

University of Technology
 الجامعة التكنولوجية

Computer Science Department

 قسم علوم الحاسوب

Data Security 2
 ٢أمنية البيانات

Professor: D. Sukaina Hashim
 أ.د. سكينة هاشم

Lectuer:Enas Tariq

 أ.م. إيناس طارق

cs.uotechnology.edu.iq

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

2

Chapter Four

Data Encryption Standard (DES)

Block Cipher

Block Cipher - An encryption scheme that "the clear text is broken up into blocks

of fixed length, and encrypted one block at a time". Usually, a block cipher

encrypts a block of clear text into a block of cipher text of the same length. In this

case, a block cipher can be viewed as a simple substitute cipher with character size

equal to the block size.

ECB Operation Mode - Blocks of clear text are encrypted independently. ECB

stands for Electronic Code Book. Main properties of this mode:

 Identical clear text blocks are encrypted to identical cipher text blocks.

 Re-ordering clear text blocks results in re-ordering cipher text blocks.

 An encryption error affects only the block where it occurs.

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

3

CBC Operation Mode - The previous cipher text block is XORed with the

clear text block before applying the encryption mapping. Main properties of

this mode:

An encryption error affects only the block where is occurs and one next block.

Cipher FeedBack (CFB) Message is treated as a stream of bits , Bitwise-

added to the output of the block cipher , Result is feedback for next stage

(hence name)

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

4

Output Feedback Mode (OFM)- The block cipher is used as a stream cipher, it

produces the random key stream.

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

5

Product Cipher - An encryption scheme that "uses multiple ciphers in which the

cipher text of one cipher is used as the clear text of the next cipher". Usually,

substitution ciphers and transposition ciphers are used alternatively to construct a

product cipher.

Iterated Block Cipher - A block cipher that "iterates a fixed number of times of

another block cipher, called round function, with a different key, called round key,

for each iteration".

Feistel Cipher - An iterate block cipher that uses the following algorithm:

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

6

DES Cipher - A 16-round Feistel cipher with block size of 64 bits. DES stands for

Data Encryption Standard.

Data Encryption Standard (DES)

The Data Encryption Standard (DES), known as the Data Encryption Algorithm

(DEA) by ANSI and the DEA-1 by the ISO, has been most widely used block

cipher in world, especially in financial industry. It encrypts 64-bit data, and uses

56-bit key with 16 48-bit sub-keys.

Description of DES

DES is a block cipher; it encrypts data in 64-bit blocks. A 64-bit block of plaintext

goes in one end of the algorithm and a 64-bit block of ciphertext comes out

the other end. DES is a symmetric algorithm: The same algorithm and key are used

for both encryption and decryption (except for minor differences in the key

schedule).

The key length is 56 bits. (The key is usually expressed as a 64-bit number, but

every eighth bit is used for parity checking and is ignored. These parity bits are

the least- significant bits of the key bytes.) The key can be any 56-bit number and

can be changed at any time. All security rests within the key.

At its simplest level, the algorithm is nothing more than a combination of the two

basic techniques of encryption: confusion and diffusion. The fundamental building

block of DES is a single combination of these techniques (a substitution followed

by a permutation) on the text, based on the key. This is known as a round. DES has

16 rounds; it applies the same combination of techniques on the plaintext block 16

times (see Figure 1).

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

7

Figure 1 DES

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

8

Outline of the Algorithm

The basic process in enciphering a 64-bit data block using the DES consists of:

 an initial permutation (IP)

 16 rounds of a complex key dependent calculation f

 final permutation, being the inverse of IP

In each round (see Figure 2,3,4,5), the key bits are shifted, and then 48 bits are

selected from the 56 bits of the key. The right half of the data is expanded to 48

bits via an expansion permutation, combined with 48 bits of a shifted and permuted

key via an XOR, sent through 8 S-boxes producing 32 new bits, and permuted

again. These four operations make up Function f. The output of Function f is then

combined with the left half via another XOR. The result of these operations

becomes the new right half; the old right half becomes the new left half.

If Bi is the result of the ith iteration, Li and Ri are the left and right halves of Bi, Ki

is the 48-bit key for round i, and f is the function that does all the substituting and

permuting and XORing with the key, then a round looks like:

 Li = R j-1

 Ri = L i-1 Xor f (Ri-1, Ki)

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

9

 Figure 2 One round of DES

Figure 3. 16
th
 key generation

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

10

Figure 4. f-function

Figure 5. S-Boxes in F-function

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

11

The Initial Permutation

The initial permutation occurs before round 1; it transposes the input block as

described in Table 1. This table, like all the other tables in this lecture, should be

read left to right, top to bottom. For example, the initial permutation moves bit 58

of the plaintext to bit position 1, bit 50 to bit position 2, bit 42 to bit position 3, and

so forth.

The initial permutation and the corresponding final permutation do not improve

DES's security, just make DES more complex.

Example:

 IP(675a6967 5e5a6b5a) = (ffb2194d 004df6fb)

Note that all numbers are written in hexadecimal as a "short-form" version of the

binary actually used, since 1 Hex digit = 4 Binary bits. The digit mapping is:

0=0000 1=0001 2=0010 3=0011 4=0100 5=0101 6=0110 7=0111

8=1000 9=1001 a=1010 b=1011 c=1100 d=1101 e=1110 f=1111

The Key Transformation

Initially, the 64-bit DES key is reduced to a 56-bit key by ignoring every eighth bit.

Let us call this operation PC1. This is described in Table 2.

PC2 is the operation which reduces the 56-bits key to a 48-bits subkey for each of

the 16 rounds of DES. These subkeys, Ki, are determined in the following manner.

PC1 splits the key bits into 2 halves (C and D), each 28-bits. The halves C and D

are circularly shifted left by either one or two bits, depending on the round. This

shift is given in Table 3. ِِAfter being shifted, 48 out of the 56 bits are selected. This

is done by an operation called compression permutation, it permutes the order of

the bits as well as selects a subsets of bits. Table 4 defines the compression

permutation.

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

12

Example:

 keyinit(5b5a5767, 6a56676e)

 PC1(Key) C=00ffd820, D=ffec9370

 KeyRnd01 C1=01ffb040, D1=ffd926f0, PC2(C,D)=(38 09 1b 26 2f 3a 27 0f)

 KeyRnd02 C2=03ff6080, D2=ffb24df0, PC2(C,D)=(28 09 19 32 1d 32 1f 2f)

 KeyRnd03 C3=0ffd8200, D3=fec937f0, PC2(C,D)=(39 05 29 32 3f 2b 27 0b)

 KeyRnd04 C4=3ff60800, D4=fb24dff0, PC2(C,D)=(29 2f 0d 10 19 2f 1d 3f)

 KeyRnd05 C5=ffd82000, D5=ec937ff0, PC2(C,D)=(03 25 1d 13 1f 3b 37 2a)

 KeyRnd06 C6=ff608030, D6=b24dfff0, PC2(C,D)=(1b 35 05 19 3b 0d 35

3b)

 KeyRnd07 C7=fd8200f0, D7=c937ffe0, PC2(C,D)=(03 3c 07 09 13 3f 39 3e)

 KeyRnd08 C8=f60803f0, D8=24dfffb0, PC2(C,D)=(06 34 26 1b 3f 1d 37 38)

 KeyRnd09 C9=ec1007f0, D9=49bfff60, PC2(C,D)=(07 34 2a 09 37 3f 38 3c)

 KeyRnd10 C10=b0401ff0, D10=26fffd90, PC2(C,D)=(06 33 26 0c 3e 15 3f 38)

 KeyRnd11 C11=c1007fe0, D11=9bfff640, PC2(C,D)=(06 02 33 0d 26 1f 28 3f)

 KeyRnd12 C12=0401ffb0, D12=6fffd920, PC2(C,D)=(14 16 30 2c 3d 37 3a 34)

 KeyRnd13 C13=1007fec0, D13=bfff6490, PC2(C,D)=(30 0a 36 24 2e 12 2f 3f)

 KeyRnd14 C14=401ffb00, D14=fffd9260, PC2(C,D)=(34 0a 38 27 2d 3f 2a 17)

 KeyRnd15 C15=007fec10, D15=fff649b0, PC2(C,D)=(38 1b 18 22 1d 32 1f 37)

 KeyRnd16 C16=00ffd820, D16=ffec9370, PC2(C,D)=(38 0b 08 2e 3d 2f 0e 17)

Table 1

Initial Permutation

58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,

62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,

57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,

61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7.

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

13

Table 2

Key Permutation

57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,

10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,

63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,

14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4.

Table 3

Number of Key Bits Shifted per Round

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

Table 4

Compression Permutation

 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,

 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,

 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,

 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32.

The Expansion Permutation

This operation expands the right half of the data, Ri, from 32 bits to 48 bits.

Because this operation changes the order of the bits as well as repeating certain

bits, it is known as an expansion permutation. This operation has two purposes: It

makes the right half the same size as the key for the XOR operation and it provides

a longer result that can be compressed during the substitution operation.

However, neither of those is its main cryptographic purpose.

For each 4-bit input block, the first and fourth bits each represent two bits of the

output block, while the second and third bits each represent one bit of the output

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

14

block. Table 5 shows which output positions correspond to which input positions.

For example, the bit in position 3 of the input block moves to position 4 of the

lutput block, and the bit in position 21 of the input block moves to positions 30 and

32 of the output block.

Table 5

Expansion Permutation

32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,

 8. 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,

16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,

24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1

The S-Box Substitution

After the compressed key is XORed with the expanded block, the 48-bit result

moves to a substitution operation. The substitutions are performed by eight

substitution boxes, or S-boxes.

Each S-box has a 6-bit input and a 4-bit output, and there are eight different S-

boxes. The 48 bits are divided into eight 6-bit sub-blocks. Each separate block is

operated on by a separate S-box: The first block is operated on by S-box 1, the

second block is operated on by S-box 2, and so on.

Each S-box is a table of 4 rows and 16 columns. Each entry in the box is a 4-bit

number. The 6 input bits of the S-box specify under which row and column

number to look for the output. Table 6 shows all eight S-boxes.

The input bits specify an entry in the S-box in a very particular manner. Consider

an S-box input of 6 bits, labeled bi, b2, b3, b, b, and b6. Bits b, and b6are

combined to form a 2-bit number, from 0 to 3, which corresponds to a row in the

table. The middle 4 bits, b2 through b5, are combined to form a 4-bit number, from

0 to 15, which corresponds to a column in the table.

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

15

For example, assume that the input to the sixth S-box (i.e., bits 31 through 36 of

the XOR function) is 110011. The first and last bits combine to form 11, which

corrspends to row 3 of the sixth S-box. The middle 4 bits combine to form 1001,

which corresponds to the column 9 of the same S-box. The entry under row 3,

column 9 of S-box 6 is 14. (Remember to count rows and columns from 0 and not

from 1.) The value 1110 is substituted for 110011.

The S-box substitution is the critical step in DES. The algorithm's other operanons

are linear and easy to analyze. The S-boxes are nonlinear and, more than any.hing

else, give DES its security.

The result of this substitution phase is eight 4-bit blocks which are recombined into

a single 32-bit block. This block moves to the next step: the P-box permutation.

Table 6 -Boxes

S-box 1:

14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,

 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,

 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,

15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,

S-box 2:

15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,

 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,

 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,

13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,

S-box 3:

10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,

13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,

13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,

 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

16

S-box 4:

 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,

13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,

10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,

 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,

S-box 5:

 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,

 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,

 41, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,

 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,

S-box 6:

12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,

10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,

 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,

 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,

S-box 7:

 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,

13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,

 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,

 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,

S-box 8:

13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,

 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,

 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,

-2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11

Example:

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

17

S(18 09 12 3d 11 17 38 39) = 5fd25e03

The P-Box Permutation

The 32-bit output of the S-box substitution is permuted according to a P-box. This

permutation maps each input bit to an output position; no bits are used twice and

no bits are ignored. Table 7 shows the position to which each bit moves. For

example, bit 21 moves to bit 4. while bit 4 moves to bit 3 1.

Table 7

P-Box Permutation

16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,

 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25

Finally, the result of the P-box permutation is XORed with the left half of the

initial 64-bit block. Then the left and right halves are switched and another round

begins.

The Final Permutation

The final permutation is the inverse of the initial permutation and is described in

Table 8. Note that the left and right halves are not exchanged after the last round of

DES; instead the concatenated block R16L16 is used as the input to the final

permutation. There's nothing going on here; exchanging the halves and shifting

around the permutation would yield exactly the same result. This is so that the

algorithm can be used to both encrypt and decrypt.

Table 8

Final Permutation

40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63,

31,

38, 6, 46, 14, 54, 22, 62 30, 37, 5, 45, 13, 53, 21, 61,

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

18

29,

36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59,

27,

34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57,

25.

Decrypting DES

After all the substitutions, permutations, XORs, and shifting around, you might

think that the decryption algorithm is completely different and just as confusing as

the encryption algorithm. On the contrary, the various operations were chosen to

produce a very useful property: The same algorithm works for both encryption and

decryption.

With DES it is possible to use the same function to encrypt or decrypt a block. The

only difference is that the keys must be used in the reverse order. That is, if the

encryption keys for each round are K1, K2, K3, . . . , K16, then the decryption keys

are K16, K15, K14, . . . , K1,. The algorithm that generates the key used for each

round is circular as well. The key shift is a right shift and the number of positions

shifted is 0, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1.

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

19

Figure 6. DES Decryption

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

20

Exponential Cipher

Public-Key Cryptography

 public-key/two-key/asymmetric cryptography involves the use of two keys:

 a public-key, which may be known by anybody, and can be used to

encrypt messages, and verify signatures

 a private-key, known only to the recipient, used to decrypt messages,

and sign (create) signatures

 is asymmetric because

 those who encrypt messages or verify signatures cannot decrypt

messages or create signatures

Public-Key Characteristics

 Public-Key algorithms rely on two keys where:

 it is computationally infeasible to find decryption key knowing only

algorithm & encryption key

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

21

 it is computationally easy to en/decrypt messages when the relevant

(en/decrypt) key is known

 either of the two related keys can be used for encryption, with the

other used for decryption (for some algorithms)

Public-Key Applications

 can classify uses into 3 categories:

 encryption/decryption (provide secrecy)

 digital signatures (provide authentication)

 key exchange (of session keys)

 some algorithms are suitable for all uses, others are specific to one

Security of Public Key Schemes

 like private key schemes brute force exhaustive search attack is always

theoretically possible

 but keys used are too large (>512bits)

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

22

Chapter Five

Exponentiation Ciphers

 We will consider two kinds of exponentiation ciphers developed by the

following people:

 Both schemes encipher a message block M  [0, n – 1] by computing the

exponential C = M
e
 mod n,

 where e and n are the key to the enciphering transformation.

 M is restored by the same operation, but using a different exponent d for the

key: M = C
d
 mod n.

 Enciphering and deciphering can be implemented using the fast

exponentiation algorithm:

C = fast_exp(M, e, n)

M = fast_exp(C, d, n)

 Thm: Given e, d, M such that ed mod (n)

 = 1, M  [0, n -1] ,gcd (M, n) = 1,

 Then (M
e
 mod n)

d
 mod n = M.

 Note that by symmetry, enciphering and deciphering are commutative and

mutual inverses; thus,

(RSA)Adleman and Shamir, Rivest,

Hellman and Pohlig

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

23

 (M
d
 mod n)

e
 mod n = M

de
 mod n = M

 Given (n), it is easy to generate a pair (e, d) such that ed mod (n) = 1. This

is done by first choosing d relatively prime to (n), and then computing e as

 e = inv(d, (n))

 Because e and d are symmetric, we could also pick e and compute d = inv(e,

(n)).

 Given e, it is easy to compute d (or vice versa) if (n) is known. But if e and

n can be released without giving away (n) or d, then the deciphering

transformation can be kept secret, while the enciphering transformation is

made public.

 It is the ability to hide (n) that distinguishes the two schemes.

Pohlig-Hellman Scheme

 The modulus is chosen to be a large prime p.

 To encipher:

 C = M
e
 mod p

 To decipher:

 M = C
d
 mod p

 Because p is prime, (p) = p – 1.

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

24

 Thus the scheme can only be used for conventional encryption, where e and

d are both kept secret.

 Ex. Let p = 11, (p) = 10. Choose d = 7 and compute e = inv(7, 10) = 3.

Suppose M = 5. Then M is enciphered as:

 C = M
e
 mod p = 5

3
 mod 11 = 4.

Similarly, C is deciphered as:

 C
d
 mod p = 4

7
 mod 11 = 5 = M .

Security Concern

 A cryptanalyst may deduce p by observing the sizes of plaintext and

ciphertext blocks.

 Under a known-plaintext attack, a cryptanalyst can compute e (and thereby

d) given a pair (M, C):

 e = log M
C

 Pohlig and Hellman show that if (p – 1) has only small prime factors, it is

possible to compute the logarithm in O(log2p) time, which is unsatisfactory

even for large values of p.

 They recommend picking p = 2p + 1, where p is also a large prime.

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

25

RSA description and algorithm

 RSA stands for Rivest, Shamir, and Adleman, they are the inventors of the

RSA cryptosystem. RSA is one of the algorithms used in PKI (Public Key

Infrastructure), asymmetric key encryption scheme. RSA is a block chiper, it

encrypt message in blocks (block by block). The common size for the key length

now is 1024 bits for P and Q, therefore N is 2048 bits, if the implementation (the

library) of RSA is fast enough, we can double the key size.

Key Generation Algorithm

1. Generate two large random primes, p and q, of approximately equal size

such that their product n = pq is of the required bit length, e.g. 1024 bits.

[See note 1].

2. Compute n = pq and (φ) phi = (p-1)(q-1).

3. Choose an integer e, 1 < e < phi, such that gcd(e, phi) = 1. [See note 2].

4. Compute the secret exponent d, 1 < d < phi, such that ed ≡ 1 (mod phi). [See

note 3].

5. The public key is (n, e) and the private key is (n, d). Keep all the values d, p,

q and phi secret.

 n is known as the modulus.

 e is known as the public exponent or encryption exponent or just the

exponent.

 d is known as the secret exponent or decryption exponent.

Encryption

Sender A does the following:-

http://www.di-mgt.com.au/rsa_alg.html#note1
http://www.di-mgt.com.au/rsa_alg.html#note2
http://www.di-mgt.com.au/rsa_alg.html#note3

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

26

1. Obtains the recipient B's public key (n, e).

2. Represents the plaintext message as a positive integer m [see note 4].

3. Computes the ciphertext c = m
e
 mod n.

4. Sends the ciphertext c to B.

Decryption

Recipient B does the following:-

1. Uses his private key (n, d) to compute m = c
d
 mod n.

2. Extracts the plaintext from the message representative m.

A very simple example of RSA encryption

This is an extremely simple example using numbers you can work out on a pocket

calculator (those of you over the age of 35 45 can probably even do it by hand).

1. Select primes p=11, q=3.

2. n = pq = 11.3 = 33

phi = (p-1)(q-1) = 10.2 = 20

3. Choose e=3

Check gcd(e, p-1) = gcd(3, 10) = 1 (i.e. 3 and 10 have no common factors

except 1),

and check gcd(e, q-1) = gcd(3, 2) = 1

therefore gcd(e, phi) = gcd(e, (p-1)(q-1)) = gcd(3, 20) = 1

4. Compute d such that ed ≡ 1 (mod phi)

i.e. compute d = e
-1

 mod phi = 3
-1

 mod 20

i.e. find a value for d such that phi divides (ed-1)

i.e. find d such that 20 divides 3d-1.

http://www.di-mgt.com.au/rsa_alg.html#note4

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

27

Simple testing (d = 1, 2, ...) gives d = 7

Check: ed-1 = 3.7 - 1 = 20, which is divisible by phi.

5. Public key = (n, e) = (33, 3)

Private key = (n, d) = (33, 7).

This is actually the smallest possible value for the modulus n for which the RSA

algorithm works.

Now say we want to encrypt the message m = 7,

c = m
e
 mod n = 7

3
 mod 33 = 343 mod 33 = 13.

Hence the ciphertext c = 13.

To check decryption we compute

m' = c
d
 mod n = 13

7
 mod 33 = 7.

Note that we don't have to calculate the full value of 13 to the power 7 here. We

can make use of the fact that

a = bc mod n = (b mod n).(c mod n) mod n

so we can break down a potentially large number into its components and combine

the results of easier, smaller calculations to calculate the final value.

One way of calculating m' is as follows:-

m' = 13
7
 mod 33 = 13

(3+3+1)
 mod 33 = 13

3
.13

3
.13 mod 33

= (13
3
 mod 33).(13

3
 mod 33).(13 mod 33) mod 33

= (2197 mod 33).(2197 mod 33).(13 mod 33) mod 33

= 19.19.13 mod 33 = 4693 mod 33

= 7.

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

28

Example 1:

Using small numbers for clarity, here are results of an example run:

 enter prime p: 47

 enter prime q: 71

 n = p*q = 3337

 (p-1)*(q-1) = 3220

 Guess a large value for public key e then we can work down from there.

 enter trial public key e: 79

 trying e = 79

 Use private key d: 1019

 Publish e: 79

 and n: 3337

 cipher = char^e (mod n) ----------------- char = cipher^d (mod n)

Example 2:

1) Generate two large prime numbers, p and q To make the example easy to follow

I am going to use small numbers, but this is not secure. To find random primes, we

start at a random number and go up ascending odd numbers until we find a prime.

Lets have:

p = 7

q = 19

2) Let n = pq ---------------------- n = 7 * 19 = 133

3) Let PHi = (p - 1)(q - 1)

 PHi = (7 - 1)(19 - 1) = 6 * 18 = 108

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

29

4) Choose a small number, e coprime to PHi

e coprime to PHi, means that the largest number that can exactly divide both e and

m (their greatest common divisor, or GCD) is 1. Euclid's algorithm is used to find

the GCD of two numbers, but the details are omitted here.

e = 2 => GCD(e, 108) = 2 (no)

e = 3 => GCD(e, 108) = 3 (no)

e = 4 => GCD(e, 108) = 4 (no)

e = 5 => GCD(e, 108) = 1 (yes!)

5) Find d, such that de % m = 1

This is equivalent to finding d which satisfies de = 1 + nPHi where n is any integer.

We can rewrite this as d = (1 + nPHi) / e. Now we work through values of n until

an integer solution for e is found:

n = 0 => d = 1 / 5 (no)

n = 1 => d = 109 / 5 (no)

n = 2 => d = 217 / 5 (no)

n = 3 => d = 325 / 5

 = 65 (yes!)

To do this with big numbers, a more sophisticated algorithm called extended

Euclid must be used.

Public Key

n = 133 && e = 5

Secret Key

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

30

n = 133 && d =65

Encryption

The message must be a number less than the smaller of p and q. However, at this

point we don't know p or q, so in practice a lower bound on p and q must be

published. This can be somewhat below their true value and so isn't a major

security concern. For this example, lets use the message "6".

C = Pe % n

 = 65 % 133

 = 7776 % 133

 = 62

Decryption

This works very much like encryption, but involves a larger exponentiation, which

is broken down into several steps.

P = Cd % n

 = 6265 % 133

 = 62 * 6264 % 133

 = 62 * (622)32 % 133

 = 62 * 384432 % 133

 = 62 * (3844 % 133)32 % 133

 = 62 * 12032 % 133

We now repeat the sequence of operations that reduced 6265 to 12032 to reduce

the exponent down to 1.

 = 62 * 3616 % 133

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

31

 = 62 * 998 % 133

 = 62 * 924 % 133

 = 62 * 852 % 133

 = 62 * 43 % 133

 = 2666 % 133

 = 6

And that matches the plaintext we put in at the beginning, so the algorithm

worked!

Example 3:

A very simple example of RSA encryption

This is an extremely simple example using numbers you can work out on a pocket

calculator (those of you over the age of 35 45 can probably even do it by hand).

Select primes p=11, q=3.

n = pq = 11.3 = 33

phi = (p-1)(q-1) = 10.2 = 20

Choose e=3

Check gcd(e, p-1) = gcd(3, 10) = 1 (i.e. 3 and 10 have no common factors except

1),

and check gcd(e, q-1) = gcd(3, 2) = 1

therefore gcd(e, phi) = gcd(e, (p-1)(q-1)) = gcd(3, 20) = 1

Compute d such that ed ≡ 1 (mod phi)

i.e. compute d = e-1 mod phi = 3-1 mod 20

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

32

i.e. find a value for d such that phi divides (ed-1)

i.e. find d such that 20 divides 3d-1.

Simple testing (d = 1, 2, ...) gives d = 7

Check: ed-1 = 3.7 - 1 = 20, which is divisible by phi.

Public key = (n, e) = (33, 3)

Private key = (n, d) = (33, 7).

This is actually the smallest possible value for the modulus n for which the RSA

algorithm works.

Now say we want to encrypt the message m = 7,

c = me mod n = 73 mod 33 = 343 mod 33 = 13.

Hence the ciphertext c = 13.

To check decryption we compute

m' = cd mod n = 137 mod 33 = 7.

Security Concern

 Because (n) cannot be determined without knowing the prime factors p and

q, it is possible to keep d secret even if e and n are made public.

 Thus the RSA scheme can be used for public-key encryption, where the

enciphering transformation is made public and the deciphering

transformation is kept secret.

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

33

 The security of the system depends on the difficulty of factoring n into p and

q. The fastest known factoring algorithm takes about the same number of

steps required for solving the discrete logarithm problem.

More About Euler's Theorem

 Recall that for Pohlig-Hellman and RSA schemes to work, we must have M

< n and gcd(M, n) = 1.

 For Pohlig-Hallman scheme, this is for sure since n is prime. But how about

RSA? Since n equals pq, it is possible that M is a multiple of p or a

multiple of q (but not both, of course).

 We want to show that even if M is a multiple of p or q, the RSA scheme still

works.

Secrecy and Authenticity

 In a public-key system, secrecy and authenticity are both provided.

 Secrecy Suppose user A wishes to send a message M to another user B. If A

knows B's public transformation EB, A can transmit M to B in secrecy by

sending the ciphertext C = EB(M).

 On receipt, B deciphers C using B's private transformation DB, getting

 DB(C) = DB(EB(M)) = M

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

34

 The scheme does not provide authenticity because any user with access to

B's public transformation could substitute another message M' for M by

replacing C with C' = EB(M').

 AuthenticityFor authenticity, M must be transformed by A's own private

transformation DA. A sends C = DA(M) to B.

 On receipt, B uses A's public transformation EA to compute

 EA(C) = EA(DA(M)) = M .

M C

M
disallowed

protected

EK M DK

disallowed

M C

M

C

EK M DK

protected

BE

public

M

A

BD

private

M

B

private

M

A

public

M

B

AD AE

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

35

 Authenticity is provided because only A can apply the transformation DA.

 Secrecy is not provided because any user with access to A's public

transformation can recover M.

Both Secrecy and Authenticity

 To use a public-key system for both secrecy and authenticity:

 the ciphertext space must be equivalent to the plaintext space so that

EA and DA can operate on both plaintext and ciphertext messages.

 Both EA and DA must be mutual inverses so that EA(DA(M)) =

DA(EA(M)) = M.

 Suppose A wishes to send a message M to B. A sends to B the ciphertext

 C = EB(DA(M)) .

 On receipt, B deciphers C by

 EA(DB(C))

 = EA(DB(EB(DA(M))))

 = EA(DA(M))

 = M .

M

A

M

B

private

AD

private

BDB

public

E
A

public

E

secrecy

authenticity

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

36

Merkle-Hellman Knapsacks

 Knapsack problem: How to find the optimal way to pack a knapsack enclosing

the maximum number of objects.

Numerically:

target sum: 17

set S {4, 7, 1,12,10}

one solution set: {4, 1,12 }=17

 V {1, 0, 1, 1, 0 }

N-P Complete

• basically: an NP complete problem has a deterministic exponential time

solution. For example, 2
n

• This allows us to control the brute force attack. Ie, make time to break very

large!

Merkle-Hellman Knapsacks

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

37

Example

Plain text 10011 11010 01011 00000

Knapsack 1 6 8 15 24 1 6 8 15 24 1 6 8 15 24 1 6 8 15 24

Cipher text 1 + 15 + 24 = 40 1 + 6 + 15 = 22 6 + 15 + 24 = 45 0 = 0

MH Knapsack

• Each element is larger than the previous

• Example a1, a2, a3, a4, a5, … ak-1, ak

• sums between ak and ak+1 must contain ak

– superincreasing knapsack-each integer is >  ak

– also called simple knapsack

• S=[1,4,11,17,38,73] is a superincreasing knapsack

Diffie-Hellman

Diffie-Hellman found a way to break the superincreasing sequence of integers. w

* x mod n. If w and n are relatively prime, w will have a multiplicitive inverse. w

* w
-1

 = 1 mod n. (w*q) w
-1

 = q

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

38

Why so important?

• This allows us to create a public knapsack (Hard) which can be based on a

secret simple knapsack and a secret w, and n.

Example

Create a Superincreasing (or simple) knapsack

S=[1,2,4,9] m=5

Example

S=[1,2,4,9] m=5

Choose a multiplier w, and modulus n

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

39

n should be larger than the largest integer in your knapsack

Hint: Choose modulus (n) to be a prime number.

Generate the Hard knapsack by hi=w * si mod n

H=[h1, h2, h3, .. Hm]

S=[1,2,4,9]

Example (decipher)

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

40

Example2:

First, a superincreasing sequence w is created

w = {2, 7, 11, 21, 42, 89, 180, 354}

This is the basis for a private key. From this, calculate the sum.

Then, choose a number q that is greater than the sum.

q = 881

Also, choose a number r that is in the range [1,q) and is coprime to q.

r = 588

The private key consists of q, w and r.

To calculate a public key, generate the sequence β by multiplying each element in

w by r mod q

β = {295, 592, 301, 14, 28, 353, 120, 236}

because

2 * 588 mod 881 = 295

7 * 588 mod 881 = 592

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

41

11 * 588 mod 881 = 301

21 * 588 mod 881 = 14

42 * 588 mod 881 = 28

89 * 588 mod 881 = 353

180 * 588 mod 881 = 120

354 * 588 mod 881 = 236

The sequence β makes up the public key.

Say Alice wishes to encrypt "a". First, she must translate "a" to binary (in this case,

using ASCII or UTF-8)

01100001

She multiplies each respective bit by the corresponding number in β

a = 01100001

0 * 295

+ 1 * 592

+ 1 * 301

+ 0 * 14

+ 0 * 28

+ 0 * 353

+ 0 * 120

+ 1 * 236

= 1129

She sends this to the recipient.

To decrypt, Bob multiplies 1129 by r -1 mod q (See Modular inverse)

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

42

1129 * 442 mod 881 = 372

Now Bob decomposes 372 by selecting the largest element in w which is less than

or equal to 372. Then selecting the next largest element less than or equal to the

difference, until the difference is 0 :

372 - 354 = 18

18 - 11 = 7

7 - 7 = 0

The elements we selected from our private key correspond to the 1 bits in the

message

01100001

When translated back from binary, this "a" is the final decrypted message.

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

43

Chapter Six

Stream Cipher

One-Time Pad or Vernam Cipher

• The one-time pad, which is a provably secure cryptosystem,

was developed by Gilbert Vernam in 1918.

• The message is represented as a binary string (a sequence of 0’s and 1’s

using a coding mechanism such as ASCII coding.

• The key is a truly random sequence of 0’s and 1’s of the same length as the

message.

• The encryption is done by adding the key to the message modulo 2, bit by

bit. This process is often called exclusive or, and is denoted by XOR. The

symbol  is used.

Example: Let the message be IF then its ASCII code be (1001001 1000110) and

the key be (1010110 0110001). The ciphertext can be found exoring message and

key bits

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

44

Basic Idea comes from One-Time-Pad cipher,

Drawback : Key-stream should be as long as plain-text. Key distribution &

Management difficult.

Solution : Stream Ciphers (in which key-stream is generated in pseudo-random

fashion from relatively short secret key.

Randomness : Closely related to unpredictability.

Pseudo-randomness :PR sequences appears random to a computationally

bounded adversary. Stream Ciphers can be modeled as Finite-state machine.

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

45

1.Synchronous Stream Ciphers

• Key-stream is independent of plain and cipher-text.

• Both sender &receiver must be synchronized.

• Resynchronization can be needed.

• No error propagation.

• Active attacks can easily be detected.

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

46

2. Self-Synchronizing Stream Ciphers

• Key-stream is a function of fixed number t of cipher-text bits.

• Limited error propagation (up to t bits).

• Active attacks cannot be detected.

• At most t bits later, it resynchronizes itself when synchronization is lost.

• It helps to diffuse plain-text statistics.

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

47

Linear feedback shift registers

Linear feedback shift registers (LFSRs) are used in many of the keystream

generators that have been proposed in the literature. There are several reasons for

this:

1. LFSRs are well-suited to hardware implementation;

2. they can produce sequences of large period;

3. they can produce sequences with good statistical properties; and

4. because of their structure, they can be readily analyzed using algebraic

techniques.

Definition A linear feedback shift register (LFSR) of length L consists of L stages

(or delay elements) numbered 0, 1,….., L − 1, each capable of storing one bit and

having one input and one output; and a clock which controls the movement of data.

During each unit of time the following operations are performed:

(i) the content of stage 0 is output and forms part of the output sequence;

(ii) the content of stage i is moved to stage i − 1 for each i, ;

and

(iii) the new content of stage L − 1 is the feedback bit sj which is

calculated by adding together modulo 2 the previous contents of a fixed

subset of stages 0, 1,….., L – 1.

 Traditionally, stream ciphers were based on shift registers

o Today, a wider variety of designs

 Shift register includes

o A series of stages each holding one bit

o A feedback function

 A linear feedback shift register (LFSR) has a linear feedback function

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

48

 Example (nonlinear) feedback function f(xi, xi+1, xi+2) = 1  xi  xi+2 

xi+1xi+2

 Example (nonlinear) shift register

 First 3 bits are initial fill: (x0, x1, x2)

Example of LFSR

 Then xi+5 = xi  xi+2 for all i

 If initial fill is (x0,x1,x2,x3,x4) = 01110

 then (x0,x1,…,x15,…) = 0111010100001001…

 For LFSR

 We have xi+5 = xi  xi+2 for all i

 Linear feedback functions often written in polynomial form: x
5
 + x

2
 + 1

 Connection polynomial of the LFSR

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

49

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

50

Example

Create a linear feedback shift register with 4 cells in which b4 = b1 xor b0. Show the

value of output for 20 transitions (shifts) if the seed is (0001)2.

Solution

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

51

Note that the key stream is 100010011010111 10001…. This looks like a random

sequence at first glance, but if we go through more transitions, we see that the

sequence is periodic. It is a repetition of 15 bits as shown below:

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

52

The key stream generated from a LFSR is a pseudorandom sequence in

which the the sequence is repeated after N bits. The maximum period of an LFSR

is to 2
m
 − 1.

Nonlinear combination Generators

The Combiner Function should be, Balanced, Highly nonlinear, and Correlation

Immune. Utilizing the algebraic normal form of the combiner function we can

compute the linear complexity of the output sequence.

Example (Geffe Generator) :

If the lengths of the LFSRs are relatively prime and all connection polynomials are

primitive, then

When we inspect the truth table of the combiner function we gain more insight

about the security of Geffe generator.

33221321),,(xxxxxxxxF 

)12()12()12(321

33221





LLL
T

LLLLLL

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

53

• The combiner function is balanced.

• However, the correlation probability,

• Geffe generator is not secure.

Nonlinear Filter Generator

• Upper bound for linear complexity, m : nonlinear order of the filter function.

.4/3)(1  xzP














m

i

m
i

L
L

1

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

54

• When L and m are big enough, the linear complexity will become large.

Clock-controlled Generators

• An LFSR can be clocked by the output of another LFSR.

• This introduces an irregularity in clocking of the first LFSR, hence increase

the linear complexity of its output.

Example : Shrinking Generator

• Relatively new design.

• However, it is analyzed and it seems secure under certain circumstances.

 

12

1

22

2)12(

1,gcd











SS

SA

L

A

L

A

LL

As

LLL

T

LLif

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

55

Randomness key Tests

The first tests for random numbers were published by M.G. Kendall and Bernard

Babington Smith in the Journal of the Royal Statistical Society in 1938.They were

built on statistical tools such as Pearson's chi-squared test that were developed to

distinguish whether experimental phenomena matched their theoretical

probabilities. Pearson developed his test originally by showing that a number of

dice experiments by W.F.R. Weldon did not display "random" behavior.

Kendall and Smith's original four tests were hypothesis tests, which took as their

null hypothesis the idea that each number in a given random sequence had an equal

chance of occurring, and that various other patterns in the data should be also

distributed equiprobably.

1. The frequency test, was very basic: checking to make sure that there were

roughly the same number of 0s, 1s, 2s, 3s, etc.

2. The serial test, did the same thing but for sequences of two digits at a time

(00, 01, 02, etc.), comparing their observed frequencies with their

hypothetical predictions were they equally distributed.

3. The poker test, tested for certain sequences of five numbers at a time (aaaaa,

aaaab, aaabb, etc.) based on hands in the game poker.

4. The gap test, looked at the distances between zeroes (00 would be a distance

of 0, 030 would be a distance of 1, 02250 would be a distance of 3, etc.).

If a given sequence was able to pass all of these tests within a given degree of

significance (generally 5%), then it was judged to be, in their words "locally

random". Kendall and Smith differentiated "local randomness" from "true

randomness" in that many sequences generated with truly random methods might

Data security lectures Prof. Dr. Soukaena Hassan Hasheem

56

not display "local randomness" to a given degree — very large sequences might

contain many rows of a single digit. This might be "random" on the scale of the

entire sequence, but in a smaller block it would not be "random" (it would not pass

their tests), and would be useless for a number of statistical applications.

As random number sets became more and more common, more tests, of increasing

sophistication were used. Some modern tests plot random digits as points on a

three-dimensional plane, which can then be rotated to look for hidden patterns. In

1995, the statistician George Marsaglia created a set of tests known as the diehard

tests, which he distributes with a CD-ROM of 5 billion pseudorandom numbers.

Pseudorandom number generators require tests as exclusive verifications for their

"randomness," as they are decidedly not produced by "truly random" processes, but

rather by deterministic algorithms. Over the history of random number generation,

many sources of numbers thought to appear "random" under testing have later been

discovered to be very non-random when subjected to certain types of tests. The

notion of quasi-random numbers was developed to circumvent some of these

problems, though pseudorandom number generators are still extensively used in

many applications (even ones known to be extremely "non-random"), as they are

"good enough" for most applications.

