
 

 
 
 

 

University of Technology 

 الجامعة التكنولوجیة 

 

Computer Science Department 

 قسم علوم الحاسوب

    

 ي متقدمــث ذك ـــــبح

 

Prof. Dr. Alia Karim Abdul Hassan 

 

 ا.دعلیاء كریم عبدالحسن
 

 

 

 

 
 
 
 
 
  

cs.uotechnology.edu.iq 
 



Advanced Search 2024/AI 4th class                                                                                                         lecture1 
 

1 
 

1.Introduction 
 

We have a problem and want to find a solution. In computer science and in the part 

of artificial intelligence that deals with algorithms, problem solving encompasses a 

number of techniques known as algorithms, heuristics, root cause analysis, etc. 

Artificial Intelligence is the study of building agents that act rationally. most 

of the time, these agents perform some kind of search algorithm in the 

background in order to achieve their tasks. 

 

A search problem consists of:  

- State Space. Set of all possible states where you can be. 

- Start State. The state from where the search begins. 

- Goal State. A function that looks at the current state returns whether 

or not it is the goal state. 

 

The Solution to a search problem is a sequence of actions, called the plan 

that transforms the start state to the goal state.This plan is achieved through 

search algorithms. Types of search algorithms: There are far too many 

powerful search algorithms. 

 

 
 

 

2. HEURISTICS 

AI applications often rely on the application of heuristics.  heuristic :is a set of 

guidelines that often works to solve a problem. Contrast a heuristic with an 

algorithm, which is a prescribed set of rules to solve a problem and whose output is 

entirely predictable.  The reader is undoubtedly familiar with many algorithms used 

in computer programs, such as those for sorting, including bubble sort and quicksort, 

and for searching, including sequential search and binary search. With a heuristic, a 
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favorable outcome is likely, but is not guaranteed. Heuristic methods were especially 

popular in the early days of AI, a period including the 1950s and into the 1960s. 

 

3. The Water Jug Problem: Working Backward 

You are provided with two jugs of sizes m and n respectively; and you are re- quired 

to measure r quarts of water where m, n, and r are all different quantities. An instance 

of this problem is: How can you measure exactly twelve quarts of water from a tap 

or a well when you have only an eight-quart jug and an eighteen- quart jug? See 

Figure 1.11.  One way to solve the problem is to use trial and error and hope for the 

best. Instead, Polya suggests the heuristic of starting with the goal state and working 

backward. See Figure 1.12. 

 

 
 

 

(a) the eighteen-quart jug has been filled up and there are two quarts of water in the 

eight-quart jug.  

This state is just one step away from the goal state, where you pour an additional six 

quarts of water into the eight-quart jug; where twelve quarts of water remains in the 

eighteen-quart jug. Parts (b) through (d) of the figure provide the requisite steps to 

reach this penultimate state in part (a). You should turn your attention to part (d) and 

work your way back to portion (b) to see all the states that precede the state depicted 

in part (a).  

Working backward to solve the Water Jug Problem and measure 12 quarts of water 

using only an 18-quart pail and an eight-quart pail, path (a), (b), (c), (d) shows how 

to go from the desired goal state back to the initial state. 

 

 To actually solve this problem, you reverse the order of the states. First fill the 18-

quart pail (state d). Then fill and empty the eight-quart pail twice by transferring 

water from the 18-quart pail. This leaves you with two quarts in the 18-quart pail 

(state c). Pour the last two quarts into the eight-quart pail (state b). Fill the 18-quart 

pail again from the tap or well, and pour water from the larger container to fill the 

eight-quart pail, which removes six quarts from the 18, leaving 12 quarts in the larger 

pail (state a). 
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4.IDENTIFYING PROBLEMS SUITABLE FOR AI 

There are three characteristics that are common to most AI problems:  

1. AI problems tend to be large.  

2.  They are computationally complex and cannot be solved by straightforward 

algorithms.  

3. AI problems and their domains tend to embody a large amount of human expertise, 

especially if tackled by strong AI methods. 

 

Some types of problems are better solved using AI, whereas others are more suitable 

for traditional computer science approaches involving simple decision-making or 

exact computations to produce solutions. Let us consider a few examples:  

• Medical diagnosis  

• Shopping using a cash register with barcode scanning 

• ATMs : 

• Two person games such as chess and checkers  

 

Medical diagnosis is a field of science that has for many years employed and 

welcomed contributions from AI, particularly through the development of expert 

systems. Expert systems are typically built in domains where there is considerable 

human expertise and where there exist many rules (rules of the form: if condition, 

then action; for example: if you have a headache, then take two aspirins and call me 

in the morning.) more rules than any human can or wishes to hold in his/her head. 

Expert systems are among the most successful AI techniques for producing results 

that are comprehensive and effective. 

 

HW: write simple introduction about MYCIN. 

 

 ATMs : a general financial advisor, however, keeping track of a person’s spending, 

as well as the categories and frequencies of items purchased. The machine could 

interpret spending for entertainment, necessities, travel, and other categories and 

offer advice on how spending patterns might be beneficially altered. (“Do you really 

need to spend so much on fancy restaurants?”) An ATM as described here would be 

considered an intelligent system. 

 

Another example of an intelligent system is one that plays chess. Although the rules 

of chess are easy to learn, playing this game at an expert level is no easy matter.   It 

is generally accepted that chess has some 1042 possible reasonable games (whereby 

“reasonable” games are distinguished from the number of “possible” games earlier 

given as 10120). This is such a large number that, even if the entire world’s fastest 

computers worked together to solve the game of chess (i.e., develop a program to 
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play perfect chess, one which always makes the best move), they wouldn’t finish for 

50 years. 

 
5. Search Algorithms and Puzzles 

The 15-puzzle and related search puzzles, such as the 8-puzzle and the 3-puzzle, 

serve as helpful examples of search algorithms, problem-solving techniques, and 

the application of heuristics. The blank can move in one of four directions: 

• Up ( ↑ ) • Down ( ↓ ) • Right ( → ) • Left ( ← ) 

 

 

 
 

Notice that the 3 is free to move down, while the 12 is free to move to the right. 

Smaller instances of this puzzle are more convenient to work with, including the 8-

puzzle and the 3-puzzle. For example, consider the 3-puzzle, shown in Figure 1.14. 

In these puzzles, it is naturally the numbered tiles that slide; however, it is more 

convenient to consider the blank square to be moving. The objective of this puzzle 

is to get from the start state to the goal state. In some instances, a solution with the 

minimum number of moves is desired. The structure that corresponds to all possible 

states of a given problem is called the state-space graph. 

 

The graph consists of all possible states of a problem, denoted by nodes, with arcs 

representing all legal transitions between states (legal moves in a puzzle). The space 

tree, which is generally a proper subset of the state-space graph, is a tree whose root 

is the start state, and one or more of its leaves is a goal state.  One search 

methodology you can use to traverse state-space graphs is called a blind search. It 

presumes no knowledge of the search space for a problem. There are two classic 

blind search algorithms that are often explored in courses on data structures and 

algorithms; they are depth first search (dfs) and breadth first search (bfs). In dfs, 

you plunge as deeply into the search tree as possible. That is, when you have a choice 

of moves, you usually (but not always) move left. With bfs, you first visit all nodes 

close to the root, level by level, usually moving from left to right. A dfs traversal of 

the tree, shown in Figure 1.16, would inspect nodes in the order A, B, D, E, C, F, G. 
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Meanwhile, a bfs traversal of this tree would visit the nodes in the order A, B, C, D, 

E, F, G. 

 

 
 

HW: solve 8- puzzle with dfs and bfs 

 

6. Combinatorial explosion: means that the number of possible states of the puzzle 

is too high to be practical. Solving problems of a reasonable size can involve search 

spaces that grow too rapidly to allow blind search methods to succeed. (This will 

remain true regardless of how fast computers become in the future.) For example, 

the state-space graph for the 15-puzzle might contain more than 16! ≤ (2.09228 × 

1013) states. Because of combinatorial explosion, success with AI problems depends 

more upon the successful application of heuristics than the design of faster machines. 

Whenever two or more alternative paths appear, these algorithms pursue the path or 

paths closest to the goal. The algorithms can use heuristic estimates of remaining 

distance, however.   

 

 

Reference: 
Stephen Lucci and Danny Kopec. ARTIFICIAL INTELLIGENCE IN THE 21ST CENTURY: A 

Living Introduction 2/E . Copyright ©2016 by MERCURY LEARNING AND INFORMATION.  
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1.A* and D* Algorithms 

A*  algorithm  is  simply  define  as  a  best  first  search  plus specific  function.  

This specific function represents the actual distance (levels) between the current 

state and the goal state and is denoted by h(n).   It evaluates nodes  by  combining 

g(n), the cost to reach the node, and h(n), the cost to get from the node to the goal: 

f(n) = g(n) + h(n). 

Since g(n) gives the path cost from the start node to node n, and h(n) is the 

estimated cost of the cheapest path from n to the goal, we have f (n) = estimated 

cost of the cheapest solution through n . 

Thus, if we are trying to find the cheapest solution, a reasonable thing to try first 

is the node with the lowest value of g(n) + h(n). It turns out that this  strategy  is 

more  than  just  reasonable:  provided  that  the  heuristic function  h(n)  satisfies  

certain  conditions, A*  search  is   both  complete and  optimal. 

 

Example: 

 

 

 

 

 

1.2 A* Algorithm Properties:- 

 

1) Admissibility 

Admissibility means that h(n) is less than or equal to the cost of the minimal 

path from n to the goal 

 

2) Consistency 

Consistency means that the difference between the heuristic of a state and the 

heuristic of its descendent is less than or equal the cost between them, and the 

heuristic of the goal equal zero. In other words, 1) h(ni)-h(nj) ≤ cost(ni,nj). 2) 

h(goal )=0. 
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3) Informedness 

For two A* heuristics h1 and h2 , if h1(n) ≤ h2(n), for all states n in the search 

space , heuristics h2 is said to be more informed than h1. 

Example: Example of A* Search Algorithm Informedness: 

Consider the problem of finding the shortest path through a maze from a starting 

point (S) to an ending point (E). Let's compare two heuristic functions to illustrate 

the concept of informedness: 

Heuristic 1: Manhattan Distance 

This heuristic estimates the remaining distance to the goal by calculating the 

straight-line distance between the current node and the goal node, ignoring 

obstacles in the maze. 

Heuristic 2: Number of Walls Left 

This heuristic estimates the remaining distance by counting the number of walls 

that need to be traversed to reach the goal. 

Informedness comparison: 

 • Heuristic 1 is less informed because it does not consider the actual maze layout, 

potentially guiding the search towards paths with more turns even if they are 

straight-line shorter. 

 • Heuristic 2 is more informed because it takes into account the actual obstacles in 

the maze, guiding the search towards paths with fewer turns, even if they might be 

slightly longer in straight-line distance. 

 

1.3 The A* Search 

The last incantation of branch and bound search is the A* search. This approach 

employs branch and bound with both estimates of remaining distance and dynamic 

programming. The A* algorithm is shown below: 

 

//A* Search  

A* Search (Root_Node, Goal)  

{ 

Create Queue Q  

Insert Root_Node into Q  



Advanced Search 2024/AI 4th class                                                                                                         lecture2 

3 
 

While (Q_Is_Not_Empty)  

{ 

G = Remove from Q Mark G visited  

If (G= goal) Return the path from Root_Node to G;  

Else Add each child node’s estimated distance to current distance. 

Insert the children of G which have not been previously visited into the Q 

Sort Q by path length  

} // end while  

Return failure  

}// end of A* function. 

  

1.4 EXAMPLE : the  3-PUZZLE to illustrate  A* search 

 

 

 

Observe that the A* search in the above example employs Manhattan distance 

as a heuristic is more informed  and  used a number of tiles out of place as a 

heuristic estimate of remaining distance. 
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2. D-Star (퐷*), short for dynamic A* is a sensor based algorithm that deals with 

dynamic obstacles by real time changing its edge’s weights. It always computes a 

shortest path from its current cell to the start cell under the assumption that cells 

with unknown blockage status are traversable. D* maintains a list of nodes which is 

used to propagate information about changes of the cost function. 

2.1 Algorithm 

The algorithm works by iteratively selecting a node from the OPEN list and 

evaluating it. D* begins by searching backwards from the goal node towards the start 

node. Each expanded node has a back pointer which refers to the next node leading 

to the target, and each node knows the exact cost to the target. 

 

Example1: D* algorithm is the dynamic A* 

A* algorithm equation: 

f(n) = g(n) + h(n) 

D* algorithm equation: 

f(n) =h(n) 

It could be propagated cost changes to its neighbors as shown in figure (1). 

N(x1,x2)=1 

N(x1,x3)=1.414 

N(x1,x4)=100000, if x4 has an obstacle and  x1 is a free cell. 

N(x1,x5)=100000.4, if x5 has an obstacle and x1 is a free cell  

The arc cost of the initial node = (0.0) Where the arc cost of vertical and horizontal 

nodes are calculated as: 

From x1 to x2 =√ (ퟎퟎ − ퟎퟎ)ퟐퟐ + (ퟎퟎ − ퟏퟏ)ퟐퟐ = 1 

From x1 to x4 = √ (ퟎퟎ − ퟏퟏ)ퟐퟐ + (ퟎퟎ − ퟎퟎ)ퟐퟐ = 1 

But the arc cost of diagonal nodes can be calculated as: 

From x1 to x3 = √ (ퟎퟎ − ퟏퟏ)ퟐퟐ + (ퟎퟎ − ퟏퟏ)ퟐퟐ =  √ퟐퟐ = 1.414 

And so on. 
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A* and D* are both pathfinding algorithms, but they have different approaches and 

applications. A* is a heuristic search algorithm that guarantees the shortest path from 

a start node to a goal node. It uses heuristics to guide the search and is suitable for 

static environments where the entire map is known in advance. D*, on the other 

hand, is an incremental search algorithm designed to efficiently update the path when 

the environment changes. It is suitable for dynamic environments where the map is 

not entirely known in advance and may change over time. For example, in a scenario 

where a robot needs to navigate through a changing environment with dynamic 

obstacles, D* would be more suitable due to its ability to adapt the path as the 

environment changes. In contrast, A* would be more appropriate for finding the 

shortest path in a known, static environment. 

 

2.3 Example: 

 

For more detailed explanation of the Trace D* search algorithm for 4x4 

environment with the given start, goal, and obstacle positions: 

- Initialization: 

 • Open List: [(1, 1), f(1, 1) = 0 (h(1, 1) = estimated distance to goal + g(1, 1) = 0)] 

 • Closed List: Empty 

Iteration 1: 

1-  Remove (1, 1) from the Open List (current cell). 

2-  Expand (1, 1): 

 ◦ Up: (2, 1), tentative g(2, 1) = 1, h(2, 1) = 3, f(2, 1) = 4. 

 ◦ Right: (1, 2), tentative g(1, 2) = 1, h(1, 2) = 2, f(1, 2) = 3. 

 ◦ Down: (2, 2) (ignoring for now due to obstacle at (2, 3)). 

 3 Add (2, 1) and (1, 2) to the Open List. 

 4 Closed List remains empty. 

Iteration 2: 
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 1- Remove (1, 2) from the Open List (current cell). 

 2- Expand (1, 2): 

 ◦ Up: (2, 2) (ignoring for now due to obstacle at (2, 3)). 

 ◦ Right: (1, 3), tentative g(1, 3) = 2, h(1, 3) = 1, f(1, 3) = 3. 

 ◦ Down: (2, 3) (ignoring due to obstacle). 

3- Add (1, 3) to the Open List. 

4-  Closed List: [(1, 2), f(1, 2) = 3]. 

Iteration 3: 

 1 -Remove (2, 1) from the Open List (current cell). 

 2 - Expand (2, 1): 

 ◦ Right: (2, 2) (already in Closed List with f(2, 2) = 4, tentative g(2, 2) = 2 is 

better, update to f(2, 2) = 3). 

 ◦ Down: (3, 1), tentative g(3, 1) = 2, h(3, 1) = 3, f(3, 1) = 5. 

 3-  Update (2, 2) in Closed List and add (3, 1) to the Open List. 

 4- Closed List: [(1, 2), f(1, 2) = 3], [(2, 2), f(2, 2) = 3]. 

Iteration 4: 1 Remove (1, 3) from the Open List (current cell). 

 2- Expand (1, 3): 

 ◦ Up: (2, 3) (ignoring due to obstacle). 

 ◦ Right: (1, 4), goal reached! f(1, 4) = 3 (g(1, 4) = 3, h(1, 4) = 0). 

 3- Stop searching, goal found. 

Trace back the path: 

 • (1, 4) -> (1, 3) -> (1, 2) -> (1, 1) (following back pointers in the Closed List). 

Note: This is just one possible path, and the order of cell expansions may differ 

depending on tie-breaking rules and how you handle the obstacle. The key 

takeaway is the incremental nature of Trace D*, where the search continuously 

updates based on new information and changes in the environment. 

 

Reference: 

1) Stephen Lucci and Danny Kopec. ARTIFICIAL INTELLIGENCE IN THE 21ST 

CENTURY: A Living Introduction 2/E . Copyright ©2016 by MERCURY LEARNING 

AND INFORMATION.  

2) Path Planning Algorithm using D* Heuristic Method Based on PSO in Dynamic 

Environment Firas A. Raheema*, Umniah I. Hameedb, American Scientific Research 

Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 49, No  1, 

pp 257-271 

 

3) https://dibyendu-biswas.medium.com/d-d-lite-lpa-e7483779a7ca 
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1 .Advanced Intelligent Search 

Search is an essential component of any intelligent system. “Informed Search,” 

demonstrated the ways heuristics enable you to search through the most auspicious 

portions of search trees. The inspiration for these heuristics derives from our insights 

into a problem, for example: How many tiles must be moved to solve an instance of 

the 8-Puzzle? Inspiration  will be provided by natural systems both living and 

nonliving.  This insight that the physical properties of a substance depend not only 

on its composition but also upon the arrangement of its molecules, and that this 

arrangement can be modified is the impetus behind annealing. Inside a computer 

program we can perform “artificial evolution.” Genetic Algorithms form. All wish 

to possess software that (magically) writes itself to solve the problems we are 

confronted with? 

 

1.1 Common Concepts  
 Optimization: occurs in the minimization of time, cost, and risk or the 

maximization of profit, quality, and efficiency. For instance, there are many 

possible ways to design a network to optimize the cost and the quality of 

service; there are many ways to schedule a production to optimize the time; 

there are many ways to predict a 3D structure of a protein to optimize the 

potential energy, and so on. 

 optimization problems :A large number of real-life optimization problems 

in science, engineering, economics, and business are complex and difficult to 

solve. They cannot be solved in an exact manner within a reasonable amount 

of time. Using approximate algorithms is the main alternative to solve this 

class of problems. 

 Approximate algorithms : 

Approximate algorithms can further be decomposed into two classes: specific 

heuristics and metaheuristics. Specific heuristics are problem dependent; they 

are designed and applicable to a particular problem.   

 Metaheuristics :Metaheuristics solve instances of problems that are believed 

to be hard in general, by exploring the usually large solution search space of 

these instances. These algorithms achieve this by reducing the effective size 

of the space and by exploring that space efficiently. Metaheuristics serve three 

main purposes: solving problems faster, solving large problems, and obtaining 

robust algorithms. Moreover, they are simple to design and implement, and 

are very flexible. 
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 heuristic :The word heuristic has its origin in the old Greek word heuriskein, 

which means the art of discovering new strategies (rules) to solve problems. 

The suffix meta, also a Greek word, means “upper level methodology.”  

 

 Metaheuristic: The term metaheuristic was introduced  by F. Glover in the 

paper. Metaheuristic search methods can be defined as upper level general 

methodologies (templates) that can be used as guiding strategies in designing 

underlying heuristics to solve specific optimization problems. 

 

 

2. OPTIMIZATION MODELS 

As scientists, engineers, and managers, we always have to take decisions. Decision 

making is everywhere. As the world becomes more and more complex and 

competitive, decision making must be tackled in a rational and optimal way. 

Decision making consists in the following steps (Fig. 1.1):  

 
• Formulate the problem: In this first step, a decision problem is identified. Then, 

an initial statement of the problem is made. This formulation may be imprecise. 

The internal and external factors and the objective(s) of the problem are outlined. 

Many decision makers may be involved in formulating the problem. 

 

• Model the problem: In this important step, an abstract mathematical model is built 

for the problem.   

 

• Optimize the problem: Once the problem is modeled, the solving procedure 

generates a “good” solution for the problem. The solution may be optimal or 

suboptimal. The algorithm designer can reuse state-of-the-art algorithms on similar 

problems or integrate the knowledge of this specific application into the algorithm.  
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• Implement a solution: The obtained solution is tested practically by the decision 

maker and is implemented if it is “acceptable.” . If the solution is unacceptable, the 

model and/or the optimization algorithm has to be improved and the decision- 

making process is repeated. 

 

 

 exploration and exploitation 

metaheuristics allow to tackle large-size problem instances by delivering satisfactory 

solutions in a reasonable time.  

There is no guarantee to find global optimal solutions or even bounded solutions.  

 

In designing a metaheuristic, two contradictory criteria must be taken into account: 

exploration of the search space (diversification) and exploitation of the best solutions 

found (intensification) (Fig. 1.9). Promising regions are determined by the obtained 

“good” solutions.  

In intensification, the promising regions are explored more thoroughly in the hope 

to find better solutions.  

In diversification, non explored regions must be visited to be sure that all regions of 

the search space are evenly explored and that the search is not confined to only a 

reduced number of regions. 

 

 In this design space, the extreme search algorithms in terms of the exploration (resp. 

exploitation) are random search (resp. iterative improvement local search). In 

random search, at each iteration, one generates a random solution in the search space. 

No search memory is used. In the basic steepest local search algorithm, at each 

iteration one selects the best neighboring solution that improves the current solution. 
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3. Metaheuristics methods classification 

 

Many classification criteria may be used for metaheuristics: 

 

• Nature inspired versus non nature inspired: Many metaheuristics are inspired 

by natural processes: evolutionary algorithms and artificial immune systems from 

biology; ants, bees colonies, and particle swarm optimization from swarm 

intelligence into different species (social sciences); and simulated annealing from 

physics. 

• Memory usage versus memoryless methods: Some metaheuristic algorithms 

are memoryless; that is, no information extracted dynamically is used during the 

search. Some representatives of this class are local search, GRASP, and simulated 

annealing. While other metaheuristics use a memory that contains some information 

extracted online during the search. For instance, short-term and long-term memories 

in tabu search.  

• Deterministic versus stochastic: A deterministic metaheuristic solves an 

optimization problem by making deterministic decisions (e.g., local search, tabu 

search). In stochastic metaheuristics, some random rules are applied during the 

search (e.g., simulated annealing, evolutionary algorithms). In deterministic 

algorithms, using the same initial solution will lead to the same final solution, 

whereas in stochastic metaheuristics, different final solutions may be obtained from 

the same initial solution. This characteristic must be taken into account in the 

performance evaluation of metaheuristic algorithms. 

 

• Population-based search versus single-solution based search: Single-solution 

based algorithms (e.g., local search, simulated annealing) manipulate and transform 

a single solution during the search while in population-based algorithms (e.g., 

particle swarm, evolutionary algorithms) a whole population of solutions is evolved. 

These two families have complementary characteristics: single-solution based 

metaheuristics are exploitation oriented; they have the power to intensify the search 

in local regions. Population-based metaheuristics are exploration oriented; they 

allow a better diversification in the whole search space.  

• Iterative versus greedy: In iterative algorithms, we start with a complete solution 

(or population of solutions) and transform it at each iteration using some search 

operators. Greedy algorithms start from an empty solution, and at each step a 

decision variable of the problem is assigned until a complete solution is obtained. 

Most of the metaheuristics are iterative algorithms. 
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4. Main Common  Concepts for  Metaheuristics  

There are two common design questions related to all iterative metaheuristics: the 

representation of solutions handled by algorithms and the definition of the objective 

function that will guide the search. 

 

1) Representation 

Designing any iterative metaheuristic needs an encoding (representation) of a 

solution. It is a fundamental design question in the development of metaheuristics. 

The encoding plays a major role in the efficiency and effectiveness of any 

metaheuristic and constitutes an essential step in designing a metaheuristic. The 

encoding must be suitable and relevant to the tackled optimization problem. 

Moreover, the efficiency of a representation is also related to the search operators 

applied on this representation (neighborhood, recombination, etc.). In fact, when 

defining a representation, one has to bear in mind how the solution will be evaluated 

and how the search operators will operate. 

Many alternative representations may exist for a given problem. A representation 

must have the following characteristics: 

  

Many straightforward encodings may be applied for some traditional families of 

optimization problems (Fig. 1.16). There are some classical representations that 
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2)  Objective Function 

The objective function formulates the goal to achieve. It associates with each 

solution of the search space a real value that describes the quality or the fitness of 

the solution, f : S → R. Then, it represents an absolute value and allows a complete 

ordering of all solutions of the search space.  

The objective function is an important element in designing a metaheuristic. It will 

guide the search toward “good” solutions of the search space. If the objective 

function is improperly defined, it can lead to nonacceptable solutions whatever 

metaheuristic is used. 

 

 

3) Constraint handling: 

 Dealing with constraints in optimization problems is another important aspect of the 

efficient design of metaheuristics. Indeed, many continuous and discrete 

optimization problems are constrained, and it is not trivial to deal with those 

constraints. Most of the constraint handling strategies act on the representation of 

solutions or the objective function (e.g., reject, penalizing, repairing, decoding, and 

preserving strategies). 

 

Example :Encoding  

Let us consider an encoding for real numbers based on binary vectors. Let us 

consider two consecutive integers, 15 and 16. Their binary representation is, 

respectively, 01111 and 10000.   

 

Example objective function: 

given a function F of the propositional calculus in a conjunctive normal form (CNF). 

The function F is composed of m clauses Ci of k Boolean variables, where each 

clause Ci is a disjunction. The objective of the problem is to find an assignment of 

the k Boolean variables such as the value of the function F is true. Hence, all clauses 

must be satisfied. 

 
A solution for the problem may be represented by a vector of k binary variables. 

A straightforward objective function is to use the original F function: 

f ={0  if  is F false 

       1 otherwise  

 

If one considers the two solutions  
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s1 = (1, 0, 1, 1) and 

s2 = (1, 1, 1, 1), they will have the same objective function, that is, the 0 value, given 

that the function F is equal to false. The drawback of this objective function is that 

it has a poor differentiation between solutions.  

 

A more interesting objective function to solve the problem will be to count the 

number of satisfied clauses. Hence, the objective will be to maximize the number of 

satisfied clauses. This function is better in terms of guiding the search toward the 

optimal solution.  

In this case, the solution s1 (resp. s2) will have a value of 5 (resp. 6). 

  

 

 

Reference: 

Talbi, El-Ghazali, “ Metaheuristics : from design to implementation “, Copyright 

©2009 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc., 

Hoboken, New Jersey Published simultaneously in Canada. 

 



Advanced Search 2024/AI 4th class                                                                                                         lecture 4 

1 
 

1.Single Solution Metaheuristics 

While solving optimization problems, single-solution based metaheuristics (S-

metaheuristics) improve a single solution. They could be viewed as “walks” through 

neighborhoods or search trajectories through the search space of the problem at 

hand. The walks (or trajectories) are performed by iterative procedures that move 

from the current solution to another one in the search space. S-metaheuristics show 

their efficiency in tackling various optimization problems in different domains. 

 

 

1.1   Common Concepts 

 

S-metaheuristics iteratively apply the generation and replacement procedures from 

the current single solution.  

 

generation phase, a set of candidate solutions are generated from the current solution 

s. This set C(s) is generally obtained by local transformations of the solution. 

 

replacement phase, a selection is performed from the candidate solution set C(s) to 

replace the current solution; that is, a solution s′ ∈ C(s) is selected to be the new 

solution. This process iterates until a given stopping criteria. 

 

The generation and the replacement phases may be memoryless. In this case, the two 

procedures are based only on the current solution. Otherwise, some history of the 

search stored in a memory can be used in the generation of the candidate list of 

solutions and the selection of the new solution. Algorithm 2.1 illustrates the high-

level template of S-metaheuristics.  
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a) Initial Solution 

Two main strategies are used to generate the initial solution: 

 a random approach and 

 a greedy approach. 

  

Generating a random initial solution is a quick operation, but the metaheuristic may 

take much larger number of iterations to converge. To speed up the search, a greedy 

heuristic may be used. Indeed, in most of the cases, greedy algorithms have a reduced 

polynomial-time complexity.  

Using greedy heuristics often leads to better quality local optima. Hence, the S-

metaheuristic will require, in general, less iterations to converge toward a local 

optimum. Some approximation greedy algorithms may also be used to obtain a 

bound guarantee for the final solution. However, it does not mean that using better 

solutions as initial solutions will always lead to better local optima. 

 

b) Incremental Evaluation of the Neighborhood 

 A naive exploration of the neighborhood of a solution s is a complete evaluation of 

the objective function for every candidate neighbor s′ of N(s). 

A more efficient way to evaluate the set of candidates is the evaluation ∆(s, m) of 

the objective function when it is possible to compute, where s is the current solution 

and m is the applied move.  

This is an important issue in terms of efficiency and must be taken into account in 

the design of an S-metaheuristic. It consists in evaluating only the transformation ∆ 

(s, m) applied to a solution s rather than the complete evaluation of the neighbor 

solution f (s′) = f (s ⊕ m). The definition of such an incremental evaluation and its 

complexity depends on the neighborhood used over the target optimization problem. 

It is a straightforward task for some problems and neighborhoods but may be very 

difficult for other problems and/or neighborhood structures. 

 

c) Fitness Landscape Analysis 

The main point of interest in the domain of optimization must not be the design of 

the best algorithm for all optimization problems but the search for the most adapted 

algorithm to a given class of problems and/or instances. No metaheuristic can be 

uniformly better than any other metaheuristic. The question of superiority of a given 

algorithm has a sense only in solving a given class of problems and/or instances. 

  

Definition Search space. The search space is defined by a directed graph G = (S, 

E), where the set of vertices S corresponds to the solutions of the problem that are 

defined by the representation (encoding) used to solve the problem, and the set of 
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edges E corresponds to the move operators used to generate new solutions 

(neighborhood in S-metaheuristics). 

 

Definition Fitness landscape. The fitness landscape may be defined by the tuple (G, 

f ), where the graph G represents the search space and f represents the objective 

function that guides the search. 

 

d) stopping criteria may be used: time to obtain a given target solution, time to 

obtain a solution within a given percentage from a given solution (e.g., global 

optimal, lower bound, best known), number of iterations, and so on.  

 

2. Single solution Metaheuristic Basic Methods 

 

In addition to the representation, the objective function and constraint handling that 

are common search concepts to all metaheuristics, the common concepts for single- 

solution based metaheuristics are: 

• Initial solution: An initial solution may be specified randomly or by a given 

heuristic.  

• Neighborhood: The main concept of S-metaheuristics is the definition of the 

neighborhood. The neighborhood has an important impact on the performances of 

this class of metaheuristics. The interdependency between representation and 

neighborhood must not be neglected. The main design question in S-metaheuristics 

is the trade-off between the efficiency of the representation/neighborhood and its 

effectiveness (e.g., small versus large neighborhoods). 

• Incremental evaluation of the neighborhood: This is an important issue for the 

efficiency aspect of an S-metaheuristic. 

• Stopping criteria. 

 

Hence, most of the search components will be reused by different single- solution 

based metaheuristics (Fig. 2.43). Moreover, an incremental design and 

implementation of different S-metaheuristics can be carried out. In addition to the 

common search concepts of S-metaheuristics, the following main search 

components have to be defined for designing the following S-metaheuristics: 

• Local search: Neighbor selection strategy. 

• Tabu search: Tabu list, aspiration criteria, medium- and long-term memories. 

• Simulated annealing, threshold accepting: Annealing schedule. 

• Iterated local search: Perturbation method, acceptance criteria. 

• Variable neighborhood search: Neighborhoods for shaking and neighborhoods 

for local search. 
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Reference: 

Talbi, El-Ghazali, “ Metaheuristics : from design to implementation “, Copyright 

©2009 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc., 

Hoboken, New Jersey Published simultaneously in Canada. 
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1. Local search 
Local search is likely the oldest and simplest metaheuristic method. It starts at a 

given initial solution. At each iteration, the heuristic replaces the current solution 

by a neighbor that improves the objective function. 

The search stops when all candidate neighbors are worse than the current solution, 

meaning a local optimum is reached. 

 

A Local Search Algorithm. 

s = s0; /* Generate an initial solution s0*/ 

While not Termination Criterion Do 

Generate (N(s)); /* Generation of candidate neighbors */  

If there is no better neighbor Then Stop; 

s = s’; /* Select a better neighbor s’ e N(s) */ 

End while 

Output Final solution found (local optima). 

Selection of the Neighbor 

Many strategies can be applied in the selection of a better neighbor: 

• Best improvement (steepest descent): In this strategy, the best neighbor 

(i.e., neighbor that improves the most the cost function) is selected. The 

neighborhood is evaluated in a fully deterministic manner. Hence, the 

exploration of the neighborhood is exhaustive, and all possible moves are tried 

for a solution to select the best neighboring solution. 

• First improvement: This strategy consists in choosing the first improving 

neighbor that is better than the current solution. Then, an improving neighbor is 

immediately selected to replace the current solution. This strategy involves a 

partial evaluation of the neighborhood. 

• Random selection: In this strategy, a random selection is applied to those 

neighbors improving the current solution. 
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Local search family of algorithms for the improvement of basic local search and  

escaping from local optima. 

2 TABU SEARCH 

  

Tabu Search (TS) was developed by Fred Glover in the 1970s 23 and employs two 

types of lists: tabu lists and aspiration lists. TS also allows backward jumps; tabu 

lists are present to prevent the search from revisiting previous points in the searched 

as Figure 12.29. 

 
 

  

 solution to this problem by a 

sequence of size =four, over the alphabet ={“N,” “S,” “W,” “E”} 

where the alphabet symbols represent a move of one square in the directions: 
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N= north,  

S=south,  

W= west, or  

E= east. 

start the search with a random feasible solution , x0 = ENWS.  

 fitness function: f (xi) = 4 − Manhattan distance to the goal after the move contained 

in sample point xi is executed. 

 

TS terminology refers to this function f () as an objective function, and solutions in 

TS need not necessarily be strings; hence, we use xi rather than si. In our example, 

x0 takes the robot one square east, then one square north, then west one and south 

one, leaving it where it started, in square S. 

The objective function  f (x0) therefore equals 4 – 4 = 0. 

 

TS uses both short-term memory and long-term memory. Short-term memory is 

incorporated into the search in terms of a recency based tabu list. States in the state 

space that have been recently visited cannot be revisited for a period of time referred 

to as the tabu tenure. Actually, it is the moves m that transform one point xi into 

another xj (where xi + m = xj) that are tabulated. This strategy encourages 

exploration. Long term memory is reflected in the use of aspiration criteria.  

We mentioned earlier that one aspiration criteria is to visit x* even if forbidden by 

the tabu list, if f (x*) is superior to any previously visited point xi.  

 

 

Other aspiration criteria include the following:  

 

• Aspiration by default; if all moves are tabu, then select the oldest move.  

• Aspiration by direction favors moves that have led to improved values of f (x) in 

the past. This heuristic fosters exploitation.  

• Aspiration by influence favors moves that lead to unexplored regions of the state 

space. This heuristic favors exploration. 

 

Long-term memory also includes a frequency-based tabu list; this list monitors how 

often each move has been used since the search began. 

 

We stated that x0 = ENWS and that f (x0) = 0. We let a move correspond to the 

alteration of a single step. When selecting moves, we need to ensure that a path exists 

from x0 to an optimal solution.  
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There is no concern with this simple problem, but this latter proviso cannot be 

ignored when more realistic problems are encountered. We observe that there are 44, 

or 256, points in the state space of this problem; many of these points correspond to 

infeasible solutions (take the robot off the grid).  

 

The neighborhood of a sample point xj : N(xj), corresponds to all points reachable 

from xj via one move. More accurately, we should refer to the neighborhood of xj at 

time k or N(xj, k), because the neighborhood changes as the search progresses (and 

various tabu and aspiration criteria are modified). It is no surprise that memory usage 

can become a concern for TS on moderate to large problems. The neighborhood of 

x0 at time 0 (the search just beginning), N(x0, 0) contains 12 additional sample points 

(i.e., in addition to x0 itself). To see this, just observe that any one of the four 

directional steps can be changed to any of the three remaining directional steps. We 

comment that some of these 12 sample points are not feasible, for example, ENNS 

attempts to enter the barrier between squares F and G. Any move that is made is 

reflected in a recency-based tabu list (RTL).  

 

Initially, this list will have the following format: 

 

 

RTL(i) = j indicates that step i of a sample point was last modified at time j. Observe 

that the list is initialized to all zeroes as no moves have yet been made. 

 

Suppose that at time 1 we choose x1, which belongs to N(ENWS, 0) equal to ENWN. 

Note that f (x1) = f (ENWN) = 2 as ENWN leaves the robot in square D, which is a 

Manhattan distance of two from G. The recency-based tabu list now equals: 

 

 
 

 

The “1” in RTL (4) reflects that this step was last modified at time 1. Any move that 

takes place will remain tabu for k time units, in other words, this move cannot be 

made again until sufficient time has elapsed. This quantity k is referred to as the tabu 

tenure and must be specified. We shall let k = 3, hence step 4 cannot be modified 
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again until three time periods have elapsed, in other words, until time 4. What can 

occur if tabu tenure is set too high, say k = 4 or 5, in this example? 

At time 2, we modify x1 = ENWN to x2 = EEWN as no other move brings us closer 

to square G. 

 

We have modified the second step from N to E. Observe that EEWN also brings the 

robot to square D, hence f(x2) still equals 2. RTL appears as: 

 

 

At time 3, we observe that steps 2 and 4 cannot yet be modified (they are tabu). By 

converting step 3 from W to N we obtain x3 = EENN. Our final tabu list equals: 

 

 
 

More importantly, however, the fitness of this proposed solution, f (x3) = 4 – 0 = 4, 

and therefore the problem has been solved as EENN sends the robot to square G. It 

is difficult to construct a toy problem for TS that uses frequency-based tabu lists 

and aspiration.    

 

Algorithm tabu search 
 

1. Randomly choose an initial solution x0. // A Greedy method can also sometimes 

be used to get started.  

2. Calculate f(x0)  // Objective function.  

3. Initialize tabu list // Fill in RTL with all 0’s. 

4. Count = 0 

 5. while Count < maxcount and progress being made and ideal solution not 

found. 

6. Count = Count + 1  

7. Choose xt in N(x, t) - (tabu elements)  //  Observe that the neighborhood changes 

with time 

8. Calculate f(xt)  

9. Update the tabu list RTL 

10.  //  end while /*Output the last solution xt and indicate whether this represents 

an ideal or approximate solution. */ 
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Using the Tabu search algorithm to solve the Travelling Salesman problem 

 

 
  

Let initial trial solution = 1-2-3-4-5-6-7-1           Distance = 69   Tabu list : Blank at this point 

Iteration 1: reverse 3-4 

Delete Links: 2-3 and 4-5 Added links: 2-4 and 3-5                Tabu list : Links 2-4 and 3-5 

New trial solution: 1-2-4-3-5-6-7-1             Distance = 65 

 

Iteration 2  

Reverse 3-5-6  

Delete links: 4-3 and 6-7  

Added links: 4-5 and 3-7   

Tabu list: links 2-4, 3-5, 4-6 and 3-7  

New trial solution: 1-2-4-6-5-3-7-1            Distance = 64  

The tabu search algorithm now escapes from this local optimum by moving next to the best immediate 

neighbor of the current trial solution even though its distance is longer. Considering the limited availability 

of links between pairs of cities in figure, the current trial solution has only the two immediate neighbours 

listed below. 

Reverse 6-5-3: 1-2-4-3-5-6-7-1                       Distance = 65  

Reverse 3-7:  1-2-4-6-5-7-3-1                          Distance = 66  

Reversing 2-4-6-5-3-7 to obtain 1-7-3-5-6-4-2-1 is ruled out since it is simply the same tour in the opposite 

direction. However the of these immediate neighbours must be ruled out because it would require deleting 

links 4-6 and 3-7, which is tabu since both of these links are on the tabu list. This move could still be 

allowed if it would improve upon the best trial solution found so far but it does not. 
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The tabu search algorithm now escapes from this local optimum by moving ne be ruled out because it 

would require deleting links 4-6 and 3-7, which is tabu since both of these links are on the tabu list. This 

move could still be allowed if it would improve upon the best trial solution found so far but it does not. 

Ruling out this immediate neighbor does not allow cycling back to the preceding trial solution. Therefore 

by default, the second of these immediate neighbours is chosen to be the next trial solution as summarized 

below. 

 

teration 3  

Reverse 3-7  

Delete links: 5-3 and 7-1  

Add links: 5-7 and 3-1  

Tabu List: 4-5, 3-7, 5-7 and 3-1  

New trial solution: 1-2-4-6-5-7-3-1          Distance = 66   

 

 

The new trial solution has the four immediate neighbours listed below. 

Reverse 2-4-6-5-6: 1-7-5-6-4-2-3-1                       Distance = 65  

Reverse 6-5: 1-2-4-5-6-7-3-1                                  Distance = 69  

Reverse 5-7: 1-2-4-6-5-7-3-1                                  Distance = 63  

Reverse 7-3: 1-2-4-6-5-3-7-1                                  Distance  

  

Both of the deleted links 4-6 and 5-7 are on the tabu list. The second of these immediate neighbours is 

therefore tabu. The fourth immediate neighbor is also tabu.Thus, there are only two options, the first and 

the third immediate neighbours. The third immediate neighbor is chosen since it has shorter distance. 

Iteration 4  

Reverse 5-7 

Delete links: 6-5 and 7-3 Add links: 6-7 and 5-3  

Tabu list: 5-7, 3-1, 6-7 and 5-3 

(4-6 and 3-7 are now deleted from the list)  

New trial solution: 1-2-4-6-7-5-3-1            Distance = 63 

 

The only immediate neighbor of the current trial solution would require deleting links 6-7 and 5-3, both of 

which are on the tabu list so cycling back to  the preceding trial solution is prevented. Since no other 

immediate neighbours are available, the stopping rule terminates the algorithm at this point with 1-2-4-6-7-

5-3-1 as the final solution with Distance = 63. 
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Example: 

 

 

3. SIMULATED ANNEALING 

Simulated annealing (SA) capitalizes on the analogy between the energy level of 

the molecules within a physical substance and a search algorithm in which some 

objective function is to be optimized. 

 

In metallurgy, metals are often subjected to molecular realignment in a process 

known as annealing. The molecules in a metal are arranged in a local energy 

minimum. In order to rearrange these molecules at a lower energy, it is first 

necessary to heat the metal until it liquefies. The molten metal is then slowly cooled 

until it solidifies; annealed metals exhibit many desirable properties, for instance, 

they are stronger and often more pliable. 

 

 

 
 

 

There are two components to any search algorithm: exploitation and exploration.  

 

Exploitation employs the maxim that good solutions are likely to lie close to one 

another. Once a good solution is found, you examine its neighbors to determine if a 

better solution is present.  
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Exploration, on the other hand, relies upon the adage, “Nothing ventured, nothing 

gained”; in other words, better solutions can lie in unexplored regions of the state 

space, so do not confine your search to one small region.  

 

An ideal search algorithm must strike the proper balance between these two 

conflicting strategies. Hill climbing makes advantageous use of exploitation to find 

x*, the local optimum in Figure 12.3. 

 

 
In this example, however, if the global maximum located at xbest is to be found, 

then some use of exploration is required as well. Consult Figure 12.4 and assume 

that x3 is the present location. 

 

  In SA there is a global temperature parameter T. At the beginning of the 

simulation, T is high; as the simulation progresses, T is lowered. The manner in 

which T is decreased is referred to as the cooling schedule. Two widely used 

methods are geometric cooling and linear cooling.  

In geometric cooling,  

 

Tnew = α * Told           with α < 1,  

whereas with linear cooling,  

Tnew = Told – α          with α > 0. 

 

Whenever f(xnew) > f(xold) SA will allow this jump. However an SA also permits 

counter intuitive or backward jumps with a probability P, which is proportional to 

  

 

                                               e-[( f(x
old

)- f(x
new

))/T] 

Observe that when T is high, jumps that result in a lower objective function will 

occur with a greater probability. Consulting Figure 12.4 once again, this means that 

a jump from x3 to x6 is more likely to occur at the beginning of the simulation, 

when T is much higher, rather than later. Hence, the early stages of SA favor 

exploration, whereas exploitation is preferred in later stages of the 
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search. Referring once again to the above equation, we observe that even though 

counterintuitive jumps are allowed, as the difference between f (xold) and f (xnew) 

increases, that is, as the new value of x becomes less and less favorable, the 

probability of going there decreases. This last observation dictates that if each of x6 

and x7 in Figure 12.4 are possible successors to x3, the probability of going to x6 is 

greater than to x7 as f (x7) is less than f (x6). Pseudocode for SA is provided in 

Figure 12.5. 
 

Algorithm simulated annealing 

1. choose x0 as initial solution// usually done randomly 

2. calculate f(x0)                     // objective function 

3. place in memory                 // solution =[x0,f(x0)] 

4. xold=x0, 

5. f(xold)=f(x0),  

6. count=0, 

7. T=T0                                   // initial temperature t0 is high,  

8. while count< maxcount and progress being made high and ideal solution not found        

// number of iteration permitted,  

9. count=count+1,  

10. choose xnew from neighborhood of xold,  

11. calculate f(xnew), 

12. if f(xnew)=f(xold) or rand[0,1]=   e-[( f(xold)- f(xnew))/T] then  xold=xnew, solution=[ xold, 

f(xold) 

13. endif, 

14. Tnew=cooling_schedule(count,Told)//geometric  or linear cooling can be adaptive. greater 

decrease if a large improvement is made,  

15. end while , 

16. print solution   // best solution so far 
 

 

 

General schema for a simulated annealing algorithm. 

a. Generate a starting solution S and set the initial  solution S * = S.  

b. Determine a starting temperature T.  

c. While not yet at equilibrium for this temperature, do the following:  

d. Choose a random neighbor S* of the current solution.  

e. Set Δ = Length(S*) = Length(S).  

f. If ≤ 0 (downhill move): 

Set S = S*. 

If Length(S) < Length(S *), set S * = S.  
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h. If length(S) < length(S*)  (uphill move): Choose a random number r uniformly 

from [0, 1 ]. If r < e -∆/T, set S = S*. 

i. End ‗‗While not yet at equilibrium‘‘ loop.  

j Lower the temperature T. k. End ‗‗While not yet frozen‘‘ loop. 

l. Return S *. 

 

 

EXAMPLE :Using the simulated annealing algorithm to solve the Travelling 

 

 

 

 

 

Taking the initial solution to be in the tour in the order :1-2-3-4-5-6-7-1 

using the parameters; 

T0 = 20             Tk+1 =aTk          a= 0.5 

 Stop when  T < 0.1 

  

First Iteration 

Assuming  x0 =1-2-3-4-5-6-7-1 

d( x0 )=d(1,2)+d(2,3)+d(3,4)+d(4,5)+d(5,6)+d(6,7)+d(7,1)=69  

 

Using the sub-tour reversal as local search to generate the new solution x1 =1-3-2-

4-5-6-7-1 

d( x1 )=d(1,3)+d(3,2)+d(2,4)+d(4,5)+d(5,6)+d(6,7)+d(7,1)=68 

d= d(x1) - d(x0) =68-69=-1  

Since d< 0, set x0 = x1 

Updating the temperature T1 =aT0 =0.5(20)=10 

 

Second Iteration d( x0 )=68 
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By the sub-tour reversal as local search to generate the new solution 1-2-3-5-4-6-7-

1 

x1 =1-2-3-5-4-6-7-1 

d( x1 )=d(1,2)+d(2,3)+d(3,5)+d(5,4)+d(4,6)+d(6,7)+d(7,1)=65 

∆= d(x1) - d(x0) =65-68=-3 Since ∆< 0, set x0 = x1 

 Updating the temperature , T2 =0.5(10)=5 

 

Third Iteration d( x0 )=65 

Using the sub-tour reversal as local search to generate the new solution 1-2-3-4-6-

5-7-1 

x1 =1-2-3-4-6-5-7-1 

d( x1 )=d(1,2)+d(2,3)+d(3,4)+d(4,6)+d(6,5)+d(5,7)+d(7,1)=66 

∆= d(x1) -d(x0) =66-65=1 Since d> 0 , then apply Boltzmann‘s condition m e -∆/ T2 

= 0.81 

A random number would be generated from a computer say q 

 

If  m>q then set x0 = x1 otherwise x1 = x0 Updating the temperature,  T3 = 0.5(5) = 

2.5 

This process will continue until the final temperature and the optimal solution are 

obtained. 
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4.Threshold Accepting (TA) TA escapes from local optima by accepting solutions 

that are not worse than the current solution by more than a given threshold Q. 

The threshold parameter in TA operates somewhat like the temperature in simulated 

annealing. The threshold Q is updated following any annealing schedule. 

The below Algorithm describes the template of the TA Algorithm. 

 

Threshold Accepting Algorithm  

Input: Threshold annealing.  

s = s0;                                                  /∗ Generation of the initial solution ∗/ 
Q = Qmax;                                                /∗ Starting threshold ∗/  
Repeat 

Repeat                                                      /∗ At a fixed threshold ∗/  
Generate a random neighbor s' ∈ N(s);  

DE = f (s') − f (s); If DE ≤ Q Then s = s'  /∗ Accept the neighbor solution ∗/  
Until Equilibrium condition                    /∗ e.g. a given number of iterations 

                                                                       executed at each threshold Q ∗/  
Q = g(Q);                                                /∗ Threshold update ∗/  
Until Stopping criteria satisfied             /∗ e.g. Q ≤ Qmin∗/ 
Output: Best solution found. 

 

 

5.Variable Neighborhood Search (VNS) 

The basic idea of VNS is to successively explore a set of predefined neighborhoods 

to provide a better solution. It explores either at random or 

systematically a set of neighborhoods to get different local optima and to escape 

from local optima. VNS exploits the fact that using various neighborhoods in local 

search may generate different local optima and that the global optima is a local 

optima for a given neighborhood. Indeed, different neighborhoods generate different 

landscapes. 

 

• Variable Neighborhood Descent (VND) 

The VNS algorithm is based on the variable neighborhood descent, which is a 

deterministic version of VNS. VND uses successive neighborhoods in descent to a 

local optimum. First, one has to define a set of neighborhood structures Nl (l =1, ... 

, lmax). Let N1 be the first  neighborhood to use and x the initial solution. If an 

improvement of the solution x in its current neighborhood Nl(x) is not possible, the 

neighborhood structure is changed from Nl to Nl+1. If an improvement of the current 

solution x is found, the neighborhood structure returns to the first one N1(x) to restart 

the search. The below Algorithm shows the VND algorithm. 
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Variable Neighborhood Descent Algorithm 

Input: a set of neighborhood structures Nl for l = 1, . . . , lmax. x = x0 ; /* Generate 

the initial solution */ l = 1 ; 

While l < lmax Do 

Find the best neighbor x‘ of x in Nl(x) ; 

If f (x‘) < f (x) Then x = x‘; 

Otherwise l = l + 1 ; 

Output: Best found solution. 

 

 

• General Variable Neighborhood Search 

VNS is a stochastic algorithm in which, first, a set of neighborhood structures Nk (k 

= 1, . . . , n) are defined. Then, each iteration of the algorithm is composed of three 

steps: shaking, local search, and move. At each iteration, an initial solution is 

shaked from the current neighborhood Nk. For instance, a solution x’ is generated 

randomly in the current neighborhood Nk(x). A local search procedure is applied to 

the solution x‘ to generate the solution x’’. The current solution is replaced by the 

new local optima x’’ if and only if a better solution has been found (i.e., f(x’’) < f(x)). 

The same search procedure is thus restarted from the solution x’’ in the first 

neighborhood N1. If no better solution is found (i.e., f (x’’) > f (x)), the algorithm 

moves to the next neighborhood Nk+1, randomly generates a new solution in this 

neighborhood, and attempts to improve it. Let us notice that cycling is possible (i.e., 

x’’ = x). The below Algorithm shows the VNS algorithm. 

 

Variable Neighborhood Search Algorithm 

Input: a set of neighborhood structures Nk for k = 1, . . . , kmax for shaking. a set 

of neighborhood structures Nl for l = 1, . . . , lmax for local search. 

             x = x0;                      /* Generate the initial solution */ 

Repeat 

For k=1 To kmax Do 

Shaking: pick a random solution x’ from the kth neighborhood Nk(x) of x; 

Local search by VND; 

For l=1 To lmax Do 

Find the best neighbor x’’ of x’ in Nl(x’); 

If f (x’’) < f (x’) Then x’= x’’; l=1; 

Otherwise l=l+1; 

Move or not: 

If local optimum is better than x Then x = x’’; 

Continue to search with N1 (k = 1); 

Otherwise k=k+1; 
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Until Stopping criteria 

Output: Best found solution. 

 

 

Example: 

A traveling salesman needs to visit 5 cities (A, B, C, D, E) with the shortest possible 

route and return to the starting point. Distance matrix: 

 

 

CITY A B C D E 

A - 10 15 20 25 

B 10 - 35 25 30 

C 15 35 - 30 20 

D 20 25 30 - 15 

E 25 30 20 15 - 

 

Iteration 1: 

 • Initial Tour: A-B-C-D-E (Distance: 125) 

 • Shaking: Swap B and D (Tour: A-D-C-B-E) 

 • Local Search (2-opt): No improvement (Tour remains A-D-C-B-E) 

 • Acceptance: Accepted due to initial temperature 

 • Neighbourhood Change: No change 

Iteration 2: 

 • Shaking: Swap C and E (Tour: A-D-C-E-B) 

 • Local Search (2-opt): Swaps B and C (Tour: A-D-E-C-B) 

 • Acceptance: Accepted due to improved distance (115) 

 • Neighbourhood Change: No change 

Iteration 3: 

 • Shaking: Swap A and E (Tour: E-D-C-B-A) 

 • Local Search (2-opt): No improvement (Tour remains E-D-C-B-A) 

 • Acceptance: Rejected due to worse distance 

 • Neighbourhood Change: Change to insertion neighbourhood 

Iteration 4: 

 • Insertion: Insert C after A (Tour: A-C-D-B-E) 

 • Local Search (2-opt): Swaps C and D (Tour: A-C-E-B-D) 

 • Acceptance: Accepted due to improved distance (110) 

 • Neighbourhood Change: No change 

... 

(Iterations continue with shaking, local search, acceptance, and neighbourhood 

changes depending on improvement and temperature until a stopping criterion is 
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met.) 

Final Solution: After several iterations, the algorithm might converge to a final 

solution like: A-C-E-D-B (Distance: 100). 

 

6. Greedy Randomized Adaptive Search Procedure (GRASP) 

The GRASP metaheuristic is an iterative greedy heuristic to solve an optimization 

problem. Each iteration of the GRASP algorithm contains two steps: construction 

and local search. In the construction step, a feasible solution is built using a 

randomized greedy algorithm, while in the next step a local search heuristic is 

applied from the constructed solution. The greedy algorithm must be randomized to 

be able to generate various solutions. Otherwise, the local search procedure can be 

applied only once. This schema is repeated until a given number of iterations and the 

best found solution are kept as the final result. So there is no search memory. The 

below Algorithm resumes the template for the GRASP algorithm. The seed is used 

as the initial seed for the pseudorandom number generator. 

 

Greedy Randomized Adaptive Search Procedure 

Input: Number of iterations. 

Repeat 

s = Random-Greedy(seed) ; /* apply a randomized greedy heuristic */ 

s’ = Local - Search(s) ; /* apply a local search algorithm to the solution */ 

Until Stopping criteria /* e.g. a given number of iterations */ 

Output: Best solution found. 

 

 

The main design questions for GRASP are the greedy construction and the local 

search procedures: 

• Greedy construction: at each iteration the elements that can be included in 

the partial solution are ordered in the list using the local heuristic. From this 

list, a subset is generated that represents the restricted candidate list (RCL). 

The RCL list is made of the p best elements in terms of the incremental cost, 

where the parameter p represents the maximum number of elements in the 

list. 

At each iteration, a random element is picked from the list RCL. Once an 

element is incorporated in the partial solution, the RCL list is updated. To 

update the RCL list, the incremental costs c‘(e) of the elements e composing 

the RCL list must be reevaluated. The below algorithm shows the template of 

the randomized part of the GRASP metaheuristic. 

• Local search: the solutions found by the construction procedure are not 

guaranteed to be local optima, it is beneficial to carry out a local search step 
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in which the constructed solution is improved. 

 

The Greedy Randomized Algorithm 

s = {} ; /* Initial solution (null) */ 

Evaluate the incremental costs of all candidate elements ; 

Repeat 

Build the restricted candidate list RCL ; 

/* select a random element from the list RCL */ 

ei = Random-Selection(RCL) ; 

If s U ei e F Then /* Test the feasibility of the solution */ s = s U ei ; 

Reevaluate the incremental costs of candidate elements ; 

Until Complete solution found. 
 

Example  

Iteration 1 : 

  • Start: Pick a random city (e.g., A) . 

  • Construction Phase : 

  ◦ Randomly select a subset (e.g., B, C). 

  ◦ Choose next city using cost-to-benefit ratio (e.g., C due to closer distance) . 

  ◦ Continue until all visited (A-C-D-B-E) . 

  • Local Search (2-opt): Swaps D and E (A-C-E-D-B). 

  • Adaptive Phase: Update cost-to-benefit based on current solution . 

Iteration 2 : 

  • Repeat steps above with different random starting city and selections . 

 ... 

)Iterations continue with construction, local search, and adaptation phases, updating 

the best solution found so far (. 

Final Solution: After a fixed number of iterations, the algorithm chooses the best 

solution found across all iterations (e.g., A-C-E-D-B with distance 100) . 

 

Note:  

 

This is a simplified example, and specific details like cost-to-benefit ratio calculation 

and adaptive strategies can vary depending on GRASP implementation. The actual 

trace will reflect the chosen parameters and random selections . 
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7. Smoothing Methods 

Other single based solution metaheuristics.  some existing S-metaheuristics use other 

strategies to escape from local optima. 

Search space smoothing and noisy methods are based on the transformation of the 

landscape of the problem by changing the input data associated with the problem 

altering the objective function. 

Search space smoothing consists in modifying the landscape of the target 

optimization problem. The smoothing of the landscape associated with the problem 

 

 

reduces the number of local optima and the depth of the basins of attraction without 

changing the location region of the global optimum of the original optimization 

problem (Fig. 2.33).  

 

The search space associated with the landscape remains unchanged, and only the 

objective function is modified. Once the landscape is smoothed by “hiding” some 

local optima, any S-metaheuristic (or even a P-metaheuristic) can be used in 

conjunction with the smoothing technique. 

 

The main idea of the smoothing approach is the following:  

- given a problem instance in a parameter space,  

- the approach will transform the problem into a sequence of successive 

problem instances with different associated landscapes.  

- Initially, the most simplified smoothed instance of the problem is solved. A 

local search is then applied. 

 

The probability to be trapped by a local optima is minimized. In the ideal case, there 

is only one local optimum that corresponds to the global optimum (Fig. 2.34). The 

less the number of local optima, the more efficient a S-metaheuristic.  

 

Then, a more complicated problem instance with a rougher landscape is generated. 

It takes the solution of the previously solved problem as an initial solution and 

further improves that solution. The solutions of smoothed landscapes are used to 
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guide the search in more rugged landscapes. Any S-metaheuristic can be used in 

conjunction with the smoothing operation. The last step of the approach consists in 

solving the original problem. 

 

  

The main design question concerns the smoothing operation. There are many 

strategies to smooth a landscape. The smoothing factor α is used to characterize the 

strength of a smoothing operation. Using different levels of strength will generate 

various degrees of smoothness. When α = 1, there is no smoothing operation, and 

the landscape is the same as the original one. A smoothing operation is carried out 

if α > 1. The larger the smoothing factor (α >> 1), the stronger a smoothing operation 

and more flat a landscape.  

 

 

 

 
 

 

 The original idea of the algorithm relies on the reduced complexity of solving 

smoothing instances of the original problem and the effectiveness of using 
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intermediate local optima solutions to guide the search toward increasingly complex 

instances. 

 

Algorithm Template of the smoothing algorithm. 

Input: S-metaheuristic LS, α0, Instance I.  

s = s0 ;          /∗ Generation of the initial solution ∗/ 

α = α0 ; /∗ Initialization of the smoothing factor ∗/ 

Repeat 

I = I(α) ; /∗ Smoothing operation of the instance I ∗/  

s = LS(s, I) ; /∗ Search using the instance I and the initial solution s ∗/  

α = g(α) ; /∗ Reduce the smoothing factor, e.g. α = α − 1 ∗/  

Until α < 1 /∗ Original problem ∗/  

Output: Best solution found. 

 

Example  Smoothing operation for the TSP.  

The smoothing strategy has been applied successfully to many discrete optimization 

problems . In the case of the TSP, the smoothing operation is based on the fact that 

a trivial case for the TSP is the one where all the distances between cities are equal: 

dij = d’, ∀i, j, where 

                                   d' =
( )

1/n(n − 1)∑ 푑ij   

represents the average distance over all the edges. In this case, any tour represents a 

global optimum solution, and the landscape is flat. 

 

The strength of a smoothing may be represented by the following equation: 

푑(∝) =
푑 + (푑 + 푑 )∝ 푖푓 푑 ≥ 푑

푑 − 푑 − 푑
∝

 푖푓 푑 < 푑
  

 

The main parameters of the smoothing algorithm are the appropriate choice of the 

initial value of the smoothing factor α and its controlling strategy. The larger the 

initial value of the smoothing factor α0, the more time consuming the algorithm. 
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Example simple implementation : 

  

Let’s assume: 

 • ( α0 = 5 ) 

 • ( s_0 ) is a solution vector ( [x_1, x_2, x_3] ) 

 • ( l(α) ) modifies ( I ) by a factor of ( α ) 

 • ( g(α) ) reduces ( α ) by 1 each iteration 

 • ( L(S, I) ) improves the solution ( s ) based on ( I ) 

Now, we can trace the algorithm: 

 1 Input: ( L(S, 5) ), ( I ) 

 2 Initialization: ( s = [x_1, x_2, x_3] ), ( α = 5 ) 

 3 Iteration 1: 

 ◦ ( I ) is modified by ( l(5) ) 

 ◦ ( s ) is improved to ( [x’_1, x’_2, x’_3] ) using ( L(S([x_1, x_2, x_3], I) ) 

 ◦ ( α ) is reduced to 4 

 4 Iteration 2: 

 ◦ ( I ) is modified by ( l(4) ) 

 ◦ ( s ) is improved to ( [x’‘_1, x’‘_2, x’‘_3] ) using ( L(S([x’_1, x’_2, x’_3], I) ) 

 ◦ ( α ) is reduced to 3 

 5 Continue until ( α < 1 ) 

 

After the final iteration, we would output the best solution vector ( [x^_1, x^_2, 

x^*_3] ) found during the process. 

This trace example demonstrates how the algorithm iteratively improves the solution 

by smoothing the instance and reducing the smoothing factor until the original 

problem conditions are met.    

 

8.Noisy Method 
The noisy method is another S-metaheuristic algorithm that is based on the landscape 

perturbation of the problem to solve. Instead of taking the original data into account 

directly, the NM considers that they are the outcomes of a series of fluctuating data 

converging toward the original ones.  

 

Some random noise is added to the objective function f . At each iteration of the 

search, the noise is reduced. For instance, the noise is initially randomly chosen into 

an interval [−r, +r]. The range of the interval r decreases during the search process 

until a value of 0. 

Different ways may be used to decrease the noise rate r.  
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2. Population-Based Metaheuristics (P-Metaheuristics) 

Population-based metaheuristics start from an initial population of solutions. Then, 

they iteratively apply the generation of a new population and the replacement of the 

current population. In the generation phase, a new population of solutions is created. 

In the replacement phase, a selection is carried out from the current and the new 

populations. This process iterates until a given stopping criteria. 

 The generation and the replacement phases may be memoryless. In this case, the 

two procedures are based only on the current population. Otherwise, some history 

of the search stored in a memory can be used in the generation of the new population 

and the replacement of the old population.  

 

Most of the P- metaheuristics are nature-inspired algorithms. Popular examples of 

P- metaheuristics are evolutionary algorithms, ant colony optimization, scatter 

search, particle swarm optimization, bee colony, and artificial immune systems. 

 

2.1 Evolutionary Algorithms 
Evolutionary algorithms are stochastic P-metaheuristics that have been successfully 

applied to many real and complex problems. Initially, the population is usually 

generated randomly. Every individual in the population is the encoded version of a 

tentative solution. An objective function (a fitness value) associates with every 

individual indicating its suitability to the problem. At each step, individuals are 

selected to form the parents, following the selection paradigm in which individuals 

with better fitness are selected with a higher probability. Then, selected individuals 

are reproduced using variation operators to generate new offsprings. Finally, a 

replacement scheme is applied to determine which individuals of the population will 

survive from the offsprings and the parents. This iteration represents a generation. 

This process is iterated until a stopping criteria hold. 

 

 

                              A generation in evolutionary algorithms.  
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The below Algorithm resumes the template for the an Evolutionary Algorithm. 

 
 Evolutionary Algorithm 

  Generate(P(0)) ;                      /* Initial population */ 

         t = 0 ; 

  While not Termination Criterion(P(t)) Do 

Evaluate(P(t)) ; 

P‘(t) = Selection(P(t)) ; 

P‘(t) = Reproduction(P‘(t)); Evaluate(P‘(t)) ; 

P(t + 1) = Replace(P(t), P‘(t)) ; 

t = t + 1 ; 

End While 

Output Best individual or best population found. 

 

 

Common Concepts for Evolutionary Algorithms 

■ Representation: In the EA community, the encoded solution is referred as 

chromosome while the decision variables within a solution (chromosome) are 

genes. The possible values of variables (genes) are the allele and the position 

of an element (gene) within a chromosome is named locus. 

■ Population generation: This is a common search component for all P-

metaheuristics. 

■ Fitness function: In the EA community, the term fitness refers to the objective 

function. 

■ Selection strategy: The selection strategy addresses the following question: 

“Which parents for the next generation are chosen with a bias toward better 

fitness?”. 

■ Reproduction strategy: The reproduction strategy consists in designing 

suitable mutation and crossover operator(s) to generate new individuals 

(offsprings). 

■ Replacement strategy: The new offsprings compete with old individuals for 

their place in the next generation (survival of the fittest). 

■ Stopping criteria: This is a common search component for all metaheuristics. 

Some stopping criteria are specific to P- metaheuristics. Stopping conditions 

could be: 

■ The discovery of an optimal or near optimal solution. 

■ Convergence on a single solution or set of similar solutions. 

■ After a user-specified threshold has been reached, or 

■ After a maximum number of cycles. 
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2.2 Memetic Algorithm 

The basic principle consists in incorporating a local search algorithm during an 

evolutionary algorithm search. The local search improves the fitness of the 

population so that the next generation has “better” genes from its parents. The 

following steps explain the work of the Memetic Algorithm: 

1. The population is initialized at random. Then, each individual makes local 

search to improve its fitness. 

2. To form a new population for the next generation, higher quality individuals 

are selected. Once two parents have been selected, their chromosomes are 

combined and the classical operators of crossover are applied to generate new 

individuals. 

3. The latter are enhanced using a local search techniques. 

4. The role of local search in memetic algorithms is to locate the local optimum. 

The below Algorithm resumes the template for the memetic algorithm. 

Memetic Algorithm 

Initialize population Pop 

Optimize Pop(Local search) 

Evaluate Pop 

Repeat 

Select Parents from Pop 

Recombine Parents 

Optimize Pop(Local search) 

Evaluate Pop 

Until Stopping criteria 

Output: the best solution in Pop. 

 

 
   
Reference: 

1- Ferrante Neri, Carlos Cotta (auth.), Ferrante Neri, Carlos Cotta, Pablo Moscato (eds.), 

Handbook of Memetic Algorithms, Springer-Verlag Berlin Heidelberg,2012. 

2- https://www.researchgate.net/publication/373514289_An_Efficient_Method_for_Solving_

Traveling_Salesman_Problem"  . 

http://library.lol/main/07085A1EF5CF80C33D9BC0D68E21923D
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Cultural Algorithms 

Cultural algorithms (CAs) are special variants of evolutionary algorithms. CAs have 

been introduced by R. G. Reynolds in 1994. They are computational models of 

cultural evolution based upon principles of human social evolution. They employ a 

model of cultural change within an optimization problem, where culture might be 

symbolically represented and transmitted between successive populations.  

 

The main principle behind this process is to preserve beliefs that are socially 

accepted and discard unacceptable beliefs. 

 

Cultural algorithms contain two main elements, a population space at the micro 

evolutionary level and a belief space at the macroevolutionary level (see figure ).  

 
The two elements interact by means of a Vote Inherit Promote or VIP protocol. This 

enables the individuals to alter the belief space and allows the belief space to 

influence the ways in which individuals evolve.  

 

The population space at the micro evolutionary level may be carried out by EAs. At 

each generation, the knowledge acquired by the search of the population (e.g., best 

solutions of the population) can be memorized in the belief space in many forms 

such as logic and rule-based models, schemata, graphical models, semantic 

networks, and version spaces  among others to model the macro evolutionary process 

of a cultural algorithm.  
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The belief space is divided into distinct categories that represent different domains 

of knowledge that the population has acquired on the search space:  

 

- normative knowledge (i.e., a collection of desirable value ranges for some 

decision variables of the individuals in the population),  

- domain- specific knowledge (i.e., information about the domain of the 

problem CA is applied to),  

- situational knowledge,  

- temporal knowledge (i.e., information of important events about the search), 

and  

- spatial knowledge (i.e., information about the landscape of the tackled 

optimization problem). 

 

  

Template of the cultural algorithm is: 

 

Algorithm   

Initialize the population Pop(0) ;  

Initialize the Belief BLF(0) ; t = 0 ; 

Repeat 

Evaluate population Pop(t) ;  

Adjust(BLF(t),  

Accept(POP(t))) ;  

Evolve(Pop(t+1),  

Influence(BLF(t))) ;  

t = t + 1 ;  

Until Stopping criteria 

Output: Best found solution or set of solutions. 

 

As such, cultural algorithms represent a P-metaheuristic based on hybrid 

evolutionary systems that integrate evolutionary search and symbolic reasoning. 

They are particularly useful for problems whose solutions require extensive domain 

knowledge (e.g., constrained optimization problems) and dynamic environments 

(e.g., dynamic optimization problems). 


