University of Technology
dn 5l i) Analal

Computer Science Department
Csulall o gle aud

Searching& Sorting Algorithms
il 5 Gl Sl) A

Lect. Alyaa Hasan
G elile o

Data Structure lectures- 2nd course lecturers: M.Sc. Alyaa Hasan Z.
2nd Class-Computer Science

1. Recursion A sle i)

S o plal kil Jay Aehiiinl (S Jlad

. ‘;_'i\'ﬂ\ cle iy e\qil.u_] L@_u:):\.uul\ US“‘-‘.. 4:“41_,)]\ @"A‘ e J.JJ:J\ Slla
rJle
@ylsgm\.uuﬁ&m Adxl) 1 g paa Al

Factorial of n > n'=n*(n-1)*(n-2) *(n-3)... *1

n'—{ 1 , n=20

Tl o nx(n=1) ,n>0

n=0 o) f-jei\
n>0 AN 33

Data Structure lectures- 2nd course
2nd Class-Computer Science

lecturers: M.Sc. Alyaa Hasan Z.

// Factorial of n = 1*2*3*__*n

#include <iostream>
using namespace std;
int factorial (int n)
{
If (n>1)
return n * factorial (n - 1);
else
return 1;

}

int main()

{

int n;

cout<<"Enter a number to find factorial: ";

cin >>n;

cout << "Factorial of " << n <<" =" << factorial(n);

return 0;

}

Enter a number to find factorial: 4
Factorial of 4 = 24

Data Structure lectures- 2nd course
2nd Class-Computer Science

lecturers: M.Sc. Alyaa Hasan Z.

Explanation: How this example works?

int

int

int

int

int

main() {

factorial(int num) {
if (num > 1)

return num*factorial(num-1);<.

else
return 1;

factorial(int num) {

if (num > 1) 2
return num*factorial(num-1); <

else [%]

return 1;

factorial(int num) {
if (num > 1) 1 5
return num*factorial(num-1); <
else
return 1;

factorial(int num) {
if (num > 1)

return num*factorial(num-1);
else

return 1;

4*6 = 24 is returned
to main and displayed

3*2 = 6is returned

2*1 = 21is returmned

i 1is returned

Data Structure lectures- 2nd course lecturers: M.Sc. Alyaa Hasan Z.
2nd Class-Computer Science

Suppose the user entered 4, which is passed to the factorial() function.
. In the first factorial() function, test expression inside if statement is true.
The return num*factorial(num-1); Statement is executed, which calls the

second factorial() function and argument passed is num-1which is 3.

. In the second factorial() function, test expression inside if statement is true.
The return num*factorial(num-1); Statement is executed, which calls the

third factorial() function and argument passed is num-1 which is 2.

. In the third factorial() function, test expression inside if statement is true.
The return num*factorial(num-1); statement is executed, which calls the

fourth factorial() function and argument passed is num-1 which is 1.

. In the fourth factorial() function, test expression inside if statement is false.

The return 1; Statement is executed, which returns 1 to third factorial() function.

. The third factorial() function returns 2 to the second factorial() function.

. The second factorial() function returns 6 to the first factorial() function.

. Finally, the first factorial() function returns 24 to the main() function, which is
displayed on the screen.

https://www.programiz.com/cpp-programming/if-else

Data Structure lectures- 2nd course lecturers: M.Sc. Alyaa Hasan Z.
2nd Class-Computer Science

Examples:
1. How to find the power of X™?

Xm:{ 1 , m=0

int power (int x, int m)

{
if (m==0)
return 1;

else
return x * power(x, (m-1));

2. The Fibonacci Sequence is the series of numbers:
0,112, 3,5,8, 13, 21, 34, ...

L 2ae (gl o0 b 0)5l Madl) by) alle) At il g lae] 50 5 Al cclpuialy Hl1
1= Aamlly 0= Js¥ ol e bl aoall & sanal b glue o 5S)

Fn = Fn-[+Ez-2

Fy=1:F; =0

Example: the 8th term is
the 7th term plus the 6th term:

Fs = F7 + F6

https://ar.wikipedia.org/wiki/%D9%84%D9%8A%D9%88%D9%86%D8%A7%D8%B1%D8%AF%D9%88_%D9%81%D9%8A%D8%A8%D9%88%D9%86%D8%A7%D8%AA%D8%B4%D9%8A
https://ar.wikipedia.org/wiki/%D9%84%D9%8A%D9%88%D9%86%D8%A7%D8%B1%D8%AF%D9%88_%D9%81%D9%8A%D8%A8%D9%88%D9%86%D8%A7%D8%AA%D8%B4%D9%8A
https://ar.wikipedia.org/wiki/%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA
https://ar.wikipedia.org/wiki/%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA

Data Structure lectures- 2nd course
2nd Class-Computer Science

lecturers: M.Sc. Alyaa Hasan Z.

int fib(int n)
{
if (n <= 1)
return (n);

return fib(n-1) + fib(n-2);

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

1.1 Introduction to Graph

Graph is a nonlinear data structure, it contains a set of points known as nodes (or
vertices) and set of links known as edges (or Arcs) which connects the vertices.

A graph is defined as follows:
Graph is a collection of vertices and arcs which connects vertices in the graph.
Graph is a collection of nodes and edges which connects nodes in the graph.

Generally, a graph G is represented as G = (V, E), where V is set of vertices and E
is set of edges.

Example
The following is a graph with 5 vertices and 6 edges.
This graph G can be definedasG=(V,E)

Where V = {A,B,C,D,E} and E = {(A,B),(A,C)(A,D),(B,D),(C,D),(B,E),(D, E)}.

/\/ @ @ L/“ Edge
Vertices @

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

1.1.1 Graph Terminology
We use the following terms in graph data structure...

Vertex: A individual data element of a graph is called as Vertex. Vertex is also
known as node. In above example graph, A, B, C, D & E are known as vertices.

Edge: An edge is a connecting link between two vertices. Edge is also known as
Arc. An edge is represented as (startingVertex, endingVertex). For example, in
above graph, the link between vertices A and B is represented as (A,B). In above
example graph, there are 7 edges (i.e., (A,B), (A,C), (A,D), (B,D), (B,E), (C,D),
(D,E)).

Undirected Graph: A graph with only undirected edges is said to be undirected
graph as in the above.

Directed Graph: A graph with only directed edges is said to be directed graph
as in the figure below:

Connected graph: A graph G is called connected if every two of its vertices are
connected.

Disconnected graph: A graph that is called not connected if some of its vertices
is disconnected.

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

1.2 Trees

A tree data structure can be defined as follows...

A connected acyclic graph is called a tree. In other words, tree is a connected
graph with no cycles.

In a tree data structure, if we have N number of nodes then we can have a
maximum of N-1 number of links.

Example

TREE with 11 nodes and 10 edges

- In any tree with ‘N’ nodes there
will be maximum of ‘N-1’ edges

- In a tree every individual
element is called as ‘NODFE’

In a tree data structure, we use the following terminology...

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

1. Root : In a tree data structure, the first node is called as Root Node. Every
tree must have root node. We can say that root node is the origin of tree data
structure. In any tree, there must be only one root node.

®

Here ‘A’ is the ‘root’ node

- In any tree the first node is
called as ROOT node

2. Edge: In a tree data structure, the connecting link between any two nodes is
called as EDGE. In a tree with 'N' number of nodes there will be a maximum of 'N-
1' number of edges.

- In any tree, ‘Edge’ is a connecting
link between two nodes.

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

3. Parent: In a tree data structure, the node which is predecessor of any node is
called as PARENT NODE. In simple words, the node which has branch from it to
any other node is called as parent node. Parent node can also be defined as "The
node which has child / children".

@\ Here A, B, C, E & G are Parent nodes

® ©,

4. Child: In a tree data structure, the node which is descendant of any node is
called as CHILD Node. In simple words, the node which has a link from its parent
node is called as child node. In a tree, any parent node can have any number of
child nodes. In a tree, all the nodes except root are child nodes.

Here B & C are Children of A
Here G & H are Children of C

Here K is Child of G

- descendant of any node is called
as CHILD Node

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

5. Siblings: In a tree data structure, nodes which belong to same Parent are
called as SIBLINGS. In simple words, the nodes with same parent are called as
Sibling nodes.

Here & & C are Siblings
Here D E & F are Siblings
Here - © ' are Siblings
Here | . | are Siblings

- In any tree the nodes which has
same Parent are called ‘Siblings’

- The children of a Parent are
called ‘Siblings’

6. Leaf: In a tree data structure, the node which does not have a child is called
as LEAF Node. In simple words, a leaf is a node with no child.
leaf node is also called as 'Terminal’ node.

HereD, |,), F, K & H are Leaf nodes

- In any tree the node which does
not have children is called ‘Leaf’

@ ® ® - A node without successors is
called a ‘leaf’ node

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

7. Degree: In a tree data structure, the total number of children of a node is
called as DEGREE of that Node. In simple words, the Degree of a node is total
number of children it has. The highest degree of a node among all the nodes in a
tree is called as 'Degree of Tree'

0 Here Degree of Bis 3
Here Degree of Ais 2

0 0 Here Degree of Fis 0

- In any tree, ‘Degree’ a node is total

0 G o @ 0 number of children it has.
OO ®

8. Level: In a tree data structure, the root node is said to be at Level 0 and the
children of root node are at Level 1 and the children of the nodes which are at
Level 1 will be at Level 2 and so on... In simple words, in a tree each step from top
to bottom is called as a Level and the Level count starts with '0' and incremented
by one at each level (Step).

3 Level 0

(B) (0 Level 1
ONGEGEOCEN(G Level 2
D 0 ® Level 3

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

9. Height: In a tree data structure, the total number of edges from leaf node to a
particular node in the longest path is called as HEIGHT of that Node. In a tree,
height of the root node is said to be height of the tree. In a tree, height of all

leaf nodes is '0'.

Here Height of tree is 3

- In any tree, ‘Height of Node’ is
total number of Edges from leaf
to that node in longest path.

- In any tree, ‘Height of Tree' is
the height of the root node.

10. Depth: In a tree data structure, the total number of edges from root node to
a particular node is called as DEPTH of that Node. In a tree, the total number of
edges from root node to a leaf node in the longest path is said to be Depth of the
tree. In simple words, the highest depth of any leaf node in a tree is said to be
depth of that tree. In a tree, depth of the root node is '0'.

Here Depth of tree is 3

- In any tree, ‘Depth of Node’ is
total number of Edges from root
to that node.

- In any tree, ‘Depth of Tree’ is
total number of edges from root
to leaf in the longest path.

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

11. Path: In a tree data structure, the sequence of Nodes and Edges from one
node to another node is called as PATH between that two Nodes. Length of a
Path is total number of nodes in that path. In below example the path A-B-E -]
has length4.

- In any tree, ‘Path’ is a sequence
of nodes and edges between two
nodes.

Here, ‘Path’ between A & J is
A-B-E-J

Here, ‘Path’ between C & K is
C-G-K

12. Sub Tree

In a tree data structure, each child from a node forms a subtree recursively.
Every child node will form a subtree on its parent node.

Subtree
Subtree

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

2.1 Binary Tree

In a normal tree, every node can have any number of children. Binary tree is a
special type of tree data structure in which every node can have a maximum of 2
children. One is known as left child and the other is known as right child.

Binary Tree: is a tree in which every node can have a maximum of two
children.

In a binary tree, every node can have either 0 children or 1 child or 2 children but
not more than 2 children.

Example
Figure 1: Figure 3:

Figure 2: Figure 4:

10

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

Example

/@\ Level 0
s N
@ Level 1
/ / N
/ / \
® OO G
® Level 3

1. The Maximum number of nodes in any level L
(Max Nodes in any level = 21)

2. The maximum number of the nodes in the binary tree (2"** — 1) where h
is the height of the tree so in the example (23*! — 1=15) and the real
number is 8.

3. The number of the leaves of the binary tree is equal to
No. of leaves= (no. of nodes which have degree 2)+1
In the above example 3+1=4.

11

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

2.2 Binary Tree Representations:

A binary tree data structure is represented using two methods. Those
methods are as follows...

1. Array Representation

2. Linked List Representation

We use double linked list to represent a binary tree. In a double linked list,
every node consists of three fields. First field for storing left child address,
second for storing actual data and third for storing right child address.

In this linked list representation, a node has the following structure...

Left Child . Right Child
Address Datd Address

The below example of binary tree represented using Linked list
representation is shown as follows...

® O
E) N
® 6@ 6

N\

ONO. ®

12

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

»

Al N
S PR
// D \\ NULL F NULL NuLL G \\NUIL H NULL
no | T o] [wen]| J o feun NULL K NULL

2.3 Binary Tree Traversals

When we wanted to display a binary tree, we need to follow some order in which
all the nodes of that binary tree must be displayed. In any binary tree displaying
order of nodes depends on the traversal method.

Displaying (or) visiting order of nodes in a binary tree is called as Binary Tree
Traversal.

There are three types of binary tree traversals.
1. Pre - Order Traversal

2.In - Order Traversal

13

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

3. Post - Order Traversal

Consider the following binary tree...

1. Pre - Order Traversal (root - left Child - right Child)

In Pre-Order traversal, the root node is visited before left child and right child
nodes. In this traversal, the root node is visited first, then its left child and later
its right child. This pre-order traversal is applicable for every root node of all
subtrees in the tree. In the above example of binary tree, first we visit root node
'A' then visit its left child 'B' which is a root for D and F. So we visit B's left child
'D' and again D is a root for [and J. So we visit D's left child 'I' which is the left
most child. So next we go for visiting D's right child 'J'. With this we have
completed root, left and right parts of node D and root, left parts of node B. Next
visit B's right child 'F'. With this we have completed root and left parts of node A.
So we go for A's right child 'C' which is a root node for G and H. After visiting C,
we go for its left child 'G' which is a root for node K. So next we visit left of G, but
it does not have left child so we go for G's right child 'K'. With this we have
completed node C's root and left parts. Next visit C's right child '"H' which is the
right most child in the tree. So we stop the process.

14

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

Pre-Order Traversal for above example binary tree is
A-B-D-1-J-F-C-G-K-H

2.In - Order Traversal (left Child - root - right Child)

In In-Order traversal, the root node is visited between left child and right child.
In this traversal, the left child node is visited first, then the root node is visited
and later we go for visiting right child node. This in-order traversal is applicable
for every root node of all subtrees in the tree. This is performed recursively for
all nodes in the tree.In the above example of binary tree, first we try to visit left
child of root node 'A’, but A's left child is a root node for left subtree. so we try to
visit its (B's) left child 'D' and again D is a root for subtree with nodes I and J. So
we try to visit its left child 'I' and it is the left most child. So first we visit 'I' then
go for its root node 'D' and later we visit D's right child ']'. With this we have
completed the left part of node B. Then visit 'B' and next B's right child 'F' is
visited. With this we have completed left part of node A. Then visit root node 'A’.
With this we have completed left and root parts of node A. Then we go for right
part of the node A. In right of A again there is a subtree with root C. So go for left
child of C and again it is a subtree with root G. But G does not have left part so we
visit 'G' and then visit G's right child K. With this we have completed the left part

15

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

of node C. Then visit root node 'C' and next visit C's right child '"H' which is the
right most child in the tree so we stop the process.

In-Order Traversal for above example of binary tree is

I-D-]J-B-F-A-G-K-C-H

3. Post - Order Traversal (left Child - right Child - root)

In Post-Order traversal, the root node is visited after left child and right child. In
this traversal, left child node is visited first, then its right child and then its root
node. This is recursively performed until the right most node is visited.

Post-Order Traversal for above example binary tree is
I-]-D-F-B-K-G-H-C-A

16

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

2.4 The functions of the Binary tree

As we mentioned before that, the structure of the tree consists of subtrees so,
that means the part looks like the all, so here we can make use of the
recursion to represent the functions of the tree.

1. In - Order Traversal 2. Pre - Order Traversal

void inorder(nodeptr t) void preorder (nodeptr& t)

{ if(t!=0) { if(t!=0)
{ {

inorder(t->1); cout<<t->info<<'’;

cout<<t->info<<'"; preorder(t->1);

inorder(t->r); preorder(t->r);

3. Post - Order Traversal

void postorder(nodeptr t)
{ if(t!'=0)
{
postorder(t->1);
postorder(t->r);

cout<<t->info<<'’;

17

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

3.1 Binary Search Tree

Binary Search Tree is a binary tree in which every node contains only smaller
values in its left subtree and only larger values in its right subtree.

Contains only Contains only
smaller values larger values

All values <= K All values > K

Note: Every Binary Search Tree is a binary tree but NOT all the Binary Trees are
binary search trees.

Example:

The following tree is a Binary Search Tree. In this tree, left subtree of every node
contains nodes with smaller values and right subtree of every node contains

18

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

larger values

3.2 Insertion to BST
Example: Draw the BST for the following elements:
59,7,3,8,12,6,20

1- Take (5) as aroot.
2- Take (9) as aright child because it is greater than the root.

5

AN

9

3- The next element (7) is greater than the root so we choose the right branch
since it less than 9 so it will be the left child of 9.

9

/

7
4- Take 3 which itless than 5 putitin the left side.

19

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

3/5\9
%

7

Continue in the same way take the new element and compare it with the tree
started from the root, then we will get the final tree as below :

5

Example: draw the BST for those elements.
NOTE: the ascii code for A=65.

D,B,F,ACEG

S P

20

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

& 0 & e

G oc
- 65 -
=

o Q@
D OGO O

Home work: Draw the BST for those elements.

1.B,A,D,C,G,F,E
2.A,B,C,D,EF, G

3.3 Deletion Operation in BST

Deleting a node from Binary search tree has following three cases...

21

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

Case 1: Deleting a Leaf node (A node with no children)
Case 2: Deleting a node with one child
Case 3: Deleting a node with two children

Case 1: Deleting a leaf node

Step 1: Find the node to be deleted.
Step 2: Delete the node and make the father node point to null.

10 10

4 15 :> 4 15
@ E i 38 6 13 18

Case 2: Deleting a node with one child:

Step 1: Find the node to be deleted.
Step 2: Create a link between its parent and child node.

10 10

6 15 :> 6 15
® . z :

Case 3: Deleting a node with two children

Step 1: Find the node to be deleted.
Step 2: find the max node in its left subtree, OR the min node in its right subtree.

Example: Delete node 6

22

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

15

\19 ——- /@(15 \19
™ 3 9 ™
VRN

3%)} / 9 \ /25 /25

7 11 22 7 11 22

OR
15 15
19 19
AN AN N
3 9 25 3\ 9\ 25
\5 @5 \11 22/ 5 11 22
Exercise:

Delete the node 15.

23

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

Declaration of Tree by using linked list

struct node Node
{
int info; [Ellise | 22
struct node *1,*r; : i
}s
typedef struct node *nodeptr;
void creat(nodeptr& t)
¢ Creat the BST
char ch;
(" if(t==0) N
{
t=new node(); saie Jg 4 Ade
cin>>t->info; () 5l Ji
t->1=0;

t->r=0;
. y,

cout<<"Do you want to add from left ("<<t->info<<") (Y,N):"; Sf:J\%;u;
cin>>ch; £ M
if(ch=="y")

creat(t->1);

(cout<<"Do you want to add from right ("<<t->info<<") (Y,N):"; Sake Al dlas
cin>>ch; e A A
if(ch=="y")

. creat(t->r);

24

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

Printing the tree by using of the following:

1. In - Order Traversal 2. Pre - Order Traversal

void inorder(nodeptr t) void preorder (nodeptr& t)

{ if(t!=0) { if(t!=0)
{ {
inorder(t->1); cout<<t->info<<'’;
cout<<t->info<<'"; preorder(t->1);
inorder(t->r); preorder(t->r);
} }
} }

3. Post - Order Traversal
void postorder(nodeptr t)
{ if(t!=0)
{
postorder(t->1);
postorder(t->r);

cout<<t->info<<'";

25

Data Structure lectures- 2nd course Lecturer: M.Sc. ALYAA HASAN

2nd Class - Computer Science

26

Data Structure lectures- 2nd course lecturers: M.Sc. Alyaa Hasan Z.
2nd Class-Computer Science

4. Sorting and Searching Algorithms <l s Gl @byl sa
4.1 What is an algorithm?

In normal language, the algorithm is defined as a sequence of statements
which are used to perform a task. In computer science, an algorithm can be
defined as follows...

An algorithm is a sequence of unambiguous instructions used for solving a
problem, which can be implemented (as a program) on a computer.

Algorithms are used to convert the problem solution into step by step
statements. These statements can be converted into computer programming
instructions which form a program. This program is executed by a computer to
produce a solution. Here, the program takes required data as input, processes
data according to the program instructions and finally produces a result as
shown in the following figure.

Problem

!

Algorithm

Input Program Output

Specifications of Algorithms

Every algorithm must satisfy the following specifications...

1.

Input - Every algorithm must take zero or more number of input values
from external.

Output - Every algorithm must produce an output as result.
Definiteness - Every statement/instruction in an algorithm must be
clear and unambiguous (only one interpretation).

Finiteness - For all different cases, the algorithm must produce result
within a finite number of steps.

Effectiveness - Every instruction must be basic enough to be carried out
and it also must be feasible.

Data Structure lectures- 2nd course lecturers: M.Sc. Alyaa Hasan Z.
2nd Class-Computer Science

L (s Ay ¢ Lo A Jal ptied Lo pat Y A lslel (e s o a5
cplall Slen Gl (lin)

o2 sl (Say Bshdy B gha Ay & jle () AISE da el Gl) sall aladial o5,

Al Y gl Aol g el ol 138 25 25 | Bl JSIS Al dpae g Gilaglad)l)
LaS Sl Al iy el) bl yY 88 5) aellag 5 ¢ BANLS 4 gllaall cliball el) 220,
LoDl) JSall 8 i e

4.2 Sorting Algorithms: et il Cilaa) g3

Sorting is the process of arranging a list of elements in a particular order
(Ascending or Descending).

Why we need sorting?

1.To increase the efficiency of the search algorithm for an item
2.To simplify the processing of files
3.To solve the problem of similarity of data restriction

Sorting Algorithms
1. Selection sort JLiaYL s il
2. Insertion sort ALaYL A
3. Bubble sort Al (s yi
4. Quick sort el s il
5. Heap sort oS i il
6. Merge sort el i i

We will explain three algorithms

1. Bubble sort AalaaYL g il
2. Insertion sort HLAAYL s il
3. Quick sort ad) i il

Data Structure lectures- 2nd course
2nd Class-Computer Science

lecturers: M.Sc. Alyaa Hasan Z.

1. Bubble sort Ao ANy s i)

Void bubbleSort (int data [], int n)

{
int temp;
for (i = @; i<(n-1); i++) {
for (j = n-1; j< i; --j)
if(data[j] < data [j-1])

{
temp = data [j];
data [j] = data [j-1];
data[j-1] = temp;
}

2. Insertion sort algorithm

AT e

void insertionSort(int data[], int n)

for (j = 1; j>0 && key <data[j-1]; j--)

{
int i, key, 3j;
for (1 = 1; 1 < n; i++)
{
key = data[i];
data[j] = data[j-1];
data[j] = key;
¥
¥

Data Structure lectures- 2nd course lecturers: M.Sc. Alyaa Hasan Z.
2nd Class-Computer Science

3. Quick sort algorithm Bt pad) i Al
Void quickSort(int data [], int first, int last)
{
While (last > first)
{
int lower=first; int upper=1last;
int bound= data[first];
while (lower< upper)
{
While(data[upper]> bound)
Upper--;
data[lower]=data[upper];
while ((lower< upper) && (data[lower]<= bound))
lower++;
data[upper]= data[lower];
}
data[lower]= bound;
quickSort(data, first, lower-1);
first=lower+l;
}
}

Data Structure lectures- 2nd course lecturers: M.Sc. Alyaa Hasan Z.
2nd Class-Computer Science

4.3 Searching Algorithms: daanl) cilua)y 6a

Search : is a process of finding a value in a list of values. In other words,
searching is the process of locating given value position in a list of values.

The search process may be positive when the required element exists and may
be negative in case that the element is not found in the search list, the search
process is effective when the search list is arranged according to a specific
format.

Searching Algorithms

1. Sequential Search algorithm oeadeatll Giagl) A) 63

void sequentialsearch(int arr[size], int k)

{
int i, pos=-1;
for (1 = 9; 1 < (size -1); i++)
if (arr[i] == k)
pos=i;
if (pos==-1)
cout <<"the key is not found"” ;
else
cout <<"the key is found in the position " << pos;
¥

Data Structure lectures- 2nd course lecturers: M.Sc. Alyaa Hasan Z.
2nd Class-Computer Science

2. Binary Search algorithm AL) da) sa

int binarySearch(int data[]), int k, int lower, int upper)

{

int pos= -1; int mid;

if (lower <= upper)

{
mid = ((lower + upper)/2);

if k == (data[mid])
{
pos= mid;
return pos;

}

else

{
if (k<data[mid])
binarySearch(data,k,lower,mid-1);

else
binarySearch(data,k,mid+1,upper);

}

} return pos;

	كفرخوارزميات البحث (1)
	Data Structure Recursion
	Data Structure lectures graph +TREES-محاضرات الاشجار
	محاضرة خوارزميات البحث والترتيب

