

1

University of Technology
 الجامعة التكنولوجية

Computer Science Department

 قسم علوم الحاسوب

Cryptanalysis
 الشفرهتحليل

 Prof.Dr.Hala Bahjat AbdulWahab
 عبدالوهابأ.د.هاله بهجت

cs.uotechnology.edu.iq

2

Cryptanalysis

 Introduction:

* Cryptanalysis is the science of making encrypted data unencrypted.

A cryptographer will use cryptography to convert plaintext into ciphertext and a

cryptanalyst will use cryptanalysis to attempt to turn that ciphertext back into

plaintext. Both the cryptographer and the cryptanalyst are cryptologists.

Cryptography and cryptanalysis are the two sides of cryptology.

 It without use of the key. The other side of cryptography, cryptanalysis is used

to break codes by finding weaknesses within it. In addition to being used by

hackers with bad intentions, cryptanalysis is also often used by the military.

Cryptanalysis is also appropriately used by designers of encryption systems to

find, and subsequently correct, any weaknesses that may exist in the system

under design.

 There are several types of attacks that a cryptanalyst may use to break a code,

depending on how much information they have. A ciphertext-only attack is one

where the cryptanalyst has a piece of ciphertext (text that has already been

encrypted), with no plaintext (unencrypted text). This is probably the most

difficult type of cryptanalysis, and calls for a bit of guesswork. In a known-

plaintext attack, the cryptanalyst has both a piece of ciphertext and the

corresponding piece of plaintext.

 Other types of attacks may involve trying to derive a key through trickery or

theft. The "man-in-the-middle" attack is one example. In this attack, the

cryptanalyst places a piece of surveillance software in between two parties that

communicate. When the parties' keys are exchanged for secure communication,

they exchange their keys with the attacker instead of each other.

http://www.tech-faq.com/plaintext-ciphertext.shtml
http://www.tech-faq.com/plaintext-ciphertext.shtml
http://www.wisegeek.com/what-is-cryptography.htm
http://www.wisegeek.com/what-is-a-hacker.htm
http://www.wisegeek.com/what-is-encryption.htm

3

 The ultimate goal of the cryptanalyst however, is to derive the key, so that all

ciphertext can be easily deciphered. A brute-force attack is one way of doing so.

In this type of attack, the cryptanalyst tries every possible combination until the

correct key is identified. Although using longer keys make the derivation less

statistically likely to be successful, faster computers, continue to make brute-

force attacks feasible. Networking a set of computers together in a grid,

combines their strength; their cumulative power can be used to break long keys.

The longest keys used, 128-bit keys, remain the strongest, and less likely to be

subject to a brute-force attack.

At its core, cryptanalysis is a science of mathematics, probability and fast

computers; cryptanalyst's also usually require some persistence, intuition,

guesswork and some general knowledge of the target.

Cryptanalysis also has an interesting historical element; the famous Enigma

machine, used by the Germans to send secret messages, was ultimately cracked

by members of the Polish resistance and transferred to the British.

 There are two general approaches in order to attacking a conventional encryption scheme:

 Cryptanalysis: Cryptanalytic attacks rely on the nature of the algorithm

plus perhaps some knowledge of the general characteristics of the

plaintext or even some sample plaintext-cipher text pairs. This type of

attack exploits the characteristics of the algorithm to attempt to deduce a

specific plaintext or to deduce the key being used. If the attack succeeds

in deducing the key, the effect is catastrophic: All future and past

messages encrypted with that key are compromised.

 Brute-force attack: The attacker tries every possible key on a piece of

ciphertext until an intelligible translation into plaintext is obtained. On

average, half of all possible keys must be tried to achieve success.

http://www.wisegeek.com/what-is-an-enigma.htm

4

 Table (1) summarizes the various types of cryptanalytic attacks, based on

the amount of information known to the cryptanalyst. The most difficult

problem is presented when all that is available is the ciphertext only. In some

cases, not even the encryption algorithm is known, but in general, we assume

that the opponent does know the algorithm used for encryption. One possible

attack under these circumstances if the brute-force approaches of trying all

possible keys.

If the key space is very large, this becomes impractical. Thus, the opponent

must rely on an analysis to the cipher text itself, general applying various

statistical tests to it. To us this approach, the opponent must have some general

idea of the type of plaintext that is concealed, such as English or French text, a

Window EXE file, a Java source listing, an accounting file, and so on.

Table (1): Types attacks on encrypted messages.

Type of Attack Known of Cryptanalyst

Ciphertext only

 Encryption algorithm.

 Ciphertext to be decoded.

Known plaintext Encryption algorithm.

 Ciphertext to be decoded.

 One or more plaintext-ciphertext pairs formed

with the secret key.

Chosen plaintext Encryption algorithm.

 Ciphertext to be decoded.

 Plaintext message chosen by cryptanalyst,

together with its corresponding cipher text

generated with secret key.

5

Chosen

cipher text

 Encryption algorithm

 Cipher text to be decoded

 Purported cipher text chosen by cryptanalyst,

together with its corresponding decrypted plain

generated with the secret key

Chosen text Encryption algorithm

 Cipher text to b decoded

 Plaintext massage chosen by cryptanalyst,

together with its corresponding cipher text

generated with the secret key.

 Purported cipher text chosen by cryptanalyst,

together with its corresponding decrypted

plaintext generated with the secret key

 Table (1) lists two other types of attacks: chosen ciphertext and chosen text.

These are less commonly employed as cryptanalytic techniques but are possible

avenues of attack.

1- Cipher text – only attack: the cryptanalyst has the cipher text of several

message , all of which have been encrypted using the same encryption

algorithm, the cryptanalyst job is to recover the plain text of many message as

possible, or better yet to deduce the key (or keys) used to encrypted the

message. In order to decrypted other message encrypted with the same keys.

 Given: C1=Ek (p1), C2=Ek (p2),….. Ci=Ek (pi)

 Deduce: either p1, p2, pi, k; or an algorithm.

 To infer pi+1 from Ci=Ek (pi+1)

6

2- Known – plain text attack: the cryptanalyst has access not only to the cipher

text of several message, but also to the plain text of those message. His job is to

deduce the key (or keys) used to encrypt the message or an algorithm to decrypt

any new message encrypted with the same key, (or keys).

 Given: P1,C1=Ek (p1), P2,C2=Ek (p2),….. Pi,Ci=Ek (pi)

 Deduce: either k or an algorithm.

 To infer Pi+1 from Ci=Ek (Pi+1)

3- chosen– plain text attack: the cryptanalyst not only has access to the cipher

text and associated plain text for several message. But be also chooses the plain

text that gets encrypted.

This is more powerful than a known-plain text attack, because the cryptanalyst

can choose specified plaintext blocks to encrypted, ones that might more

information about the key. His job is to deduce the key (or keys) used to encrypt

the message or an algorithm to decrypt any new message encrypted with the

same key (or keys).

 Given: P1,C1=Ek (p1), P2,C2=Ek (p2),….. Pi,Ci=Ek (pi)

 where the cryptanalyst gets to choose p1, p2, pi

 Deduce: either k or an algorithm.

 To infer Pi+1 from Ci=Ek (Pi+1)

 Other

4- chosen– cipher text attack.

5- Adaptive-chosen-plaintext attack: this is a special case of a chosen-plaintext

attack.

Note only can the cryptanalyst choose the plaintext that is encrypted , but he can

also modify his choice based on the result of pervious encryption- in a chosen-

plain text attack,a cryptan-alyst might just be able to choose one large block of

plain text to be encrypted ; in an adaptive-chosen-plaintext attack he can choose

7

a smaller block of plaintext and then choose another based on the result of the

first, and so forth.

 Only relatively weak algorithms fail to withstand a ciphertext-only attack.

Generally, an encryption algorithm is designed to withstand a known-plaintext

attack.

 Two more definitions are worth to be noted. An encryption scheme is

unconditionally secure if the ciphertext generated by the scheme does not

contain enough information to determine uniquely the corresponding plaintext,

no matter how much ciphertext is available, that is no, matter how much time an

opponent has, it is impossible for him or her to decrypt the ciphertext, simply

because the required information is not there. With the exception of a scheme

known as the one-time pad, there is no encryption algorithm that is

unconditionally secure. Therefore, all that the uses of an encryption algorithm

can strive for is an algorithm that meets one or both of the following criteria:

 The cost of breaking the cipher exceeds the value of the encrypted

information.

 The time required to break the cipher exceeds the useful lifetime of the

information.

An encryption scheme is said to be computationally secure if the foregoing two

criteria are met. The rub is that it is very difficult to estimate the amount of

effort required to cryptanalyze ciphertext successfully. Table (2) shows how

much time is involved for various key spaces. Results are shown for four binary

key sizes.

For each key size, the result is shown assuming that it takes s1 to perform a

single decryption, which is a reasonable order of magnitude for today’s

machines. The final column of table (2) considers the results for a system that

can process 1 million keys per microsecond.

8

 Table (2): Average time required for exhaustive key search.

Key Size (bits)

Number of

Alternative

Keys

Time required at

1 encryption / s

Time

required at
610

encryptions

/ s

32

32
2 =

9
103.4 8.35

31
2 s minutes

2.15

milliseconds

56 16
102.7

56
2 1142

55
2 s years

10.01 hours

128 38
104.3

128
2

36167 109.52 s

years

30
109.5 years

26 characters

(permutation)

26
104!26

1226 104.6102 s

years

6
104.6 years

9

Transposition Ciphers

 intorduction
 Transposition ciphers jumble the letters of the message in a way that is

designed to confuse the attacker, but can be unjumbled by the intended recipient.

The concept of transposition is an important one and is widely used in the design

of modern ciphers, as will be seen in subsequent chapters. Notethat the key must

provide sufficient information to unscramble the ciphertext.

* Scytale

 One of the earliest recorded uses of cryptography was the Spartan scytale(circa

500 B.C.). A thin strip of parchment was wrapped helically around a cylindrical

rod and the message was written across the rod, with each letter on a successive

turn of the parchment. The strip was unwound and delivered to the receiver. The

message could then be decrypted with the use of an identical cylindrical rod. To

anyone who intercepted the message, and did not understand the encryption

technique, the message would appear to be a jumble of letters. A clever

cryptanalyst with access to a number of rods of various diameters will soon

recover the plaintext.

 For the scytale cipher, which is an example of a transposition cipher, the key is

the rod (or its diameter). This is a very weak cipher since the system could be

easily broken by anyone who understands the encryption method.

10

o Scytale

Example:

Encrypting

Suppose the rod allows one to write 4 letters around in a circle and 5 letters down the side of

it. The plaintext could be: "Help me I am under attack"

To encrypt one simply writes across the leather...

 | | | | | | |

 | | H | E | L | P | M |

 |__| E | I | A | M | U |__

 | N | D | E | R | A | |

 | T | T | A | C | K | |

 | | | | | | |

so the ciphertext becomes, "HENTEIDTLAEAPMRCMUAK" after unwinding.

Decrypting

To decrypt all one must do is wrap the leather strip around the rod and read across. The

ciphertext is: "HENTEIDTLAEAPMRCMUAK" Every fifth letter will appear on the same

line so the plaintext becomes

HELPM...return to the beginning once the end is reached

...EIAMUNDERATTACK

Insert spaces and the plaintext is revealed: "Help me I am under attack"

http://en.wikipedia.org/wiki/Plaintext

11

Columnar Transposition.

 Suppose we have plaintext SEETHELIGHT and we want to encrypt this

using a columnar transposition cipher. We first put the plaintext into the rows of

an array of some given dimension. Then we read the ciphertext out of the

columns. The key consists of the the number of columns in the array. For

example, suppose we choose the key to be four, which means that we write the

plaintext in four columns as

 Where the final X is used as to fill out the array. The ciphertext is then read

from the columns, which in this case yields SHGEEHELTTIX. The intended

recipient, who knows the number of columns, can put the ciphertext into an

appropriate-sized array and read the plaintext out from the rows. Not

surprisingly, a columnar transposition is not particularly strong. To perform a

ciphertext only attack on this cipher, we simply need to test all possible decrypts

using c columns, where c is a divisor of the number of characters in the

ciphertext.

 Keyword Columnar Transposition

 The columnar transposition cipher can be strengthened by using a keyword,

where the keyword determines the order in which the columns of ciphertext are

transcribed. We refer to this as a keyword columnar transposition cipher.

 For example, consider encrypting the plaintext CRYPTOISFUN using a

keyword columnar transposition cipher with keyword MATH, again using four

columns. In this case, we get the array

12

 The ciphertext is read from the columns in alphabetical order (as etermined by

the keyword), so that, in this example, the ciphertext is

 RO UPSXCTFYIN

 Is it possible to conduct a ciphertext-only attack on a keyword columnar

transposition cipher? It is certainly not as straightforward as attacking a non-

keyword columnar cipher. Suppose we obtain the ciphertext ,

VOESA IVENE MRTNL EANGE WTNIM HTMEE ADLTR NISHO

DWOEH

 Which we believe was encrypted using a keyword columnar transposition. Our

goal is to recover the key and the plaintext. First, note that there are 45 letters in

the ciphertext. Assuming the array is not a single column or row, the array could

have any of the following dimensions: 9 x 5. 5 x 9. 15 x 3

or 3 x 15. Suppose that we first try a 9 x 5 array. Then we have the ciphertext

array in Table 1.1. We focus our attention on the top row of the array in Table

1.1. If we permute the columns as shown in Table 1.2, we see the word GIVE in

the first row and we see words or partial words in the other rows. Therefore, we

have almost certainly recovered the key.

13

This method is somewhat ad hoc, but the process could be automated,

provided we can automatically recognize likely plaintexts. In this example, we

have recovered the encryption key 24013 and the plaintext is

GIVE ME SOMEWHERE TO STAND AND I WILL MOVE THE

EARTH.

14

 There are many ways to systematically mix the letters of the plaintext.

For example, we can strengthen the columnar transposition cipher by allowing

the permutation of columns and rows. Since two transpositions are involved, this

is known as a double transposition cipher, which we briefly describe next.

Double Transposition Cipher

 To encrypt with a double transposition cipher, we first write the plaintext into

an array of a given size and then permute the rows and columns according to

specified permutations. For example, suppose we write the plaintext

ATTACKATDAWN into a 3 x 4 array:

Now if we transpose the rows according to (0,1,2) →(2,1,0) and then transpose

the columns according to (0,1,2,3) → (3,1,0,2), we obtain

The ciphertext is read directly from the final array:

NADWTKCAATAT.

 For the double transposition, the key consists of the size of the matrix and the

row and column permutations. The recipient who knows the key can simply put

the ciphertext into the appropriate sized matrix and undo the permutations to

recover the plaintext.If Trudy happens to know the size of the matrix used in a

double transposition, she can insert the ciphertext into a matrix of the

appropriate size. She can then try to unscramble the columns to reveal words (or

partial words).

 Once the column transposition has been undone, she can easily unscramble

the rows; This attack illustrates the fundamental principle of divide and conquer.

That is, Trudy can recover the double transposition key in parts, instead of

attacking the entire key all at Once. There are many examples of divide and

15

conquer attacks throughout The remainder of this book. In spite of the inherent

divide and conquer attack, the double transposition cipher is relatively strong---

at least in comparison to many other classic cipher. The interested reader is

directed to for a thorough cryptanalysis of the double transposition.

Substitution Ciphers
Introduction

Like transposition, substitution is a crucial concept in the design of

modern ciphers. in fact, Shannon’s [133] two fundamental principles

for the design of symmetric ciphers are confusion and diflusion,

which, roughly, correspond to the classic concepts of substitution and

transposition, respectively. These are still the guiding principles in the

design of symmetric ciphers. In this section we discuss several classic

substitution ciphers. We high light, some of the clever techniques that

can be brought to bear to attack such ciphers.

Caesar’s Cipher

in 50 R.C., Gaius Julius Caesar described the use of a specific cipher

that, goes by the name of Caesar’s c2pher.l In Caesar’s cipher,

encryption is accomplished by replacing each plaintext letter with its

corresponding “shiftby- three” letter, that is, A is replaced by D, B is

replaced by E, C is replaced by F, and so on. At the end of the

alphabet, a wrap around occurs, with X replaced by A, Y replaced by

B and Z replaced by C. Decryption is accomplished by replacing each

ciphertext letter with its corresponding left-shift-by-three letter, again,

taking the wrap around into account. Suppose we assign numerical

values 0 , 1 , . . . ,25 to the letters A, B, . . . , Z, respectively, Let pi be

16

the ith plaintext letter of a given message, and ci thecorresponding ith

ciphertext letter. Then Caesar’s cipher can be mathematically stated as

ci = pi + 3 (mod 26) and, therefore, pi = ci - 3 (mod 26). In Caesar’s

cipher, the key is “3”, which is not very secure, since there is only one

key-anyone who knows that the Caesar’s cipher is being used can

immediately decrypt the message.

Simple Substitution

A simple substitution (or mono-alphabetic substitution) cipher is a

generalization of the Caesar’s cipher where the key can be any

permutation of the alphabet. For the simple substitution, there are 26!

= 288 keys available. This is too many keys for any attacker to simply

try them all, but even with this huge number of keys, the simple

substitution cipher is insecure. Before we discuss the attack on the

simple substitution, we consider a few special types of related ciphers

that have been used in the past.

Poly-alphabetic Substitution

During the Renaissance, the first poly-alphabetic substitution cipher

was invented by one Leon Battista Alberti (1404-1472). Such a cipher

is essentially a variable simple substitution cipher, that is, a different

substitution alphabet is used for different parts of the message. In

Alberti’s cipher, this was accomplished by use of a device that

included an inner and outer cipher wheel with the alphabet written in

17

particular ways on each wheel. The inner wheel freely rotated allowing

the two alphabets to be aligned in any fashion, with each alignment

generating a different (simple) substitution. As the message was

encrypted, differing substitution alphabets could be used, as

determined by both parties in advance, or as specified within the

message itself. In his book Traict6 des Chaffres, Blaise de Vigenkre

(1585) discusses a poly-alphabetic substitution that uses a 26 x 26

rectangular array of letters. The first row of the array is A, B, C, . . . ,

Z, and each succeeding row is a cyclic left shift of the preceding one.

A keyword can then be used to determine which of the cipher

alphabets to use at each position in the text. In this way, all “shift-by-

n” simple substitutions are readily available for use. The Vigenkre

cipher, and its cryptanalysis, is discussed below.

Affine Cipher

An ajJine cipher is a simple substitution where ci = api + b (mod 26).

Here,the constants a and b are integers in the range 0 to 25 (as are p ,

and ci).To decrypt uniquely--always a nice feature for a cipher system-

-we must have gcd(a, 26) = 1. Consequently, there are 26.4(26) = 312

affine ciphers for the English language, where 4 is the Euler-phi

function (see the Appendix fora definition of the 4 function). The

decryption function for the affine cipher is pi = aP1(ci - b) (mod 26),

where aa-l = 1 (mod 26), that is, up1 is the multiplicative inverse of a,

modulo 26.Affine ciphers are weak for several reasons, but the most

obvious problem is that they have a small keyspace. A ciphertext only

attack can be performed by conducting a brute force search of all 312

18

possible key pairs (a , b). This attack is trivial, provided we can

recognize the plaintext when we see it (or, better yet, automatically

test for it).

Simple Substitution Cryptanalysis

Trying all possible keys is known as an exhaustive key search, and this

attack is always an option for Trudy. If there are N possible keys, then

Trudy will,on average, need to try about half of these, that is; N/2 of

the keys, before she can expect to find the correct key. Therefore, the

first rule of cryptography is that any cipher must have a large enough

keyspace so that an exhaustive search is impractical. However, a large

keyspace does not ensure that a cipher is secure. To see that this is the

case, we next consider an attack that will work against any simple

substitution cipher and, in the general case, requires far less work than

an exhaustive key search. This attack relies on the fact that statistical

information that is present in the plaintext language “leaks” through a

simple substitution .Suppose we have a reasonably large ciphertext

message generated by a compiled from a 7834-letter sample of written

English. By simply computing letter frequency counts on our

ciphertext, we can make educated guesses as to which plaintext letters

correspond to some of the ciphertext letters.For example, the most

common ciphertext letter probably corresponds to plaintext E. We can

obtain additional statistical information by making use of digraphs

(pairs of letters) and common trigraphs (triples). This type of statistical

attack on a simple substitution, is very effective. After a few letters

19

have been guessed correctly, partial words will start to appear and the

cipher should then quickly unravel.

Vigenere Cipher

Recall that a poly-alphabetic substitution cipher uses multiple simple

substitutions to encrypt a message. The Vigenkre cipher is a classic

poly-alphabetic substitution cipher. The World War I1 cipher

machines discussed in Chapter 2 are more recent examples of poly-

alphabetic substitutions. In the Vigenkre cipher, a key of the form

K = (ko, k l ; . . . , k n - l) , where each ki E {0,1,. . . ,25}, is used to

encipher the plaintext. Here, each kirepresents a particular shift of the

alphabet.

To encrypt a message, CZ = Pi + ki (mod n) (mod 26) and

To decrypt Pi = CZ - ki (mod n) (mod 26)

For example, suppose K = (12,0,19,7), which corresponds to the

keyword MATH (since M corresponds to a shift of 12, A corresponds

to a shift of 0, and so on). Using this keyword, the the plaintext

20

SECRETMESSAGE is encrypted as EEVYQTFLESTNQ. Next, we

cryptanalyze the Vigenkre cipher. But first, note that a polyalphabetic

substitution (such as the VigenBre cipher) does not preserve plaintext

letter frequencies to the same degree as a mono-alphabetic

substitution. Furthermore, if the number of alphabets is large relative

to the message size,the plaintext letter frequencies will not be

preserved at all. Therefore, the generic simple substitution attack

discussed above will not work on a polyalphabetic

substitution.However, the VigenBre cipher is vulnerable to a slightly

more sophisticated statistical attack. To see how this works, first

consider a VigenBre cipher with a small keyword. Suppose that the

following ciphertext was created using a VigenBre cipher with a three-

lettered keyword:

RLWRV MRLAQ EDUEQ QWGKI LFMFE XZYXA QXGJH FMXKM

QWRLA LKLFE LGWCL SOLMX RLWPI OCVWL SKNIS IMFES

JUVAR MFEXZ CVWUS MJHTC RGRVM RLSZS MREFW XZGRY

RLWPI OMYDB SFJCT CAZYX AQ. (1.1)

To recover the key and decrypt the message, we can make use of the

fact that the ciphertext is composed of three simple substitutions. To

accomplish t,his,we tabulate the letter frequencies for the sets SO =

{co,c:~c,g ,. . . }, 5.1 = {Q, c 4 , ~ 7 , .. . }, and 5.2 = {c2,c g, ex.. . .

}.where c, is the ith ciphertext letter. Doing so, we obtain the results in

Tables 1.4, 1.5, and 1.6, respectively.

21

 From the So ciphertext in Table 1.4, we might reasonably guess

that ciphertext R corresponds to plaintext E. T, N, 0, R, I. A or S.

which gives us

 candidate values for ko, namely ko E {13,24,4,3,0,9,17,25}.

Similarly, for set S1, ciphertext X niight correspond to plaintext E,

T, N, 0, R, I, A or S,from which we obtain likely values for k l , and

from set Sz, ciphertext W likely correspond to plaintext E, T, N, 0, R,

I, A or S. The corresponding likely keyword letters are tabulated in

Table 1.7. candidate values for ko, namely ko E {13,24,4,3,0,9,17,25}.

Similarly, for set S1, ciphertext X niight correspond to plaintext E,

T, N, 0, R, I, A or S, from which we obtain likely values for k l , and

from set Sz, ciphertext W likely correspond to plaintext E, T, N, 0, R,

I, A or S. The corresponding likely keyword letters are tabulated in

Table 1.7.

22

 The conibinations of likely keyword letters in Table 1.7 yield 83 = 2’

putative keywords. By testing each of these putative keyword on the

first few letters of the ciphertext, we can easily determine which, if

any, is the actual keyword. For this example, we find that (ko, k l , k2)

= (24,4,18), which corresponds to YES, and the original plaintext is

THE TRUTH IS ALWAYS SOMETHING THAT IS TOLD, NOT

SOMETHING THAT IS KNOWN. IF THERE WERE NO SPEAKING OR

WRITING, THERE WOULD BE NO TRUTH ABOUT NYTHING.THERE

WOULD ONLY BE WHAT IS.

This attack provides a significant shortcut, as conipared to trying all

possible 263 M 214 keywords. Knowing the length of the keyword

used in a Vigenkre cipher helps greatly in the cryptanalysis. If the

keyword is known, and the message is long enough, we can simply

perform letter frequency counts on the associated sets of ciphertext to

begin solving for the plaintext. However, it is not so obvious how to

determine the length of an unknown keyword. Next, we consider two

Friederich W. Kasiski (1805-1881) was a major in the East Prussian

infantry regiment and the author of the cryptologic text Die

Geheimschriflen und die Dechiger-kunst. Kasiski developed a test

23

(amazingly, known as the Kasiski Test), that can sonietimes be used to

find the length of a keyword used in a cipher such as the Vigenkre. It

relies on the occasional coincidental alignment of letter groups in

plaintext with the keyword. To attack a periodic cipher using the

Kasiski Test, we find repeated letter groups in the ciphertext arid

tabulate the separations between them. The greatest common divisor

of these separations (or a divisor of it) gives a possible length for the

keyword.For example, suppose we encrypt the plaintext

THECHILDISFATHEROFTHEMAN

with a Vigenkre cipher using the keyword POETRY. The resulting

ciphertest is

IVIVYGARMLMYIVIKFDIVIFRL.

Notice that the second Occurrence of the ciphertext letters IVI begins

exactly 12 letters after the first, and the third occurrence of IVI occurs

exactly six letters after the second. Therefore, it is likely that the

length of the keyword is a divisor of six. In this case, the keyword

length is exactly six.

Index of Coincidence

While working at the Riverbank Laboratory, William F. Friedman

(1891L 1969) developed the index of coincidence. For a given

ciphertext, the index of coincidence I is defined to be the probability

that two randomly selected letters in the ciphertext represent, t.he same

plaintext symbol. For a given ciphertext, let no, 121,. . . ,1225 be the

respective letter counts of A, B, C, . . . , Z in the ciphertext, and set 71

24

= n o + 111 + . . . + r125. Then, theindex of coincidence can be

computed as

To see why the index of coincidence gives us useful information, first

note that the empirical probability of randomly selecting two identical

letters from a large English plaintext is

where po is the probability of selecting an A, p l is the probability of

selecting a B, and so on, and the values of p , are given in Table 1.3.

This implies that an (English) ciphertext having an index of

coincidence I x 0.065 is probably associated with a mono-alphabetic

substitution cipher, since this statistic will not change if the letters are

simply relabeled (which is the effect of encrypting with a simple

substitution). The longer and more random a Vigenkre cipher keyword

is, the more evenly the letters are distributed throughout the ciphertext.

With a very long and very random keyword, we would expect to find

25

Therefore, a ciphertext having I E 0.03846 could be associated with a

polyalphabetic cipher using a large keyword. Note that for any English

ciphertext, the index of coincidence I must satisfy 0.03846 5 I 5 0.065.

The question remains as to how to determine the length of the

keyword of a Vigenkre cipher using the index of coincidence. The

main weakness of the Vigenkre (or any similar periodic cipher) is that

two identical characters occurring a distance apart that is a multiple of

the key length will be encrypted identically. In such cryptosystems, the

key length k can be approximated by a function involving the index of

coincidence I and the length of the ciphertext R. The following

example illustrates this technique. Suppose an English plaintext

containing n letters is encrypted using a VigenBre cipher, with a

keyword of length k , where, for simplicity, we assume R is a multiple

of k . Now suppose that we arrange the ciphertext letters into a

rectangular array of n / k rows and k columns, from left to right, top to

bottom. If we select two letters from different columns in the array,

this would be similar to choosing from a collection of letters that is

uniformly distributed, since the keyword is more-or-less “random”.

Statistical cryptanalysis

 Introduction:

There are a number of aids to identification and solution available to help you as

a cryptanalyst. By preparing character frequency counts, performing statistical

26

tests, and recording observed repetitions and patterns in messages, you can

compare the data to established norms for various systems and languages.

Language Characteristics

 Each language has characteristics that aid successful cryptanalysts.

a. The individual letters of any language occur with greatly varying frequencies.

Some letters are used a great deal. Others are used only a small percentage of the

time. In English, the letter E is the most common letter used. It occurs about 13

percent of the time, or about once in every eight letters. In small samples, other

letters may be more common, but in almost any sample of 1,000 letters of text or

more, E will be the most frequent letter. In other languages, other letters

sometimes dominate. In Russian, for example, O is the most common letter. The

eight highest frequency letters in English, shown in descending order, are E, T,

N, R, O, A,I and S. The eight highest frequency letters make up about 67 percent

of our language. The remaining 18 letters only make up 33 percent of English

text. The lowest frequency letters are J, K, Q, X, and Z. These five letters

makeup only a little over 1 percent of English text. The vowels, A, E, I, O, U

and Y, make up about 40 percent of English text. In many cryptographic

systems, these frequency relationships show through despite the encryption. The

analysis techniques explained in the following lecture make repeated use of

these frequency relationships. In particular, you should remember the high

frequency letters, ETNROAIS, and the low frequency letters, JKQXZ, for their

repeated application. The word SENORITA, which includes the high frequency

letters is one way to remember them. Some people prefer to remember the

pronounceable ETNORIAS as a close approximation of the descending

frequency order. Choose the method you prefer. The high frequency letters are

referred to frequently.

27

b. Just as single letters have typical frequency expectations, multiple letter

combinations occur with varying, but predictable frequencies, too. The most

common pair of letters, or digraph, is EN. After EN, RE and ER are the most

common digraphs. There are 676 different possible digraphs in English, but the

most common 18 make up 25 percent of the language. Some cryptographic

systems do not let individual letter frequencies show through the encryption, but

let digraphic frequencies come through. The systems explained in Part Three of

this manual show this characteristic.

c. frequency expectations for sets of three letters (trigraphs) and four letters

(tetragraphs). Each of these can be useful when studying cryptograms in which

three and four letter repeated segments of text occur.

d.Repeated segments of two to four letters will often occur because they are

common letter combinations, whether or not they are complete words by

themselves. Longer repeated segments readily occur when words and phrases are

reused in plaintext. When words are reused in plaintext, they may or may not

show up as repeated segments in ciphertext. For a word to show through as a

repeat in ciphertext, the same keys must be applied to the same plaintext more

than once. Even complex systems which keep changing keys will sometimes

apply the same keys to the same plaintext and a repeated ciphertext segment will

result. Finding such repeats gives many single messages to all messages that you

believe may have been encrypted with the same set of keys. If computer support

is available to search for repeats for you, a great deal of time can be saved. If not,

time spent scanning text to search for repeats will reward you for your time when

you find them.

We first consider the weakest type of attack, namely a ciphertext-only attack. We

also assume that the plaintext string is ordinary English text, without punctuation

28

or “spaces.” (This makes cryptanalysis more difficult than if punctuation and

spaces were encrypted.)

Many techniques of cryptanalysis use statistical properties of the English

language. A among these is the letter frequency distribution, which gives the

percentage frequency of the characters in the given text. Various people have

estimated the relative frequencies of the 26 letters by compiling statistics from

numerous novels, magazines, and newspapers. The estimates in Table bellow

were obtained by Beker and Piper.

On the basis of the above probabilities, Beker and Piper partition the 26 letters

into five groups as follows:

1. E, having probability about 0.120

2. T, A, O, I, N, S, H, R, each having probabilities between 0.06 and 0.09

3. D, L, each having probabilities around 0.04

4. C, U, M, W, F, G, Y, P, B, each having probabilities between 0.015

and 0.028

5. V, K, J, X, Q, Z, each having probabilities less than 0.01.

It may also be useful to consider sequences of two or three consecutive letters

called digrams and trigrams, respectively. The 30 most common digrams are (in

decreasing order) TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, NT,

HA, ND, OU, EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, SE, HI, and OF. The

twelve most common trigrams are (in decreasing order) THE ING, AND, HER,

ERE, ENT, THA, NTH, WAS, ETH, FOR, and DTH.

29

Unilateral Frequency Distribution

The most basic aid to identification and solution of cipher systems is the

unilateral frequency distribution. The term unilateral means one letter at a time.

A unilateral frequency distribution is a count of all the letters in selected text,

taken one letter at a time.

a. The customary method of taking the distribution is to write the letters A

through Z horizontally and mark each letter of the cryptogram with a dash

above or below the appropriate letter. Proceed through the message from the

first letter to the last, marking each letter in the distribution. Avoid the alternate

method of counting all the As, Bs, Cs, and so forth, which is very subject to

errors. For convenience, each group of five is crossed off by a diagonal slash.

The unilateral frequency distribution for the first sentence in this paragraph is

shown below.

30

Forth, which is very subject to errors. For convenience, each group of five is

crossed off by a diagonal slash. The unilateral frequency distribution for the first

sentence in this paragraph is shown below.

For comparison, the next example shows the frequency count for the fourth and

fifth sentences in paragraph 2-9a.

b. Although individual letter frequencies differ, the pattern of high and low

frequency letters is quite similar. The letters that stand above the others in each

tally are, with few exceptions, the expected high frequency letters—

ETNROAIS. The expected low frequency letters, JKQXZ, occur once or twice at

most. Even in as small a sample as one or two sentences, expected patterns of

usage start to establish themselves. Compare this to a frequency count of all

letters in this paragraph.

31

 When a larger sample is taken, such as the above paragraph, the letters occur

much closer to the expected frequency order of ETNROAIS. As expected, E

and T are the two highest frequency letters. but the next series of high

frequency letters in descending order of occurrence, ASRINO, differs slightly

from the expected order of NROAIS. It would take a sample thousands of

letters long to produce frequencies exactly in the expected order. Even then,

differences in writing style between a field manual and military message texts

could produce frequency differences. For example, the word the is often

omitted from military message traffic for the sake of brevity. More frequent

use of the raises the expected frequency of the letter H.

Letter Frequencies in Cryptograms

As different cipher systems are explained in this manual, the ways in which letter

frequencies can be used to aid identification and solution will be shown. Some

basic considerations should be understood now.

 a. In transposition systems, the letter frequencies of a cryptogram will be

identical to that of the plaintext. A cryptogram in which the ciphertext letters

32

occur with the expected frequency of plaintext will usually be enciphered by a

transposition system.

b. In the simplest substitution systems, each plaintext letter has one ciphertext

equivalent. The ciphertext letter frequencies will not be identical to the plaintext

frequencies, but the same numbers will be present in the frequency count as a

whole. For example, if there are 33 Es in the plaintext of a message, and if E is

enciphered by the letter K, then 33 Ks will appear in the ciphertext frequency

count.

c. More complex substitution cipher systems, such as the polyalphabetic systems

in ,will keep changing the equivalents. E might be enciphered by a K the first

time it occurs and by different cipher letters each time it recurs. This will

produce a very different looking frequency count.

d. To illustrate the differences in appearance of frequency counts for different

types of systems, examine the four frequency counts in Figure 2-1. Each one is a

frequency count of the message listed above it. The four messages are different,

but each has the same plaintext. The first shows the plaintext and its frequency

count. The second shows the frequencies of the same message enciphered by a

transposition system. The third shows a simple substitution system

encipherment. The fourth shows a polyalphabetic substitution encipherment.

Roughness

 The four examples in Figure 2-1 show another characteristic of frequency

counts which is useful in system identification. The first three distributions all

contain the same letter frequencies. In the first two, the plaintext and the

transposition examples, there are 16 Es. In the third, where E has been replaced

by W, there are 16 Ws. Where there were 9 As, there are now 9 Ls. Where there

was 1 K, there is now 1 C. The first three distributions show the same wide

differences between the highest frequency letters and the lowest. The fourth

33

distribution is very different. The distribution lacks the wide differences between

the highest and lowest frequency letters. Where the first three showed distinct

highs and lows, or peaks and troughs, in the distributions, the fourth is relatively

flat.

a. Frequency counts which show the same degree of difference between peaks

and troughs as plaintext are considered to be rough distributions. Systems which

suppress the peaks and troughs of plaintext letters by changing their equivalents

produce flatter distributions. If letters were selected randomly from the 26 letters

of the English alphabet, the resulting distribution would look very much like the

fourth example. Random selection will not produce a perfectly level distribution,

but it will appear quite flat in comparison to plaintext.

34

b. The simplest substitution systems tend to produce rough distributions. The

most secure tend to produce flat distributions. Many other systems tend to

fall in between. You can use the degree of roughness as one of the aids to

system identification.

Cryptanalysis of the Affine Cipher

As a simple illustration of how cryptanalysis can be performed using statistical

data, let’s look first at the Affine Cipher. Suppose Oscar has intercepted the

following ciphertext:

Example:

Ciphertext obtained from an Affine Cipher

FMXVEDKAPHFERBNDKRXRSREFMORUDSDKDVSHVUFEDKAPR

KDLYEVLRHHRH

The frequency analysis of this ciphertext is given in Table below.

There are only 57 characters of ciphertext, but this is sufficient to cryptanalyze

an Affine Cipher. The most frequent ciphertext characters are:

Character No. of occurrences

R (8occurrences),

D (7occurrences),

E,H,K (5occurrenceseach),

F,S,V (4occurrenceseach).

 As a first guess, we might hypothesize that R is the encryption of e and D is the

encryption of t, since e and t are (respectively) the two most common letters.

35

Expressed numerically, we have eK(4) = 17 and eK(19) = 3. Recall that eK(x) = ax

+ b, where a and b are unknowns. So we get two linear equations in two

unknowns:

This system has the unique solution a = 6, b = 19 (in). But this is an illegal

key, since gcd(a, 26) = 2 > 1. So our hypothesis must be incorrect.

Our next guess might be that R is the encryption of e and E is the encryption of t.

Proceeding as above, we obtain a = 13, which is again illegal.

So we try the next possibility, that R is the encryption of e and H is the

encryption of t. This yields a = 8, again impossible. Continuing, we suppose that

R is the encryption of e and K is the encryption of t. This produces a = 3, b = 5,

which is at least a legal key. It remains to compute the decryption function

corresponding to K = (3, 5), and then to decrypt the ciphertext to see if we get a

meaningful string of English, or nonsense. This will confirm the validity of (3,

5).

If we perform these operations, we have dK(y) = 9y - 19 and the given ciphertext

decrypts to yield:

 Algorithms are quite general definition so far itmetic processes

We conclude that we have determined the correct key.

36

Coincidence Tests

Judging whether a given frequency distribution has the same degree of

roughness as plaintext or random text is not easy to do by eye alone. To help you

make this determination, a number of statistical tests have been developed for

your use. The tests are based in probability theory, but you can use the tests

whether or not you understand the underlying theories. The most common tests

are called coincidence tests.

c. If you pick any two letters from a message, compare them together, and they

happen to be the same letter, they are said to coincide. A comparison of the

same letters, for example, two As is a coincidence. This comparison can be

made of single letters or pairs of letters or longer strings of letters.

d. If you compare two single letters selected at random from the English

alphabet, the probability of their being the same is 1 in 26. One divided by 26

is .0385. Expressed as a percentage, 1/26 is slightly less than 4 percent. You

would expect to find a coincidence 3.85 times on the average in every 100

comparisons.

e. If you select two letters from English plaintext, however, the probability of

their being the same is higher than 1 in 26. Frequency studies have shown

that the probability of a coincidence in English plaintext is .0667. In other

words, in every 100 comparisons, you would expect to find 6.67 coincidences

in plaintext. Each language has its own probabilities, but similar traits occur

in each alphabetic language.

f. Different coincidence tests use different methods of comparing letters with

each other, but each rests on the probabilities of random and plaintext

comparisons. The actual number of coincidences in a cryptogram can be

compared with the random and plaintext probabilities to help make

judgments about the cryptogram.

37

Index of Coincidence

A common way of expressing the results of a coincidence test is the index of

coincidence (XC). The index of coincidence is the ratio of observed coincidences

to the number expected in a random distribution. For plaintext, the expected

index of coincidence for single letters in English is the ratio of .0667 to .0385,

which is 1.73.

Index of Coincidence Example

While working at the Riverbank Laboratory, William F. Friedman

(1891L 1969) developed the index of coincidence. For a given

ciphertext, the index of coincidence I is defined to be the probability

that two randomly selected letters in the ciphertext represent, t.he same

plaintext symbol. For a given ciphertext, let no, 121,. . . ,1225 be the

respective letter counts of A, B, C, . . . , Z in the ciphertext, and set 71

= n o + 111 + . . . + r125. Then, the index of coincidence can be

computed as

To see why the index of coincidence gives us useful information, first note that

the empirical probability of randomly selecting two identical letters from a large

English plaintext is

38

where po is the probability of selecting an A, p l is the probability of selecting a

B, and so on, and the values of p , are given in Table 1.3. This implies that an

(English) ciphertext having an index of coincidence I x 0.065 is probably

associated with a mono-alphabetic substitution cipher, since this statistic will not

change if the letters are simply relabeled (which is the effect of encrypting with a

simple substitution).

The longer and more random a Vigenkre cipher keyword is, the more evenly the

letters are distributed throughout the ciphertext. With a very long and very

random keyword, we would expect to find

Therefore, a ciphertext having I E 0.03846 could be associated with a

polyalphabetic cipher using a large keyword. Note that for any English

ciphertext, the index of coincidence I must satisfy 0.03846 5 I 5 0.065. The

question remains as to how to determine the length of the keyword of a Vigenkre

cipher using the index of coincidence. The main weakness of the Vigenkre (or

any similar periodic cipher) is that two identical characters occurring a distance

apart that is a multiple of the key length will be encrypted identically. In such

cryptosystems, the key length k can be approximated by a function involving the

index of coincidence I and the length of the ciphertext N

Example:- calculate Ic for this cipher text, and find the algorithm that is

used

EEAHR RFOWW TGDTE SCHES ROEST EMCNEAOOTL AKNEE

TSSEO AVXNC STPOO OEOEATASBI OAEER AXHEE RADNF PSINO

ISEAURPNED XEPSE PFCDL LZTER JAETY RETHE

Start by guessing the letter by the most frequent & compensated by the priority

mentioned in the table.

1. When guessing 2 letters & the key , decode the cipher by additive algorithm.

2. We can guess which algorithm is used, by using this equation

39

Ic = Σ Fi (Fi – 1) /n(n-1)

Ic > 0.065 => mono algorithm

Ic > 0.065 => poly algorithm

Ic = 0.065 => transposition algorithm

Ic = Σ Fi (Fi – 1) /

n(n-1)

Ic = 11(11-1) + 1(1-0) + 4(4-1) + 4(4-1) + 24(24-1) + 3(3-1) + 1(1-0) + 4(4-1) +

3(3-1) + 1(1 – 0) + 1(1-0) + 3(3-1) + 1(1-0) + 6(6-1) + 11(11-1) + 5(5-1) + 8(8-

1) + 10(10-1) + 10(10-1) + 1(1-0) + 1(1-0) + 2(2-1) + 3(3-1) + 1(1-0) + 1(1-0) /

120 (120 – 1)

Ic = 1072/14280 = 0.071 => mono algorithm

LFSR Cryptanalysis

Berlekamp-Massey Algorithm Attack

Given a binary sequence, the Berlekamp-Massey Algorithm provides an efficient

method to determine the smallest LFSR that can generate the sequence. Here,

“size” refers to the number of stages in the LFSR. The size of the minimal LFSR

is known as the linear complexity (or linear span) of the sequence. Due to the

threat of known plaintext attacks, a keystream must have a large period.

Furthermore, due to the Berlekamp-Massey Algorithm, there must not exist any

small LFSR that can generate a given keystream sequence. We expand on this

40

point below, after we have discussed the Berlekamp- Massey Algorithm and

some of its implications. The Berlekamp- Massey Algorithm appears in Table1,

 where denotes the binary sequence under consideration, L is the linear

complexity and C(x) is the connection polynomial of the minimal LFSR. Note

that the coefficients of all polynomials are to be taken modulo 2. Also, d is

known as the discrepancy, and the connection polynomial is of the form The

Berlekamp-Massey Algorithm processes the sequence s sequentially and at step

k, the polynomial C(x) is the connection polynomial for the first k + 1 bits of s

and L is the corresponding linear complexity. At step k, if the discrepancy is

 d = 0, then the connection polynomial C(x) computed at step k - 1 is also the

connection polynomial for so, s1,. . . , sk and no change to C(x) or L is required.

If, on the other hand, the discrepancy is d = 1, then C(x) must be modified, and

the linear complexity L increases if the current value of L lies below the n/2 line.

Massey Algorithm, the minimal LFSR will have been obtained. Below, we see

that this property has implications for stream cipher design. It is not too difficult

to show that the Berlekamp- Massey Algorithm requires on the order of n2

operations [62], where n is the number of bits processed and the operations are

XOR. This is the most efficient known general algorithm for solving the shift

register synthesis problem. However, there are more efficient algorithms for

certain special cases;

41

Next, we illustrate the Berlekamp-Massey Algorithm. Consider the periodic

sequcnce s, with one period given by ……….1

For this sequence, the first few steps of the Berlekamp-Massey Algorithm are

illustrated in Table2. For the periodic sequence (1) , the linear complexity is L =

6 (Problem 1 asks for the connection polynomial). Therefore, if we let 10011 be

the initial fill of the LFSR corresponding to the connection polynomial

determined by the Berlekamp-Massey Algorithm, the LFSR generates the

sequencc s in (1). Here, we do not attempt to prove the validity of the

Berlekarnp-Massey Algorithm. but we note in passing that the algorithm is

closely related to the extended Euclidean Algorithm and continued fraction

42

algorithms. We also note one important- but non-obvious--fact, namely, that any

2L bits through the Berlekamp.

DES Cryptanalysis

An Attack on a 3-round DES

Differential Cryptanalysis

One very well-known attack on DES is the method of “differential

cryptanalysis” introduced by Biham and Shamir. This is a chosen-plaintext

attack. Although it does not provide a practical method of breaking the usual 16-

round DES, it does succeed in breaking DES if the number of rounds of

encryption is reduced. For instance, 8-round DES can be broken in only a couple

of minutes on a small personal computer.

We will now describe the basic ideas used in this technique. For the purposes of

this attack, we can ignore the initial permutation IP and its inverse (it has no

effect on cryptanalysis). As mentioned above, we consider DES restricted to n

rounds, for various values of n ≤ 16. So, in this setting, we will regard L0R0 as

the plaintext, and LnRn as the ciphertext, in an n-round DES. (Note also that we

are not inverting LnRn.)

Differential cryptanalysis involves comparing the x-or (exclusive-or) of two

plaintexts to the x-or of the corresponding two ciphertexts. In general, we will be

looking at two plaintexts L0R0 and with a specified x-or value

. Throughout this discussion, we will use prime markings

(′) to indicate the x-or of two bitstrings.

43

DEFINITION :1 Let Sj be a particular S-box (1 ≤ j ≤ 8). Consider an (ordered)

pair of bitstrings of length six, say We say that the input x-or (of Sj) is

 and the output x-or (of Sj) is .

Note that an input x-or is a bitstring of length six and an output x-or is a bitstring

of length four.

DEFINITION :2 For any , define the set to consist of the

ordered pairs having input x-or .

It is easy to see that any set contains 26 = 64 pairs, and that

For each pair in , we can compute the output x-or of Sj and tabulate the

resulting distribution. There are 64 output x-ors, which are distributed among 24

= 16 possible values. The non-uniformity of these distributions will be the basis

for the attack.

Example 1

Suppose we consider the first S-box, S1, and the input x-or 110100. Then

For each ordered pair in the set Δ(110100), we compute output x-or of S1. For

example, S1(000000) = E16 = 1110 and S1(110100) = 916 = 1001, so the output x-

or for the pair (000000, 110100) is 0111.

If this is done for all 64 pairs in Δ(110100), then the following distribution of

output x-ors is obtained:

44

In Example 3.1, only eight of the 16 possible output x-ors actually occur. This

particular example has a very non-uniform distribution. In general, if we fix an

S-box Sj and an input x-or , then on average, it turns out that about 75 - 80% of

the possible output x-ors actually occur.

It will be convenient to have some notation to describe these distributions and

how they arise, so we make the following definitions.

DEFINITION 3.3 For 1 ≤ j ≤ 8, and for bitstrings of length six and of

length four, define

and

45

figure(1):Possible inputs with input x-or 110100

counts the number of pairs with input x-or equal to which have

output x-or equal to for the S-box Sj. The actual pairs having the specified

input x-ors and giving rise to the specified output x-ors can be obtained from the

set . Observe that this set can be partitioned into pairs, each

of which has (input) x-or equal to .

Observe that the distribution tabulated in Example 1 consists of the values

. The sets are listed in Figure 3.8.

For each of the eight S-boxes, there are 64 possible input x-ors. Thus, there are

512 distributions which can be computed. These could easily be tabulated by

computer.

46

Recall that the input to the S-boxes in round i is formed as B = E ⊕ J, where E =

E(Ri-1) is the expansion of Ri-1 and J = Ki consists of the key bits for round i.

Now, the input x-or (for all eight S-boxes) can be computed as follows:

It is very important to observe that the input x-or does not depend on the key bits

J. (However, the output x-or certainly does depend on these key bits.)

We will write each of B, E and J as the concatenation of eight 6-bit strings:

and we write B* and E* in a similar way. Let us suppose for the moment that we

know the values Ej and for some j, 1 ≤ j ≤ 8, and the value of the output x-or

for . Then it must be the case that

where .

Suppose we define a set testj as follows:

DEFINITION :4 Suppose Ej and are bitstrings of length six, and is a

bitstring of length four. Define

47

where .

That is, we take the x-or of Ej with every element of the set .

The following result is an immediate consequence of the discussion above.

THEOREM:1

Suppose Ej and are two inputs to the S-box Sj, and the output x-or for Sj is .

Denote . Then the key bits Jj occur in the set testj .

Observe that there will be exactly bitstrings of length six in the set testj

; the correct value of Jj must be one of these possibilities.

Example 3.2

Suppose . Since N1 (110100, 1101) = 8,

there will be exactly eight bitstrings in the set test1 (000001, 110101, 1101).

From Figure 3.8, we see that

Hence,

If we have a second such triple , then we can obtain a second set test1

of possible values for the keybits in J1. The true value of J1 must be in the

intersection of both sets. If we have several such triples, then we can quickly

48

determine the key bits in J1. One straightforward way to do this is to maintain an

array of 64 counters, representing the 64 possibilities for the six key bits in J1. A

counter is incremented every time the corresponding key bits occur in a set test1

for a particular triple. Given t triples, we hope to find a unique counter which has

the value t; this will correspond to the true value of the keybits in J1.

Let’s now see how the ideas of the previous section can be applied in a chosen

plaintext attack of a 3-round DES. We will begin with a pair of plaintexts and

corresponding ciphertexts: We can express R3 as

follows:

can be expressed in a similar way, and hence

Now, suppose we have chosen the plaintexts so that , i.e., so that

Now, suppose we have chosen the plaintexts so that , i.e., so that

49

Figure 2 Differential attack on 3-round DES

Then and so

At this point, is known since it can be computed from the two ciphertexts, and

is known since it can be computed from the two plaintexts. This means that

we can compute from the equation

Now, f(R2, K3) = P(C) and , where C and C*, respectively,

denote the two outputs of the eight S-boxes (recall that P is a fixed, publicly

known permutation). Hence,

and consequently

This is the output x-or for the eight S-boxes in round three.

Now, R2 = L3 and are also known (they are part of the ciphertexts).

Hence, we can compute

javascript:displayWindow('images/03-09.jpg',400,123)

50

and

using the publicly known expansion function E. These are the inputs to the S-

boxes for round three. So, we now know E, E*, and C′ for the third round, and

we can proceed, as in the previous section, to construct the sets test1, . . ., test8 of

possible values for the key bits in J1, . . . , J8.

A pseudo-code description of this algorithm is given in Figure 3.9. The attack

will use several such triples E, E*, C′. We set up eight arrays of counters, and

thereby determine the 48 bits in K3, the key for the third round. The 56 bits in the

key can then be computed by an exhaustive search of the 28 = 256 possibilities

for the remaining eight key bits.

Let’s look at an example to illustrate.

Example 2:

Suppose we have the following three pairs of plaintexts and ciphertexts, where

the plaintexts have the specified x-ors, that are encrypted using the same key.

We use a hexadecimal representation, for brevity:

plaintext ciphertxt

748502CD38451097 03C70306D8A09F10

3874756438451097 78560A0960E6D4CB

51

486911026ACDFF31 45FA285BE5ADC730

375BD31F6ACDFF31 134F7915AC253457

357418DA013FEC86 D8A31B2F28BBC5CF

12549847013FEC86 0F317AC2B23CB944

From the first pair, we compute the S-box inputs (for round 3) from Equations

(3.2) and (3.3). They are:

The S-box output x-or is calculated using Equation (3.1) to be:

From the second pair, we compute the S-box inputs to be

and the S-box output x-or is

From the third pair, the S-box inputs are

and the S-box output x-or is

52

Next, we tabulate the values in the eight counter arrays for each of the three

pairs. We illustrate the procedure with the counter array for J1 from the first pair.

In this pair, we have The set

Since E1 = 000000, we have that

Hence, we increment the values 0, 7, 40, and 47 in the counter array for J1.The

final tabulations are now presented. If we think of a bit-string of length six as

being the binary representation of an integer between 0 and 63, then the 64

values correspond to the counts of 0, 1, . . . , 63. The counter arrays are as

53

 In each of the eight counter arrays, there is a unique counter having the value 3.

The positions of these counters determine the key bits in J1, . . . , J8. These

positions are (respectively): 47, 5, 19, 0, 24, 7, 7, 49. Converting these integers

to binary, we obtain J1, . . . , J8:

J1 = 101111

J2 = 000101

J3 = 010011

J4 = 000000

J5 = 011000

J6 = 000111

54

J7 = 000111

J8 = 110001.

We can now construct 48 bits of the key, by looking at the key schedule for

round 3. It follows that K has the form

0001101 0110001 01?01?0 1?00100

0101001 0000??0 111?11? ?100011

where parity bits are omitted and “?” denotes an unknown key bit. The complete

key (in hexadecimal, including parity bits), is:

1A624C89520DEC46.

Example

Differential cryptanalysis it can be used in an attempt to crypt analyze 3-round

DES. Using the following pairs of PT/CT to find the equations that help you to

deduce the information about the key:

PT1=0001 0100 , PT2=0011 0100, CT1=0111 1111 ,CT2=0001 1100 .

Sol: let PTR be the right half of PT, etc. Note PTR1=PTR2 but

55

 PTL2≠ PTL2

CTL1=0111= L2+F(R2,KEY3)=R1+F(R2,KEY3)=L0+F(R0,KEY1)+F(R2,KEY3)

= PTL1+F(PTR1,KEY1)+F(CTR1,KEY3) =

0001+F(PTR1,KEY1)+F(1111,KEY3).

Similarly CTL2=0001=0011+f(PTR2,KEY1)+F(1100,KEY3)

 So we have CTL1+CTL2=0111+0001=0110 but also

CTL1+CTL2=0001+0011+F(1111,KEY3)+F(1100,KEY3)=0100

In general F(CTR1,KEY3)+F(CTR2,KEY3)=PTL1+PTL2+CTL1+CTL2 and

the right half of that equation is know.

Public key cryptanalysis

PUBLIC KEY CRYPTOGRAPHY A form of cryptography which the key used

to encrypt a message differs from the key used to decrypt it. In public key

cryptography a, user has a pair of cryptographic keys a public key and a private

key .The private key is kept secret, while the public key may be widely

distributed. The two main branches public key cryptography are: 1. Public key

encryption 2. Digital signatures Why Public-Key Cryptography? . public-

key/two-key/ asymmetric cryptography involves the use of two keys: a public-

key, which may be known by anybody, and can be used to encrypt messages,

and verify signatures a private-key, known only to the recipient, used to decrypt

messages, and sign (create) signatures.

56

Applications for Public-Key Cryptosystems * encryption/ decryption (provide

security) *a digital signatures (provide authentication) *key exchange (of session

keys).

Cryptanalysis of Asymmetric Cryptography Asymmetric cryptography (or

public key cryptography) is cryptography that relies on using two keys; one

private, and one public. Such ciphers invariably rely on "hard" mathematical

problems as the basis of their security, so an obvious point of attack is to

develop methods for solving the problem. Asymmetric schemes are designed

around the (conjectured) difficulty of solving various mathematical problems. If

an improved algorithm can be found to solve the problem, then the system is

weakened. For example, the security of the Diffie-Hellman key exchange

scheme depends on the difficulty of calculating the discrete logarithm. In 1983,

Don Coppersmith found a faster way to find discrete logarithms (in certain

groups), and thereby requiring cryptographers to use larger groups (or different

types of groups). RSA's security depends (in part) upon the difficulty of integer

factorization — a breakthrough in factoring would impact the security of RSA.

ADVANTAGES AND DISADVANTAGES OF ASYMMETRIC

CRYPTOSYSTEM

57

ADVANTAGES • In asymmetric or public key, cryptography there is no need

for exchanging keys, thus eliminating the key distribution problem. • The

primary advantage of public-key cryptography is increased security: the private

keys do not ever need to be transmitted or revealed to anyone. • Can provide

digital signatures that can be repudiated

DISADVANTAGES • A disadvantage of using public-key cryptography for

encryption is speed: there are popular secret-key encryption methods which are

significantly faster than any currently available public-key encryption method.

There are many secret-key encryption methods that are significantly faster than

any currently available public-key encryption method. Nevertheless, public-key

cryptography can be used with secret-key cryptography to get the best of both

worlds. For encryption, the best solution is to combine public- and secret-key

systems in order to get both the security advantages of public-key systems and

the speed advantages of secret-key systems. Such a protocol is called a digital

envelope.

Weaknesses Keys in public-key cryptography, due to their unique nature, are

more computationally costly than their counterparts in secret-key cryptography.

Asymmetric keys must be many times longer than keys in secret-cryptography in

order to boast equivalent security .Keys in asymmetric cryptography are also

more vulnerable to brute force attacks than in secret-key cryptography. There

exist algorithms for public-key cryptography that allow attackers to crack private

keys faster than a brute force method would require. The widely used and

pioneering RSA algorithm has such an algorithm that leaves it susceptible to

attacks in less than brute force time . While generating longer keys in other

algorithms will usually prevent a brute force attack from succeeding in any

meaningful length of time, these computations become more computationally

intensive. These longer keys can still vary in effectiveness depending on the

computing power available to an attacker. - Public-key cryptography also has

vulnerabilities to attacks such as the man in the middle attack .In this situation, a

58

malicious third party intercepts a public key on its way to one of the parties

involved. The third party can then instead pass along his or her own public key

with a message claiming to be from the original sender. An attacker can use this

process at every step of an exchange in order to successfully impersonate each

member of the conversation without any other parties having knowledge of this

deception.

Attacks On RSA

1.Mathematical Attacks on RSA Mathematical attacks focus on attacking the

underlying structure of RSA function. The first intuitive attack is the attempt to

factor the modulus N. Because knowing the factorization of N, one may easily

obtain M(N), from which d can be determined by d = 1/e mod M(N). However,

at present, the fastest factoring algorithm runs in exponential time. Our objective

is to survey RSA attacks that decrypts message without directly factoring N.

2.Elementary attacks

2.1 Small Private Key attacks : To improve the RSA decryption performance

in the matter of running-time, Alice might tend to use a small value of da, rather

59

than a large random number. A small private key indeed will improve

performance dramatically, but unfortunately, a attack posed by M.Wiener [shows

that a small d leads to a total collapse of RSA cryptosystem. This break of RSA

is base on Wiener’s Theorem, which in general provides a lower constraint for d.

Wiener has proved that Marvin may efficiently find d when d < 1/3 ∗N^(1/4).

2.2Small Public Key Attacks : Similar to the private key preferences, to reduce

encryption time, it is customary to use a small public key (e), but unlike the

previous situation, attacks on small e turn out to be much less effective. The

most powerful attacks on small e are based on Coppersmith’s Theorem. This

theorem provides an algorithm for efficiently finding all roots of N that are less

than x = N^(1/d). 2.3 Timing Attacks In a timing attack, the attacker eavesdrops

during the victim’s session and uses statistical analysis of the user’s typing

patterns and inter-keystroke timings to discern sensitive session

information.While timing analysis may not directly result in the decryption of

sensitive data, it can be used to gain information about the encryption key and

perhaps the cryptosystem in use. Once the attacker has successfully broken an

encryption, he or she may launch a replay attack, which is an attempt to resubmit

a recording of the deciphered authentication to gain entry into a secure source .

2.4 Man-in-the-Middle Attack :A man-in-the-middle attack is designed to

intercept the transmission of a public key or even to insert a known key structure

in place of the requested public key. From the perspective of the victims of such

attacks, their encrypted communication appears to be occurring normally, but in

fact the attacker is receiving each encrypted message and decoding it and then

encrypting and sending it to the originally intended recipient. Establishment of

public keys with digital signatures can prevent the traditional man-in-the-middle

attack, as the attacker cannot duplicate the signatures. 2.5 Brute Force: Factoring

N, computing eth root modulo N Given <C, e, N>, Marvin can do a brute force

60

search to find M. But factoring N involves a much smaller search space and thus,

more efficient to do. Factoring is a well researched problem. Pomerance has an

interesting introduction into what clever methods can be done. For example, how

to factor 8051? Naïve approach is trying all primes up to square root of 8051, or

almost 90. Clever trick is to find a square of primes that subtract to the number,

example 90^2 – 7^2 = 8051. Thus (90 – 7) * (90 + 7) = 8051; 83 & 97 are the

factors

2.6Fault Analysis Attack As the name implies, a fault analysis attack depends

on the induced or implementation error on a key dependent cryptographic

operation. Fault analysis attacks can be mounted against both the secret key and

public key cryptographic devices. This attack exploits the likely errors on the

RSA decryption or signing operations in cryptographic devices Common

Modulus Attack The idea of the common modulus is that in a session of RSA

with several users there is a trusted entity which denes a modulus N and provides

for each user a pair of public and private valid RSA keys dened modulo (n), but

not the factorization of N. That is, each user Ui gets the public key < ei;N > and

the private key < di;N >. Simmons [42] showed that, without needing to factor

the modulus, if the same plain text is encrypted and sent to two

61

users with co-prime public exponents, any other user can decrypt the

corresponding cypher text. Theorem 19. Let N = pq be a RSA modulus and let <

e1;N >;< e2;N > be two public keys such that (e1; e2) = 1. Suppose a plain text

m is encrypted with both public keys. Knowing c1 = me1 (mod N), c2 = me2

(mod N) and the public keys, we can compute m in time polynomial in log(N).

Theorem . Let N = pq be a RSA modulus and let < e1;N >;< e2;N > be two

public keys such that (e1; e2) = 1. Suppose a plain text m is encrypted with both

public keys. Knowing c1 = me1 (mod N), c2 = me2 (mod N) and the public

keys, we can compute m in time polynomial in log(N).

Proof. Knowing e1 and e2, we compute integers a1; a2 such that a1e1+a2e2 = 1

using the Extended Euclidean Algorithm.

Now we compute c1^a1. c2^a2= ma1e1.ma2e2 = ma1e1+a2e2 = m (mod N)

how to use common modulus attack? Let Alice, Bob, Chris and Eve

communicate over a public network. They encrypt all messages they send using

RSA system. Bob and Chris have the RSA modulus nB and nC respectively with

nB = nC But different public encryption exponents: eB≠eC. Suppose

gcd(eB,eC)=1gcd(eB,eC)=1, and that Alice sends the same secret message to

Bob and Chris. Think about this: what does it mean that gcd(eB,eC)=1. Formally

that means there exist some s1,s2 such that eBs1+eCs2=1. Say you have two

cipher texts (the following math is all done modulo the shared modulus),

CB=MeB and CC=MeC. You can do the following:

: Cs1B∗Cs2C=(MeB)s1∗(MeC)s2 =MeBs1∗MeCs2 =MeBs1+eCs2 =M1 =M

