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Cryptanalysis 

  Introduction: 

* Cryptanalysis is the science of making encrypted data unencrypted. 

A cryptographer will use cryptography to convert plaintext into ciphertext and a 

cryptanalyst will use cryptanalysis to attempt to turn that ciphertext back into 

plaintext. Both the cryptographer and the cryptanalyst are cryptologists. 

Cryptography and cryptanalysis are the two sides of cryptology. 

   It without use of the key. The other side of cryptography, cryptanalysis is used 

to break codes by finding weaknesses within it. In addition to being used by 

hackers with bad intentions, cryptanalysis is also often used by the military. 

Cryptanalysis is also appropriately used by designers of encryption systems to 

find, and subsequently correct, any weaknesses that may exist in the system 

under design.  

    There are several types of attacks that a cryptanalyst may use to break a code, 

depending on how much information they have. A ciphertext-only attack is one 

where the cryptanalyst has a piece of ciphertext (text that has already been 

encrypted), with no plaintext (unencrypted text). This is probably the most 

difficult type of cryptanalysis, and calls for a bit of guesswork. In a known-

plaintext attack, the cryptanalyst has both a piece of ciphertext and the 

corresponding piece of plaintext.  

  Other types of attacks may involve trying to derive a key through trickery or 

theft. The "man-in-the-middle" attack is one example. In this attack, the 

cryptanalyst places a piece of surveillance software in between two parties that 

communicate. When the parties' keys are exchanged for secure communication, 

they exchange their keys with the attacker instead of each other. 

http://www.tech-faq.com/plaintext-ciphertext.shtml
http://www.tech-faq.com/plaintext-ciphertext.shtml
http://www.wisegeek.com/what-is-cryptography.htm
http://www.wisegeek.com/what-is-a-hacker.htm
http://www.wisegeek.com/what-is-encryption.htm
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   The ultimate goal of the cryptanalyst however, is to derive the key, so that all 

ciphertext can be easily deciphered. A brute-force attack is one way of doing so. 

In this type of attack, the cryptanalyst tries every possible combination until the 

correct key is identified. Although using longer keys make the derivation less 

statistically likely to be successful, faster computers, continue to make brute-

force attacks feasible. Networking a set of computers together in a grid, 

combines their strength; their cumulative power can be used to break long keys. 

The longest keys used, 128-bit keys, remain the strongest, and less likely to be 

subject to a brute-force attack. 

At its core, cryptanalysis is a science of mathematics, probability and fast 

computers; cryptanalyst's also usually require some persistence, intuition, 

guesswork and some general knowledge of the target. 

Cryptanalysis also has an interesting historical element; the famous Enigma 

machine, used by the Germans to send secret messages, was ultimately cracked 

by members of the Polish resistance and transferred to the British. 

 There are two general approaches in order to attacking a conventional encryption scheme: 

    Cryptanalysis: Cryptanalytic attacks rely on the nature of the algorithm 

plus perhaps some knowledge of the general characteristics of the 

plaintext or even some sample plaintext-cipher text pairs. This type of 

attack exploits the characteristics of the algorithm to attempt to deduce a 

specific plaintext or to deduce the key being used. If the attack succeeds 

in deducing the key, the effect is catastrophic: All future and past 

messages encrypted with that key are compromised. 

      Brute-force attack:  The attacker tries every possible key on a piece of 

ciphertext until an intelligible translation into plaintext is obtained. On 

average, half of all possible keys must be tried to achieve success. 

http://www.wisegeek.com/what-is-an-enigma.htm


   

 

4 

 

  Table (1) summarizes the various types of cryptanalytic attacks, based on 

the amount of information known to the cryptanalyst.  The most difficult 

problem is presented when all that is available is the ciphertext only.  In some 

cases, not even the encryption algorithm is known, but in general, we assume 

that the opponent does know the algorithm used for encryption. One possible 

attack under these circumstances if the brute-force approaches of trying all 

possible keys.  

If the key space is very large, this becomes impractical. Thus, the opponent 

must rely on an analysis to the cipher text itself, general applying various 

statistical tests to it. To us this approach, the opponent must have some general 

idea of the type of plaintext that is concealed, such as English or French text, a 

Window EXE file, a Java source listing, an accounting file, and so on. 

 

Table (1): Types attacks on encrypted messages. 

Type of Attack Known of Cryptanalyst 

Ciphertext only 

 

 Encryption algorithm. 

  Ciphertext to be decoded. 

Known plaintext   Encryption algorithm. 

  Ciphertext to be decoded. 

  One or more plaintext-ciphertext pairs formed 

with the secret key. 

Chosen plaintext   Encryption algorithm. 

  Ciphertext to be decoded. 

  Plaintext message chosen by cryptanalyst, 

together with its corresponding cipher text 

generated with secret key. 
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Chosen 

cipher text 

  Encryption algorithm 

  Cipher text to be decoded 

  Purported cipher text chosen by cryptanalyst, 

together with its corresponding decrypted plain 

generated with the secret key 

 

Chosen text   Encryption algorithm 

  Cipher text to b decoded 

  Plaintext massage chosen by cryptanalyst, 

together with its corresponding cipher text 

generated with the secret key. 

  Purported cipher text chosen by cryptanalyst, 

together with its  corresponding decrypted 

plaintext generated with the secret key 

 

   

 Table (1) lists two other types of attacks: chosen ciphertext and chosen text. 

These are less commonly employed as cryptanalytic techniques but are possible 

avenues of attack. 

1- Cipher text – only attack: the cryptanalyst has the cipher text of several 

message , all of which  have been encrypted using the same encryption 

algorithm, the cryptanalyst job is to recover the plain text of many message as 

possible, or better yet to deduce the key ( or keys) used to encrypted the 

message. In order to decrypted other message encrypted with the same keys. 

 Given: C1=Ek (p1), C2=Ek (p2),….. Ci=Ek (pi) 

  Deduce: either  p1, p2, pi, k; or an algorithm. 

  To infer pi+1 from  Ci=Ek (pi+1) 
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2- Known – plain text attack: the cryptanalyst has access not only to the cipher 

text of several message, but also to the plain text of those message. His job is to 

deduce the key (or keys) used to encrypt the message or an algorithm to decrypt 

any new message encrypted with the same key, (or keys). 

 Given: P1,C1=Ek (p1), P2,C2=Ek (p2),….. Pi,Ci=Ek (pi) 

  Deduce: either  k or an algorithm. 

  To infer Pi+1 from  Ci=Ek (Pi+1) 

3- chosen– plain text attack: the cryptanalyst not only has access to the cipher 

text and associated plain text for several message. But be also chooses the plain 

text that gets encrypted. 

This is more powerful than a known-plain text attack, because the cryptanalyst 

can choose specified plaintext blocks to encrypted, ones that might more 

information about the key. His job is to deduce the key (or keys) used to encrypt 

the message or an algorithm to decrypt any new message encrypted with the 

same key (or keys). 

 

 Given: P1,C1=Ek (p1), P2,C2=Ek (p2),….. Pi,Ci=Ek (pi)   

                where the cryptanalyst gets to choose p1, p2, pi 

  Deduce: either  k or an algorithm. 

  To infer Pi+1 from  Ci=Ek (Pi+1) 

 Other 

4- chosen– cipher text attack. 

5- Adaptive-chosen-plaintext attack: this is a special case of a chosen-plaintext 

attack. 

Note only can the cryptanalyst choose the plaintext that is encrypted , but he can 

also modify his choice based on the result of pervious encryption- in a chosen-

plain text attack,a cryptan-alyst might just be able to choose one large block of 

plain text to be encrypted ; in an adaptive-chosen-plaintext attack he can choose 
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a smaller block of plaintext and then choose another based on the result of the 

first, and so forth. 

 

   Only relatively weak algorithms fail to withstand a ciphertext-only attack. 

Generally, an encryption algorithm is designed to withstand a known-plaintext 

attack. 

   Two more definitions are worth to be noted. An encryption scheme is 

unconditionally secure if the ciphertext generated by the scheme does not 

contain enough information to determine uniquely the corresponding plaintext, 

no matter how much ciphertext is available, that is no, matter how much time an 

opponent has, it is impossible for him or her to decrypt the ciphertext, simply 

because the required information is not there. With the exception of a scheme 

known as the one-time pad, there is no encryption algorithm that is 

unconditionally secure. Therefore, all that the uses of an encryption algorithm 

can strive for is an algorithm that meets one or both of the following criteria: 

 The cost of breaking the cipher exceeds the value of the encrypted 

information. 

 The time required to break the cipher exceeds the useful lifetime of the 

information. 

An encryption scheme is said to be computationally secure if the foregoing two 

criteria are met. The rub is that it is very difficult to estimate the amount of 

effort required to cryptanalyze ciphertext successfully.  Table (2) shows how 

much time is involved for various key spaces. Results are shown for four binary 

key sizes. 

For each key size, the result is shown assuming that it takes s1  to perform a 

single decryption, which is a reasonable order of magnitude for today’s 

machines.  The final column of table (2) considers the results for a system that 

can process 1 million keys per microsecond. 
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   Table (2): Average time required for exhaustive key search. 

     

 

Key Size (bits) 

Number of 

Alternative 

Keys 

Time required at 

1 encryption / s  

Time 

required at
610  

encryptions 

/ s  

32 

 

32
2 =

9
103.4   8.35

31
2 s   minutes 

2.15 

milliseconds 

 

56 16
102.7

56
2   1142

55
2 s  years 

10.01 hours 

128 38
104.3

128
2   

36167 109.52 s  

years 

30
109.5   years 

 

26 characters 

(permutation) 

26
104!26   

1226 104.6102  s  

years 

6
104.6   years 
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Transposition Ciphers 
 

 intorduction 
   Transposition ciphers jumble the letters of the message in a way that is 

designed to confuse the attacker, but can be unjumbled by the intended recipient.  

The concept of transposition is an important one and is widely used in the design 

of modern ciphers, as will be seen in subsequent chapters. Notethat the key must 

provide sufficient information to unscramble the ciphertext. 

* Scytale 

   One of the earliest recorded uses of cryptography was the Spartan scytale(circa 

500 B.C.). A thin strip of parchment was wrapped helically around a cylindrical 

rod and the message was written across the rod, with each letter on a successive 

turn of the parchment. The strip was unwound and delivered to the receiver. The 

message could then be decrypted with the use of an identical cylindrical rod. To 

anyone who intercepted the message, and did not understand the encryption 

technique, the message would appear to be a jumble of letters. A clever 

cryptanalyst with access to a number of rods of various diameters will soon 

recover the plaintext. 

   For the scytale cipher, which is an example of a transposition cipher, the key is 

the rod (or its diameter). This is a very weak cipher since the system could be 

easily broken by anyone who understands the encryption method. 
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o Scytale 

Example: 

Encrypting 

Suppose the rod allows one to write 4 letters around in a circle and 5 letters down the side of 

it. The plaintext could be: "Help me I am under attack" 

To encrypt one simply writes across the leather... 

_____________________________________________________________ 

    |  |   |   |   |   |   | 

    |  | H | E | L | P | M |   

    |__| E | I | A | M | U |__  

       | N | D | E | R | A |  | 

       | T | T | A | C | K |  | 

       |   |   |   |   |   |  | 

_____________________________________________________________ 

so the ciphertext becomes, "HENTEIDTLAEAPMRCMUAK" after unwinding. 

Decrypting 

To decrypt all one must do is wrap the leather strip around the rod and read across. The 

ciphertext is: "HENTEIDTLAEAPMRCMUAK" Every fifth letter will appear on the same 

line so the plaintext becomes 

HELPM...return to the beginning once the end is reached 

...EIAMUNDERATTACK 

Insert spaces and the plaintext is revealed: "Help me I am under attack" 

http://en.wikipedia.org/wiki/Plaintext
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Columnar Transposition. 

   Suppose we have plaintext SEETHELIGHT and we want to encrypt this 

using a columnar transposition cipher. We first put the plaintext into the rows of 

an array of some given dimension. Then we read the ciphertext out of the 

columns. The key consists of the the number of columns in the array. For 

example, suppose we choose the key to be four, which means that we write the 

plaintext in four columns as 

 

 

 

 

   Where the final X is used as to fill out the array. The ciphertext is then read 

from the columns, which in this case yields SHGEEHELTTIX. The intended 

recipient, who knows the number of columns, can put the ciphertext into an 

appropriate-sized array and read the plaintext out from the rows. Not 

surprisingly, a columnar transposition is not particularly strong.   To perform a 

ciphertext only attack on this cipher, we simply need to test all possible decrypts 

using c columns, where c is a divisor of the number of characters in the 

ciphertext. 

 

  Keyword Columnar Transposition 

 

  The columnar transposition cipher can be strengthened by using a keyword,  

where the keyword determines the order in which the columns of ciphertext are 

transcribed. We refer to this as a keyword columnar transposition cipher. 

  For example, consider encrypting the plaintext CRYPTOISFUN using a 

keyword columnar transposition cipher with keyword MATH, again using four 

columns.  In this case, we get the array 
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  The ciphertext is read from the columns in alphabetical order (as etermined by 

the keyword), so that, in this example, the ciphertext is 

                                     RO UPSXCTFYIN  

   Is it possible to conduct a ciphertext-only attack on a keyword columnar 

transposition cipher? It is certainly not as straightforward as attacking a non-

keyword columnar cipher. Suppose we obtain the ciphertext , 

VOESA IVENE MRTNL EANGE WTNIM HTMEE ADLTR NISHO 

DWOEH 

  Which we believe was encrypted using a keyword columnar transposition. Our 

goal is to recover the key and the plaintext. First, note that there are 45 letters in 

the ciphertext. Assuming the array is not a single column or row, the array could 

have any of the following dimensions: 9 x 5. 5 x 9. 15 x 3 

or 3 x 15. Suppose that we first try a 9 x 5 array. Then we have the ciphertext   

array in Table 1.1. We focus our attention on the top row of the array in Table 

1.1. If we permute the columns as shown in Table 1.2, we see the word GIVE in 

the first row and we see words or partial words in the other rows. Therefore, we 

have almost certainly recovered the key. 
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This method is somewhat ad hoc, but the process could be automated, 

provided we can automatically recognize likely plaintexts. In this example, we 

have recovered the encryption key 24013 and the plaintext is 

 

GIVE ME SOMEWHERE TO STAND AND I WILL MOVE THE 

EARTH. 
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  There are many ways to systematically mix the letters of the plaintext. 

For example, we can strengthen the columnar transposition cipher by allowing  

the permutation of columns and rows. Since two transpositions are involved, this 

is known as a double transposition cipher, which we briefly describe next. 

Double Transposition Cipher 

   To encrypt with a double transposition cipher, we first write the plaintext into 

an array of a given size and then permute the rows and columns according to 

specified permutations. For example, suppose we write the plaintext 

ATTACKATDAWN into a 3 x 4 array: 

 

 

 

 

Now if we transpose the rows according to (0,1,2) →(2,1,0) and then transpose 

the columns according to (0,1,2,3) → (3,1,0,2), we obtain 

 

 
The ciphertext is read directly from the final array: 

NADWTKCAATAT. 

 For the double transposition, the key consists of the size of the matrix and the 

row and column permutations. The recipient who knows the key can simply put 

the ciphertext into the appropriate sized matrix and undo the permutations to 

recover the plaintext.If Trudy happens to know the size of the matrix used in a 

double transposition, she can insert the ciphertext into a matrix of the 

appropriate size. She can then try to unscramble the columns to reveal words (or 

partial words). 

  Once the column transposition has been undone, she can easily unscramble 

the rows; This attack illustrates the fundamental  principle of divide and conquer. 

That is, Trudy can recover the double transposition key in parts, instead of 

attacking the entire key all at   Once. There are many examples of divide and 



   

 

15 

 

conquer attacks throughout The remainder of this book. In spite of the inherent 

divide and conquer attack, the double transposition cipher is relatively strong---

at least in comparison to many other classic cipher. The interested reader is 

directed to for a thorough cryptanalysis of the double transposition. 

 

Substitution Ciphers  
Introduction  

Like transposition, substitution is a crucial concept in the design of 

modern ciphers. in fact, Shannon’s [133] two fundamental principles 

for the design of symmetric ciphers are confusion and diflusion, 

which, roughly, correspond to the classic concepts of substitution and 

transposition, respectively. These are still the guiding principles in the 

design of symmetric ciphers. In this section we discuss several classic 

substitution ciphers. We high light, some of the clever techniques that 

can be brought to bear to attack such ciphers. 

Caesar’s Cipher 

in 50 R.C., Gaius Julius Caesar described the use of a specific cipher 

that, goes by the name of Caesar’s c2pher.l In Caesar’s cipher, 

encryption is accomplished by replacing each plaintext letter with its 

corresponding “shiftby- three” letter, that is, A is replaced by D, B is 

replaced by E, C is replaced by F, and so on. At the end of the 

alphabet, a wrap around occurs, with X replaced by A, Y replaced by 

B and Z replaced by C. Decryption is accomplished by replacing each 

ciphertext letter with its corresponding left-shift-by-three letter, again, 

taking the wrap around into account. Suppose we assign numerical 

values 0 , 1 , . . . ,25 to the letters A, B, . . . , Z, respectively, Let pi be 
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the ith plaintext letter of a given message, and ci thecorresponding ith 

ciphertext letter. Then Caesar’s cipher can be mathematically stated as 

ci = pi + 3 (mod 26) and, therefore, pi = ci - 3 (mod 26). In Caesar’s 

cipher, the key is “3”, which is not very secure, since there is only one 

key-anyone who knows that the Caesar’s cipher is being used can 

immediately decrypt the message. 

 

 

Simple Substitution 

A simple substitution (or mono-alphabetic substitution) cipher is a 

generalization of the Caesar’s cipher where the key can be any 

permutation of the alphabet. For the simple substitution, there are 26! 

= 288 keys available. This is too many keys for any attacker to simply 

try them all, but even with this huge number of keys, the simple 

substitution cipher is insecure. Before we discuss the attack on the 

simple substitution, we consider a few special types of related ciphers 

that have been used in the past. 

 

Poly-alphabetic Substitution 
 

During the Renaissance, the first poly-alphabetic substitution cipher 

was invented by one Leon Battista Alberti (1404-1472). Such a cipher 

is essentially a variable simple substitution cipher, that is, a different 

substitution alphabet is used for different parts of the message. In 

Alberti’s cipher, this was accomplished by use of a device that 

included an inner and outer cipher wheel with the alphabet written in 



   

 

17 

 

particular ways on each wheel. The inner wheel freely rotated allowing 

the two alphabets to be aligned in any fashion, with each alignment 

generating a different (simple) substitution. As the message was 

encrypted, differing substitution alphabets could be used, as 

determined by both parties in advance, or as specified within the 

message itself. In his book Traict6 des Chaffres, Blaise de Vigenkre 

(1585) discusses a poly-alphabetic substitution that uses a 26 x 26 

rectangular array of letters. The first row of the array is A, B, C, . . . , 

Z, and each succeeding row is a cyclic left shift of the preceding one. 

A keyword can then be used to determine which of the cipher 

alphabets to use at each position in the text. In this way, all “shift-by-

n” simple substitutions are readily available for use. The Vigenkre 

cipher, and its cryptanalysis, is discussed below. 

Affine Cipher 

An ajJine cipher is a simple substitution where ci = api + b (mod 26). 

Here,the constants a and b are integers in the range 0 to 25 (as are p , 

and ci).To decrypt uniquely--always a nice feature for a cipher system-

-we must have gcd(a, 26) = 1. Consequently, there are 26.4(26) = 312 

affine ciphers for the English language, where 4 is the Euler-phi 

function (see the Appendix fora definition of the 4 function). The 

decryption function for the affine cipher is pi = aP1(ci - b) (mod 26), 

where aa-l = 1 (mod 26), that is, up1 is the multiplicative inverse of a, 

modulo 26.Affine ciphers are weak for several reasons, but the most 

obvious problem is that they have a small keyspace. A ciphertext only 

attack can be performed by conducting a brute force search of all 312 
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possible key pairs ( a , b). This attack is trivial, provided we can 

recognize the plaintext when we see it (or, better yet, automatically 

test for it). 

Simple Substitution Cryptanalysis 

Trying all possible keys is known as an exhaustive key search, and this 

attack is always an option for Trudy. If there are N possible keys, then 

Trudy will,on average, need to try about half of these, that is; N/2 of 

the keys, before she can expect to find the correct key. Therefore, the 

first rule of cryptography is that any cipher must have a large enough 

keyspace so that an exhaustive search is impractical. However, a large 

keyspace does not ensure that a cipher is secure. To see that this is the 

case, we next consider an attack that will work against any simple 

substitution cipher and, in the general case, requires far less work than 

an exhaustive key search. This attack relies on the fact that statistical 

information that is present in the plaintext language “leaks” through a 

simple substitution .Suppose we have a reasonably large ciphertext 

message generated by a compiled from a 7834-letter sample of written 

English. By simply computing letter frequency counts on our 

ciphertext, we can make educated guesses as to which plaintext letters 

correspond to some of the ciphertext letters.For example, the most 

common ciphertext letter probably corresponds to plaintext E. We can 

obtain additional statistical information by making use of digraphs 

(pairs of letters) and common trigraphs (triples). This type of statistical 

attack on a simple substitution, is very effective. After a few letters 
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have been guessed correctly, partial words will start to appear and the 

cipher should then quickly unravel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Vigenere Cipher 

Recall that a poly-alphabetic substitution cipher uses multiple simple 

substitutions to encrypt a message. The Vigenkre cipher is a classic 

poly-alphabetic substitution cipher. The World War I1 cipher 

machines discussed in Chapter 2 are more recent examples of poly-

alphabetic substitutions. In the Vigenkre cipher, a key of the form  

K = (ko, k l ; . . . , k n - l ) , where each ki E {0,1,. . . ,25}, is used to 

encipher the plaintext. Here, each kirepresents a particular shift of the 

alphabet. 

To encrypt a message, CZ = Pi + ki (mod n) (mod 26) and 

To decrypt  Pi = CZ - ki (mod n) (mod 26) 

For example, suppose K = (12,0,19,7), which corresponds to the 

keyword MATH (since M corresponds to a shift of 12, A corresponds 

to a shift of 0, and so on). Using this keyword, the the plaintext 



   

 

20 

 

SECRETMESSAGE is encrypted as EEVYQTFLESTNQ. Next, we 

cryptanalyze the Vigenkre cipher. But first, note that a polyalphabetic 

substitution (such as the VigenBre cipher) does not preserve plaintext 

letter frequencies to the same degree as a mono-alphabetic 

substitution. Furthermore, if the number of alphabets is large relative 

to the message size,the plaintext letter frequencies will not be 

preserved at all. Therefore, the generic simple substitution attack 

discussed above will not work on a polyalphabetic 

substitution.However, the VigenBre cipher is vulnerable to a slightly 

more sophisticated statistical attack. To see how this works, first 

consider a VigenBre cipher with a small keyword. Suppose that the 

following ciphertext was created using a VigenBre cipher with a three-

lettered keyword: 

RLWRV MRLAQ EDUEQ QWGKI LFMFE XZYXA QXGJH FMXKM 

QWRLA LKLFE LGWCL SOLMX RLWPI OCVWL SKNIS IMFES 

JUVAR MFEXZ CVWUS MJHTC RGRVM RLSZS MREFW XZGRY 

RLWPI OMYDB SFJCT CAZYX AQ. (1.1) 

To recover the key and decrypt the message, we can make use of the 

fact that the ciphertext is composed of three simple substitutions. To 

accomplish t,his,we tabulate the letter frequencies for the sets SO = 

{co,c:~c,g ,. . . }, 5.1 = {Q, c 4 , ~ 7 , .. . }, and 5.2 = {c2,c g, ex.. . . 

}.where c, is the ith ciphertext letter. Doing so, we obtain the results in 

Tables 1.4, 1.5, and 1.6, respectively. 
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 From the So ciphertext in Table 1.4, we might reasonably guess 

that ciphertext R corresponds to plaintext E. T, N, 0, R, I. A or S. 

which gives us 

 
 candidate values for ko, namely ko E {13,24,4,3,0,9,17,25}. 

Similarly, for set S1, ciphertext X niight correspond to plaintext E, 

T, N, 0, R, I, A or S,from which we obtain likely values for k l , and 

from set Sz, ciphertext W likely correspond to plaintext E, T, N, 0, R, 

I, A or S. The corresponding likely keyword letters are tabulated in 

Table 1.7. candidate values for ko, namely ko E {13,24,4,3,0,9,17,25}. 

Similarly, for set S1, ciphertext X niight correspond to plaintext E, 

T, N, 0, R, I, A or S, from which we obtain likely values for k l , and 

from set Sz, ciphertext W likely correspond to plaintext E, T, N, 0, R, 

I, A or S. The corresponding likely keyword letters are tabulated in 

Table 1.7. 
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 The conibinations of likely keyword letters in Table 1.7 yield 83 = 2’ 

putative keywords. By testing each of these putative keyword on the 

first few letters of the ciphertext, we can easily determine which, if 

any, is the actual keyword. For this example, we find that (ko, k l , k2) 

= (24,4,18), which corresponds to YES, and the original plaintext is 

 

THE TRUTH IS ALWAYS SOMETHING THAT IS TOLD, NOT 

SOMETHING THAT IS KNOWN. IF THERE WERE NO SPEAKING OR 

WRITING, THERE WOULD BE NO TRUTH ABOUT NYTHING.THERE 

WOULD ONLY BE WHAT IS. 

 

This attack provides a significant shortcut, as conipared to trying all 

possible 263 M 214 keywords. Knowing the length of the keyword 

used in a Vigenkre cipher helps greatly in the cryptanalysis. If the 

keyword is known, and the message is long enough, we can simply 

perform letter frequency counts on the associated sets of ciphertext to 

begin solving for the plaintext. However, it is not so obvious how to 

determine the length of an unknown keyword. Next, we consider two 

Friederich W. Kasiski (1805-1881) was a major in the East Prussian 

infantry regiment and the author of the cryptologic text Die 

Geheimschriflen und die Dechiger-kunst. Kasiski developed a test 
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(amazingly, known as the Kasiski Test), that can sonietimes be used to 

find the length of a keyword used in a cipher such as the Vigenkre. It 

relies on the occasional coincidental alignment of letter groups in 

plaintext with the keyword. To attack a periodic cipher using the 

Kasiski Test, we find repeated letter groups in the ciphertext arid 

tabulate the separations between them. The greatest common divisor 

of these separations (or a divisor of it) gives a possible length for the 

keyword.For example, suppose we encrypt the plaintext 

THECHILDISFATHEROFTHEMAN 

with a Vigenkre cipher using the keyword POETRY. The resulting 

ciphertest is  

IVIVYGARMLMYIVIKFDIVIFRL. 

 

Notice that the second Occurrence of the ciphertext letters IVI begins 

exactly 12 letters after the first, and the third occurrence of IVI occurs 

exactly six letters after the second. Therefore, it is likely that the 

length of the keyword is a divisor of six. In this case, the keyword 

length is exactly six. 

Index of Coincidence 
 

While working at the Riverbank Laboratory, William F. Friedman 

(1891L 1969) developed the index of coincidence. For a given 

ciphertext, the index of coincidence I is defined to be the probability 

that two randomly selected letters in the ciphertext represent, t.he same 

plaintext symbol. For a given ciphertext, let no, 121,. . . ,1225 be the 

respective letter counts of A, B, C, . . . , Z in the ciphertext, and set 71 
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= n o + 111 + . . . + r125. Then, theindex of coincidence can be 

computed as 

 

 

To see why the index of coincidence gives us useful information, first 

note that the empirical probability of randomly selecting two identical 

letters from a large English plaintext is 

 

where po is the probability of selecting an A, p l is the probability of 

selecting a B, and so on, and the values of p , are given in Table 1.3. 

This implies that an (English) ciphertext having an index of 

coincidence I x 0.065 is probably associated with a mono-alphabetic 

substitution cipher, since this statistic will not change if the letters are 

simply relabeled (which is the effect of encrypting with a simple 

substitution). The longer and more random a Vigenkre cipher keyword 

is, the more evenly the letters are distributed throughout the ciphertext. 

With a very long and very random keyword, we would expect to find 
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Therefore, a ciphertext having I E 0.03846 could be associated with a 

polyalphabetic cipher using a large keyword. Note that for any English 

ciphertext, the index of coincidence I must satisfy 0.03846 5 I 5 0.065. 

The question remains as to how to determine the length of the 

keyword of a Vigenkre cipher using the index of coincidence. The 

main weakness of the Vigenkre (or any similar periodic cipher) is that 

two identical characters occurring a distance apart that is a multiple of 

the key length will be encrypted identically. In such cryptosystems, the 

key length k can be approximated by a function involving the index of 

coincidence I and the length of the ciphertext R. The following 

example illustrates this technique. Suppose an English plaintext 

containing n letters is encrypted using a VigenBre cipher, with a 

keyword of length k , where, for simplicity, we assume R is a multiple 

of k . Now suppose that we arrange the ciphertext letters into a 

rectangular array of n / k rows and k columns, from left to right, top to 

bottom. If we select two letters from different columns in the array, 

this would be similar to choosing from a collection of letters that is 

uniformly distributed, since the keyword is more-or-less “random”.  

 

 

 

 

Statistical cryptanalysis 

    Introduction: 

There are a number of aids to identification and solution available to help you as 

a cryptanalyst. By preparing character frequency counts, performing statistical 
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tests, and recording observed repetitions and patterns in messages, you can 

compare the data to established norms for various systems and languages. 

 

Language Characteristics 

 

   Each language has characteristics that aid successful cryptanalysts. 

 

a. The individual letters of any language occur with greatly varying frequencies. 

Some letters are used a great deal. Others are used only a small percentage of the 

time. In English, the letter E is the most common letter used. It occurs about 13 

percent of the time, or about once in every eight letters. In small samples, other 

letters may be more common, but in almost any sample of 1,000 letters of text or 

more, E will be the most frequent letter. In other languages, other letters 

sometimes dominate. In Russian, for example, O is the most common letter. The 

eight highest frequency letters in English, shown in descending order, are E, T, 

N, R, O, A,I and S. The eight highest frequency letters make up about 67 percent 

of our language. The remaining 18 letters only make up 33 percent of English 

text. The lowest frequency letters are J, K, Q, X, and Z. These five letters 

makeup only a little over 1 percent of English text. The vowels, A, E, I, O, U 

and Y, make up about 40 percent of English text. In many cryptographic 

systems, these frequency relationships show through despite the encryption. The 

analysis techniques explained in the following  lecture make repeated use of 

these frequency relationships. In particular, you should remember the high 

frequency letters, ETNROAIS, and the low frequency letters, JKQXZ, for their 

repeated application. The word SENORITA, which includes the high frequency 

letters is one way to remember them. Some people prefer to remember the 

pronounceable ETNORIAS as a close approximation of the descending 

frequency order. Choose the method you prefer. The high frequency letters are 

referred to frequently. 
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b. Just as single letters have typical frequency expectations, multiple letter 

combinations  occur with varying, but predictable frequencies, too. The most 

common pair of letters, or digraph, is EN. After EN, RE and ER are the most 

common digraphs. There are 676 different possible digraphs in English, but the 

most common 18 make up 25 percent of the language. Some cryptographic 

systems do not let individual letter frequencies show through the encryption, but 

let digraphic frequencies come through. The systems explained in Part Three of 

this manual show this characteristic. 

 

c. frequency expectations for sets of three letters (trigraphs) and four letters 

(tetragraphs). Each of these can be useful when studying cryptograms in which 

three and four letter repeated segments of text occur.  

d.Repeated segments of two to four letters will often occur because they are 

common letter combinations, whether or not they are complete words by 

themselves. Longer repeated segments readily occur when words and phrases are 

reused in plaintext. When words are reused in plaintext, they may or may not 

show up as repeated segments in ciphertext. For a word to show through as a 

repeat in ciphertext, the same keys must be applied to the same plaintext more 

than once. Even complex systems which keep changing keys will sometimes 

apply the same keys to the same plaintext and a repeated ciphertext segment will 

result. Finding such repeats gives many single messages to all messages that you 

believe may have been encrypted with the same set of keys. If computer support 

is available to search for repeats for you, a great deal of time can be saved. If not, 

time spent scanning text to search for repeats will reward you for your time when 

you find them. 

 

We first consider the weakest type of attack, namely a ciphertext-only attack. We 

also assume that the plaintext string is ordinary English text, without punctuation 
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or “spaces.” (This makes cryptanalysis more difficult than if punctuation and 

spaces were encrypted.) 

Many techniques of cryptanalysis use statistical properties of the English 

language. A among these is the letter frequency distribution, which gives the 

percentage frequency of the characters in the given text. Various people have 

estimated the relative frequencies of the 26 letters by compiling statistics from 

numerous novels, magazines, and newspapers. The estimates in Table bellow 

were obtained by Beker and Piper. 

On the basis of the above probabilities, Beker and Piper partition the 26 letters 

into five groups as follows: 

1.  E, having probability about 0.120  

2.  T, A, O, I, N, S, H, R, each having probabilities between 0.06 and 0.09  

3.  D, L, each having probabilities around 0.04  

4.  C, U, M, W, F, G, Y, P, B, each having probabilities between 0.015 

and 0.028  

5.  V, K, J, X, Q, Z, each having probabilities less than 0.01.  

It may also be useful to consider sequences of two or three consecutive letters 

called digrams and trigrams, respectively. The 30 most common digrams are (in 

decreasing order) TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, NT, 

HA, ND, OU, EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, SE, HI, and OF. The 

twelve most common trigrams are (in decreasing order) THE ING, AND, HER, 

ERE, ENT, THA, NTH, WAS, ETH, FOR, and DTH. 
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Unilateral Frequency Distribution 

 

The most basic aid to identification and solution of cipher systems is the 

unilateral frequency distribution. The term unilateral means one letter at a time. 

A unilateral frequency distribution is a count of all the letters in selected text, 

taken one letter at a time. 

 

a. The customary method of taking the distribution is to write the letters A 

through Z horizontally and mark each letter of the cryptogram with a dash 

above or below the appropriate letter. Proceed through the message from the 

first letter to the last, marking each letter in the distribution. Avoid the alternate 

method of counting all the As, Bs, Cs, and so forth, which is very subject to 

errors. For convenience, each group of five is crossed off by a diagonal slash. 

The unilateral frequency distribution for the first sentence in this paragraph is 

shown below. 
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Forth, which is very subject to errors. For convenience, each group of five is 

crossed off by a diagonal slash. The unilateral frequency distribution for the first 

sentence in this paragraph is shown below. 

 

 

 

 

For comparison, the next example shows the frequency count for the fourth and 

fifth sentences in paragraph 2-9a. 

 

 

 

b. Although individual letter frequencies differ, the pattern of high and low 

frequency letters is quite similar. The letters that stand above the others in each 

tally are,  with few exceptions, the expected high frequency letters—

ETNROAIS. The expected low frequency letters, JKQXZ, occur once or twice at 

most. Even in as small a sample as one or two sentences, expected patterns of 

usage start to establish themselves. Compare this to a frequency count of all 

letters in this paragraph. 
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  When a larger sample is taken, such as the above paragraph, the letters occur 

much closer to the expected frequency order of ETNROAIS. As expected, E 

and T are the two highest frequency letters. but the next series of high 

frequency letters in descending order of occurrence, ASRINO, differs slightly 

from the expected order of NROAIS. It would take a sample thousands of 

letters long to produce frequencies exactly in the expected order. Even then, 

differences in writing style between a field manual and military message texts 

could produce frequency differences. For example, the word the is often 

omitted from military message traffic for the sake of brevity. More frequent 

use of the raises the expected frequency of the letter H. 

 

Letter Frequencies in Cryptograms 

 
As different cipher systems are explained in this manual, the ways in which letter 

frequencies can be used to aid identification and solution will be shown. Some 

basic considerations should be understood now. 

 a. In transposition systems, the letter frequencies of a cryptogram will be 

identical to that of the plaintext. A cryptogram in which the ciphertext letters 
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occur with the expected frequency of plaintext will usually be enciphered by a 

transposition system. 

b. In the simplest substitution systems, each plaintext letter has one ciphertext 

equivalent. The ciphertext letter frequencies will not be identical to the plaintext 

frequencies, but the same numbers will be present in the frequency count as a 

whole. For example, if there are 33 Es in the plaintext of a message, and if E is 

enciphered by the letter K, then 33 Ks will appear in the ciphertext frequency 

count. 

 

c. More complex substitution cipher systems, such as the polyalphabetic systems 

in ,will keep changing the equivalents. E might be enciphered by a K the first 

time it occurs and by different cipher letters each time it recurs. This will 

produce a very different looking frequency count.  

d. To illustrate the differences in appearance of frequency counts for different 

types of systems, examine the four frequency counts in Figure 2-1. Each one is a 

frequency count of the message listed above it. The four messages are different, 

but each has the same plaintext. The first shows the plaintext and its frequency 

count. The second shows the frequencies of the same message enciphered by a 

transposition system. The third shows a simple substitution system 

encipherment. The fourth shows a polyalphabetic substitution encipherment. 

 

Roughness 

  The four examples in Figure 2-1 show another characteristic of frequency 

counts which is useful in system identification. The first three distributions all 

contain the same letter frequencies. In the first two, the plaintext and the 

transposition examples, there are 16 Es. In the third, where E has been replaced 

by W, there are 16 Ws. Where there were 9 As, there are now 9 Ls. Where there 

was 1 K, there is now 1 C. The first three distributions show the same wide 

differences between the highest frequency letters and the lowest. The fourth 
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distribution is very different. The distribution lacks the wide differences between 

the highest and lowest frequency letters. Where the first three showed distinct 

highs and lows, or peaks and troughs, in the distributions, the fourth is relatively 

flat. 

a. Frequency counts which show the same degree of difference between peaks 

and troughs as plaintext are considered to be rough distributions. Systems which 

suppress the peaks and troughs of plaintext letters by changing their equivalents 

produce flatter distributions. If letters were selected randomly from the 26 letters 

of the English alphabet, the resulting distribution would look very much like the 

fourth example. Random selection will not produce a perfectly level distribution, 

but it will appear quite flat in comparison to plaintext. 
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b. The simplest substitution systems tend to produce rough distributions. The 

most secure tend to produce flat distributions. Many other systems tend to 

fall in between. You can use the degree of roughness as one of the aids to 

system identification. 

 

 

 

Cryptanalysis of the Affine Cipher 

As a simple illustration of how cryptanalysis can be performed using statistical 

data, let’s look first at the Affine Cipher. Suppose Oscar has intercepted the 

following ciphertext: 

Example:  

Ciphertext obtained from an Affine Cipher 

         

FMXVEDKAPHFERBNDKRXRSREFMORUDSDKDVSHVUFEDKAPR

KDLYEVLRHHRH 

The frequency analysis of this ciphertext is given in Table below.  

There are only 57 characters of ciphertext, but this is sufficient to cryptanalyze 

an Affine Cipher. The most frequent ciphertext characters are:  

Character No. of occurrences 

R (8occurrences), 

D (7occurrences), 

E,H,K (5occurrenceseach), 

F,S,V (4occurrenceseach). 

 As a first guess, we might hypothesize that R is the encryption of e and D is the 

encryption of t, since e and t are (respectively) the two most common letters.  
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Expressed numerically, we have eK(4) = 17 and eK(19) = 3. Recall that eK(x) = ax 

+ b, where a and b are unknowns. So we get two linear equations in two 

unknowns: 

 

 

This system has the unique solution a = 6, b = 19 (in ). But this is an illegal 

key, since gcd(a, 26) = 2 > 1. So our hypothesis must be incorrect. 

Our next guess might be that R is the encryption of e and E is the encryption of t. 

Proceeding as above, we obtain a = 13, which is again illegal.  

So we try the next possibility, that R is the encryption of e and H is the 

encryption of t. This yields a = 8, again impossible. Continuing, we suppose that 

R is the encryption of e and K is the encryption of t. This produces a = 3, b = 5, 

which is at least a legal key. It remains to compute the decryption function 

corresponding to K = (3, 5), and then to decrypt the ciphertext to see if we get a 

meaningful string of English, or nonsense. This will confirm the validity of (3, 

5). 

If we perform these operations, we have dK(y) = 9y - 19 and the given ciphertext 

decrypts to yield: 

           Algorithms are quite general definition so far itmetic processes 

We conclude that we have determined the correct key.  
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Coincidence Tests 

 
Judging whether a given frequency distribution has the same degree of 

roughness as plaintext or random text is not easy to do by eye alone. To help you 

make this determination, a number of statistical tests have been developed for 

your use. The tests are  based in probability theory, but you can use the tests 

whether or not you understand the underlying theories. The most common tests 

are called coincidence tests.  

 

c. If you pick any two letters from a message, compare them together, and they 

happen to be the same letter, they are said to coincide. A comparison of the 

same letters, for example, two As is a coincidence. This comparison can be 

made of single letters or pairs of letters or longer strings of letters. 

d. If you compare two single letters selected at random from the English 

alphabet, the probability of their being the same is 1 in 26. One divided by 26 

is .0385. Expressed as a percentage, 1/26 is slightly less than 4 percent. You 

would expect to find a coincidence 3.85 times on the average in every 100 

comparisons. 

e. If you select two letters from English plaintext, however, the probability of 

their being the same is higher than 1 in 26. Frequency studies have shown 

that the probability of a coincidence in English plaintext is .0667. In other 

words, in every 100 comparisons, you would expect to find 6.67 coincidences 

in plaintext. Each language has its own probabilities, but similar traits occur 

in each alphabetic language. 

f. Different coincidence tests use different methods of comparing letters with 

each other, but each rests on the probabilities of random and plaintext 

comparisons. The actual number of coincidences in a cryptogram can be 

compared with the random and plaintext probabilities to help make 

judgments about the cryptogram.  
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Index of Coincidence 

A common way of expressing the results of a coincidence test is the index of 

coincidence (XC). The index of coincidence is the ratio of observed coincidences 

to the number expected in a random distribution. For plaintext, the expected 

index of coincidence for single letters in English is the ratio of .0667 to .0385, 

which is 1.73. 

 

 

Index of Coincidence Example 
 

While working at the Riverbank Laboratory, William F. Friedman 

(1891L 1969) developed the index of coincidence. For a given 

ciphertext, the index of coincidence I is defined to be the probability 

that two randomly selected letters in the ciphertext represent, t.he same 

plaintext symbol. For a given ciphertext, let no, 121,. . . ,1225 be the 

respective letter counts of A, B, C, . . . , Z in the ciphertext, and set 71 

= n o + 111 + . . . + r125. Then, the index of coincidence can be 

computed as 

 

To see why the index of coincidence gives us useful information, first note that 

the empirical probability of randomly selecting two identical letters from a large 

English plaintext is 
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where po is the probability of selecting an A, p l is the probability of selecting a 

B, and so on, and the values of p , are given in Table 1.3. This implies that an 

(English) ciphertext having an index of coincidence I x 0.065 is probably 

associated with a mono-alphabetic substitution cipher, since this statistic will not 

change if the letters are simply relabeled (which is the effect of encrypting with a 

simple substitution).  

The longer and more random a Vigenkre cipher keyword is, the more evenly the 

letters are distributed throughout the ciphertext. With a very long and very 

random keyword, we would expect to find 

 
 

Therefore, a ciphertext having I E 0.03846 could be associated with a 

polyalphabetic cipher using a large keyword. Note that for any English 

ciphertext, the index of coincidence I must satisfy 0.03846 5 I 5 0.065. The 

question remains as to how to determine the length of the keyword of a Vigenkre 

cipher using the index of coincidence. The main weakness of the Vigenkre (or 

any similar periodic cipher) is that two identical characters occurring a distance 

apart that is a multiple of the key length will be encrypted identically. In such 

cryptosystems, the key length k can be approximated by a function involving the 

index of coincidence I and the length of the ciphertext N 

Example:- calculate Ic for this cipher text, and find the algorithm that is 

used  
 

EEAHR RFOWW TGDTE SCHES ROEST EMCNEAOOTL AKNEE 

TSSEO AVXNC STPOO OEOEATASBI OAEER AXHEE RADNF PSINO 

ISEAURPNED XEPSE PFCDL LZTER JAETY RETHE 
 

Start by guessing the letter by the most frequent & compensated by the priority 

mentioned in the table.  

1. When guessing 2 letters & the key , decode the cipher by additive algorithm.  

2. We can guess which algorithm is used, by using this equation  
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Ic = Σ Fi ( Fi – 1 ) /n(n-1)  

 

Ic > 0.065 => mono algorithm  

Ic > 0.065 => poly algorithm  

Ic = 0.065 => transposition algorithm  

 

 

Ic = Σ Fi ( Fi – 1 ) / 

n(n-1)  

Ic = 11(11-1) + 1(1-0) + 4(4-1) + 4(4-1) + 24(24-1) + 3(3-1) + 1(1-0) + 4(4-1) + 

3(3-1) + 1(1 – 0 ) + 1(1-0) + 3(3-1) + 1(1-0) + 6(6-1) + 11(11-1) + 5(5-1) + 8(8-

1) + 10(10-1) + 10(10-1) + 1(1-0) + 1(1-0) + 2(2-1) + 3(3-1) + 1(1-0) + 1(1-0) / 

120 ( 120 – 1 ) 

Ic = 1072/14280 = 0.071 => mono algorithm 

 

LFSR  Cryptanalysis 

 

Berlekamp-Massey Algorithm Attack 
 

 

 
Given a binary sequence, the Berlekamp-Massey Algorithm provides an efficient 

method to determine the smallest LFSR that can generate the sequence. Here, 

“size” refers to the number of stages in the LFSR. The size of the minimal LFSR 

is known as the linear complexity (or linear span) of the sequence. Due to the 

threat of known plaintext attacks, a keystream must have a large period. 

Furthermore, due to the Berlekamp-Massey Algorithm, there must not exist any 

small LFSR that can generate a given keystream sequence. We expand on this 
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point below, after we have discussed the Berlekamp- Massey Algorithm and 

some of its implications. The Berlekamp- Massey Algorithm appears in Table1, 

 

 where denotes the binary sequence under consideration, L is the linear 

complexity and C(x) is the connection polynomial of the minimal LFSR. Note 

that the coefficients of all polynomials are to be taken modulo 2. Also, d is 

known as the discrepancy, and the connection polynomial is of the form The  

 

Berlekamp-Massey Algorithm processes the sequence s sequentially and at step 

k, the polynomial C(x) is the connection polynomial for the first k + 1 bits of s 

and L is the corresponding linear complexity. At step k, if the discrepancy is 

 d = 0, then the connection polynomial C(x) computed at step k - 1 is also the 

connection polynomial for so, s1,. . . , sk and no change to C(x) or L is required. 

If, on the other hand, the discrepancy is d = 1, then C(x) must be modified, and 

the linear complexity L increases if the current value of L lies below the n/2 line. 

Massey Algorithm, the minimal LFSR will have been obtained. Below, we see 

that this property has implications for stream cipher design. It is not too difficult 

to show that the Berlekamp- Massey Algorithm requires on the order of n2 

operations [62], where n is the number of bits processed and the operations are 

XOR. This is the most efficient known general algorithm for solving the shift 

register synthesis problem. However, there are more efficient algorithms for 

certain special cases; 
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Next, we illustrate the Berlekamp-Massey Algorithm. Consider the periodic 

sequcnce s, with one period given by ……….1  

For this sequence, the first few steps of the Berlekamp-Massey Algorithm are 

illustrated in Table2. For the periodic sequence (1) , the linear complexity is L = 

6 (Problem 1 asks for the connection polynomial). Therefore, if we let 10011 be 

the initial fill of the LFSR corresponding to the connection polynomial 

determined by the Berlekamp-Massey Algorithm, the LFSR generates the 

sequencc s in (1).  Here, we do not attempt to prove the validity of the 

Berlekarnp-Massey Algorithm. but we note in passing that the algorithm is 

closely related to the extended Euclidean Algorithm and continued fraction 
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algorithms. We also note one important- but non-obvious--fact, namely, that any 

2L bits through the Berlekamp.  

 

DES Cryptanalysis 

An Attack on a 3-round DES 

Differential Cryptanalysis 

One very well-known attack on DES is the method of “differential 

cryptanalysis”  introduced by Biham and Shamir. This is a chosen-plaintext 

attack. Although it does not provide a practical method of breaking the usual 16-

round DES, it does succeed in breaking DES if the number of rounds of 

encryption is reduced. For instance, 8-round DES can be broken in only a couple 

of minutes on a small personal computer. 

We will now describe the basic ideas used in this technique. For the purposes of 

this attack, we can ignore the initial permutation IP and its inverse (it has no 

effect on cryptanalysis). As mentioned above, we consider DES restricted to n 

rounds, for various values of n ≤ 16. So, in this setting, we will regard L0R0 as 

the plaintext, and LnRn as the ciphertext, in an n-round DES. (Note also that we 

are not inverting LnRn.) 

Differential cryptanalysis involves comparing the x-or (exclusive-or) of two 

plaintexts to the x-or of the corresponding two ciphertexts. In general, we will be 

looking at two plaintexts L0R0 and with a specified x-or value

. Throughout this discussion, we will use prime markings 

(′) to indicate the x-or of two bitstrings. 
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DEFINITION :1  Let Sj be a particular S-box (1 ≤ j ≤ 8). Consider an (ordered) 

pair of bitstrings of length six, say  We say that the input x-or (of Sj) is

 and the output x-or (of Sj) is . 

Note that an input x-or is a bitstring of length six and an output x-or is a bitstring 

of length four. 

DEFINITION :2  For any , define the set to consist of the 

ordered pairs having input x-or . 

It is easy to see that any set contains 26 = 64 pairs, and that 

  

For each pair in , we can compute the output x-or of Sj and tabulate the 

resulting distribution. There are 64 output x-ors, which are distributed among 24 

= 16 possible values. The non-uniformity of these distributions will be the basis 

for the attack. 

Example 1 

Suppose we consider the first S-box, S1, and the input x-or 110100. Then 

 

For each ordered pair in the set Δ(110100), we compute output x-or of S1. For 

example, S1(000000) = E16 = 1110 and S1(110100) = 916 = 1001, so the output x-

or for the pair (000000, 110100) is 0111. 

If this is done for all 64 pairs in Δ(110100), then the following distribution of 

output x-ors is obtained: 



   

 

44 

 

 

In Example 3.1, only eight of the 16 possible output x-ors actually occur. This 

particular example has a very non-uniform distribution. In general, if we fix an 

S-box Sj and an input x-or , then on average, it turns out that about 75 - 80% of 

the possible output x-ors actually occur. 

It will be convenient to have some notation to describe these distributions and 

how they arise, so we make the following definitions. 

DEFINITION 3.3  For 1 ≤ j ≤ 8, and for bitstrings of length six and of 

length four, define 

 

and 
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figure(1):Possible inputs with input x-or 110100 

counts the number of pairs with input x-or equal to which have 

output x-or equal to for the S-box Sj. The actual pairs having the specified 

input x-ors and giving rise to the specified output x-ors can be obtained from the 

set . Observe that this set can be partitioned into pairs, each 

of which has (input) x-or equal to . 

Observe that the distribution tabulated in Example 1 consists of the values

. The sets are listed in Figure 3.8. 

For each of the eight S-boxes, there are 64 possible input x-ors. Thus, there are 

512 distributions which can be computed. These could easily be tabulated by 

computer. 
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Recall that the input to the S-boxes in round i is formed as B = E ⊕ J, where E = 

E(Ri-1) is the expansion of Ri-1 and J = Ki consists of the key bits for round i. 

Now, the input x-or (for all eight S-boxes) can be computed as follows: 

 

It is very important to observe that the input x-or does not depend on the key bits 

J. (However, the output x-or certainly does depend on these key bits.) 

We will write each of B, E and J as the concatenation of eight 6-bit strings: 

 

and we write B* and E* in a similar way. Let us suppose for the moment that we 

know the values Ej and for some j, 1 ≤ j ≤ 8, and the value of the output x-or 

for . Then it must be the case that 

 

where . 

Suppose we define a set testj as follows: 

DEFINITION :4  Suppose Ej and are bitstrings of length six, and is a 

bitstring of length four. Define 
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where . 

That is, we take the x-or of Ej with every element of the set . 

The following result is an immediate consequence of the discussion above. 

THEOREM:1 

Suppose Ej and are two inputs to the S-box Sj, and the output x-or for Sj is . 

Denote . Then the key bits Jj occur in the set testj . 

Observe that there will be exactly bitstrings of length six in the set testj

; the correct value of Jj must be one of these possibilities. 

Example 3.2 

Suppose . Since N1 (110100, 1101) = 8, 

there will be exactly eight bitstrings in the set test1 (000001, 110101, 1101). 

From Figure 3.8, we see that 

 

Hence,  

 

If we have a second such triple , then we can obtain a second set test1 

of possible values for the keybits in J1. The true value of J1 must be in the 

intersection of both sets. If we have several such triples, then we can quickly 
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determine the key bits in J1. One straightforward way to do this is to maintain an 

array of 64 counters, representing the 64 possibilities for the six key bits in J1. A 

counter is incremented every time the corresponding key bits occur in a set test1 

for a particular triple. Given t triples, we hope to find a unique counter which has 

the value t; this will correspond to the true value of the keybits in J1. 

 

Let’s now see how the ideas of the previous section can be applied in a chosen 

plaintext attack of a 3-round DES. We will begin with a pair of plaintexts and 

corresponding ciphertexts: We can express R3 as 

follows: 

 

can be expressed in a similar way, and hence 

 

Now, suppose we have chosen the plaintexts so that , i.e., so that 

 

Now, suppose we have chosen the plaintexts so that , i.e., so that 
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Figure 2  Differential attack on 3-round DES 

Then  and so 

 

At this point, is known since it can be computed from the two ciphertexts, and 

is known since it can be computed from the two plaintexts. This means that 

we can compute from the equation 

 

Now, f(R2, K3) = P(C) and , where C and C*, respectively, 

denote the two outputs of the eight S-boxes (recall that P is a fixed, publicly 

known permutation). Hence, 

 

and consequently  

 

This is the output x-or for the eight S-boxes in round three.  

Now, R2 = L3 and are also known (they are part of the ciphertexts). 

Hence, we can compute 

javascript:displayWindow('images/03-09.jpg',400,123)
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and  

 

using the publicly known expansion function E. These are the inputs to the S-

boxes for round three. So, we now know E, E*, and C′ for the third round, and 

we can proceed, as in the previous section, to construct the sets test1, . . ., test8 of 

possible values for the key bits in J1, . . . , J8. 

A pseudo-code description of this algorithm is given in Figure 3.9. The attack 

will use several such triples E, E*, C′. We set up eight arrays of counters, and 

thereby determine the 48 bits in K3, the key for the third round. The 56 bits in the 

key can then be computed by an exhaustive search of the 28 = 256 possibilities 

for the remaining eight key bits. 

Let’s look at an example to illustrate. 

Example 2: 

Suppose we have the following three pairs of plaintexts and ciphertexts, where 

the plaintexts have the specified x-ors, that are encrypted using the same key. 

We use a hexadecimal representation, for brevity: 

 

plaintext  ciphertxt  

 

748502CD38451097  03C70306D8A09F10  

3874756438451097  78560A0960E6D4CB  
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486911026ACDFF31  45FA285BE5ADC730  

375BD31F6ACDFF31  134F7915AC253457  

 

357418DA013FEC86  D8A31B2F28BBC5CF  

12549847013FEC86  0F317AC2B23CB944  

 

From the first pair, we compute the S-box inputs (for round 3) from Equations 

(3.2) and (3.3). They are:  

 

The S-box output x-or is calculated using Equation (3.1) to be:  

 

From the second pair, we compute the S-box inputs to be  

 

and the S-box output x-or is  

 

From the third pair, the S-box inputs are  

 

and the S-box output x-or is  
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Next, we tabulate the values in the eight counter arrays for each of the three 

pairs. We illustrate the procedure with the counter array for J1 from the first pair. 

In this pair, we have  The set 

 

Since E1 = 000000, we have that 

 

Hence, we increment the values 0, 7, 40, and 47 in the counter array for J1.The 

final tabulations are now presented. If we think of a bit-string of length six as 

being the binary representation of an integer between 0 and 63, then the 64 

values correspond to the counts of 0, 1, . . . , 63. The counter arrays are as  
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  In each of the eight counter arrays, there is a unique counter having the value 3. 

The positions of these counters determine the key bits in J1, . . . , J8. These 

positions are (respectively): 47, 5, 19, 0, 24, 7, 7, 49. Converting these integers 

to binary, we obtain J1, . . . , J8: 

J1 = 101111  

J2 = 000101  

J3 = 010011  

J4 = 000000  

J5 = 011000  

J6 = 000111  
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J7 = 000111  

J8 = 110001.  

We can now construct 48 bits of the key, by looking at the key schedule for 

round 3. It follows that K has the form 

0001101  0110001  01?01?0  1?00100  

0101001  0000??0  111?11?  ?100011  

where parity bits are omitted and “?” denotes an unknown key bit. The complete 

key (in hexadecimal, including parity bits), is:  

1A624C89520DEC46. 

 

 

 

 

 

Example 

Differential cryptanalysis it can be used in an attempt to crypt analyze 3-round 

DES. Using the following pairs of PT/CT to find the equations that help you to 

deduce the information about the key:  

 

PT1=0001 0100 , PT2=0011 0100, CT1=0111 1111 ,CT2=0001 1100 .  

Sol: let PTR be the right half of PT, etc. Note PTR1=PTR2 but 
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 PTL2≠ PTL2  

CTL1=0111= L2+F(R2,KEY3)=R1+F(R2,KEY3)=L0+F(R0,KEY1)+F(R2,KEY3)  

= PTL1+F(PTR1,KEY1)+F(CTR1,KEY3) = 

0001+F(PTR1,KEY1)+F(1111,KEY3).  

Similarly CTL2=0001=0011+f(PTR2,KEY1)+F(1100,KEY3) 

 So we have CTL1+CTL2=0111+0001=0110 but also 

CTL1+CTL2=0001+0011+F(1111,KEY3)+F(1100,KEY3)=0100  

In general F(CTR1,KEY3)+F(CTR2,KEY3)=PTL1+PTL2+CTL1+CTL2 and 

the right half of that equation is know. 

 

 

 

 

Public key cryptanalysis 

 

PUBLIC KEY CRYPTOGRAPHY A form of cryptography which the key used 

to encrypt a message differs from the key used to decrypt it. In public key 

cryptography a, user has a pair of cryptographic keys a public key and a private 

key .The private key is kept secret, while the public key may be widely 

distributed. The two main branches public key cryptography are: 1. Public key 

encryption 2. Digital signatures Why Public-Key Cryptography? . public-

key/two-key/ asymmetric cryptography involves the use of two keys: a public-

key, which may be known by anybody, and can be used to encrypt messages, 

and verify signatures a private-key, known only to the recipient, used to decrypt 

messages, and sign (create) signatures.  
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Applications for Public-Key Cryptosystems * encryption/ decryption (provide 

security) *a digital signatures (provide authentication) *key exchange (of session 

keys).  

 

 

 

Cryptanalysis of Asymmetric Cryptography Asymmetric cryptography (or 

public key cryptography) is cryptography that relies on using two keys; one 

private, and one public. Such ciphers invariably rely on "hard" mathematical 

problems as the basis of their security, so an obvious point of attack is to 

develop methods for solving the problem. Asymmetric schemes are designed 

around the (conjectured) difficulty of solving various mathematical problems. If 

an improved algorithm can be found to solve the problem, then the system is 

weakened. For example, the security of the Diffie-Hellman key exchange 

scheme depends on the difficulty of calculating the discrete logarithm. In 1983, 

Don Coppersmith found a faster way to find discrete logarithms (in certain 

groups), and thereby requiring cryptographers to use larger groups (or different 

types of groups). RSA's security depends (in part) upon the difficulty of integer 

factorization — a breakthrough in factoring would impact the security of RSA. 

  

ADVANTAGES AND DISADVANTAGES OF ASYMMETRIC 

CRYPTOSYSTEM 
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ADVANTAGES • In asymmetric or public key, cryptography there is no need 

for exchanging keys, thus eliminating the key distribution problem. • The 

primary advantage of public-key cryptography is increased security: the private 

keys do not ever need to be transmitted or revealed to anyone. • Can provide 

digital signatures that can be repudiated  

DISADVANTAGES • A disadvantage of using public-key cryptography for 

encryption is speed: there are popular secret-key encryption methods which are 

significantly faster than any currently available public-key encryption method. 

There are many secret-key encryption methods that are significantly faster than 

any currently available public-key encryption method. Nevertheless, public-key 

cryptography can be used with secret-key cryptography to get the best of both 

worlds. For encryption, the best solution is to combine public- and secret-key 

systems in order to get both the security advantages of public-key systems and 

the speed advantages of secret-key systems. Such a protocol is called a digital 

envelope.  

Weaknesses Keys in public-key cryptography, due to their unique nature, are 

more computationally costly than their counterparts in secret-key cryptography. 

Asymmetric keys must be many times longer than keys in secret-cryptography in 

order to boast equivalent security .Keys in asymmetric cryptography are also 

more vulnerable to brute force attacks than in secret-key cryptography. There 

exist algorithms for public-key cryptography that allow attackers to crack private 

keys faster than a brute force method would require. The widely used and 

pioneering RSA algorithm has such an algorithm that leaves it susceptible to 

attacks in less than brute force time . While generating longer keys in other 

algorithms will usually prevent a brute force attack from succeeding in any 

meaningful length of time, these computations become more computationally 

intensive. These longer keys can still vary in effectiveness depending on the 

computing power available to an attacker. - Public-key cryptography also has 

vulnerabilities to attacks such as the man in the middle attack .In this situation, a 
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malicious third party intercepts a public key on its way to one of the parties 

involved. The third party can then instead pass along his or her own public key 

with a message claiming to be from the original sender. An attacker can use this 

process at every step of an exchange in order to successfully impersonate each 

member of the conversation without any other parties having knowledge of this 

deception.  

 

 

 

Attacks On RSA 

1.Mathematical Attacks on RSA Mathematical attacks focus on attacking the 

underlying structure of RSA function. The first intuitive attack is the attempt to 

factor the modulus N. Because knowing the factorization of N, one may easily 

obtain M(N), from which d can be determined by d = 1/e mod M(N). However, 

at present, the fastest factoring algorithm runs in exponential time. Our objective 

is to survey RSA attacks that decrypts message without directly factoring N. 

2.Elementary attacks  

2.1 Small Private Key attacks : To improve the RSA decryption performance 

in the matter of running-time, Alice might tend to use a small value of da, rather 
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than a large random number. A small private key indeed will improve 

performance dramatically, but unfortunately, a attack posed by M.Wiener [shows 

that a small d leads to a total collapse of RSA cryptosystem. This break of RSA 

is base on Wiener’s Theorem, which in general provides a lower constraint for d. 

Wiener has proved that Marvin may efficiently find d when d < 1/3 ∗N^(1/4).  

 

2.2Small Public Key Attacks : Similar to the private key preferences, to reduce 

encryption time, it is customary to use a small public key (e), but unlike the 

previous situation, attacks on small e turn out to be much less effective. The 

most powerful attacks on small e are based on Coppersmith’s Theorem. This 

theorem provides an algorithm for efficiently finding all roots of N that are less 

than x = N^(1/d). 2.3 Timing Attacks In a timing attack, the attacker eavesdrops 

during the victim’s session and uses statistical analysis of the user’s typing 

patterns and inter-keystroke timings to discern sensitive session 

information.While timing analysis may not directly result in the decryption of 

sensitive data, it can be used to gain information about the encryption key and 

perhaps the cryptosystem in use. Once the attacker has successfully broken an 

encryption, he or she may launch a replay attack, which is an attempt to resubmit 

a recording of the deciphered authentication to gain entry into a secure source . 

 

2.4 Man-in-the-Middle Attack :A man-in-the-middle attack is designed to 

intercept the transmission of a public key or even to insert a known key structure 

in place of the requested public key. From the perspective of the victims of such 

attacks, their encrypted communication appears to be occurring normally, but in 

fact the attacker is receiving each encrypted message and decoding it and then 

encrypting and sending it to the originally intended recipient. Establishment of 

public keys with digital signatures can prevent the traditional man-in-the-middle 

attack, as the attacker cannot duplicate the signatures. 2.5 Brute Force: Factoring 

N, computing eth root modulo N Given <C, e, N>, Marvin can do a brute force 
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search to find M. But factoring N involves a much smaller search space and thus, 

more efficient to do. Factoring is a well researched problem. Pomerance has an 

interesting introduction into what clever methods can be done. For example, how 

to factor 8051? Naïve approach is trying all primes up to square root of 8051, or 

almost 90. Clever trick is to find a square of primes that subtract to the number, 

example 90^2 – 7^2 = 8051. Thus (90 – 7) * (90 + 7) = 8051; 83 & 97 are the 

factors  

2.6Fault Analysis Attack As the name implies, a fault analysis attack depends 

on the induced or implementation error on a key dependent cryptographic 

operation. Fault analysis attacks can be mounted against both the secret key and 

public key cryptographic devices. This attack exploits the likely errors on the 

RSA decryption or signing operations in cryptographic devices Common 

Modulus Attack The idea of the common modulus is that in a session of RSA 

with several users there is a trusted entity which denes a modulus N and provides 

for each user a pair of public and private valid RSA keys dened modulo (n), but 

not the factorization of N. That is, each user Ui gets the public key < ei;N > and 

the private key < di;N >. Simmons [42] showed that, without needing to factor 

the modulus, if the same plain text is encrypted and sent to two  
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users with co-prime public exponents, any other user can decrypt the 

corresponding cypher text. Theorem 19. Let N = pq be a RSA modulus and let < 

e1;N >;< e2;N > be two public keys such that (e1; e2) = 1. Suppose a plain text 

m is encrypted with both public keys. Knowing c1 = me1 (mod N), c2 = me2 

(mod N) and the public keys, we can compute m in time polynomial in log(N). 

Theorem . Let N = pq be a RSA modulus and let < e1;N >;< e2;N > be two 

public keys such that (e1; e2) = 1. Suppose a plain text m is encrypted with both 

public keys. Knowing c1 = me1 (mod N), c2 = me2 (mod N) and the public 

keys, we can compute m in time polynomial in log(N).  

Proof. Knowing e1 and e2, we compute integers a1; a2 such that a1e1+a2e2 = 1 

using the Extended Euclidean Algorithm.  

Now we compute c1^a1. c2^a2= ma1e1.ma2e2 = ma1e1+a2e2 = m (mod N)  

how to use common modulus attack? Let Alice, Bob, Chris and Eve 

communicate over a public network. They encrypt all messages they send using 

RSA system. Bob and Chris have the RSA modulus nB and nC respectively with 

nB = nC But different public encryption exponents: eB≠eC. Suppose 

gcd(eB,eC)=1gcd(eB,eC)=1, and that Alice sends the same secret message to 

Bob and Chris. Think about this: what does it mean that gcd(eB,eC)=1. Formally 

that means there exist some s1,s2 such that eBs1+eCs2=1. Say you have two 

cipher texts (the following math is all done modulo the shared modulus), 

CB=MeB and CC=MeC. You can do the following:  

: Cs1B∗Cs2C=(MeB)s1∗(MeC)s2 =MeBs1∗MeCs2 =MeBs1+eCs2 =M1 =M 

 

 


