC2(C,D)=(14 16 30 2c 3d 37 3a 34) 

  KeyRnd13  C13=1007fec0, D13=bfff6490,  PC2(C,D)=(30 0a 36 24 2e 12 2f 3f) 

  KeyRnd14  C14=401ffb00,  D14=fffd9260,  PC2(C,D)=(34 0a 38 27 2d 3f 2a 17) 

  KeyRnd15  C15=007fec10, D15=fff649b0,  PC2(C,D)=(38 1b 18 22 1d 32 1f 37) 

  KeyRnd16  C16=00ffd820,  D16=ffec9370, PC2(C,D)=(38 0b 08 2e 3d 2f 0e 17) 

 

 

Table 1 

Initial Permutation 

58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 

62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, 

57, 49, 41, 33, 25, 17,   9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 

61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7. 
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Table 2 

Key Permutation 

57,    49,    41,    33,    25,    17,      9,      1,    58,    50,   42,    34,    26,    18, 

10,      2,    59,    51,    43,    35,    27,    19,    11,     3,    60,    52,    44,    36, 

63,    55,    47,    39,    31,    23,   15,       7,    62,    54,   46,    38,    30,    22, 

14,      6,    61,    53,    45,    37,    29,    21,    13,     5,    28,    20,    12,      4. 

 

Table 3 

Number of  Key Bits Shifted per Round 

Round    1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 

Number  1  1  2  2  2  2  2  2  1    2    2    2    2    2    2    1 

 

Table 4 

Compression Permutation 

 14,  17,  11,  24,  1,   5,    3,  28,  15,   6,  21,  10, 

 23,  19,  12,   4,  26,  8,  16,    7,  27, 20,  13,    2, 

 41,  52,  31, 37,  47, 55, 30, 40,  51, 45,  33,  48, 

 44,  49,  39, 56, 34,  53, 46, 42,  50, 36,  29,  32. 

 

 

The Expansion Permutation 

 

This operation expands the right half of the data, Ri, from 32 bits to 48 bits. 

Because this operation changes the order of the bits as well as repeating certain 

bits, it is known as an expansion permutation. This operation has two purposes: It 

makes the right half the same size as the key for the XOR operation and it provides 

a longer result that can be compressed during the substitution operation.  

However, neither of those is its main cryptographic purpose. 

For each 4-bit input block, the first and fourth bits each represent two bits of the 

output block, while the second and third bits each represent one bit of the output 
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block. Table 5 shows which output positions correspond to which input positions. 

For example, the bit in position 3 of the input block moves to position 4 of the 

lutput block, and the bit in position 21 of the input block moves to positions 30 and 

32 of the output block. 

 

 

 

Table 5 

Expansion Permutation 

32,      1,     2,       3,      4,      5,       4,      5,      6,      7,     8,      9, 

 8.       9,    10,    11,    12,    13,    12,    13,    14,    15,    16,   17, 

16,    17,    18,    19,    20,    21,    20,    21,    22,    23,    24,   25, 

24,    25,    26,    27,    28,    29,    28,    29,    30,    31,    32,    1 

 

The S-Box Substitution 

After the compressed key is XORed with the expanded block, the 48-bit result 

moves to a substitution operation. The substitutions are performed by eight 

substitution boxes, or S-boxes. 

Each S-box has a 6-bit input and a 4-bit output, and there are eight different S-

boxes. The 48 bits are divided into eight 6-bit sub-blocks. Each separate block is 

operated on by a separate S-box: The first block is operated on by S-box 1, the 

second block is operated on by S-box 2, and so on.  

Each S-box is a table of 4 rows and 16 columns. Each entry in the box is a 4-bit 

number. The 6 input bits of the S-box specify under which row and column 

number to look for the output. Table 6 shows all eight S-boxes. 

The input bits specify an entry in the S-box in a very particular manner. Consider 

an S-box input of 6 bits, labeled bi, b2, b3, b, b, and b6. Bits b, and b6are 

combined to form a 2-bit number, from 0 to 3, which corresponds to a row in the 

table. The middle 4 bits, b2 through b5, are combined to form a 4-bit number, from 

0 to 15, which corresponds to a column in the table. 
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For example, assume that the input to the sixth S-box (i.e., bits 31 through 36 of 

the XOR function) is 110011. The first and last bits combine to form 11, which 

corrspends to row 3 of the sixth S-box. The middle 4 bits combine to form 1001, 

which corresponds to the column 9 of the same S-box. The entry under row 3, 

column 9 of S-box 6 is 14. (Remember to count rows and columns from 0 and not 

from 1.) The value 1110 is substituted for 110011. 

The S-box substitution is the critical step in DES. The algorithm's other operanons 

are linear and easy to analyze. The S-boxes are nonlinear and, more than any.hing 

else, give DES its security. 

The result of this substitution phase is eight 4-bit blocks which are recombined into 

a single 32-bit block. This block moves to the next step: the P-box permutation. 

 

Table 6 -Boxes 

S-box 1: 

14,    4,  13,  1,    2,  15,  11,    8,    3,  10,    6,  12,    5,    9,  0,    7, 

  0,  15,    7,  4,  14,    2,  13,    1,  10,    6,  12,  11,    9,    5,  3,    8, 

  4,    1,  14,  8,  13,    6,    2,  11,  15,  12,    9,    7,    3,  10,  5,    0, 

15,  12,    8,   2,   4,    9,    1,    7,    5,  11,    3,   14,  10,   0,  6,   13, 

S-box 2: 

15,    1,    8,  14,     6,    11,    3,      4,      9,    7,    2,    13,    12,    0,    5,    10, 

  3,  13,    4,   7,    15,     2,     8,    14,    12,    0,    1,    10,      6,    9,   11,     5, 

  0,  14,    7, 11,    10,     4,    13,     1,      5,    8,    12,    6,      9,    3,    2,    15, 

13,    8,  10,  1,       3,   15,      4,     2,    11,    6,     7,   12,      0,    5,   14,     9, 

 

S-box 3: 

10,    0,    9,    14,    6,    3,    15,    5,     1,    13,    12,    7,     11,     4,     2,     8, 

13,    7,    0,    9,     3,     4,     6,    10,    2,      8,     5,    14,    12,    11,    15,   1, 

13,    6,    4,    9,     8,    15,    3,     0,    11,     1,     2,    12,     5,    10,    14,    7, 

  1,  10,   13,   0,     6,     9,     8,     7,     4,    15,    14,    3,      11,    5,    2,    12, 
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S-box 4: 

  7,  13,    14,    3,     0,      6,     9,    10,     1,     2,    8,     5,    11,    12,     4,   15, 

13,    8,    11,    5,     6,    15,     0,      3,     4,     7,    2,    12,     1,    10,    14,    9, 

10,    6,     9,     0,    12,    11,    7,    13,    15,    1,    3,    14,     5,     2,      8,     4, 

  3,  15,     0,     6,    10,     1,    13,     8,      9,    4,    5,    11,    12,    7,      2,   14, 

 

S-box 5: 

  2,  12,    4,    1,     7,    10,    11,    6,     8,     5,      3,    15,    13,    0,  14,     9, 

 14, 11,    2,  12,     4,      7,    13,    1,     5,     0,    15,    10,     3,     9,    8,     6, 

 41,   2,    1,  11,    10,   13,     7,     8,    15,    9,    12,     5,      6,     3,    0,    14, 

 11,   8,   12,   7,     1,    14,     2,    13,    6,    15,    0,      9,    10,     4,    5,     3, 

 

S-box 6: 

12,    1,  10,  15,    9,     2,    6,     8,    0,  13,     3,     4,    14,     7,     5,   11, 

10,  15,    4,    2,    7,    12,    9,    5,    6,    1,    13,    14,    0,    11,    3,     8, 

  9,  14,  15,    5,    2,     8,    12,    3,    7,    0,    4,    10,    1,    13,    11,    6, 

 4,    3,    2,    12,    9,    5,    15,  10,  11,  14,    1,    7,      6,      0,    8,    13, 

S-box 7: 

  4,   11,    2,  14,    15,    0,    8,    13,     3,    12,     9,     7,     5,    10,    6,     1, 

13,    0,   11,    7,      4,    9,    1,    10,    14,     3,     5,    12,    2,    15,    8,     6, 

  1,    4,   11,  13,    12,    3,    7,    14,    10,    15,    6,      8,     0,     5,    9,     2, 

  6,  11,   13,    8,      1,    4,    10,    7,     9,       5,    0,    15,    14,    2,    3,    12, 

 

S-box 8: 

13,    2,    8,   4,     6,    15,    11,    1,   10,    9,     3,     14,     5,    0,   12,    7, 

  1,  15,   13,  8,    10,    3,       7,    4,   12,    5,     6,     11,     0,   14,    9,    2, 

 7,   11,    4,    1,    9,    12,    14,    2,    0,     6,    10,    13,    15,    3,    5,    8, 

-2,    1,   14,   7,    4,     10,     8,   13,  15,  12,      9,      0,      3,    5,    6,    11 

 

Example: 
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S(18 09 12 3d 11 17 38 39) = 5fd25e03  

 

The P-Box Permutation 

The 32-bit output of the S-box substitution is permuted according to a P-box. This 

permutation maps each input bit to an output position; no bits are used twice and 

no bits are ignored.  Table 7 shows the position to which each bit moves. For 

example, bit 21 moves to bit 4. while bit 4 moves to bit 3 1. 

 

Table 7 

P-Box Permutation 

16, 7, 20, 21, 29, 12, 28, 17,  1,  15, 23, 26, 5, 18, 31, 10, 

 2,  8, 24, 14, 32, 27,  3,   9, 19,  13, 30,  6, 22, 11,  4, 25 

 

Finally, the result of the P-box permutation is XORed with the left half of the 

initial 64-bit block. Then the left and right halves are switched and another round 

begins. 

 

The Final Permutation 

The final permutation is the inverse of the initial permutation and is described in 

Table 8. Note that the left and right halves are not exchanged after the last round of 

DES; instead the concatenated block R16L16 is used as the input to the final 

permutation. There's nothing going on here; exchanging the halves and shifting 

around the permutation would yield exactly the same result. This is so that the 

algorithm can be used to both encrypt and decrypt. 

 

Table 8 

Final Permutation 

40,    8,    48,    16,    56,    24,    64,    32,    39,    7,    47,    15,    55,    23,     63,    

31, 

38,    6,    46,   14,    54,    22,     62     30,    37,    5,    45,    13,    53,    21,    61,     
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29, 

36,    4,    44,    12,    52,    20,    60,    28,    35,    3,    43,    11,    51,    19,     59,    

27, 

34,    2,    42,    10,    50,    18,    58,    26,    33,    1,    41,     9,     49,    17,     57,    

25. 

 

Decrypting DES 

After all the substitutions, permutations, XORs, and shifting around, you might 

think that the decryption algorithm is completely different and just as confusing as 

the encryption algorithm. On the contrary, the various operations were chosen to 

produce a very useful property: The same algorithm works for both encryption and 

decryption. 

With DES it is possible to use the same function to encrypt or decrypt a block. The 

only difference is that the keys must be used in the reverse order. That is, if the 

encryption keys for each round are K1, K2, K3, . . . , K16, then the decryption keys 

are K16, K15, K14, . . . , K1,. The algorithm that generates the key used for each 

round is circular as well. The key shift is a right shift and the number of positions 

shifted is 0, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1. 
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Figure 6. DES Decryption 
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Exponential Cipher 

Public-Key Cryptography 

 public-key/two-key/asymmetric cryptography involves the use of two keys:  

 a public-key, which may be known by anybody, and can be used to 

encrypt messages, and verify signatures  

 a private-key, known only to the recipient, used to decrypt messages, 

and sign (create) signatures  

 is asymmetric because 

 those who encrypt messages or verify signatures cannot decrypt 

messages or create signatures 

 

Public-Key Characteristics 

 Public-Key algorithms rely on two keys where: 

 it is computationally infeasible to find decryption key knowing only 

algorithm & encryption key 
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 it is computationally easy to en/decrypt messages when the relevant 

(en/decrypt) key is known 

 either of the two related keys can be used for encryption, with the 

other used for decryption (for some algorithms) 

 

Public-Key Applications 

 can classify uses into 3 categories: 

 encryption/decryption (provide secrecy) 

 digital signatures (provide authentication) 

 key exchange (of session keys) 

 some algorithms are suitable for all uses, others are specific to one  

Security of Public Key Schemes 

 like private key schemes brute force exhaustive search attack is always 

theoretically possible  

 but keys used are too large (>512bits)  
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Chapter Five 

Exponentiation Ciphers 

 We will consider two kinds of exponentiation ciphers developed by the 

following people: 

 

 Both schemes encipher a message block M  [0, n – 1] by computing the 

exponential  C = M 
e
 mod n,  

 where e and n are the key to the enciphering transformation.  

 M is restored by the same operation, but using a different exponent d for the 

key:  M = C 
d
 mod n.  

 Enciphering and deciphering can be implemented using the fast 

exponentiation algorithm:  

C = fast_exp(M, e, n) 

M = fast_exp(C, d, n) 

 Thm: Given e, d, M such that ed mod (n)   

             = 1, M  [0, n -1] ,gcd (M, n) = 1, 

             Then (M 
e
 mod n) 

d
 mod n = M. 

 Note that by symmetry, enciphering and deciphering are commutative and 

mutual inverses; thus, 

(RSA)Adleman  and Shamir, Rivest,

Hellman and Pohlig
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 (M 
d
 mod n) 

e
 mod n = M 

de
 mod n = M  

 Given (n), it is easy to generate a pair (e, d) such that ed mod (n) = 1. This 

is done by first choosing d relatively prime to (n), and then computing e as  

 e = inv(d, (n))  

 Because e and d are symmetric, we could also pick e and compute d = inv(e, 

(n)). 

 Given e, it is easy to compute d (or vice versa) if (n) is known. But if e and 

n can be released without giving away (n) or d, then the deciphering 

transformation can be kept secret, while the enciphering transformation is 

made public. 

 It is the ability to hide (n) that distinguishes the two schemes.  

 

Pohlig-Hellman Scheme 

 The modulus is chosen to be a large prime p. 

 To encipher:  

   C = M 
e
 mod p  

 To decipher:  

   M = C 
d
 mod p  

 Because p is prime, (p) = p – 1. 



 

Data security lectures                                                                               Prof. Dr. Soukaena Hassan Hasheem 

 

24 
 

 Thus the scheme can only be used for conventional encryption, where e and 

d are both kept secret. 

 Ex. Let p = 11, (p) = 10. Choose d = 7 and compute e = inv(7, 10) = 3. 

Suppose M = 5. Then M is enciphered as:  

  C = M 
e
 mod p = 5

3
 mod 11 = 4. 

Similarly, C is deciphered as:  

  C 
d
 mod p = 4

7
 mod 11 = 5 = M . 

 

Security Concern 

 A cryptanalyst may deduce p by observing the sizes of plaintext and 

ciphertext blocks. 

 Under a known-plaintext attack, a cryptanalyst can compute e (and thereby 

d) given a pair (M, C):  

 e = log M 
C
  

 Pohlig and Hellman show that if (p – 1) has only small prime factors, it is 

possible to compute the logarithm in O(log2p) time, which is unsatisfactory 

even for large values of p. 

 They recommend picking p = 2p + 1, where p is also a large prime.  
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RSA description and algorithm 

           RSA stands for Rivest, Shamir, and Adleman, they are the inventors of the 

RSA cryptosystem. RSA is one of the algorithms used in PKI (Public Key 

Infrastructure), asymmetric key encryption scheme. RSA is a block chiper, it 

encrypt message in blocks (block by block). The common size for the key length 

now is 1024 bits for P and Q, therefore N is 2048 bits, if the implementation (the 

library) of RSA is fast enough, we can double the key size. 

Key Generation Algorithm 

1. Generate two large random primes, p and q, of approximately equal size 

such that their product n = pq is of the required bit length, e.g. 1024 bits. 

[See note 1].  

2. Compute n = pq and (φ) phi = (p-1)(q-1).  

3. Choose an integer e, 1 < e < phi, such that gcd(e, phi) = 1. [See note 2].  

4. Compute the secret exponent d, 1 < d < phi, such that ed ≡ 1 (mod phi). [See 

note 3].  

5. The public key is (n, e) and the private key is (n, d). Keep all the values d, p, 

q and phi secret. 

 n is known as the modulus.  

 e is known as the public exponent or encryption exponent or just the 

exponent.  

 d is known as the secret exponent or decryption exponent. 

Encryption 

Sender A does the following:-  

http://www.di-mgt.com.au/rsa_alg.html#note1
http://www.di-mgt.com.au/rsa_alg.html#note2
http://www.di-mgt.com.au/rsa_alg.html#note3


 

Data security lectures                                                                               Prof. Dr. Soukaena Hassan Hasheem 

 

26 
 

1. Obtains the recipient B's public key (n, e).  

2. Represents the plaintext message as a positive integer m [see note 4].  

3. Computes the ciphertext c = m
e
 mod n.  

4. Sends the ciphertext c to B. 

Decryption 

Recipient B does the following:-  

1. Uses his private key (n, d) to compute m = c
d
 mod n.  

2. Extracts the plaintext from the message representative m. 

A very simple example of RSA encryption 

This is an extremely simple example using numbers you can work out on a pocket 

calculator (those of you over the age of 35 45 can probably even do it by hand).  

1. Select primes p=11, q=3.  

2. n = pq = 11.3 = 33 

phi = (p-1)(q-1) = 10.2 = 20  

3. Choose e=3 

Check gcd(e, p-1) = gcd(3, 10) = 1 (i.e. 3 and 10 have no common factors 

except 1), 

and check gcd(e, q-1) = gcd(3, 2) = 1 

therefore gcd(e, phi) = gcd(e, (p-1)(q-1)) = gcd(3, 20) = 1  

4. Compute d such that ed ≡ 1 (mod phi) 

i.e. compute d = e
-1

 mod phi = 3
-1

 mod 20 

i.e. find a value for d such that phi divides (ed-1) 

i.e. find d such that 20 divides 3d-1. 

http://www.di-mgt.com.au/rsa_alg.html#note4
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Simple testing (d = 1, 2, ...) gives d = 7 

Check: ed-1 = 3.7 - 1 = 20, which is divisible by phi.  

5. Public key = (n, e) = (33, 3) 

Private key = (n, d) = (33, 7).  

This is actually the smallest possible value for the modulus n for which the RSA 

algorithm works.  

Now say we want to encrypt the message m = 7, 

c = m
e
 mod n = 7

3
 mod 33 = 343 mod 33 = 13. 

Hence the ciphertext c = 13.  

To check decryption we compute 

m' = c
d
 mod n = 13

7
 mod 33 = 7.  

Note that we don't have to calculate the full value of 13 to the power 7 here. We 

can make use of the fact that 

a = bc mod n = (b mod n).(c mod n) mod n  

so we can break down a potentially large number into its components and combine 

the results of easier, smaller calculations to calculate the final value.  

One way of calculating m' is as follows:- 

m' = 13
7
 mod 33 = 13

(3+3+1)
 mod 33 = 13

3
.13

3
.13 mod 33 

= (13
3
 mod 33).(13

3
 mod 33).(13 mod 33) mod 33 

= (2197 mod 33).(2197 mod 33).(13 mod 33) mod 33 

= 19.19.13 mod 33 = 4693 mod 33 

= 7.  
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Example 1: 

Using small numbers for clarity, here are results of an example run: 

        enter prime p: 47 

        enter prime q: 71 

        n =  p*q   = 3337 

        (p-1)*(q-1) = 3220 

        Guess a large value for public key e then we can work down from there. 

        enter trial public key e: 79 

        trying e = 79 

         Use private key d:   1019 

         Publish e:    79 

         and n:   3337 

        cipher = char^e (mod n)  -----------------   char = cipher^d (mod n) 

 

Example 2: 

1) Generate two large prime numbers, p and q To make the example easy to follow 

I am going to use small numbers, but this is not secure. To find random primes, we 

start at a random number and go up ascending odd numbers until we find a prime. 

Lets have:  

p = 7 

q = 19 

2) Let n = pq   ---------------------- n = 7 * 19  = 133 

3) Let PHi = (p - 1)(q - 1) 

           PHi = (7 - 1)(19 - 1)   = 6 * 18   = 108 



 

Data security lectures                                                                               Prof. Dr. Soukaena Hassan Hasheem 

 

29 
 

4) Choose a small number, e coprime to PHi 

e coprime to PHi, means that the largest number that can exactly divide both e and 

m (their greatest common divisor, or GCD) is 1. Euclid's algorithm is used to find 

the GCD of two numbers, but the details are omitted here. 

e = 2 => GCD(e, 108) = 2 (no) 

e = 3 => GCD(e, 108) = 3 (no) 

e = 4 => GCD(e, 108) = 4 (no) 

e = 5 => GCD(e, 108) = 1 (yes!)  

5) Find d, such that de % m = 1 

 

This is equivalent to finding d which satisfies de = 1 + nPHi where n is any integer. 

We can rewrite this as d = (1 + nPHi) / e. Now we work through values of n until 

an integer solution for e is found: 

n = 0 => d = 1 / 5 (no) 

n = 1 => d = 109 / 5 (no) 

n = 2 => d = 217 / 5 (no) 

n = 3 => d = 325 / 5  

           = 65 (yes!) 

 

To do this with big numbers, a more sophisticated algorithm called extended 

Euclid must be used. 

Public Key 

n = 133   &&   e = 5  

Secret Key 
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n = 133   &&   d =65 

Encryption 

The message must be a number less than the smaller of p and q. However, at this 

point we don't know p or q, so in practice a lower bound on p and q must be 

published. This can be somewhat below their true value and so isn't a major 

security concern. For this example, lets use the message "6". 

 

C = Pe % n 

  = 65 % 133 

  = 7776 % 133 

  = 62 

Decryption 

This works very much like encryption, but involves a larger exponentiation, which 

is broken down into several steps. 

P = Cd % n 

  = 6265 % 133 

  = 62 * 6264 % 133 

  = 62 * (622)32 % 133 

  = 62 * 384432 % 133 

  = 62 * (3844 % 133)32 % 133 

  = 62 * 12032 % 133 

We now repeat the sequence of operations that reduced 6265 to 12032 to reduce 

the exponent down to 1. 

  = 62 * 3616 % 133 
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  = 62 * 998 % 133 

  = 62 * 924 % 133 

  = 62 * 852 % 133 

  = 62 * 43 % 133 

  = 2666 % 133 

  = 6  

 

And that matches the plaintext we put in at the beginning, so the algorithm 

worked! 

 

Example 3: 

A very simple example of RSA encryption 

This is an extremely simple example using numbers you can work out on a pocket 

calculator (those of you over the age of 35 45 can probably even do it by hand).  

Select primes p=11, q=3. 

n = pq = 11.3 = 33 

phi = (p-1)(q-1) = 10.2 = 20  

Choose e=3 

Check gcd(e, p-1) = gcd(3, 10) = 1 (i.e. 3 and 10 have no common factors except 

1), 

and check gcd(e, q-1) = gcd(3, 2) = 1 

therefore gcd(e, phi) = gcd(e, (p-1)(q-1)) = gcd(3, 20) = 1  

Compute d such that ed ≡ 1 (mod phi) 

i.e. compute d = e-1 mod phi = 3-1 mod 20 
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i.e. find a value for d such that phi divides (ed-1) 

i.e. find d such that 20 divides 3d-1. 

Simple testing (d = 1, 2, ...) gives d = 7 

Check: ed-1 = 3.7 - 1 = 20, which is divisible by phi.  

Public key = (n, e) = (33, 3) 

Private key = (n, d) = (33, 7).  

This is actually the smallest possible value for the modulus n for which the RSA 

algorithm works.  

 

Now say we want to encrypt the message m = 7, 

c = me mod n = 73 mod 33 = 343 mod 33 = 13. 

Hence the ciphertext c = 13.  

 

To check decryption we compute 

m' = cd mod n = 137 mod 33 = 7. 

 

Security Concern 

 Because (n) cannot be determined without knowing the prime factors p and 

q, it is possible to keep d secret even if e and n are made public.  

 Thus the RSA scheme can be used for public-key encryption, where the 

enciphering transformation is made public and the deciphering 

transformation is kept secret.  
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 The security of the system depends on the difficulty of factoring n into p and 

q. The fastest known factoring algorithm takes about the same number of 

steps required for solving the discrete logarithm problem.  

 

More About Euler's Theorem 

 Recall that for Pohlig-Hellman and RSA schemes to work, we must have M 

< n and gcd(M, n) = 1. 

 For Pohlig-Hallman scheme, this is for sure since n is prime. But how about 

RSA? Since n equals pq, it is possible that M is a multiple of p or a 

multiple of q (but not both, of course). 

 We want to show that even if M is a multiple of p or q, the RSA scheme still 

works. 

 

Secrecy and Authenticity 

 In a public-key system, secrecy and authenticity are both provided.  

 Secrecy Suppose user A wishes to send a message M to another user B. If A 

knows B's public transformation EB, A can transmit M to B in secrecy by 

sending the ciphertext C = EB(M). 

 On receipt, B deciphers C using B's private transformation DB, getting  

 DB(C) = DB(EB(M)) = M 
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 The scheme does not provide authenticity because any user with access to 

B's public transformation could substitute another message M' for M by 

replacing C with C' = EB(M' ).  

 

 AuthenticityFor authenticity, M must be transformed by A's own private 

transformation DA. A sends C = DA(M) to B. 

 On receipt, B uses A's public transformation EA to compute  

 EA(C) = EA(DA(M)) = M . 
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 Authenticity is provided because only A can apply the transformation DA. 

 Secrecy is not provided because any user with access to A's public 

transformation can recover M. 

Both Secrecy and Authenticity 

 To use a public-key system for both secrecy and authenticity: 

 the ciphertext space must be equivalent to the plaintext space so that 

EA and DA can operate on both plaintext and ciphertext messages. 

 Both EA and DA must be mutual inverses so that EA(DA(M)) = 

DA(EA(M)) = M. 

 

 Suppose A wishes to send a message M to B. A sends to B the ciphertext  

   C = EB(DA(M)) . 

 On receipt, B deciphers C by  

  EA(DB(C))  

  = EA(DB(EB(DA(M)))) 

  = EA(DA(M))  

  = M .  
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Merkle-Hellman Knapsacks 

       Knapsack problem: How to find the optimal way to pack a knapsack enclosing 

the maximum number of objects. 

Numerically: 

target sum: 17 

set    S {4, 7, 1,12,10} 

one solution set:     {4,     1,12     }=17 

   V {1, 0, 1, 1, 0  } 

N-P Complete 

• basically: an NP complete problem has a deterministic exponential time 

solution. For example, 2
n
  

• This allows us to control the brute force attack.  Ie, make time to break very 

large! 

Merkle-Hellman Knapsacks 
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Example 

Plain text 10011                    11010          01011                          00000 

Knapsack 1 6 8 15 24  1 6 8 15 24       1 6 8 15 24                         1 6 8 15 24 

Cipher text     1 + 15 + 24 = 40 1 + 6 + 15 = 22    6 + 15 + 24 = 45          0 = 0 

 

 

MH Knapsack 

• Each element is larger than the previous 

• Example a1, a2, a3, a4, a5, … ak-1, ak  

• sums between ak and ak+1 must contain ak  

– superincreasing knapsack-each integer is >  ak  

– also called simple knapsack 

• S=[1,4,11,17,38,73] is  a superincreasing knapsack 

 

Diffie-Hellman 

Diffie-Hellman found a way to break the superincreasing sequence of integers.   w 

* x mod n.  If w and n are relatively prime, w will have a multiplicitive inverse.  w 

* w
-1

 = 1 mod n.  (w*q) w
-1

 = q  
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Why so important? 

• This allows us to create a public knapsack (Hard) which can be based on a 

secret simple knapsack and a secret w, and n. 

Example 

Create a Superincreasing (or simple) knapsack 

 

S=[1,2,4,9]     m=5  

Example 

S=[1,2,4,9]     m=5  

Choose a multiplier w, and modulus n  
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n should be larger than the largest integer in your knapsack 

Hint: Choose modulus (n) to be a prime number. 

Generate the Hard knapsack by hi=w * si mod n 

H=[h1, h2, h3, .. Hm]  

S=[1,2,4,9]  

 

 

Example (decipher) 
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Example2:  

First, a superincreasing sequence w is created 

w = {2, 7, 11, 21, 42, 89, 180, 354} 

This is the basis for a private key. From this, calculate the sum. 

Then, choose a number q that is greater than the sum. 

q = 881 

Also, choose a number r that is in the range [1,q) and is coprime to q. 

r = 588 

The private key consists of q, w and r. 

To calculate a public key, generate the sequence β by multiplying each element in 

w by r mod q 

β = {295, 592, 301, 14, 28, 353, 120, 236} 

because 

2 * 588 mod 881 = 295 

7 * 588 mod 881 = 592 
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11 * 588 mod 881 = 301 

21 * 588 mod 881 = 14 

42 * 588 mod 881 = 28 

89 * 588 mod 881 = 353 

180 * 588 mod 881 = 120 

354 * 588 mod 881 = 236 

The sequence β makes up the public key. 

Say Alice wishes to encrypt "a". First, she must translate "a" to binary (in this case, 

using ASCII or UTF-8) 

01100001 

She multiplies each respective bit by the corresponding number in β 

a = 01100001 

0 * 295 

+ 1 * 592 

+ 1 * 301 

+ 0 * 14 

+ 0 * 28 

+ 0 * 353 

+ 0 * 120 

+ 1 * 236 

= 1129 

She sends this to the recipient. 

To decrypt, Bob multiplies 1129 by r -1 mod q (See Modular inverse) 
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1129 * 442 mod 881 = 372 

Now Bob decomposes 372 by selecting the largest element in w which is less than 

or equal to 372. Then selecting the next largest element less than or equal to the 

difference, until the difference is 0 : 

372 - 354 = 18 

18 - 11 = 7 

7 - 7 = 0 

The elements we selected from our private key correspond to the 1 bits in the 

message 

01100001 

When translated back from binary, this "a" is the final decrypted message. 
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Chapter Six 

Stream Cipher 

One-Time Pad or Vernam Cipher 

• The one-time pad, which is a provably secure cryptosystem, 

was developed by Gilbert Vernam in 1918. 

•  The message is represented as a binary string (a sequence of 0’s and 1’s 

using a coding mechanism such as ASCII coding. 

•  The key is a truly random sequence of 0’s and 1’s of the same length as the 

message. 

•  The encryption is done by adding the key to the message modulo 2, bit by 

bit. This process is often called exclusive or, and is denoted by XOR. The 

symbol  is used. 

Example: Let the message be IF then its ASCII code be (1001001 1000110) and 

the key be (1010110 0110001). The ciphertext can be found exoring message and 

key bits 
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Basic Idea comes from One-Time-Pad cipher, 

 

 

Drawback : Key-stream should be as long as plain-text. Key distribution & 

Management difficult. 

Solution : Stream Ciphers (in which key-stream is generated in pseudo-random 

fashion from relatively short secret key. 

Randomness : Closely related to unpredictability.  

Pseudo-randomness :PR sequences appears random to a computationally 

bounded adversary.  Stream Ciphers can be modeled as Finite-state machine. 
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1.Synchronous Stream Ciphers  

•  Key-stream is independent of plain and cipher-text. 

•  Both sender &receiver must be synchronized. 

•  Resynchronization can be needed. 

•  No error propagation. 

•  Active attacks can easily be detected. 
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2. Self-Synchronizing Stream Ciphers  

•  Key-stream is a function of fixed number t of cipher-text  bits. 

•  Limited error propagation (up to t bits). 

•  Active attacks cannot be detected.  

•  At most t bits later, it resynchronizes itself when synchronization is lost. 

• It helps to diffuse plain-text statistics. 
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Linear feedback shift registers 

Linear feedback shift registers (LFSRs) are used in many of the keystream 

generators that have been proposed in the literature. There are several reasons for 

this: 

1. LFSRs are well-suited to hardware implementation; 

2. they can produce sequences of large period; 

3. they can produce sequences with good statistical properties; and 

4. because of their structure, they can be readily analyzed using algebraic 

techniques. 

Definition A linear feedback shift register (LFSR) of length L consists of L stages 

(or delay elements) numbered 0, 1,….., L − 1, each capable of storing one bit and 

having one input and one output; and a clock which controls the movement of data. 

During each unit of time the following operations are performed: 

(i) the content of stage 0 is output and forms part of the output sequence; 

(ii) the content of stage i is moved to stage i − 1 for each i,  ; 

and 

(iii) the new content of stage L − 1 is the feedback bit sj which is 

calculated by adding together modulo 2 the previous contents of a fixed 

subset of stages 0, 1,….., L – 1. 

 

 Traditionally, stream ciphers were based on shift registers 

o Today, a wider variety of designs 

 Shift register includes 

o A series of stages each holding one bit 

o A feedback function 

 A linear feedback shift register (LFSR) has a linear feedback function 
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 Example (nonlinear) feedback function  f(xi, xi+1, xi+2) = 1  xi  xi+2  

xi+1xi+2  

 Example (nonlinear) shift register 

 

 First 3 bits are initial fill: (x0, x1, x2)  

 

Example of LFSR 

 

 Then xi+5 = xi  xi+2 for all i  

 If initial fill is (x0,x1,x2,x3,x4) = 01110  

 then (x0,x1,…,x15,…) = 0111010100001001… 

 For LFSR 

 

 We have xi+5 = xi  xi+2 for all i  

 Linear feedback functions often written in polynomial form: x
5
 + x

2
 + 1  

 Connection polynomial of the LFSR  
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Data security lectures                                                                               Prof. Dr. Soukaena Hassan Hasheem 

 

50 
 

 

Example 

Create a linear feedback shift register with 4 cells in which b4 = b1 xor b0. Show the 

value of output for 20 transitions (shifts) if the seed is (0001)2. 

Solution 
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Note that the key stream is 100010011010111 10001…. This looks like a random 

sequence at first glance, but if we go through more transitions, we see that the 

sequence is periodic. It is a repetition of 15 bits as shown below: 
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The key stream generated from a LFSR is a pseudorandom sequence in 

which the the sequence is repeated after N bits. The maximum period of an LFSR 

is to 2
m
 − 1. 

Nonlinear combination Generators 

 

The Combiner Function should be, Balanced, Highly nonlinear, and Correlation 

Immune. Utilizing the algebraic normal form of the combiner function we can 

compute the linear complexity of the output sequence. 

Example (Geffe Generator ) :  

   

If the lengths of the LFSRs are relatively prime and all connection polynomials are 

primitive, then  

 

 

When we inspect the truth table of the combiner function we gain more insight 

about the security of Geffe generator.  
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• The combiner function is balanced. 

•  However, the correlation probability, 

 

• Geffe generator is not secure. 

Nonlinear Filter Generator  

 

• Upper bound for linear complexity, m : nonlinear order of the filter function.   
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• When L and m are big enough, the linear complexity will become large. 

 

Clock-controlled Generators  

• An LFSR can be clocked by the output of another LFSR. 

•  This introduces an irregularity in clocking of the first LFSR, hence increase 

the linear complexity of its output. 

 

Example : Shrinking Generator  

 

• Relatively new design.  

•  However, it is analyzed and it seems secure under certain circumstances. 
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Randomness key Tests 

The first tests for random numbers were published by M.G. Kendall and Bernard 

Babington Smith in the Journal of the Royal Statistical Society in 1938.They were 

built on statistical tools such as Pearson's chi-squared test that were developed to 

distinguish whether experimental phenomena matched their theoretical 

probabilities. Pearson developed his test originally by showing that a number of 

dice experiments by W.F.R. Weldon did not display "random" behavior. 

Kendall and Smith's original four tests were hypothesis tests, which took as their 

null hypothesis the idea that each number in a given random sequence had an equal 

chance of occurring, and that various other patterns in the data should be also 

distributed equiprobably. 

1. The frequency test, was very basic: checking to make sure that there were 

roughly the same number of 0s, 1s, 2s, 3s, etc. 

2. The serial test, did the same thing but for sequences of two digits at a time 

(00, 01, 02, etc.), comparing their observed frequencies with their 

hypothetical predictions were they equally distributed. 

3. The poker test, tested for certain sequences of five numbers at a time (aaaaa, 

aaaab, aaabb, etc.) based on hands in the game poker. 

4. The gap test, looked at the distances between zeroes (00 would be a distance 

of 0, 030 would be a distance of 1, 02250 would be a distance of 3, etc.). 

If a given sequence was able to pass all of these tests within a given degree of 

significance (generally 5%), then it was judged to be, in their words "locally 

random". Kendall and Smith differentiated "local randomness" from "true 

randomness" in that many sequences generated with truly random methods might 
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not display "local randomness" to a given degree — very large sequences might 

contain many rows of a single digit. This might be "random" on the scale of the 

entire sequence, but in a smaller block it would not be "random" (it would not pass 

their tests), and would be useless for a number of statistical applications. 

As random number sets became more and more common, more tests, of increasing 

sophistication were used. Some modern tests plot random digits as points on a 

three-dimensional plane, which can then be rotated to look for hidden patterns. In 

1995, the statistician George Marsaglia created a set of tests known as the diehard 

tests, which he distributes with a CD-ROM of 5 billion pseudorandom numbers. 

Pseudorandom number generators require tests as exclusive verifications for their 

"randomness," as they are decidedly not produced by "truly random" processes, but 

rather by deterministic algorithms. Over the history of random number generation, 

many sources of numbers thought to appear "random" under testing have later been 

discovered to be very non-random when subjected to certain types of tests. The 

notion of quasi-random numbers was developed to circumvent some of these 

problems, though pseudorandom number generators are still extensively used in 

many applications (even ones known to be extremely "non-random"), as they are 

"good enough" for most applications. 

 

 

 

 

 


