University of Technology
WTTMOMKBHE wBFTF

Computer Science Department
UmhrclF amiK ahl

Python Language

AMETEAF Wi

JyBBICK pCyc pHK.a

cs.uotechnology.edu.iq

PYTHON OVERVIEW

Python is a high-level, interpreted, interactive and object-oriented scripting language. Python is
designed to be highly readable. It uses English keywords frequently where as other languages use
punctuation, and it has fewer syntactical constructions than other languages.

Python is Interpreted: Python is processed at runtime by the interpreter. You do not need
to compile your program before executing it. This is similar to PERL and PHP.

Python is Interactive: You can actually sit at a Python prompt and interact with the
interpreter directly to write your programs.

Python is Object-Oriented: Python supports Object-Oriented style or technique of
programming that encapsulates code within objects.

Python is a Beginner's Language: Python is a great language for the beginner-level
programmers and supports the development of a wide range of applications from simple text
processing to WWW browsers to games.

History of Python

Python was developed by Guido van Rossum in the late eighties and early nineties at the National
Research Institute for Mathematics and Computer Science in the Netherlands.

Python is derived from many other languages, including ABC, Modula-3, C, C++, Algol-68,
SmallTalk, and Unix shell and other scripting languages.

Python is copyrighted. Like Perl, Python source code is now available under the GNU General Public
License GPL.

Python is now maintained by a core development team at the institute, although Guido van
Rossum still holds a vital role in directing its progress.

Python Features

Python's features include:

Easy-to-learn: Python has few keywords, simple structure, and a clearly defined syntax. This
allows the student to pick up the language quickly.

Easy-to-read: Python code is more clearly defined and visible to the eyes.
Easy-to-maintain: Python's source code is fairly easy-to-maintain.

A broad standard library: Python's bulk of the library is very portable and cross-platform
compatible on UNIX, Windows, and Macintosh.

Interactive Mode:Python has support for an interactive mode which allows interactive
testing and debugging of snippets of code.

Portable: Python can run on a wide variety of hardware platforms and has the same
interface on all platforms.

Extendable: You can add low-level modules to the Python interpreter. These modules
enable programmers to add to or customize their tools to be more efficient.

Databases: Python provides interfaces to all major commercial databases.

GUI Programming: Python supports GUI applications that can be created and ported to
many system calls, libraries and windows systems, such as Windows MFC, Macintosh, and the
X Window system of Unix.

Scalable: Python provides a better structure and support for large programs than shell
scripting.

1

Apart from the above-mentioned features, Python has a big list of good features, few are listed
below:

e IT supports functional and structured programming methods as well as OOP.

e It can be used as a scripting language or can be compiled to byte-code for building large
applications.

e |t provides very high-level dynamic data types and supports dynamic type checking.

e |T supports automatic garbage collection.

Libraries for Natural Language & Text Processing (NLTK Tool)
NLTK : is an Open source Python modules, linguistic data and documentation for research and development in natural
language processing and text analytics.

Steps to install Python on Windows machine.

1- Open a Web browser and go to <http://www.python.org/download/>

2- Follow the link for the Windows installer python-XYZ.msi file where XYZ is the
version you need to install.

3- To use this installer python-XYZ.msi, the Windows system must support
Microsoft Installer 2.0. Save the installer file to your local machine and then

run it to find out if your machine supports MSI.

4- Run the downloaded file. This brings up the Python install wizard, which is
really easy to use. Just accept the default settings, wait until the install is
finished.

Setting path at Windows

To add the Python directory to the path for a particular session in Windows:
At the command prompt: type path "%path%:;C:\Python" and press Enter.
Note: "C:\Python" is the path of the Python directory.

Running Python

There are three different ways to run Python:

1-Interactive Interpreter: starting Python from DOS, or any other system that provides a command-line interpreter or
shell window,

2- Script from the Command-line: A Python script can be executed at command line by invoking the interpreter on your
application.

3- Integrated Development Environment: Run Python from a Graphical User Interface (GUI) environment, if you have a
GUI application on your system that supports Python. PythonWin is the first Windows interface for Python and is an IDE
with a GUL.

PYTHON BASIC SYNTAX

The Python language has many similarities to Perl, C, and Java. However, there are some definite
differences between the languages.

First Python Program
Let us execute programs in different modes of programming.
Interactive Mode Programming

Invoking the interpreter without passing a script file as a parameter brings up the following prompt

$ python

Python 2.4.3 (#1, Nov 11 2010, 13:34:43)

[GCC 4.1.2 20080704 (Red Hat 4.1.2-48)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>>

Type the following text at the Python prompt and press the Enter:

>>> print "Hello, Python!"

If you are running new version of Python, then you would need to use print statement with
parenthesis as in print " Hello, Python! " ;. However in Python version 2.4.3, this produces the
following result:

Hello, Python!

Script Mode Programming

Invoking the interpreter with a script parameter begins execution of the script and continues until
the scriptis finished. When the scriptis finished, the interpreter is no longer active.

Let us write a simple Python program in a script. Python files have extension .py. Type the
following source code in a test.py file:

print "Hello, Python!"

We assume that you have Python interpreter set in PATH variable. Now, try to run this program as
follows —

$ python test.py
This produces the following result:
Hello, Python!

Let us try another way to execute a Python script. Here is the modified test.py file —

#!1/usr/bin/python

print "Hello, Python!"

We assume that you have Python interpreter available in /usr/bin directory. Now, try to run this
program as follows —

$ chmod +x test.py # This is to make file executable
$./test.py

This produces the following result —

Hello, Python!

Python Identifiers

A Python identifier is a name used to identify a variable, function, class, module or other object. An
identifier starts with a letter A to Z or a to z or an underscore [_]| followed by zero or more letters,
underscores and digits 0t09.

Python does not allow punctuation characters such as @, $, and % within identifiers. Python is a
case sensitive programming language. Thus, Manpower and manpower are two different
identifiers in Python.
Here are naming conventions for Python identifiers —
e Class names start with an uppercase letter. All other identifiers start with a lowercase letter.
e Starting an identifier with a single leading underscore indicates that the identifier is private.

e Starting an identifier with two leading underscores indicates a strongly private identifier.

¢ If the identifier also ends with two trailing underscores, the identifier is a language-defined
special name.

Reserved Words
The following list shows the Python keywords. These are reserved words and you cannot use them

as constant or variable or any other identifier names. All the Python keywords contain lowercase
letters only.

And exec Not
Assert finally or
Break for pass
Class from print

Continue global raise

def if return
del import try
elif in while
else is with
except lambda vyield

Lines and Indentation

Python provides no braces to indicate blocks of code for class and function definitions or flow
control. Blocks of code are denoted by line indentation, which is rigidly enforced.

The number of spaces in the indentation is variable, but all statements within the block must be
indented the same amount. For example —

if True:
print "True"

else:
print "False"

However, the following block generates an error —

if True:
print "Answer"
print "True"
else:
print "Answer"
print "False"

Thus, in Python all the continuous lines indented with same number of spaces would form a block.
The following example has various statement blocks —

Note: Do not try to understand the logic at this point of time. Just make sure you understood
various blocks even if they are without braces.

#!/usr/bin/python
import sys

try:
open file stream
file = open(file_name, "w'")
except IOError:
print "There was an error writing to", file_name
sys.exit()
print "Enter '", file_finish,
print "' When finished"
while file_text != file_finish:
file_text = raw_input("Enter text: ")
if file_text == file_finish:
close the file
file.close
break
file.write(file_text)
file.write("\n")
file.close()
file_name = raw_input("Enter filename: ")

if len(file_name) == 0O:
print "Next time please enter something"
sys.exit()

try:

file = open(file_name, '"r'")

except IOError:
print "There was an error reading file"
sys.exit()

file_text = file.read()

file.close()

print file_text

Multi-Line Statements

Statements in Python typically end with a new line. Python does, however, allow the use of the line
continuation character (\) to denote that the line should continue. For example —

total = item_one + \
item_two + \
item_three

Statements contained within the [1, {}, or brackets do not need to use the line continuation
character. For example —

days = ['Monday', 'Tuesday', 'Wednesday',
'Thursday', 'Friday']

Quotation in Python

Python accepts single ', double " and triple ” quotes to denote string literals, as long as the same
type of quote starts and ends the string.

The triple quotes are used to span the string across multiple lines. For example, all the following
are legal —

word = 'word'
sentence = "This is a sentence."
paragraph = """This is a paragraph. It is

made up of multiple lines and sentences."""

Comments in Python

A hash sign # thatis notinside a string literal begins a comment. All characters after the # and up
to the end of the physical line are part of the comment and the Python interpreter ignores them.

#1/usr/bin/python

First comment
print "Hello, Python!" # second comment

This produces the following result —

Hello, Python!

You can type a comment on the same line after a statement or expression —

name = "Madisetti" # This is again comment

You can comment multiple lines as follows —

This is a comment.

This is a comment, too.
This is a comment, too.
I said that already.

Using Blank Lines

A line containing only whitespace, possibly with a comment, is known as a blank line and Python
totally ignoresiit.

In an interactive interpreter session, you must enter an empty physical line to terminate a multiline
statement.

Waiting for the User

The following line of the program displays the prompt, the statement saying “Press the enter key to
exit”, and waits for the user to take action —

#!/usr/bin/python

raw_input("\n\nPress the enter key to exit.")

Here, "\n\n" is used to create two new lines before displaying the actual line. Once the user presses
the key, the program ends. This is a nice trick to keep a console window open until the user is done
with an application.

Multiple Statements on a Single Line

The semicolon ; allows multiple statements on the single line given that neither statement starts a

6

new code block. Here is a sample snip using the semicolon —

import sys; x = 'foo'; sys.stdout.write(x + '\n')

Multiple Statement Groups as Suites

A group of individual statements, which make a single code block are called suites in Python.

Compound or complex statements, such as if, while, def, and class require a header line and a
suite.

Header lines begin the statement with the keyword and terminate with a colon : and are followed
by one or more lines which make up the suite. For example —

if expression :
suite

elif expression :
suite

else :
suite

Command Line Arguments

Many programs can be run to provide you with some basic information about how they should be
run. Python enables you to do this with -h —

$ python -h

usage: python [option] ... [-c cmd | -m mod | file | -] [arg] ...
Options and arguments (and corresponding environment variables):
-c cmd : program passed in as string (terminates option list)

-d : debug output from parser (also PYTHONDEBUG=X)

-E : ignore environment variables (such as PYTHONPATH)
-h : print this help message and exit

[etc.]

You can also program your scriptin such a way that it should accept various options. Command
Line Arguments is an advanced topic and should be studied a bit later once you have gone

Codes to get the Python version you are using:
import sys; print (sys.version); print (sys.version_info)

PYTHON VARIABLE TYPES

Variables are nothing but reserved memory locations to store values. This means that when you
Create a variable you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and decides what can be

stored in the reserved memory. Therefore, by assigning different data types to variables, you can
store integers, decimals or characters in these variables.

Assigning Values to Variables

Python variables do not need explicit declaration to reserve memory space. The declaration
happens automatically when you assign a value to a variable. The equal sign = is used to assign
values to variables.

The operand to the left of the = operator is the name of the variable and the operand to the right
of the = operator is the value stored in the variable. For example —

#1/usr/bin/python

counter = 100 # An integer assignment
miles = 1000.0 # A floating point
name = "John" # A string

print counter
print miles
print name

Here, 100, 1000.0 and "John" are the values assigned to counter, miles, and name variables,
respectively. This produces the following result —

100
1000.0
John

Multiple Assignment
Python allows you to assign a single value to several variables simultaneously. For example —

a=b=c=1

Here, an integer object is created with the value 1, and all three variables are assigned to the
same memory location. You can also assign multiple objects to multiple variables. For example —

a, b, ¢ =1, 2, "john"

Here, two integer objects with values 1 and 2 are assigned to variables a and b respectively, and
one string object with the value "john" is assigned to the variable c.

Standard Data Types

The data stored in memory can be of many types. For example, a person's age is stored as a
numeric value and his or her address is stored as alphanumeric characters. Python has various
standard data types that are used to define the operations possible on them and the storage
method for each of them.
Python has five standard data types —

e Numbers

e String

e List

e Tuple

e Dictionary
Python Numbers

Number data types store numeric values. Number objects are created when you assign a value to
them. For example —

1
10

varl
var2

You can also delete the reference to a number object by using the del statement. The syntax of the
del statementis —

del vari[,var2[,var3[....,varN]]]]
You can delete a single object or multiple objects by using the del statement. For example —

del var
del var_a, var_b

Python supports four different numerical types —
e int signedintegers
¢ long longintegers, theycanalsoberepresentedinoctalandhexadecimal
o float floatingpointrealvalues

e complex complexnumbers

Examples

Here are some examples of numbers —

int long float complex
10 51924361L 0.0 3.14j

100 -0x19323L 15.20 45 j

-786 0122L -21.9 9.322e-36j

080 OxDEFABCECBDAECBFBAEI 32.3+el8 .876j

-0490 535633629843L -90. -.6545+0)
-0x260 -052318172735L -32.54e100 3e+26)
0x69 -4721885298529L 70.2-E12 4.53e-7j

e Python allows you to use a lowercase L with long, butitis recommended that you use only an
uppercase L to avoid confusion with the number 1. Python displays long integers with an
uppercase L.

e A complex number consists of an ordered pair of real floating-point numbers denoted by x +
yj, where x and y are the real numbers and j is the imaginary unit.

Python Strings

Strings in Python are identified as a contiguous set of characters represented in the quotation
marks. Python allows for either pairs of single or double quotes. Subsets of strings can be taken
using the slice operator [land[:] with indexes starting at 0 in the beginning of the string and working

their way from -1 at the end.

The plus + sign is the string concatenation operator and the asterisk * is the repetition operator.
For example —

#!/usr/bin/python

str = 'Hello World!'

print str # Prints complete string

print str[0] # Prints first character of the string

print str[2:5] # Prints characters starting from 3rd to 5th
print str[2:] # Prints string starting from 3rd character
print str * 2 # Prints string two times

print str + "TEST" # Prints concatenated string

This will produce the following result —

Hello World!

H

1llo

llo world!

Hello World!Hello World!
Hello World!TEST

Python Lists

Lists are the most versatile of Python's compound data types. A list contains items separated by
commas and enclosed within square brackets []. To some extent, lists are similar to arrays in C.
One difference between them is that all the items belonging to a list can be of different data type.

The values stored in a list can be accessed using the slice operator [Jand[:] with indexes starting at
0 in the beginning of the list and working their way to end -1. The plus + sign is the list
concatenation operator, and the asterisk * is the repetition operator. For example —

#!1/usr/bin/python

list = ['abcd', 786 , 2.23, 'john', 70.2]
tinylist = [123, 'john']

print list # Prints complete list

print list[0] # Prints first element of the list

print list[1:3] # Prints elements starting from 2nd till 3rd
print list[2:] # Prints elements starting from 3rd element

print tinylist * 2 # Prints list two times
print list + tinylist # Prints concatenated lists

This produce the following result —

['abcd', 786, 2.23, 'john', 70.200000000000003]

abcd
[786, 2.23]
[2.23, 'john', 70.200000000000003]

[123, 'john', 123, 'john']
['abcd', 786, 2.23, 'john', 70.200000000000003, 123, 'john']

Python Tuples

A tuple is another sequence data type thatis similar to the list. A tuple consists of a number of
values separated by commas. Unlike lists, however, tuples are enclosed within parentheses.

The main differences between lists and tuples are: Lists are enclosed in brackets [] and their

10

elements and size can be changed, while tuples are enclosed in parentheses () and cannot be
updated. Tuples can be thought of as read-only lists. For example —

#!/usr/bin/python

tuple = ('abcd', 786 , 2.23, 'john', 70.2)
tinytuple = (123, 'john')

print tuple # Prints complete list

print tuple[0] # Prints first element of the list

print tuple[1:3] # Prints elements starting from 2nd till 3rd
print tuple[2:] # Prints elements starting from 3rd element

print tinytuple * 2 # Prints list two times
print tuple + tinytuple # Prints concatenated lists

This produce the following result —

('abcd', 786, 2.23, 'john', 70.200000000000003)

abcd

(786, 2.23)

(2.23, 'john', 70.200000000000003)

(123, 'john', 123, 'john')

('abcd', 786, 2.23, 'john', 70.200000000000003, 123, 'john')

The following code is invalid with tuple, because we attempted to update a tuple, which is not
allowed. Similar case is possible with lists —

#!1/usr/bin/python

tuple = ('abcd', 786 , 2.23, 'john', 70.2)
list = ['abcd', 786 , 2.23, 'john', 70.2]
tuple[2] = 1000 # Invalid syntax with tuple
list[2] = 1000 # Valid syntax with list

Python Dictionary

Python's dictionaries are kind of hash table type. They work like associative arrays or hashes found
in Perl and consist of key-value pairs. A dictionary key can be almost any Python type, but are
usually numbers or strings. Values, on the other hand, can be any arbitrary Python object.

Dictionaries are enclosed by curly braces and values can be assigned and accessed using square
braces[]. For example —

#!/usr/bin/python

dict = {}

dict['one'] = "This is one"
dict[2] = "This is two"

tinydict = {'name': 'john',6 'code':6734, 'dept': 'sales'}

print dict['one'] # Prints value for 'one' key
print dict[2] # Prints value for 2 key
print tinydict # Prints complete dictionary

print tinydict.keys() # Prints all the keys
print tinydict.values() # Prints all the values

This produce the following result —

This is one

This is two

{'dept': 'sales', 'code': 6734, 'name': 'john'}
['dept', 'code', 'name']

['sales', 6734, 'john']

11

Dictionaries have no concept of order among elements. It is incorrect to say that the elements are
"out of order"; they are simply unordered.

Data Type Conversion

Sometimes, you may need to perform conversions between the built-in types. To convert between
types, you simply use the type name as a function.

There are several built-in functions to perform conversion from one data type to another. These
functions return a new object representing the converted value.

Function

intx[, base]

longx[, base]

floatx

complexreal[, imag]

strx

reprx

evalstr

tuples

lists

sets

dictd

frozensets

chrx

unichrx

Description

Converts x to an integer. base specifies the base if x is a string.

Converts x to a long integer. base specifies the base if x is a string.

Converts x to a floating-point number.

Creates a complex number.

Converts object x to a string representation.

Converts object x to an expression string.

Evaluates a string and returns an object.

Converts s to a tuple.

Converts s to a list.

Converts s to a set.

Creates a dictionary. d must be a sequence of key, value tuples.

Converts s to a frozen set.

Converts an integer to a character.

Converts an integer to a Unicode character.

12

ordx Converts a single character to its integer value.

hexx Converts an integer to a hexadecimal string.

octx Converts an integer to an octal string.

13

PYTHON BASIC OPERATORS

Operators are the constructs which can manipulate the value of operands.
Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is called operator.
Types of Operator
Python language supports the following types of operators.

e Arithmetic Operators

¢ Comparison Relational Operators

e Assignment Operators

e Logical Operators

¢ Bitwise Operators

¢ Membership Operators

¢ |dentity Operators

Let us have a look on all operators one by one.
Python Arithmetic Operators

Assume variable a holds 10 and variable b holds 20, then —

Operator Description Example

+ Addition Adds values on either side of the a+b=30
operator.

- Subtraction Subtracts right hand operand from left a-b=-10
hand operand.

* Multiplies values on either side of the a*b=200

Multiplication operator

/ Division Divides left hand operand by right hand b/a=2
operand

% Modulus Divides left hand operand by right hand b%a=0
operand and returns remainder

** Exponent Performs exponential power calculation on a**b =10 to the power 20
operators

// Floor Division - The division of operands 9//2 =4and 9.0//2.0 =4.0
where the resultis the quotient in which
the digits after the decimal point are
removed.

Python Comparison Operators

These operators compare the values on either sides of them and decide the relation among them.
They are also called Relational operators.

14

Assume variable a holds 10 and variable b holds 20, then —

{

Operator

Description

If the values of two operands are equal,
then the condition becomes true.

If values of two operands are not equal,
then condition becomes true.

If values of two operands are not equal,
then condition becomes true.

If the value of left operand is greater than
the value of right operand, then condition
becomes true.

If the value of left operand is less than the
value of right operand, then condition
becomes true.

If the value of left operand is greater than
or equal to the value of right operand,
then condition becomes true.

If the value of left operand is less than or
equal to the value of right operand, then
condition becomes true.

Python Assignment Operators

Assume variable a holds 10 and variable b holds 20, then

Operator

+= Add
AND

Subtract
AND

*=

Multiply
AND

/= Divide
AND

%=
Modulus
AND

*k—
Exponent

Description

Assigns values from right side operands
to left side operand

It adds right operand to the left operand
and assign the result to left operand

It subtracts right operand from the left
operand and assign the result to left
operand

It multiplies right operand with the left
operand and assign the result to left
operand

It divides left operand with the right
operand and assign the result to left
operand

It takes modulus using two operands and
assign the result to left operand

Performs exponential power calculation on
operators and assign value to the left

15

Example

a == b is not true.

a <> b istrue. Thisis similarto !'=
operator.

a>bis not true.

a<bistrue.

a>=bis nottrue.

a <=bis true.

Example

Cc =a + bassignsvalue ofa + bintoc

Cc +=aisequivalenttoc=c+ a

c-=aisequivalenttoc=c-a

Cc *=aisequivalenttoc=c*a

c/=aisequivalenttoc=c/ac/=ais

equivalenttoc=c/a

C %= aisequivalenttoc=c%a

Cc **= aisequivalenttoc =c**a

AND operand

//= Floor It performs floor division on operators c//=aisequivalenttoc=c//a
Division and assign value to the left operand

Python Bitwise Operators

Bitwise operator works on bits and performs bit by bit operation. Assume ifa = 60; and b = 13;
Now in binary format they will be as follows —

a=00111100

b = 0000 1101
a&b = 0000 1100
alb = 0011 1101
a”~b = 00110001
~a =1100 0011

There are following Bitwise operators supported by Python language

Operator Description Example
& Binary Operator copies a bit to the result if it means00001100
AND exists in both operands

| Binary OR It copies a bit if it exists in either operand. a|b = 61 means00111101

~ Binary It copies the bitif itis setin one operand al = 49 means00110001
XOR but not both.
~ Binary Itis unary and has the effect of 'flipping’ a=-61 (means 1100 0011 in 2's
Ones bits. complement form due to a signed
Complement binary number.
<< Binary The left operands value is moved left by a << = 240 means11110000
Left Shift the number of bits specified by the right
operand.
>> Binary The left operands value is moved rightby a >> = 15 means00001111
Right Shift the number of bits specified by the right
operand.

Python Logical Operators

There are following logical operators supported by Python language. Assume variable a holds 10
and variable b holds 20 then

Used to reverse the logical state of its operand.
Python Membership Operators

Python’'s membership operators test for membership in a sequence, such as strings, lists, or tuples.
There are two membership operators as explained below

16

Operator

in

notin

Description

Evaluates to true if it finds a variable in
the specified sequence and false
otherwise.

Evaluates to true if it does not finds a
variable in the specified sequence and
false otherwise.

Python ldentity Operators

Example
xiny, hereinresultsinalifxisa
member of sequence y.

x notiny, here notinresultsina 1 ifx
is nota member of sequence y.

Identity operators compare the memory locations of two objects. There are two Identity operators
explained below:

l

Operator

is

is not

Description

Evaluates to true if the variables on either

side of the operator point to the same
object and false otherwise.

Evaluates to false if the variables on
either side of the operator point to the
same object and true otherwise.

Python Operators Precedence

Example
xisy, hereisresultsin 1 if idx equals id
y.

x is noty, here is not resultsin 1 if idx
is not equal to idy.

The following table lists all operators from highest precedence to lowest.

Operator

k%

~ 4+ -

*[%1/
+ -

>> <<

Description

Exponentiation raisetothepower

Ccomplement, unary plus and minus method names for the last two

are +@ and -@

Multiply, divide, modulo and floor division

Addition and subtraction
Right and left bitwise shift
Bitwise 'AND'

Bitwise exclusive "OR' and regular "OR'

Comparison operators

Equality operators

=%=/=//=-=+= Assignment operators
= kk—
is is not Identity operators

17

in notin

not or and

Membership operators

Logical operators

18

PYTHON DECISION MAKING

Decision making is anticipation of conditions occurring while execution of the program and
specifying actions taken according to the conditions.

Decision structures evaluate multiple expressions which produce TRUE or FALSE as outcome. You
need to determine which action to take and which statements to execute if outcome is TRUE or
FALSE otherwise.

Following is the general form of a typical decision making structure found in most of the
programming languages —

If condition If condition
is true is falsa

conditional Y
codae

®

Python programming language assumes any non-zero and non-null values as TRUE, and if it is
either zero or null, then itis assumed as FALSE value.

Python programming language provides following types of decision making statements.

Statement Description

. An if statement consists of a boolean expression followed by
if statements one or more statements.

. An if statement can be followed by an optional else
if...else statements statement, which executes when the boolean expression is
FALSE.

You can use one if or else if statement inside another if or
nested if statements else if statements.

Let us go through each decision making briefly —

Single Statement Suites

If the suite of an if clause consists only of a single line, it may go on the same line as the header
statement.

19

Here is an example of a one-line if clause —

#!/usr/bin/python

var = 100

if (var == 100) : print "Value of expression is 100"

print "Good bye!"

When the above code is executed, it produces the following result —

Value of expression is 100
Cond _hyval

20

PYTHON IF STATEMENT

Itis similar to that of other languages. The if statement contains a logical expression using which
data is compared and a decision is made based on the result of the comparison.

Syntax

if expression:
statement(s)

If the boolean expression evaluates to TRUE, then the block of statements inside the if statement is
executed. If boolean expression evaluates to FALSE, then the first set of code after the end of the if
statements is executed.

Flow Diagram

If condition
is true

If condition

is false conditional code

Example

#!/usr/bin/python

varl = 100

if vari:
print "1 - Got a true expression value"
print varil

var2 = 0

if var2:
print "2 - Got a true expression value"
print var2

print "Good bye!"

When the above code is executed, it produces the following result —

1 - Got a true expression value
100
Good bhve!

21

PYTHON IF...ELIF...ELSE STATEMENTS

An else statement can be combined with an if statement. An else statement contains the block of
code that executes if the conditional expression in the if statement resolves to 0 or a FALSE value.

The else statement is an optional statement and there could be at most only one else statement
following if .

Syntax
The syntax of the if...else statementis —

if expression:
statement(s)

else:
statement(s)

Flow Diagram

If condition
is true

If condition
is false

else code

®

Example

#!/usr/bin/python

varl = 100

if vari:
print "1 - Got a true expression value"
print varil

else:
print "1 - Got a false expression value"
print varil

var2 = 0

if var2:
print "2 - Got a true expression value"
print var2

else:
print "2 - Got a false expression value"
print var2

print "Good bye!"

22

When the above code is executed, it produces the following result —

1 - Got a true expression value

100

2 - Got a false expression value
0

Good bye!

The elif Statement

The elif statement allows you to check multiple expressions for TRUE and execute a block of code
as soon as one of the conditions evaluates to TRUE.

Similar to the else, the elif statementis optional. However, unlike else, for which there can be at
most one statement, there can be an arbitrary number of elif statements following an if.

syntax

if expressioni:
statement(s)
elif expression2:
statement(s)
elif expression3:
statement(s)
else:
statement(s)

Core Python does not provide switch or case statements as in other languages, but we can use
if..elif...statements to simulate switch case as follows —

Example

#!1/usr/bin/python

var = 100

if var == 200:
print "1 - Got a true expression value"
print var

elif var == 150:
print "2 - Got a true expression value"
print var

elif var == 100:
print "3 - Got a true expression value"
print var

else:
print "4 - Got a false expression value"
print var

print "Good bye!"
When the above code is executed, it produces the following result —

3 - Got a true expression value
100
Good bye!

23

PYTHON NESTED IF STATEMENTS

There may be a situation when you want to check for another condition after a condition resolves
to true. In such a situation, you can use the nested if construct.

In a nested if construct, you can have an if...elif...else construct inside another if...elif...else
construct.

Syntax:
The syntax of the nested if...elif...else construct may be:

if expressioni:
statement(s)
if expression2:
statement(s)
elif expression3:
statement(s)
else
statement(s)
elif expression4:
statement(s)
else:
statement(s)

Example:

#1/usr/bin/python

var = 100
if var < 200:
print "Expression value is less than 200"
if var == 150:
print "Which is 150"
elif var == 100:
print "Which is 100"
elif var == 50:
print "Which is 50"
elif var < 50:
print "Expression value is less than 50"
else:
print "Could not find true expression"

print "Good bye!"
When the above code is executed, it produces following result:

Expression value is less than 200
Which is 100
Good bye!

24

Examples Sheet #1 (Python Decision Making)
Examplel: Python program to check if a number is positive, negative or
Z€ro.

In this example, you will learn to check whether a number entered by the user is

positive, negative or zero. This problem is solved using if...elif...else and nested if...else
statement.

1- Using if...elif...else

num = float(input("Enter a number: "))
if num > 0:
print("Positive number")
elif num == 0:
print("Zero")
else:
print("Negative number")

2- Using Nested if

num = float(input("Enter a number: "))
if num >=0:
if num == 0:
print("Zero")
else:
print("Positive number")
else:
print("Negative number")

The output of both programs will be same.
Output 1

Enter a number: 2
Positive number

Output 2

Enter a number: ©
Zero

Output 3

Enter a number: -1
Negative number

Example2: Python Program to Check if a Number is Odd or Even

In this example, you will learn to check whether a number entered by the user is
even or odd.

25

Python program to check if the input number is odd or even.
A number is even if division by 2 give a remainder of O.
If remainder is 1, it is odd number.

num = int(input("Enter a number: "))
if (num % 2) ==0:

print("{0} is Even".format(num))
else:

print("{0} is Odd".format(num))

Output 1

Enter a number: 43
43 is 0dd

Output 2

Enter a number: 18
18 is Even

Example3: Python Program to Check Leap Year

In this program, you will learn to check whether a year is leap year or not. We will
use nested if...else to solve this problem.

A leap year is exactly divisible by 4 except for century years (years ending with
00). The century year is a leap year only if it is perfectly divisible by 400. For
example,

2017 is not a leap year
1900 is a not leap year
2012 is a leap year
2000 is a leap year

Python program to check if the input year is a leap year or not
year = 2000
To get year (integer input) from the user
year = int(input("Enter a year: "))
if (year % 4) == 0:
if (year % 100) == 0:
if (year % 400) == 0:
print("{0} is a leap year".format(year))
else:
print("{0} is not a leap year".format(year))
else:
print("{0} is a leap year".format(year))
else:

26

print("{0} is not a leap year".format(year))
Output

2000 is a leap year

You can change the value of year in the source code and run it again to test this
program.

Example4: Python Program to Check Prime Number

Example to check whether an integer is a prime number or not using for loop and
if...else statement. If the number is not prime, it's explained in output why it is not
a prime number.

Python program to check if the input number is prime or not
num = 407
take input from the user
num = int(input("Enter a number: "))
prime numbers are greater than 1
if num > 1:
check for factors
for i in range(2,num):
if (num % i) ==0:
print(num,"is not a prime number")
print(i,"times",num//i,"is",num)
break
else:
print(num,"is a prime number")
if input number is less than
or equal to 1, it is not prime
else:
print(num,"is not a prime number")

Output

407 is not a prime number

11 times 37 is 407

You can change the value of variable num in the above source code and test for
other integers (if you want).

27

H.W1: Python Program to Print all Prime Numbers in an Interval, For
Example:

The prime numbers between 900 and 1000 are:
907
911
919
929
937
941
947
953
967
971
977
983
991
997

H.W2: What is the output of the following code?
if None:
print(iHelloo)
Choose one: (False, Hello, Nothing will be printed, Syntax error)

HW3.The if...elif...else executes only one block of code among several
blocks.

Choose one:(True, False, It depends on expression used, here is no elif statement in
Python).

28

PYTHON LOOPS

In general, statements are executed sequentially: The first statementin a function is executed
first, followed by the second, and so on. There may be a situation when you need to execute a
block of code several number of times.

Programming languages provide various control structures that allow for more complicated
execution paths.

A loop statement allows us to execute a statement or group of statements multiple times. The
following diagram illustrates a loop statement —

Conditional Code

If eondition
is true

If condition
is false

Python programming language provides following types of loops to handle looping requirements.

Loop Type Description
_ Repeats a statement or group of statements while a given
while loop condition is TRUE. It tests the condition before executing the loop
body.

Executes a sequence of statements multiple times and
for loop abbreviates the code that manages the loop variable.

You can use one or more loop inside any another while, for or
nested loops do..while loop.

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves a
scope, all automatic objects that were created in that scope are destroyed.

Python supports the following control statements.

Control Statement Description

29

Terminates the loop statement and transfers execution to the
break statement statement immediately following the loop.

. Causes the loop to skip the remainder of its body and immediately
continue statement retest its condition prior to reiterating.

The pass statement in Python is used when a statement is required
pass statement syntactically but you do not want any command or code to
execute.

Let us go through the loop control statements briefly —

30

PYTHON WHILE LOOP STATEMENTS

A while loop statement in Python programming language repeatedly executes a target statement
as long as a given condition is true.

Syntax
The syntax of a while loop in Python programming language is —

while expression:
statement(s)

Here, statements may be a single statement or a block of statements. The condition may be any
expression, and true is any non-zero value. The loop iterates while the condition is true.

When the condition becomes false, program control passes to the line immediately following the
loop.

In Python, all the statements indented by the same number of character spaces after a

programming construct are considered to be part of a single block of code. Python uses
indentation as its method of grouping statements.

Flow Diagram

while expression :
statement(s)

If condition
is true

conditional : '
cods If condition

is false

Here, key point of the while loop is that the loop might not ever run. When the condition is tested

and the result is false, the loop body will be skipped and the first statement after the while loop will
be executed.

Example

#!/usr/bin/python

count = 0
while (count < 9):
print 'The count is:', count

31

count = count + 1

print "Good bye!"

When the above code is executed, it produces the following result —

The count is:
The count is:
The count is:
The count is:
The count is:
The count is:
The count is:
The count is:
The count is:
Good bye!

O~NOOULPAWNERO

The block here, consisting of the print and increment statements, is executed repeatedly until
countis no longer less than 9. With each iteration, the current value of the index count is displayed
and then increased by 1.

The Infinite Loop

A loop becomes infinite loop if a condition never becomes FALSE. You must use caution when
using while loops because of the possibility that this condition never resolves to a FALSE value.
This results in a loop that never ends. Such a loop is called an infinite loop.

An infinite loop might be useful in client/server programming where the server needs to run
continuously so that client programs can communicate with it as and when required.

#!1/usr/bin/python

var = 1

while var == : # This constructs an infinite loop
num = raw_input("Enter a number :'")
print "You entered: ", num

print "Good bye!"

When the above code is executed, it produces the following result —

Enter a number :20
You entered: 20
Enter a number :29
You entered: 29
Enter a number :3
You entered: 3
Enter a number between :Traceback (most recent call last)
File "test.py", line 5, in <module>
num = raw_input("Enter a number :")
KeyboardInterrupt

Above example goes in an infinite loop and you need to use CTRL+C to exit the program.

Using else Statement with Loops
Python supports to have an else statement associated with a loop statement.

¢ If the else statement is used with a for loop, the else statement is executed when the loop
has exhausted iterating the list.

¢ If the else statementis used with a while loop, the else statement is executed when the
condition becomes false.

The following example illustrates the combination of an else statement with a while statement that
prints a number as long as it is less than 5, otherwise else statement gets executed.p>

32

#!/usr/bin/python

count = 0

while count < 5:
print count, " is less than 5"
count = count + 1

else:
print count, " is not less than 5"

When the above code is executed, it produces the following result —

is less than
is less than
is less than
is less than
is less than
is not less than 5

abrhwWNRO
g1 o1 O g o

Single Statement Suites

Similar to the if statement syntax, if your while clause consists only of a single statement, it may
be placed on the same line as the while header.

Here is the syntax and example of a one-line while clause —
#!/usr/bin/python

flag = 1

while (flag): print 'Given flag is really true!'

print "Good bye!"

It is better not try above example because it goes into infinite loop and you need to press CTRL+C

L oavic +n avit

33

PYTHON FOR LOOP STATEMENTS

It has the ability to iterate over the items of any sequence, such as a list or a string.
Syntax

for iterating_var in sequence:
statements(s)

If a sequence contains an expression list, itis evaluated first. Then, the firstitem in the sequence is
assigned to the iterating variable iterating var. Next, the statements block is executed. Each item
in the list is assigned to iterating var, and the statements block is executed until the entire
sequence is exhausted.

Flow Diagram

for iterating_var in sequence :
statement(s)

e [o more item in sequence

sequence

W
Next item from seguence

execute statement{s)

Example

#1/usr/bin/python

for letter in 'Python': # First Example
print 'Current Letter :', letter

fruits = ['banana', 'apple', 'mango']

for fruit in fruits: # Second Example
print 'Current fruit :', fruit

print "Good bye!"
When the above code is executed, it produces the following result —

Current Letter
Current Letter
Current Letter
Current Letter
Current Letter :
Current Letter : n

Current fruit : banana

O Ort< T

34

Current fruit : apple
Current fruit : mango
Good bye!

Iterating by Sequence Index

An alternative way of iterating through each item is by index offset into the sequence itself.
Following is a simple example —

#1/usr/bin/python

fruits = ['banana', 'apple', 'mango']
for index in range(len(fruits))
print 'Current fruit :', fruits[index]

print "Good bye!"
When the above code is executed, it produces the following result —

Current fruit : banana
Current fruit : apple
Current fruit : mango
Good bye!

Here, we took the assistance of the len built-in function, which provides the total number of
elements in the tuple as well as the range built-in function to give us the actual sequence to iterate
over.

Using else Statement with Loops
Python supports to have an else statement associated with a loop statement

o If the else statement is used with a for loop, the else statement is executed when the loop
has exhausted iterating the list.

¢ If the else statementis used with a while loop, the else statement is executed when the
condition becomes false.

The following example illustrates the combination of an else statement with a for statement that
searches for prime numbers from 10 through 20.

#!1/usr/bin/python

for num in range(10,20): #to iterate between 10 to 20
for i in range(2,num): #to iterate on the factors of the number
if num%i == 0: #to determine the first factor
j=num/1i #to calculate the second factor
print '%d equals %d * %d' % (num,i,j)
break #to move to the next number, the #first FOR
else: # else part of the loop
print num, 'is a prime number'

When the above code is executed, it produces the following result —

10 equals 2 * 5
11 is a prime number
12 equals 2 * 6
13 is a prime number
14 equals 2 * 7
15 equals 3 * 5
16 equals 2 * 8
17 is a prime number
18 equals 2 * 9

10 ic a nrime numhor

35

PYTHON NESTED LOOPS

Python programming language allows to use one loop inside another loop. Following section shows
few examples to illustrate the concept.

Syntax

for iterating_var in sequence:
for iterating_var in sequence:
statements(s)
statements(s)

The syntax for a nested while loop statement in Python programming language is as follows —

while expression:
while expression:
statement(s)
statement(s)

A final note on loop nesting is that you can put any type of loop inside of any other type of loop. For
example a for loop can be inside a while loop or vice versa.

Example
The following program uses a nested for loop to find the prime numbers from 2 to 100 —

#!/usr/bin/python

i=2
while(i < 100):
j=2
while(j <= (i/]))
if not(i%j): break
j=3+1
if (j > i/j) : print i, " is prime"
i=1i+1
print "Good bye!"

When the above code is executed, it produces following result —

is prime

is prime

is prime

is prime

11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 1is prime
31 is prime
37 is prime
41 is prime
43 1is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime

g wmN

~

36

79 1is prime
83 is prime
89 is prime
97 is prime
Good bye!

37

Examples Sheet #2 (Python Loops)

Examplel: Use While loop to print numbers between 0 and 5:

Solutionl

count = @
while count <= 5:
print(count)

count += 1 # This is the same as count = count + 1

Solution2
Use break statement with While loop to print out 0,1,2,3,4,5.
count = 0@
while True:

print(count)

count += 1

if count > 5:

break

Solution3
Prints out 0,1,2,3,4,5 and then it prints "count value reached 6
count=0
while(count<=5):
print(count)
count +=1
else:
print("count value reached %d" %(count))

Example2: Use While loop to sum numbers from 1 to n.

Program to add natural numbers up to sum = 1+2+3+...+n
n =10 # It can be entered by user using: n = int(input("Enter n: "))
sum = @
i=1
while i <= n:
sum = sum + i
i=i+1 # update counter

print "The sum is", sum
#Output:

#Enter n: 10

#The sum is 55

Example3: Use of Else statement with While loop to print "Inside loop™
three times and print "Inside else" once After getting out of from the loop :

Example to illustrate

the use of else statement

with the while loop

counter = 0

while counter < 3:
print("Inside loop")
counter = counter + 1

38

else:
print("Inside else")
#Output:
#Inside loop
#Inside loop
#Inside loop
#Inside else

Example 4: use For loop to print numbers from 1 to 5:

foriin range(1, 10):
if(i%6==0):
break
print(i)
else:
print("this is not printed because For loop is terminated because of break but not due to fail in
condition")

Example 5: use For loop to print odd numbers between 1 to 10:

#Solution
for x in range(10):
Check if x is even
ifx% 2==0:
continue
print(x)

Example 6: Write a Python program that prints all the numbers from O to 6
except 3 and 6. Note : Use ‘continue' statement, the outputis0 124 5.

#Solution
for x in range(6):
if (x ==3 or x==6):
continue
print(x,end=""
print("\n")
Example 7: Write a Python program that accepts a string and calculate the
number of digits and letters. Let the string is "Python 7.2", the output is:
Letters 6
Digits 2
#Solution
s = input("Input a string")
d=I=0
forcins:
if c.isdigit():
d=d+1
elif c.isalpha():
I=1+1
else:

pass
print("Letters", 1)

39

print("Digits", d)

Example 8: Write a Python program to construct the following pattern,
using a nested for loop.

%k ok ok ok ok % ok
P T
* % ok ok ok
* %k ok
*

#Solution
n=5;
foriin range(n):
for j in range(i):
print ("* ', end="")
print(")

foriin range(n,0,-1):
for jin range(i):
print("* ', end="")
print(")

Example 9: Write a Python program to print alphabet pattern 'A'.

* Kk %

#Solution
items =[]
result_str=
for row in range(0,7):
for column in range(0,7):
if (((column == 1 or column == 5) and row != 0) or ((row == 0 or row == 3) and (column > 1 and column
<5))):
result_str=result_str+"*"
else:
result_str=result_str+
result_str=result_str+"\n"
print(result_str);

n,
’

Example 10: Write a Python program to check the validity of password

input by users. The validations are:
1. Atleast 1 letter between [a-z] and 1 letter between [A-Z].

40

At least 1 number between [0-9].
At least 1 character from [$#@].
Minimum length 6 characters.
Maximum length 16 characters.

S

import re
p= input("Input your password")
x=True
while x:
if (len(p)<6 or len(p)>12):
break
elif not re.search("[a-z]",p):
break
elif not re.search("[0-9]",p):
break
elif not re.search("[A-Z]",p):
break
elif not re.search("[S#@]",p):
break
elif re.search("\s",p):
break
else:
print("Valid Password")
x=False
break
if x:
print("Not a Valid Password")

H.W1: What is the output of the following code?
Chooseone: (2 1,2 0,[2,1],[2,0]).

foriin [1, 0]: print(i+1)

H.W2: In Python, for and while loop can have optional else
statement?

Choose one:

1. Only for loop can have optional else statement.

2. Only while loop can have optional else statement.

3. Both loops can have optional else statement.

4. Loops cannot have else statement in Python.
H.W3: What is the output of the following code?
Choose one: (0,10,4,None).

i=sum=0
while i <= 4:
sum +=i
i=i+l
print(sum)
H.W4: What is the output of the following code?

Choose one:(4 is printed once, 4 is printed four times, 4 is printed infinitely
until program closes, Syntax error).

41

while 4 == 4: print('4")

H.W5: Is it better to use for loop instead of while if you are iterating
through a sequence (like: list)?
Choose one:
1. No, itis better to use while loop.
2. Yes, for loop is more pythonic choice.
3. No, you cannot iterate through a sequence using while loop.
4. No, you cannot iterate through a sequence using loops.
H.W6: Which of the following statement is true?
Choose one:
1. The break statement terminates the loop containing it.
2. The continue statement is used to skip the rest of the code inside the
loop.
3. The break and continue statements are almost always used with if,
if...else and if...elif...else statements.
4. All of the above.

42

PYTHON NUMBERS

Number data types store numeric values. They are immutable data types, means that changing
the value of a number data type results in a newly allocated object.

Number objects are created when you assign a value to them. For example —

varl = 1
var2 = 10

You can also delete the reference to a number object by using the del statement. The syntax of
the del statementis —

del vari[,var2[,var3[....,varN]]]]

You can delete a single object or multiple objects by using the del statement. For example:

del var
del var_a, var_b

Python supports four different numerical types —

¢ int signedintegers: They are often called just integers or ints, are positive or negative whole
numbers with no decimal point.

¢ long longintegers: Also called longs, they are integers of unlimited size, written like integers
and followed by an uppercase or lowercase L.

¢ float floatingpointrealvalues : Also called floats, they represent real numbers and are written
with a decimal point dividing the integer and fractional parts. Floats may also be in scientific

notation, with E or e indicating the power of 10 (2.5e2 = 2.5 x 102 = 250).

e complex complexnumbers : are of the form a + bJ, where a and b are floats and J orj represents
the square root of -1 whichisanimaginarynumber. The real part of the number is a, and the
imaginary partis b. Complex numbers are not used much in Python programming.

Examples

Here are some examples of numbers

int long float complex
10 51924361L 0.0 3.14j

100 -0x19323L 15.20 45

-786 0122L -21.9 9.322e-36j

080 OxDEFABCECBDAECBFBAEL 32.3+e18 .876j

-0490 535633629843L -90. -.6545+0)
-0x260 -052318172735L -32.54e100 3e+26)
0x69 -4721885298529L 70.2-E12 4.53e-7j

e Python allows you to use a lowercase L with long, butitis recommended that you use only an
uppercase L to avoid confusion with the number 1. Python displays long integers with an
uppercase L.

43

e A complex number consists of an ordered pair of real floating point numbers denoted by a +
bj, where a is the real part and b is the imaginary part of the complex number.

Number Type Conversion
Python converts numbers internally in an expression containing mixed types to a common type for
evaluation. But sometimes, you need to coerce a number explicitly from one type to another to
satisfy the requirements of an operator or function parameter.

e Type intx to convert x to a plain integer.

¢ Type longx to convert x to a long integer.

¢ Type floatx to convert x to a floating-point number.

e Type complexx to convert x to a complex number with real part x and imaginary part zero.

e Type complexx,yto convert x and y to a complex number with real part x and imaginary
party. x and y are numeric expressions

Mathematical Functions

Python includes following functions that perform mathematical calculations.

Function Returns description
The absolute value of x: the positive distance between x and zero.
absx
The ceiling of x: the smallest integer not less than x
ceilx
-lifx<y, Oifx==y,orlifx>y
cmpx
The exponential of x: eX
expx
The absolute value of x.
fabsx
The floor of x: the largest integer not greater than x
floorx
The natural logarithm of x, for x> 0
logx
The base-10 logarithm of x for x> 0 .
log10x
The largest of its arguments: the value closest to positive infinity
maxxl, x2, . ..
The smallest of its arguments: the value closest to negative infinity
minx1, x2, . ..

The fractional and integer parts of x in a two-item tuple. Both parts
modfx have the same sign as x. The integer partis returned as a float.

a4

The value of x**y,

OWx
x rounded to n digits from the decimal point. Python rounds away from
roundx[, n] zero as a tie-breaker: roundo0.5 is 1.0 and round-0.5 is -1.0.
The square rootof x forx > 0
sqrix

Random Number Functions

Random numbers are used for games, simulations, testing, security, and privacy applications.
Python includes following functions that are commonly used.

Function Description
. A random item from a list, tuple, or string.
choiceseq
A randomly selected element from rangestart, stop, step
randrange

[start, 1stopl, step]

A random floatr, such that 0 is less than or equal to r and r is less than
random 1

Sets the integer starting value used in generating random numbers.
seed|x] Call this function before calling any other random module function.
Returns None.

Randomizes the items of a list in place. Returns None.
shufflelst

A random floatr, such that x is less than or equal to rand ris less thany
uniformx, y

Trigonometric Functions

Python includes following functions that perform trigonometric calculations.

Function Description
Return the arc cosine of x, in radians.
acosx
_ Return the arc sine of x, in radians.
asinx
Return the arc tangent of x, in radians.
atanx

Return atanvy/x, in radians.

45

atan2y, x

Return the cosine of x radians.

COSx

Return the Euclidean norm, sqrtx * x+y * y.
hypotx, y

Return the sine of x radians.
Sinx

Return the tangent of x radians.
tanx

Converts angle x from radians to degrees.
degreesx

Converts angle x from degrees to radians.
radiansx

Mathematical Constants

The module also defines two mathematical constants —

Constants Description
pi The mathematical constant pi.

e The mathematical constant e.

46

Examples Sheet #3 (Python Numbers)

Examplel: show the usage of abs() method by python codes.

print "abs(-45) : ", abs(-45)
print "abs(100.12) : ", abs(100.12)
print "abs(119L) : ", abs(119L)

When we run above program, it produces following result:

abs(-45) : 45
abs(100.12) : 100.12
abs(119L) : 119

Example2: show the usage of ceil() method by python codes.

import math # This will import math module
print "math.ceil(-45.17) : ", math.ceil(-45.17)
print "math.ceil(100.12) : ", math.ceil(100.12)
print "math.ceil(100.72) : ", math.ceil(100.72)
print "math.ceil(119L) : ", math.ceil(119L)

print "math.ceil(math.pi) : ", math.ceil(math.pi)

When we run above program, it produces following result:

math.ceil(-45.17) : -45.0
math.ceil(100.12) : 101.0
math.ceil(100.72) : 101.0
math.ceil(119L) : 119.0
math.ceil(math.pi) : 4.0

Example3: show the usage of cmp() method by python codes.
print "cmp(80, 100) : ", cmp(80, 100)
print "cmp(180, 100) : ", cmp(180, 100)

print "cmp(-80, 100) : ", cmp(-80, 100)
print "cmp(80, -100) : ", cmp(80, -100)

When we run above program, it produces following result:

cmp(80, 100) : -1
cmp(180, 100) : 1
cmp(-80, 100) : -1

cmp(80, -100) : 1
Example4: show the usage of exp () method by python codes.

import math # This will import math module

print "math.exp(-45.17) : ", math.exp(-45.17)
print "math.exp(100.12) : ", math.exp(100.12)
print "math.exp(100.72) : ", math.exp(100.72)
print "math.exp(119L) : ", math.exp(119L)

print "math.exp(math.pi) : ", math.exp(math.pi)

When we run above program, it produces following result:
math.exp(-45.17) : 2.41500621326e-20

a7

math.exp(100.12) : 3.03084361407e+43
math.exp(100.72) : 5.52255713025e+43
math.exp(119L) : 4.7978133273e+51
math.exp(math.pi) : 23.1406926328

Example5: show the usage of fabs() method by python codes.

import math # This will import math module

print "math.fabs(-45.17) : ", math.fabs(-45.17)
print "math.fabs(100.12) : ", math.fabs(100.12)
print "math.fabs(100.72) : ", math.fabs(100.72)
print "math.fabs(119L) : ", math.fabs(119L)

print "math.fabs(math.pi) : ", math.fabs(math.pi)

When we run above program, it produces following result:

math.fabs(-45.17) : 45.17
math.fabs(100.12) : 100.12
math.fabs(100.72) : 100.72
math.fabs(119L) : 119.0
math.fabs(math.pi) : 3.14159265359

Example6: show the usage of floor() method by python codes.

import math # This will import math module

print "math.floor(-45.17) : ", math.floor(-45.17)
print "math.floor(100.12) : ", math.floor(100.12)
print "math.floor(100.72) : ", math.floor(100.72)
print "math.floor(119L) : ", math.floor(119L)

print "math.floor(math.pi) : ", math.floor(math.pi)

When we run above program, it produces following result:

math.floor(-45.17) : -46.0
math.floor(100.12) : 100.0
math.floor(100.72) : 100.0
math.floor(119L) : 119.0

math.floor(math.pi) : 3.0

Example7: show the usage of log() method by python codes.

import math # This will import math module

print "math.log(100.12) : ", math.log(100.12)
print "math.log(100.72) : ", math.log(100.72)
print "math.log(119L) : ", math.log(119L)

print "math.log(math.pi) : ", math.log(math.pi)

When we run above program, it produces following result:

math.log(100.12) : 4.60636946656
math.log(100.72) : 4.61234438974
math.log(119L) : 4.77912349311

math.log(math.pi) : 1.14472988585

48

Example8: show the usage of log10() method by python codes.

import math # This will import math module

print "math.logle(100.12) : ", math.logl0(100.12)
print "math.logle(1e0.72) : ", math.loglo(100.72)
print "math.logle(119L) : ", math.logl@(119L)

print "math.logl@(math.pi) : ", math.logl@(math.pi)

When we run above program, it produces following result:

math.logl0(100.12) : 2.00052084094
math.logle(100.72) : 2.0031157171
math.log1@(119L) : 2.87554696139
math.logl@(math.pi) : ©.497149872694

Example9: show the usage of max() method by python codes.

print "max(80, 100, 1000) : ", max(80, 100, 1000)
print "max(-20, 100, 400) : ", max(-20, 100, 400)
print "max(-80, -20, -10) : ", max(-80, -20, -10)
print "max(@, 100, -400) : ", max(0, 100, -400)

When we run above program, it produces following result:

max (80, 100, 1000) : 1000
max(-20, 100, 400) : 400
max(-80, -20, -10) : -10
max (0, 100, -400) : 100

Example10: show the usage of min() method by python codes.
print "min(80, 100, 1000) : ", min(80, 100, 1000)
print "min(-20, 100, 400) : ", min(-20, 100, 400)

print "min(-80, -20, -10) : ", min(-80, -20, -10)
print "min(e@, 100, -400) : ", min(@, 100, -400)

When we run above program, it produces following result:
min(80, 100, 1000) : 80

min(-20, 100, 400) : -20
min(-80, -20, -10) : -80
min(@, 100, -400) : -400

Examplell: show the usage of modf() method by python codes.

import math # This will import math module

print "math.modf(100.12) : ", math.modf(100.12)
print "math.modf(100.72) : ", math.modf(100.72)
print "math.modf(119L) : ", math.modf(119L)

print "math.modf(math.pi) : ", math.modf(math.pi)

When we run above program, it produces following result:

math.modf(100.12) : (©.12000000000000455, 100.0)
math.modf(100.72) : (0©.71999999999999886, 100.0)
math.modf (119L) : (0.0, 119.0)

49

math.modf(math.pi) : (0.14159265358979312, 3.9)
Examplel2: show the usage of pow() method by python codes.

import math # This will import math module

print "math.pow(100, 2) : ", math.pow(100, 2)

print "math.pow(100, -2) : ", math.pow(100, -2)

print "math.pow(2, 4) : ", math.pow(2, 4)

print "math.pow(3, @) : ", math.pow(3, 9)

When we run above program, it produces following result:

math.pow(100, 2) : 10000.0
math.pow(100, -2) : 0.0001
math.pow(2, 4) : 16.0
math.pow(3, @) : 1.0

Examplel3: show the usage of round() method by python codes.

print "round(86.23456, 2) : ", round(80.23456, 2)
print "round(100.000056, 3) : ", round(100.000056, 3)
print "round(-100.000056, 3) : ", round(-100.000056, 3)

When we run above program, it produces following result:

round(80.23456, 2) : 80.23
round(100.000056, 3) : 100.0
round(-100.000056, 3) : -100.0

Examplel4: show the usage of sqrt() method by python codes.

import math # This will import math module

print "math.sqrt(100) : ", math.sqrt(100)

print "math.sqrt(7) : ", math.sqrt(7)

print "math.sqgrt(math.pi) : ", math.sqrt(math.pi)

When we run above program, it produces following result:

math.sqrt(100) : 10.0
math.sqrt(7) : 2.64575131106
math.sqrt(math.pi) : 1.77245385091

Examplel5: show the usage of choice() method by python codes.

import random

print "choice([1, 2, 3, 5, 9]) : ", random.choice([1, 2, 3, 5, 9])
print "choice('A String') : ", random.choice('A String')

When we run above program, it produces following result:

choice([1, 2, 3, 5, 9]) : 2
choice('A String') : n

Examplel6: show the usage of randrange() method by python codes.

50

import random

Select an even number in 100 <= number < 1000
print "randrange(100, 1000, 2) : ", random.randrange(100, 1000, 2)

Select another number in 100 <= number < 1000
print "randrange(100, 1000, 3) : ", random.randrange(100, 1000, 3)

When we run above program, it produces following result:

randrange(100, 1000, 2) : 976
randrange(100, 1000, 3) : 520

Examplel7: show the usage of random () method by python codes.

import random

First random number
print "random() : ", random.random()

Second random number
print "random() : ", random.random()

When we run above program, it produces following result:

random() : ©.281954791393
random() : ©.309090465205

Examplel8: show the usage of seed () method by python codes.

import random

random.seed(10)
print "Random number with seed 10 :

, random.random()

It will generate same random number
random.seed(10)
print "Random number with seed 10 :

, random.random()

It will generate same random number
random.seed(10)
print "Random number with seed 10 :

, random.random()

When we run above program, it produces following result:

Random number with seed 10 : ©0.57140259469
Random number with seed 10 : ©.57140259469
Random number with seed 10 : ©0.57140259469

Examplel9: show the usage of shuffle () method by python codes.
import random
list = [20, 16, 10, 5];

random.shuffle(list)
print "Reshuffled list : ", 1list

51

random.shuffle(list)
print "Reshuffled list : ", 1list

When we run above program, it produces following result:

Reshuffled list : [16, 5, 10, 20]
Reshuffled list : [16, 5, 20, 10]

Example20: show the usage of uniform () method by python codes.

import random
print "Random Float uniform(5, 10) : ", random.uniform(5, 10)

print "Random Float uniform(7, 14) : ", random.uniform(7, 14)

Let us run the above program, this will produce the following result:
Random Float uniform(5, 10) : 5.52615217015
Random Float uniform(7, 14) : 12.5326369199

Example21: show the usage of acos() method by python codes.

import math

print "acos(©.64) : ", math.acos(0.64)
print "acos(®) : ", math.acos(@)

print "acos(-1) : ", math.acos(-1)
print "acos(1) : ", math.acos(1)

When we run above program, it produces following result:

acos(0.64) : 0©.876298061168
acos(@) : 1.57079632679
acos(-1) : 3.14159265359
acos(1l) : 0.0

Example22: show the usage of asin () method by python codes.

import math

print "asin(©.64) : ", math.asin(@.64)
print "asin(®) : ", math.asin(@)

print "asin(-1) : ", math.asin(-1)
print "asin(1) : ", math.asin(1)

When we run above program, it produces following result:

asin(0.64) : 0.694498265627
asin(@) : 0.0

asin(-1) : -1.57079632679
asin(1l) : 1.57079632679

Example23: show the usage of atan () method by python codes.

import math

52

print "atan(©.64) : ", math.atan(@.64)
print "atan(®) : ", math.atan(@)

print "atan(1e) : ", math.atan(10)
print "atan(-1) : ", math.atan(-1)
print "atan(1) : ", math.atan(1)

When we run above program, it produces following result:

atan(0.64) : 0.569313191101
atan(@) : 0.0

atan(10) : 1.4711276743
atan(-1) : -0.785398163397
atan(1l) : ©.785398163397

Example24. show the usage of atan2 () method by python codes.

import math

print "atan2(-0.50,-0.50) : ", math.atan2(-90.50,-0.50)
print "atan2(0.50,0.50) : ", math.atan2(0.50,0.50)
print "atan2(5,5) : ", math.atan2(5,5)

print "atan2(-10,10) : ", math.atan2(-10,10)

print "atan2(10,20) : ", math.atan2(10,20)

When we run above program, it produces following result:

atan2(-90.50,-0.50) : -2.35619449019
atan2(0.50,0.50) : ©0.785398163397
atan2(5,5) : ©.785398163397
atan2(-10,10) : -0.785398163397
atan2(10,20) : 0.463647609001

Example25: show the usage of cos () method by python codes.

import math

print "cos(3) : ", math.cos(3)

print "cos(-3) : ", math.cos(-3)

print "cos(®) : ", math.cos(0)

print "cos(math.pi) : ", math.cos(math.pi)
print "cos(2*math.pi) : ", math.cos(2*math.pi)

When we run above program, it produces following result:

cos(3) : -0.9899924966
cos(-3) : -0.9899924966
cos(@) : 1.0
cos(math.pi) : -1.0

cos(2*math.pi) : 1.0

Example26: show the usage of hypot () method by python codes.

import math

print "hypot(3, 2) : ", math.hypot(3, 2)

53

print "hypot(-3, 3) : ", math.hypot(-3, 3)
print "hypot(@, 2) : ", math.hypot(e, 2)

When we run above program, it produces following result:

hypot(3, 2) : 3.60555127546
hypot(-3, 3) : 4.24264068712
hypot(@, 2) : 2.0

Example27: show the usage of sin () method by python codes.

#!/usr/bin/python
import math

print "sin(3) : ", math.sin(3)

print "sin(-3) : ", math.sin(-3)

print "sin(@) : ", math.sin(0@)

print "sin(math.pi) : ", math.sin(math.pi)
print "sin(math.pi/2) : ", math.sin(math.pi/2)

When we run above program, it produces following result:

sin(3) : 0.14112000806

sin(-3) : -0.14112000806

sin(@) : 0.0

sin(math.pi) : 1.22464679915e-16
sin(math.pi/2) : 1.0

Example28: show the usage of tan () method by python codes.

import math

print "tan(3) : ", math.tan(3)

print "tan(-3) : ", math.tan(-3)

print "tan(®) : ", math.tan(0)

print "tan(math.pi) : ", math.tan(math.pi)
print "tan(math.pi/2) : ", math.tan(math.pi/2)
print "tan(math.pi/4) : ", math.tan(math.pi/4)

When we run above program, it produces following result:

tan(3) : -0.142546543074

tan(-3) : 0.142546543074

tan(@) : 0.0

tan(math.pi) : -1.22460635382e-16
tan(math.pi/2) : 1.63317787284e+16
tan(math.pi/4) : 1.0

Example29: show the usage of degrees () method by python codes.

import math

print "degrees(3) : ", math.degrees(3)

print "degrees(-3) : ", math.degrees(-3)

print "degrees(®) : ", math.degrees(9)

print "degrees(math.pi) : ", math.degrees(math.pi)
print "degrees(math.pi/2) : ", math.degrees(math.pi/2)

print "degrees(math.pi/4) : ", math.degrees(math.pi/4)

54

When we run above program, it produces following result:

degrees(3) : 171.887338539
degrees(-3) : -171.887338539
degrees(9) : 0.0
degrees(math.pi) : 180.0
degrees(math.pi/2) : 90.0
degrees(math.pi/4) : 45.0

Example30: show the usage of radians () method by python codes.

import math

print "radians(3) : ", math.radians(3)

print "radians(-3) : ", math.radians(-3)

print "radians(@) : ", math.radians(9)

print "radians(math.pi) : ", math.radians(math.pi)

print "radians(math.pi/2) : ", math.radians(math.pi/2)
print "radians(math.pi/4) : ", math.radians(math.pi/4)

When we run above program, it produces following result:

radians(3) : ©.0523598775598
radians(-3) : -0.0523598775598
radians(@) : 0.0

radians(math.pi) : ©.0548311355616
radians(math.pi/2) : ©.0274155677808
radians(math.pi/4) : ©.0137077838904

Exercise with solution: Write a Python program to guess a number
betweenl to 9.

Note : User is prompted to enter a guess. If the user guesses wrong then
the prompt appears again until the guess is correct, on successful guess,
user will get a "Well guessed!" message, and the program will exit.
Solution

import random
target_num, guess_num = random.randint(1, 10), ©

while target_num != guess_num:
guess num = int(input('Guess a number between 1 and 10 until you get it
right : "))
print('Well guessed!")
Output:
Guess a number between 1 and 10 until you get it right : 5 Well guessed!

55

PYTHON STRINGS

Strings are amongst the most popular types in Python. We can create them simply by enclosing
characters in quotes. Python treats single quotes the same as double quotes. Creating strings is as
simple as assighing a value to a variable. For example —

'Hello World!'
"Python Programming"

varl
var?2

Accessing Values in Strings

Python does not support a character type; these are treated as strings of length one, thus also
considered a substring.

To access substrings, use the square brackets for slicing along with the index or indices to obtain
your substring. For example —

#1/usr/bin/python

varl = 'Hello World!'!'

var?2 "Python Programming"
print "vari[0]: ", varl[0Q]
print "var2[1:5]: ", var2[1:5]

When the above code is executed, it produces the following result —

vari[e]: H
var2[1:5]: ytho

Updating Strings

You can "update" an existing string by reassigning a variable to another string. The new value can
be related to its previous value or to a completely different string altogether. For example —

#1/usr/bin/python
varl = 'Hello World!'!'

print "Updated String :- ", vari[:6] + 'Python'
When the above code is executed, it produces the following result —
Updated String :- Hello Python

Escape Characters

Following table is a list of escape or non-printable characters that can be represented with
backslash notation.

An escape character gets interpreted; in a single quoted as well as double quoted strings.

Backslash Hexadecimal Description
notation character

\a 0x07 Bell or alert
\b 0x08 Backspace

56

\CX Control-x

\C-x Control-x

\e 0x1lb Escape

\f 0x0c Formfeed

\M-\C-x Meta-Control-x

\n Ox0a Newline

\nnn Octal notation, where nis in the range 0.7

\r 0x0d Carriage return

\s 0x20 Space

\t 0x09 Tab

\v 0x0b Vertical tab

\X Character x

\Xnn HeXaFdecimaI notation, where nis in the range 0.9, a.f,
or A.

String Special Operators

Assume string variable a holds 'Hello' and variable b holds 'Python’, then —

Operator Description Example

+ Concatenation - Adds values on either a + b will give HelloPython
side of the operator

* Repetition - Creates new strings, a*2 will give -HelloHello
concatenating multiple copies of the
same string

[1 Slice - Gives the character from the given a[l] will give e
index

[:] Range Slice - Gives the characters from a[1:4] will give ell

the given range

in Membership - Returns true if a character H in a will give 1
exists in the given string

notin Membership - Returns true if a character M notin a will give 1
does not exist in the given string

r/R Raw String - Suppresses actual meaning print r'\n' prints \n and print R'\n'prints
of Escape characters. The syntaxforraw \n
strings is exactly the same as for normal
strings with the exception of the raw
string operator, the letter "r," which
precedes the quotation marks. The "r"
can be lowercase r or uppercase R and
must be placed immediately preceding
the first quote mark.

% Format - Performs String formatting See at next section

57

String Formatting Operator

One of Python's coolest features is the string format operator %. This operator is unique to strings
and makes up for the pack of having functions from C's printf family. Following is a simple example

#1/usr/bin/python

print "My name is %s and weight is %d kg!" % ('zara', 21)
When the above code is executed, it produces the following result —
My name is Zara and weight is 21 kg!

Here is the list of complete set of symbols which can be used along with % —

Format Conversion

Symbol

%cC character

%S string conversion via str prior to formatting
%i signed decimal integer

%d signed decimal integer

%u unsigned decimal integer

%0 octal integer

%X hexadecimal integer lowercaseletters
%X hexadecimal integer UPPERcaseletters
%e exponential notation withlowercase'e’
%E exponential notation withUPPERcase'E'
%f floating point real number

%g the shorter of %f and %e

%G the shorter of %f and %E

Other supported symbols and functionality are listed in the following table —

Symbol Functionality
* argument specifies width or precision

- left justification

+ display the sign

<sp> leave a blank space before a positive number

add the octal leading zero ‘0" or hexadecimal leading '0x' or '0X',
depending on whether 'x' or 'X' were used.

0 pad from left with zeros insteadofspaces

% '%%' leaves you with a single literal '%'

58

var mapping variable dictionaryarguments

m.n. m is the minimum total width and n is the number of digits to
display after the decimal point ifappl.

Triple Quotes

Python's triple quotes comes to the rescue by allowing strings to span multiple lines, including
verbatim NEWLINEs, TABs, and any other special characters.

The syntax for triple quotes consists of three consecutive single or double quotes.

#!1/usr/bin/python

para_str = """this is a long string that is made up of
several lines and non-printable characters such as

TAB (\t) and they will show up that way when displayed.
NEWLINEs within the string, whether explicitly given like
this within the brackets [\n], or just a NEWLINE within
the variable assignment will also show up.

print para_str

When the above code is executed, it produces the following result. Note how every single special
character has been converted to its printed form, right down to the last NEWLINE at the end of the
string between the "up." and closing triple quotes. Also note that NEWLINEs occur either with an
explicit carriage return at the end of a line or its escape code \n —

this is a long string that is made up of
several lines and non-printable characters such as
TAB () and they will show up that way when displayed.
NEWLINEs within the string, whether explicitly given like
this within the brackets [

], or just a NEWLINE within
the variable assignment will also show up.

Raw strings do not treat the backslash as a special character at all. Every character you putinto a
raw string stays the way you wrote it —

#1/usr/bin/python
print 'C:\\nowhere'
When the above code is executed, it produces the following result —

C:\nowhere

Now let's make use of raw string. We would put expression in r'expression’ as follows —
#!/usr/bin/python

print r'C:\\nowhere'

When the above code is executed, it produces the following result —

C:\\nowhere

Unicode String

Normal strings in Python are stored internally as 8-bit ASCII, while Unicode strings are stored as 16-
bit Unicode. This allows for a more varied set of characters, including special characters from most
languages in the world. I'll restrict my treatment of Unicode strings to the following —

59

#!1/usr/bin/python

print u'Hello, world!'

When the above code is executed, it produces the following result —

Hello, world!

As you can see, Unicode strings use the prefix u, just as raw strings use the prefixr.

Built-in String Methods

Python includes the following built-in methods to manipulate strings —

SN
1

Methods with Description

capitalize
Capitalizes first letter of string

centerwidth, fillchar

Returns a space-padded string with the original string centered to a total of width columns.

countstr, beg = 0, end = len(string)

Counts how many times str occurs in string or in a substring of string if starting index beg
and ending index end are given.

decodeencoding ='UTF - 8, errors = strict’

Decodes the string using the codec registered for encoding. encoding defaults to the
default string encoding.

encodeencoding = UTF - 8', errors = strict’

Returns encoded string version of string; on error, default is to raise a ValueError unless
errors is given with 'ignore' or 'replace'.

endswithsuffix, beg = 0, end = len(string)
Determines if string or a substring of string ifstartingindexbegandendingindexendaregiven ends with
suffix; returns true if so and false otherwise.

expandtabstabsize = 8

Expands tabs in string to multiple spaces; defaults to 8 spaces per tab if tabsize not
provided.

findstr, beg = Oend = len(string)

60

10

11

12

13

14

15

16

17

18

19

Determine if str occurs in string or in a substring of string if starting index beg and ending

index end are given returns index if found and -1 otherwise.

indexstr, beg = 0, end = len(string)

Same as find, but raises an exception if str not found.

isalnum

Returns true if string has at least 1 character and all characters are alphanumeric and
false otherwise.

isalpha

Returns true if string has at least 1 character and all characters are alphabetic and false
otherwise.

isdigit

Returns true if string contains only digits and false otherwise.

islower

Returns true if string has at least 1 cased character and all cased characters are in
lowercase and false otherwise.

isnumeric

Returns true if a unicode string contains only numeric characters and false otherwise.

ISspace

Returns true if string contains only whitespace characters and false otherwise.

istitle

Returns true if string is properly "titlecased" and false otherwise.

Isupper

Returns true if string has at least one cased character and all cased characters are in
uppercase and false otherwise.

joinseq

Merges concatenates the string representations of elements in sequence seq into a string,
with separator string.

61

20

21

22

23

24

25

26

27

28

29

30

lenstrin

Returns the length of the string

ljustwidthl, fillchar]

Returns a space-padded string with the original string left-justified to a total of width
columns.

lower

Converts all uppercase letters in string to lowercase.

[strip

Removes all leading whitespace in string.

maketrans

Returns a translation table to be used in translate function.

maXstr

Returns the max alphabetical character from the string str.

minstr

Returns the min alphabetical character from the string str.

replaceold, new[, max]

Replaces all occurrences of old in string with new or at most max occurrences if max
given.

rfindstr, beg = 0, end = len(string)

Same as find, but search backwards in string.

rindexstr, beg = 0, end = len(string)

Same as index, but search backwards in string.

riustwidth, [, fillchar]

Returns a space-padded string with the original string right-justified to a total of width
columns.

62

31

32

33

34

35

36

37

38

39

40

rstrip

Removes all trailing whitespace of string.

splitstr="", num=string.count(str)

Splits string according to delimiter str space if not provided and returns list of substrings;
splitinto at most num substrings if given.

splitlines num=string.count('\n')

Splits string at all or num NEWLINEs and returns a list of each line with NEWLINEs removed.

startswithstr, beg=0.end=len(string)

Determines if string or a substring of string if starting index beg and ending index end are
given starts with substring str; returns true if so and false otherwise.

strip[chars

Performs both Istrip and rstrip on string
swapcase

Inverts case for all letters in string.

title

Returns "titlecased" version of string, that is, all words begin with uppercase and the rest
are lowercase.

translatetable, deletechars=""

Translates string according to translation table str256 chars, removing those in the del
string.

Converts lowercase letters in string to uppercase.

zfill width

Returns original string leftpadded with zeros to a total of width characters; intended for
numbers, Zfill retains any sign given less one zero.

isdecimal

Returns true if a unicode string contains only decimal characters and false otherwise.

63

64

Examples Sheet #4 (Python Strings)

Examplel: show the usage of capitalize() method by python codes.

str = "this is string example....wow!!!";
print "str.capitalize() : ", str.capitalize()

Result

str.capitalize() : This is string example....wow!!!

Example2: show the usage of center() method by python codes.

str = "this is string example....wow!!!";

print "str.center(40, 'a') : ", str.center(40, 'a')

Result

str.center(40, 'a') : aaaathis is string example....wow!!!aaaa

Example3: show the usage of count() method by python codes.

str = "this is string example....wow!!!";
sub = "i";

print "str.count(sub, 4, 40) : ", str.count(sub, 4, 40)
sub = "wow";

print "str.count(sub) :

Result

str.count(sub, 4, 40) : 2

str.count(sub) : 1

Example4: show the usage of decode() method by python codes.
Str = "this is string example....wow!!!";

Str = Str.encode('base64', 'strict');

print "Encoded String: " + Str

print "Decoded String: " + Str.decode('base64', 'strict’)

Result
Encoded String: dGhpcyBpcyBzdHIpbmcgZXhhbXBsZS4uLi53b3chISE=

, str.count(sub)

Decoded String: this is string example....wow!!!

Example5: show the usage of encode() method by python codes.

str = "this is string example....wow!!!";
print "Encoded String: " + str.encode('base64', 'strict')

Result

Encoded String: dGhpcyBpcyBzdHIpbmcgZXhhbXBsZS4ulLi53b3chISE=
Example6: show the usage of endswith() method by python codes.

str = "this is string example....wow!!!";
suffix = "wow!!!";

print str.endswith(suffix)

print str.endswith(suffix,20)

65

suffix = "is";
print str.endswith(suffix, 2, 4)
print str.endswith(suffix, 2, 6)

Result

True
True
True
False

Example7: show the usage of expandtabs() method by python codes.

str = "this is\tstring example....wow!!!";
print "Original string: " + str

print "Defualt exapanded tab: + str.expandtabs()
print "Double exapanded tab: " + str.expandtabs(16)

Result

Original string: this is string example....wow!!!
Defualt exapanded tab: this is string example....wow!!!

Double exapanded tab: this is string example....wow!!!

Example8: show the usage of find() method by python codes.

strl = "this is string example....wow!!!";
str2 = "exam";

print strl.find(str2)

print strl.find(str2, 10)

print strl.find(str2, 40)

Result

15
15
=il

Example9: show the usage of index () method by python codes.

strl = "this is string example....wow!!!";

str2 = "exam";

print stril.index(str2)

print strl.index(str2, 10)

print strl.index(str2, 40) # error, not fount after this starting index

Result

15

15

Traceback (most recent call last):
File "test.py", line 8, in
print strl.index(str2, 40);

ValueError: substring not found

shell returned 1

66

Example10: show the usage of isalnum() method by python codes.

str = "this2009"; # No space in this string
print str.isalnum()

str = "this is string example....wow!!!";
print str.isalnum()

When we run above program, it produces following result:

True
False

Examplell: show the usage of isalpha() method by python codes.

str = "this"; # No space & digit in this string
print str.isalpha()

str = "this is string example....wow!!!";

print str.isalpha()

When we run above program, it produces following result —

True
False

Examplel2: show the usage of isdigit() method by python codes.

str = "123456"; # Only digit in this string
print str.isdigit()

str = "this is string example....wow!!!";
print str.isdigit()

When we run above program, it produces following result —

True
False

Examplel3: show the usage of islower() method by python codes.

str = "THIS is string example....wow!!!";
print str.islower()
str = "this is string example....wow!!!";

print str.islower()

When we run above program, it produces following result —
False
True

Examplel4: show the usage of isnumeric() method by python codes.

str = u"this2009";
print str.isnumeric()
str = u"23443434";
print str.isnumeric()

When we run above program, it produces following result —

False
True

67

Examplel5: show the usage of isspace() method by python codes.

str = " 5

print str.isspace()

str = "This is string example....wow!!!";
print str.isspace()

When we run above program, it produces following result —

True
False

Examplel6: show the usage of istitle() method by python codes.

str = "This Is String Example...Wow!!!";
print str.istitle()
str = "This is string example....wow!!!";
print str.istitle()

When we run above program, it produces following result —

True
False

Examplel7: show the usage of isupper() method by python codes.

str = "THIS IS STRING EXAMPLE....WOW!!!";
print str.isupper()
str = "THIS is string example....wow!!!";
print str.isupper()

When we run above program, it produces following result —

True
False

Examplel8: show the usage of join() method by python codes.

s = "-"

seq = ("a", "b", "c"); # This is sequence of strings.

print s.join(seq)

When we run above program, it produces following result —
a-b-c

Examplel9: show the usage of len() method by python codes.

str = "this is string example....wow!!!";
print "Length of the string: ", len(str)

When we run above program, it produces following result —
Length of the string: 32

Example20: show the usage of ljust() method by python codes.

str = "this is string example....wow!!!";

68

print str.ljust(50, '9")

When we run above program, it produces following result —
this is string example....wow!!!000000000000000000

Example21: show the usage of lower() method by python codes.

str = "THIS IS STRING EXAMPLE....WOW!!!";

print str.lower()

When we run above program, it produces following result —

this is string example....wow!!!

Example22: show the usage of Istrip() method by python codes.

str = " this is string example....wow!!! "
print str.lstrip()

str = "88888888this is string example....wow!!!8888888";
print str.lstrip('8")

When we run above program, it produces following result —

this is string example....wow!!!
this is string example....wow!!!8888888

Example23: show the usage of maketrans() method by python codes.

from string import maketrans # Required to call maketrans function.
intab = "aeiou"

outtab = "12345"

trantab = maketrans(intab, outtab)

str = "this is string example....wow!!!"

print str.translate(trantab)

When we run above program, it produces following result —
th3s 3s str3ng 2ximpl2....wdw!!!

Example24: show the usage of max() method by python codes.

str = "this is really a string example....wow!!!";
print "Max character: " + max(str)

str = "this is a string example....wow!!!";

print "Max character: " + max(str)

When we run above program, it produces following result —

Max character: y
Max character: x

Example25: show the usage of min() method by python codes.

str = "this-is-real-string-example....wow!!!";
print "Min character: " + min(str)

str = "this-is-a-string-example....wow!!!";
print "Min character: " + min(str)

69

When we run above program, it produces following result —

Min character: !
Min character: !

Example26: show the usage of replace() method by python codes.

str = "this is string example....wow!!! this is really string"
print str.replace("is", "was")
print str.replace("is", "was", 3)

When we run above program, it produces following result —

thwas was string example....wow!!! thwas was really string
thwas was string example....wow!!! thwas is really string

Example27: show the usage of rfind() method by python codes.

strl "this is really a string example....wow!!!";
str2 "is";

print strl.rfind(str2)

print strl.rfind(str2, 0, 10)

print strl.rfind(str2, 10, 0)

print strl.find(str2)

print strl.find(str2, o, 10)

print strl.find(str2, 10, 0)

When we run above program, it produces following result —

Example28: show the usage of rindex() method by python codes.

strl "this is string example....wow!!!";
str2 "is";

print strl.rindex(str2)

print strl.index(str2)

When we run above program, it produces following result —

5
2

Example29: show the usage of rjust() method by python codes.
str = "this is string example....wow!!!";

print str.rjust(50, '@')

When we run above program, it produces following result —
000000000000000000this is string example....wow!!!

Example30: show the usage of rstrip() method by python codes.

str = " this is string example....wow!!! "
print str.rstrip()

70

str = "88888888this is string example....wow!!!8888888";
print str.rstrip('8")

When we run above program, it produces following result —
this is string example....wow!!!

88888888this is string example....wow!!!
Example31: show the usage of split() method by python codes.

str = "Linel-abcdef \nLine2-abc \nLine4-abcd";
print str.split()
print str.split(' ', 1)

When we run above program, it produces following result —
["Linel-abcdef', 'Line2-abc', 'Line4-abcd']
["Linel-abcdef', '\nLine2-abc \nLine4-abcd']

Example32: show the usage of splitlines() method by python codes.

str = "Linel-a b ¢ d e f\nLine2- a b c\n\nLine4- a b c d";
print str.splitlines()

print str.splitlines(@)

print str.splitlines(3)

print str.splitlines(4)

print str.splitlines(5)

When we run above program, it produces following result —

["Linel-a b c d e f', 'Line2- a b c', , 'Line4- a b c d']

["Linel-a b c d e f', 'Line2- a b c', "', 'Lined4- a b c d']

["Linel-a b ¢ d e f\n', 'Line2- a b c\n', '\n', 'Lined4- a b c d']

["Linel-a b ¢ d e f\n', 'Line2- a b c\n', '\n', 'Lined4- a b c d']

["Linel-a b ¢ d e f\n', 'Line2- a b c\n', '\n', 'Lined4- a b c d']

Example33: show the usage of startswith() method by python codes.

str = "this is string example....wow!!!";
print str.startswith('this')

print str.startswith('is', 2, 4)

print str.startswith('this', 2, 4)

When we run above program, it produces following result —

True
True
False

Example34: show the usage of strip () method by python codes.

str = "0000000this is string example....wow!!!0000000";
print str.strip('0')
When we run above program, it produces following result —

this is string example....wow!!!

Example35: show the usage of swapcase() method by python codes.

str = "this is string example....wow!!!";

71

print str.swapcase()
str = "THIS IS STRING EXAMPLE....WOW!!!";
print str.swapcase()

When we run above program, it produces following result —

THIS IS STRING EXAMPLE....WOW!!!
this is string example....wow!!!

Example36: show the usage of title() method by python codes.

str = "this is string example....wow!!!";
print str.title()

When we run above program, it produces following result —

This Is String Example....Wow!!!

Example37: show the usage of translate() method by python codes.

from string import maketrans # Required to call maketrans function.
intab = "aeiou”

outtab = "12345"

trantab = maketrans(intab, outtab)

str = "this is string example....wow!!!";

print str.translate(trantab)

When we run above program, it produces following result —

th3s 3s str3ng 2ximpl2....wdw!!!
Following is the example to delete 'x' and 'm' characters from the
string —

from string import maketrans # Required to call maketrans function.
intab = "aeiou"

outtab = "12345"

trantab = maketrans(intab, outtab)

str = "this is string example....wow!!!";

print str.translate(trantab, 'xm")

This will produce following result —
th3s 3s str3ng 21pl2....w4w!!!

Example38: show the usage of upper() method by python codes.

str = "this is string example....wow!!!";

print "str.capitalize() : ", str.upper()

When we run above program, it produces following result —
str.capitalize() : THIS IS STRING EXAMPLE....WOW!!!

Example39: show the usage of zfill() method by python codes.

str = "this is string example....wow!!!";

print str.zfill(40)

72

print str.zfill(50)

When we run above program, it produces following result —

000000POthis is string example....wow!!!
00000000000V this is string example....wow!!!

Example40: show the usage of isdecimal() method by python codes.

str = u"this2009";
print str.isdecimal();
str = u"23443434";
print str.isdecimal();

When we run above program, it produces following result —

False
True

Exercises with Solutions

1-Write a Python program to check whether a string starts with specified
characters.

#Solution

string = "w3resource.com"
print(string.startswith("w3r"))
#Output:True

2-Write a Python program to remove a newline in Python.

#Solution

strl="Python Exercises\n’
print(strl)
print(strl.rstrip())
#Output:

Python Exercises

Python Exercises

3-Write a Python function to reverses a string if it's length is a multiple of 4

#Solution
strl="abcd’
#strl="python'
if len(strl) % 4 == 0:
print ''.join(reversed(strl))
print strl
#Output: dcba
#Output: python

73

4-Write a Python program to remove the characters which have odd index
values of a given string.

#Solution
str="abcdef"’
#str="python'
result = ""
for i in range(len(str)):
ifi%2==0:
result = result + str[i]
print result
#0Output: ace
#Output: pto

5-Write a Python script that takes input from the user and displays that
input back in upper and lower cases.

#Solution

user_input = input("What's your favourite language? ")
print("My favourite language is ", user_input.upper())
print("My favourite language is ", user_input.lower())
#Output:

What's your favourite language? english

My favourite language is ENGLISH

My favourite language is english

6-Write a Python program to get substring before last specified character.

#Solution

strl = 'http://www.w3resource.com/python-exercises/string’
print(strl.rsplit('/', 1)[0])#The substring before last character '/’
print(strl.rsplit('-', 1)[@])#The substring before last character '_'
#Output:

#http://www.w3resource.com/python-exercises
#http://www.w3resource.com/python

H.W: What is the output of the following code?
Choose one: (PYTHON, PYTHONSTRING, ' ', STRING)

ch=""
for char in 'PYTHON STRING':
ch=ch+char
if char == :
print ch
break

74

PYTHON LISTS

The most basic data structure in Python is the sequence. Each element of a sequence is assignhed
a number - its position or index. The first index is zero, the second index is one, and so forth.

Python has six built-in types of sequences, but the most common ones are lists and tuples, which
we would see in this tutorial.

There are certain things you can do with all sequence types. These operations include indexing,
slicing, adding, multiplying, and checking for membership. In addition, Python has built-in functions
for finding the length of a sequence and for finding its largest and smallest elements.

Python Lists

The list is a most versatile datatype available in Python which can be written as a list of comma-
separated values items between square brackets. Important thing about a listis that items in a list
need not be of the same type.

Creating a list is as simple as putting different comma-separated values between square brackets.
For example —

listl = ['physics', 'chemistry',6 1997, 2000];
list2 = [1, 2, 3, 4, 5 1;
llSt3 - [”a", IIbII, IICII, Ildll];

Similar to string indices, list indices start at 0, and lists can be sliced, concatenated and so on.
Accessing Values in Lists

To access values in lists, use the square brackets for slicing along with the index or indices to
obtain value available at that index. For example —

#!1/usr/bin/python

listl = ['physics', 'chemistry',6 1997, 2000];
list2 = [1, 2, 3, 4, 5, 6, 7 1;

print "listi[0]: ", 1listl[0]

print "list2[1:5]: ", list2[1:5]

When the above code is executed, it produces the following result —

listi[0@]: physics
list2[1:5]: [2, 3, 4, 5]

Updating Lists

You can update single or multiple elements of lists by giving the slice on the left-hand side of the
assignment operator, and you can add to elements in a list with the append method. For example

#!1/usr/bin/python
list = ['physics', 'chemistry', 1997, 2000];

print "Value available at index 2 : "
print list[2]

list[2] = 2001;

print "New value available at index 2 : "
print list[2]

75

Note: append method is discussed in subsequent section.

When the above code is executed, it produces the following result —

Value available at index 2 :
1997

New value available at index 2 :
2001

Delete List Elements

To remove a list element, you can use either the del statement if you know exactly which elements
you are deleting or the remove method if you do not know. For example —

#1/usr/bin/python

listl = ['physics', 'chemistry',6 1997, 2000];
print listl

del listi[2];

print "After deleting value at index 2 : "
print listil

When the above code is executed, it produces following result —

['physics', 'chemistry', 1997, 2000]
After deleting value at index 2 :
['physics', 'chemistry', 2000]

Note: remove method is discussed in subsequent section.

Basic List Operations

Lists respond to the + and * operators much like strings; they mean concatenation and repetition
here too, except that the resultis a new list, not a string.

In fact, lists respond to all of the general sequence operations we used on strings in the prior
chapter.

Python Expression Results Description
len[1, 2, 3] 3 Length
[1,2,3]+[4,5,6] [1,2,3,4,5,6] Concatenation
['Hil'l]* 4 ['Hil", "Hit', "Hil', 'Hil'] Repetition
3in[1, 2, 3] True Membership
forxin[l,2,3]:printx, 123 Iteration

Indexing, Slicing, and Matrixes
Because lists are sequences, indexing and slicing work the same way for lists as they do for strings.

Assuming following input —

L= ['spam', 'Spam', 'SPAM!']

76

Python Expression Results

L[2]
L[-2]
L[1:]

'SPAM!!
'Spam'
['Spam', 'SPAM!']

Built-in List Functions & Methods:

Python includes the following list functions —

SN
1

Function with Description

cmplistl, list2

Compares elements of both lists.

lenlist

Gives the total length of the list.

maxlist

Returns item from the list with max value.

minlist

Returns item from the list with min value.

listseq

Converts a tuple into list.

Python includes following list methods

SN
1

Methods with Description

list.appendobj

Appends object obj to list

list.countobj

Returns count of how many times obj occurs in list

list.extendseq

77

Description
Offsets start at zero
Negative: count from the right

Slicing fetches sections

Appends the contents of seq to list

list.indexobj

Returns the lowest index in list that obj appears

list.insertindex, obj

Inserts object obj into list at offset index

list.popobj = list[— 1]

Removes and returns last object or obj from list

list.removeobj

Removes object obj from list

list.reverse

Reverses objects of list in place

list.sort[func]

Sorts objects of list, use compare func if given

78

Examples Sheet #5 (Python Lists)

Examplel: show the usage of cmp() method by python codes.

listl, list2 = [123, 'xyz'], [456, 'abc']

print cmp(listl, list2)

print cmp(list2, listl)

list3 = list2 + [786];

print cmp(list2, list3)

When we run above program, it produces following result —

=dl
1
=dl

Example2: show the usage of len() method by python codes.

listi, list2 = [123, 'xyz', 'zara'], [456, 'abc']
print "First list length : ", len(listl)
print "Second list length : ", len(list2)

When we run above program, it produces following result —

First list length : 3
Second list length : 2

Example3: show the usage of max() method by python codes.

list1l, list2 = [123, 'xyz', 'zara', 'abc'], [456, 700, 200]
print "Max value element : ", max(listl)
print "Max value element : ", max(list2)

When we run above program, it produces following result —

Max value element : zara
Max value element : 700

Example4: show the usage of min() method by python codes.

listi, list2 = [123, 'xyz', 'zara', 'abc'], [456, 700, 200]
print "min value element : ", min(listl)
print "min value element : ", min(list2)

When we run above program, it produces following result —

min value element : 123
min value element : 200

Example5: show the usage of list() method by python codes.

aTuple = (123, 'xyz', 'zara', 'abc');
aList = list(aTuple)
print "List elements : ", alist

When we run above program, it produces following result:

List elements : [123, 'xyz', 'zara', 'abc']

79

Example6: show the usage of append() method by python codes.

aList = [123, 'xyz', 'zara', 'abc'];

aList.append(2009);

print "Updated List : ", alist

When we run above program, it produces following result —
Updated List : [123, 'xyz', 'zara', 'abc', 2009]

Example7: show the usage of count() method by python codes.

aList = [123, 'xyz', 'zara', 'abc', 123];

print "Count for 123 : ", alList.count(123)

print "Count for zara : ", alList.count('zara')

When we run above program, it produces following result —
Count for 123 : 2

Count for zara : 1

Example8: show the usage of extend() method by python codes.

aList = [123, 'xyz', 'zara', 'abc', 123];
bList = [2009, 'manni'];
aList.extend(bList)
print "Extended List :

, alist
When we run above program, it produces following result —

Extended List : [123, 'xyz', 'zara', 'abc', 123, 2009, 'manni']

Example9: show the usage of index() method by python codes.

alList = [123, 'xyz', 'zara', 'abc'];

print "Index for xyz : ", alList.index('xyz')

print "Index for zara : ", alList.index('zara')

When we run above program, it produces following result —

Index for xyz : 1
Index for zara : 2

Examplel0: show the usage of insert() method by python codes.

aList = [123, 'xyz', 'zara', 'abc']

aList.insert(3, 2009)

print "Final List : ", alist

When we run above program, it produces following result —
Final List : [123, 'xyz', 'zara', 2009, 'abc']

Examplell: show the usage of pop() method by python codes.
aList = [123, 'xyz', 'zara', 'abc'];

print "A List : ", alList.pop()
print "B List : ", alList.pop(2)

When we run above program, it produces following result —

80

A List : abc
B List : zara

Examplel2: show the usage of remove() method by python codes.

aList = [123, 'xyz', 'zara', 'abc', 'xyz'];
aList.remove('xyz');

print "List : ", alist
aList.remove('abc');
print "List : ", alist

When we run above program, it produces following result —
List : [123, 'zara', 'abc', 'xyz']
List : [123, 'zara', 'xyz']

Examplel3: show the usage of reverse() method by python codes.

aList = [123, 'xyz', ‘zara', ‘'abc', 'xyz'];

aList.reverse();

print "List : ", alist

When we run above program, it produces following result —
List : ['xyz', ‘'abc', 'zara', 'xyz', 123]

Examplel4: show the usage of sort() method by python codes.

aList = [123, 'xyz', ‘zara', ‘'abc', 'xyz'];
aList.sort();
print "List : ", alist

When we run above program, it produces following result —

List : [123, 'abc', 'xyz', 'xyz', 'zara']

Exercises with Solutions

1-Write a Python program to sum all the items in a list=[1,2,-8].

#Solutionl:
Print sum([1,2,-8])
#Output: -5

#Solution2:
items=[1,2,-8]
sum_numbers = 0
for x in items:
sum_numbers += X
print "sum_numbers=", sum_numbers
#Output: sum_numbers=-5

2-Write a Python program to get the largest number from a list=[1, 2, -8, O].
#Solutionl:

81

Print max([1, 2, -8, @])
#Output: 2
#Solution2:
max = list[0]
for a in list:

if a > max:

max = a

print max
#Output: 2

3-Write a Python program to remove duplicates from a
list=[10,20,30,20,10,50,60,40,80,50,40].

#Solution:
a=[10,20,30,20,10,50,60,40,80,50,40]
b=[]
for i in a:

if i not in b:

b.append(i)

print b
#Output: [10, 20, 30, 50, 60, 40, 80]
#H.W: How to get only the duplicated list=[20, 10, 50, 40]

4-Write a Python program to check a list is empty or not.

#Solution:
1=11]
if not 1:
print "List is empty”
#Output: "List is empty"

5- Write a Python program to select an item randomly from a list= ['Red"’,
'‘Blue’', 'Green', 'White', 'Black']

#Solution:

import random

color_list = ['Red', 'Blue’', 'Green', 'White', 'Black']
print(random.choice(color_list))

#output: Black

6- Write a Python program to find common items from two lists:

#Solution:
listl=["Red", "Green", "Orange", "White"]
list2=["Black", "Green", "White", "Pink"]
print list(set(listl)&set(list2))
#Output: ['Green', 'White']
7-Write a Python program to perform the following on the list,x=[10, 20,
30, 40, 50, 60, 70, 80, 90].
1- Get first two elements.
#Solution:print(x[:2])#0utput:[10, 20]
2- Get last two elements.
#Solution:print(x[-2:])#0utput:[80, 90]
3- Get elements after the first two elements.

82

#Solution:print(x[2:])#0utput:[30, 40, 50, 60, 70, 80, 90]
4- Get elements before the last two elements.

#Solution:print(x[:-2])#0utput:[10, 20, 30, 40, 50, 60, 70]
5- Get the elements in the odd locations of a list.

#Solution:print(x[::2]) # Output:[10, 30, 50, 70, 90]

8- Write a Python program to find the second smallest number in a list=[1,
2,-8, -2, 0]

#Solution:
al, a2 = float('inf'), float('inf")
for x in [1, 2, -8, -2, 0]:
if x <= al:
al, a2 = x, al
elif x < a2:

a2 = x
print a2
#output: -2
9-Write a Python program to generate all sublists of a list.
#Solution:

my_ list=[10, 20, 30, 40]
#my list=['X', 'Y', 'Z']
subs = [[]]
for i in range(len(my_list)):
n =i+l
while n <= len(my_list):
sub = my_list[i:n]
subs.append(sub)
n+=1
print subs
#output:[[], [10], [1@, 20], [1@, 20, 30], [10, 20, 30, 48], [20], [20, 30],
[20, 30, 40], [30], [30, 40], [40]]
soutput:[[1, ['X'1, ['X', 'Y'1, ['X', 'v', 'z'1, ['Y'1, ['Y', ‘2], ['Z']]

10- Write a Python program to check whether a list contains a sublist, for
example does [4,3]in [2,4,3,5,7]? and does [3,7]in[2,4,3,5,7]7

#Solution:
1=[2,4,3,5,7]
s=[4,3]
#s=[3,7]
sub_set = False
if s ==[]:
sub_set = True
elif s == 1:

sub_set = True
elif len(s) > len(l):
sub_set = False
else:
for i in range(len(l)):
if 1[i] == s[0@]:
n=1
while (n < len(s)) and (l[i+n] == s[n]):

83

n+=1
if n == len(s):
sub_set = True
print sub_set
#output: True for s=[4,3] and false for s=[3,7]

H.W1: Write a Python program to extend a list without append.
Input lists: [10, 20, 30], [40, 50, 60]

New List: [40, 50, 60, 10, 20, 30]

H.W2: Write a Python program to remove duplicates from a list of
lists.

Input list : [[10, 20], [40], [30, 56, 25], [10, 20], [33], [40]]

New List : [[10, 20], [30, 56, 25], [33], [40]]

H.W3: Write a Python program to find the list in a list of lists whose
sum of elements is the highest.

Input lists: [1,2,3], [4,5,6], [10,11,12], [7,8,9]

Output: [10, 11, 12]

84

PYTHON TUPLES

A tuple is a sequence of immutable Python objects. Tuples are sequences, just like lists. The
differences between tuples and lists are, the tuples cannot be changed unlike lists and tuples use
parentheses, whereas lists use square brackets.

Creating a tuple is as simple as putting different comma-separated values. Optionally you can put
these comma-separated values between parentheses also. For example —

tupl = ('physics', 'chemistry', 1997, 2000);
tup2 = (1, 2, 3, 4, 5);
tup3 = IIaII, IIbII, “C“, Ildll;

The empty tuple is written as two parentheses containing nothing —
tupl = ();

To write a tuple containing a single value you have to include a comma, even though there is only
one value —

tupl = (50,);
Like string indices, tuple indices start at 0, and they can be sliced, concatenated, and so on.

Accessing Values in Tuples:

To access values in tuple, use the square brackets for slicing along with the index or indices to
obtain value available at that index. For example —

#!/usr/bin/python

tupl
tup2

('physics', 'chemistry', 1997, 2000);
(1I 2[3[4[5[6[7);

print "tupl[O0]: ", tupl[O]
print "tup2[1:5]: ", tup2[1:5]

When the above code is executed, it produces the following result —

tupl[0]: physics
tup2[1:5]: [2, 3, 4, 5]

Updating Tuples

Tuples are immutable which means you cannot update or change the values of tuple elements.
You are able to take portions of existing tuples to create new tuples as the following example
demonstrates —

#!/usr/bin/python

tupl
tup2

(12, 34.56);
('abc', 'xyz'");

Following action is not valid for tuples
tupl[O0] = 100;

So let's create a new tuple as follows

tup3 = tupl + tup2;
print tup3

85

When the above code is executed, it produces the following result —

(12, 34.56, 'abc', 'xyz')

Delete Tuple Elements

Removing individual tuple elements is not possible. There is, of course, nothing wrong with putting
together another tuple with the undesired elements discarded.

To explicitly remove an entire tuple, just use the del statement. For example:

#!1/usr/bin/python
tup = ('physics', 'chemistry', 1997, 2000);

print tup

del tup;

print "After deleting tup : "
print tup

This produces the following result. Note an exception raised, this is because after del tup tuple
does not exist any more —

('physics', 'chemistry', 1997, 2000)
After deleting tup :
Traceback (most recent call last)
File "test.py", line 9, in <module>
print tup;
NameError: name 'tup' is not defined

Basic Tuples Operations

Tuples respond to the + and * operators much like strings; they mean concatenation and
repetition here too, except that the resultis a new tuple, not a string.

In fact, tuples respond to all of the general sequence operations we used on strings in the prior
chapter —

Python Expression Results Description
len(l, 2, 3) 3 Length
1,2,3+4,5,6 1,2,3,4,5,6 Concatenation
'Hil', * 4 'Hi!','Hi!','Hi!', Hi!’ Repetition
3in1,2,3 True Membership
forxini,2,3: printx, 123 lteration

Indexing, Slicing, and Matrixes

Because tuples are sequences, indexing and slicing work the same way for tuples as they do for
strings. Assuming following input —

L= ('spam', 'Spam', 'SPAM!')

Python Expression Results Description

86

L[2] 'SPAM!! Offsets start at zero
L[-2] 'Spam' Negative: count from the right
L[1:] ['Spam’, 'SPAM!"] Slicing fetches sections

No Enclosing Delimiters

Any set of multiple objects, comma-separated, written without identifying symbols, i.e., brackets
for lists, parentheses for tuples, etc., default to tuples, as indicated in these short examples —

#!/usr/bin/python

print 'abc', -4.24e93, 18+6.6j, 'xyz'
X, y=1, 2;
print "vValue of x , y : ", X,y

When the above code is executed, it produces the following result —

abc -4.24e+93 (18+6.6j) xyz
Value of x , y : 1 2

Built-in Tuple Functions

Python includes the following tuple functions —

SN Function with Description

1

cmptuplel, tuple2

Compares elements of both tuples.
2

lentuple

Gives the total length of the tuple.
3

maxtuple

Returns item from the tuple with max value.
4

mintuple

Returns item from the tuple with min value.
5

tupleseqg

Converts a list into tuple.

87

Examples Sheet #6 (Python Tuples)

Examplel: show the usage of cmp() method by python codes.

tuplel, tuple2 = (123, 'xyz'), (456, 'abc')

print cmp(tuplel, tuple2)

print cmp(tuple2, tuplel)

tuple3 = tuple2 + (786,);

print cmp(tuple2, tuple3)

When we run above program, it produces following result —

=dl
1
=dl

Example2: show the usage of len() method by python codes.

tuplel, tuple2 = (123, 'xyz', 'zara'), (456, 'abc')

print "First tuple length : ", len(tuplel)

print "Second tuple length : ", len(tuple2)

When we run above program, it produces following result —

First tuple length : 3
Second tuple length : 2

Example3: show the usage of max() method by python codes.

tuplel, tuple2 = (123, 'xyz', 'zara', 'abc'), (456, 700, 200)
print "Max value element : ", max(tuplel)
print "Max value element : ", max(tuple2)

When we run above program, it produces following result —

Max value element : zara
Max value element : 700

Example4: show the usage of min() method by python codes.

tuplel, tuple2 = (123, 'xyz', 'zara', 'abc'), (456, 700, 200)
print "min value element : ", min(tuplel)
print "min value element : ", min(tuple2)

When we run above program, it produces following result —

min value element : 123
min value element : 200

Example5: show the usage of tuple () method by python codes.

aList = (123, 'xyz', 'zara', 'abc');

aTuple = tuple(alist)

print "Tuple elements : ", aTuple

When we run above program, it produces following result —

Tuple elements : (123, 'xyz', 'zara', 'abc')

88

Exercises with Solutions

1. Write a Python program to create a tuple.

a) Create an empty tuple:

x = ()

print x #()

b) Create an empty tuple with tuple() function built-in Python:
tuplex = tuple()

print tuplex #()

c) Create a tuple with different data types:

tuplex = ("tuple", False, 3.2, 1)

print "tuplex=", tuplex # tuplex = ("tuple", False, 3.2, 1)

2. Write a Python program to add an item in a tuple.

Note: tuples are immutable, so you cannot add new elements directly.
a) create a tuple:

tuplex = (4, 6, 2, 8, 3, 1)

print tuplex #(4, 6, 2, 8, 3, 1)

b) using merge of tuples with the + operator you can add an element and it
will create a new tuple:

tuplex = tuplex + (9,)

print tuplex #(4, 6, 2, 8, 3, 1, 9)

c) adding items in a specific index:

tuplex = tuplex[:5] + (15, 20, 25) + tuplex[:5]

print tuplex # (4, 6, 2, 8, 3, 15, 20, 25, 4, 6, 2, 8, 3)

d) converting the tuple to list:

listx = list(tuplex) #[4, 6, 2, 8, 3, 15, 20, 25, 4, 6, 2, 8, 3]

e) use different ways to add items in list:

listx.append(30)

tuplex = tuple(listx)

print tuplex # (4, 6, 2, 8, 3, 15, 20, 25, 4, 6, 2, 8, 3, 30)

3- Write a Python program to convert a tuple to a string.

tup (lel) IX', lel) lr\l, 'C') Ill, 'S', Iel, ISI)
str = ''.join(tup)
print str # exercises

H.W: Write a Python program to reverse a tuple.

Example:
Input: (5, 10, 15, 20)
Output: (20, 15, 10, 5)

89

PYTHON DICTIONARY

Each key is separated from its value by a colon :, the items are separated by commas, and the
whole thing is enclosed in curly braces. An empty dictionary without any items is written with just
two curly braces, like this: {}.

Keys are unique within a dictionary while values may not be. The values of a dictionary can be of
any type, but the keys must be of an immutable data type such as strings, numbers, or tuples.

Accessing Values in Dictionary:

To access dictionary elements, you can use the familiar square brackets along with the key to
obtain its value. Following is a simple example —

#!1/usr/bin/python
dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'};

print "dict['Name']: ", dict['Name']
print "dict['Age']: ", dict['Age']

When the above code is executed, it produces the following result —

dict['Name']: Zara
dict['Age']: 7

If we attempt to access a data item with a key, which is not part of the dictionary, we get an error
as follows —

#!1/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'};

print "dict['Alice']: ", dict['Alice']

When the above code is executed, it produces the following result —

dict['zara']:
Traceback (most recent call last):
File "test.py", line 4, in <module>
print "dict['Alice']: ", dict['Alice'];
KeyError: 'Alice'

Updating Dictionary

You can update a dictionary by adding a new entry or a key-value pair, modifying an existing
entry, or deleting an existing entry as shown below in the simple example —

#1/usr/bin/python
dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'};

dict['Age'] = 8; # update existing entry
dict['School'] = "DPS School"; # Add new entry

print "dict['Age']: ", dict['Age']
print "dict['School']: ", dict['School']

When the above code is executed, it produces the following result —

90

dict['Age']: 8
dict['School']: DPS School

Delete Dictionary Elements

You can either remove individual dictionary elements or clear the entire contents of a dictionary.
You can also delete entire dictionary in a single operation.

To explicitly remove an entire dictionary, just use the del statement. Following is a simple example

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'};
del dict['Name']; # remove entry with key 'Name'
dict.clear(); # remove all entries in dict

del dict ; # delete entire dictionary

print "dict['Age']: ", dict['Age']
print "dict['School']: ", dict['School']

This produces the following result. Note that an exception is raised because after del dict
dictionary does not exist any more —

dict['Age']:
Traceback (most recent call last)
File "test.py", line 8, in <module>
print "dict['Age']: ", dict['Age'];
TypeError: 'type' object is unsubscriptable

Note: del method is discussed in subsequent section.

Properties of Dictionary Keys

Dictionary values have no restrictions. They can be any arbitrary Python object, either standard
objects or user-defined objects. However, same is not true for the keys.

There are two important points to remember about dictionary keys —

a More than one entry per key not allowed. Which means no duplicate key is allowed. When
duplicate keys encountered during assignment, the last assignment wins. For example —

#!1/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Name': 'Manni'};

print "dict['Name']: ", dict['Name']

When the above code is executed, it produces the following result —
dict['Name']: Manni

b Keys must be immutable. Which means you can use strings, numbers or tuples as dictionary keys
but something like ['key'] is not allowed. Following is a simple example:

#!/usr/bin/python
dict = {['Name']: 'Zara', 'Age': 7};

print "dict['Name']: ", dict['Name']

When the above code is executed, it produces the following result —

91

Traceback (most recent call last):
File "test.py", line 3, in <module>
dict = {['Name']: 'Zara', 'Age': 7},
TypeError: list objects are unhashable

Built-in Dictionary Functions & Methods —

Python includes the following dictionary functions —

SN Function with Description

1
cmpdictl, dict2
Compares elements of both dict.
2
lendict
Gives the total length of the dictionary. This would be equal to the number of items in the
dictionary.
3
strdict
Produces a printable string representation of a dictionary
4

typevariable

Returns the type of the passed variable. If passed variable is dictionary, then it would
return a dictionary type.

Python includes following dictionary methods —

SN Methods with Description

1

dict.clear

Removes all elements of dictionary dict
2

dict.copy

Returns a shallow copy of dictionary dict
3

dict.fromkeys

Create a new dictionary with keys from seq and values set to value.
4

dict.getkey. default = None

For key key, returns value or default if key not in dictionary
5

92

10

dict.has_keykey

Returns true if key in dictionary dict, false otherwise

dict.items

Returns a list of dict's key, value tuple pairs

dict.keys

Returns list of dictionary dict's keys

dict.setdefaultkey, default = None

Similar to get, but will set dict[key]=default if key is not already in dict

dict.updatedict2

Adds dictionary dict2's key-values pairs to dict

dict.values

Returns list of dictionary dict's values

93

Examples Sheet #7 (Python Dictionary)

Examplel: show the usage of cmp() method by python codes.

dictl = {'Name': 'Zara', 'Age': 7};
dict2 = {'Name': 'Mahnaz', ‘'Age': 27};
dict3 = {'Name': "Abid', 'Age': 27};
dictd4 = {'Name': 'Zara', 'Age': 7};

print "Return Value : %d" % cmp (dictl, dict2)
print "Return Value : %d" % cmp (dict2, dict3)
print "Return Value : %d" % cmp (dictl, dict4)

When we run above program, it produces following result T

Return Value : -1
Return Value : 1
Return Value : ©

Example2: show the usage of len() method by python codes.
dict = {'Name': 'Zara', 'Age': 7};

print "Length : %d" % len (dict)

When we run above program, it produces following result T

Length : 2

Example3: show the usage of str() method by python codes.

dict = {'Name': 'Zara', ‘'Age': 7};
print "Equivalent String : %s" % str (dict)

When we run above program, it produces following result T
Equivalent String : {'Age': 7, 'Name': 'Zara'}

Example4: show the usage of type() method by python codes.
dict = {'Name': 'Zara', ‘'Age': 7};

print "Variable Type : %s" % type (dict)

When we run above program, it produces following result T
Variable Type : <type 'dict'>

Example5: show the usage of clear() method by python codes.

dict = {'Name': 'Zara', 'Age': 7};
print "Start Len : %d" % 1len(dict)
dict.clear()

print "End Len : %d" % len(dict)

When we run above program, it produces following result T

Start Len : 2
End Len : ©

94

Example6: show the usage of copy() method by python codes.

dictl = {'Name': 'Zara', 'Age': 7};
dict2 = dictl.copy()
print "New Dictinary : %s" % str(dict2)

When we run above program, it produces following result T

New Dictinary : {'Age': 7, 'Name': 'Zara'}

Example7: show the usage of fromkeys() method by python codes.
seq = ('name', 'age', 'sex'")

dict = dict.fromkeys(seq)

print "New Dictionary : %s" % str(dict)

dict = dict.fromkeys(seq, 10)
print "New Dictionary : %s" % str(dict)

When we run above program, it produces following result T

New Dictionary : {'age': None, 'name': None, 'sex': None}
New Dictionary : {'age': 10, ‘'name': 10, 'sex': 10}

Example8: show the usage of get() method by python codes.
dict = {'Name': 'Zabra', 'Age': 7}

print "Value : %s" % dict.get('Age')
print "Value : %s" % dict.get('Education’, "Never")

When we run above program, it produces following result T

Value : 7
Value : Never

Example9: show the usage of has_key () method by python codes.
dict = {'Name': 'Zara', ‘'Age': 7}

print "Value : %s" % dict.has_key('Age")

print "Value : %s" % dict.has_key('Sex")

When we run above program, it produces following result T

Value : True
Value : False

Examplel0: show the usage of items() method by python codes.
dict = {'Name': 'Zara', 'Age': 7}
print "Value : %s" % dict.items()

When we run above program, it produces following result T
Value : [('Age', 7), ('Name', 'Zara')]

Examplell: show the usage of keys() method by python codes.
dict = {'Name': 'Zara', 'Age': 7}
print "Value : %s" % dict.keys()
When we run above program, it produces following result T

95

Value : ['Age', 'Name']
Examplel2: show the usage of setdefault () method by python codes.

dict = {'Name': 'Zara', ‘'Age': 7}

print "Value : %s" % dict.setdefault('Age', None)

print "Value : %s" % dict.setdefault('Sex', None)

When we run above program, it produces following result T
Value : 7

Value : None

Examplel3: show the usage of update() method by python codes.

dict = {'Name': 'Zara', 'Age': 7}

dict2 = {'Sex': 'female' }

dict.update(dict2)

print "Value : %s" % dict

When we run above program, it produces following result T

Value : {'Age': 7, 'Name': 'Zara', 'Sex': 'female'}

Examplel4: show the usage of values() method by python codes.

dict = {'Name': 'Zara', ‘'Age': 7}
print "Value : %s" % dict.values()

When we run above program, it produces following result T
Value : [7, 'Zara']

Exercises with Solutions
1- Write a Python script to add a key 2 and value 30 to a dictionary= {0:10,
1:20}

#Solution: d={0:10, 1:20}; d.update({2:30}); print d
#output: {@: 10, 1: 20, 2: 30}

2- Write a Python program to:
a) Sort a dictionary by key:

#Solution:
color_dict = {'red':'#FF0O000', 'green':'#008000', 'black': '#000000",
'white': "#FFFFFF'}
for key in sorted(color_dict):
print"%s: %s" % (key, color_dict[key])
#output:
#black: #000000
#green: #008000
#red: #FF0000
#white: #FFFFFF

b) Sort (ascending and descending) a dictionary by value.
#Solution

96

import operator

d ={1: 2, 3: 4, 4: 3, 2: 1, 0: 0}

print('Original dictionary : ',d)

sorted_d = sorted(d.items(), key=operator.itemgetter(0))

print('Dictionary in ascending order by value : ',sorted_d)

sorted_d = sorted(d.items(), key=operator.itemgetter(®),reverse=True)
print('Dictionary in descending order by value : ',sorted_d)

#0Output:

#Original dictionary : {0: @, 1: 2, 2: 1, 3: 4, 4: 3}

#Dictionary in ascending order by value : [(©, 0), (1, 2), (2, 1), (3, 4), (4,
3)]

#Dictionary in descending order by value: [(4, 3), (3, 4), (2, 1), (1, 2), (e,
0)]

3-Write a Python script to concatenate following dictionaries to create a
new one. For example, let you have the following three dictionaries:
dic1={1:10, 2:20}

dic2={3:30, 4:40}

dic3={5:50,6:60}

The result is one dictionary : {1: 10, 2: 20, 3: 30, 4: 40, 5: 50, 6: 60}.

#Solution

dici={1:10, 2:20}

dic2={3:30, 4:40}

dic3={5:50,6:60}

dic4a = {}

for d in (dicl, dic2, dic3): dic4.update(d)

print dic4

#Output: {1: 1@, 2: 20, 3: 30, 4: 40, 5: 50, 6: 60}

4- Write a Python script to check if a given key already exists in a
dictionary.

#Solution
d = {1: 10, 2: 20, 3: 30, 4: 40, 5: 50, 6: 60}
X=5
#x=9
if x in d:

print 'Key is present in the dictionary'
else:

print 'Key is not present in the dictionary’
#Output: Key is present in the dictionary
#Output: Key is not present in the dictionary

5- Write a Python script to merge two Python dictionaries.

#Solution

dli = {'a': 100, 'b': 200}

d2 = {'x': 300, 'y': 200}

d = di.copy()

d.update(d2)

print d

#Output: {'x': 300, 'y': 200, 'a': 100, 'b': 200}

6-Write a Python program to sum all the items in a dictionary.
#Solution

97

my dict = {'datal':100, 'data2':-54,"'data3':247}
print(sum(my_dict.values()))
Output: 293

7-Write a Python program to map two lists into a dictionary.

#Solution

keys = ['red', 'green', 'blue']

values = ['#FF0000', '#008000', '#0OOOFF']

color_dictionary = dict(zip(keys, values))

print(color_dictionary)

Output: {'green': '#008000', 'blue': '#@OOOFF', 'red': '#FF0000'}

8-Write a Python program to get the maximum and minimum value in a
dictionary

#Solution

my dict = {'x':500, 'y':5874, 'z': 560}

key _max = max(my_dict.keys(), key=(lambda k: my_dict[k]))
key_min = min(my_dict.keys(), key=(lambda k: my_dict[k]))
print 'Maximum Value: ',my_dict[key_max]

print 'Minimum Value: ',my _dict[key_min]

Output: Maximum Value: 5874

Output: Minimum Value: 500

9-Write a Python program to remove duplicates from Dictionary.

#Solution
student_data = {'idl1': {'subject_integration': ['Python', 'Perl', 'Prolog'l],
'class': ['V'],
'name’: ['Sara']},
'id2': {'subject_integration': ['Python', 'Perl’, 'Prolog'],
‘class': ['V'],
'name': ['David']},
'id3': {'subject_integration': ['Python', 'Perl', 'Prolog'],
‘class': ['V'],
'name’: ['Sara']},
'id4': {'subject_integration': ['Python', 'Perl', 'Prolog'],
'class': ['V'],
'name': ['Surya']}}
result = {}
for key,value in student_data.items():
if value not in result.values():
result[key] = value
print " student_data =",result
#Output:
student_data = {'idl': {'subject_integration': ['Python', 'Perl', 'Prolog'],
‘class': ['V'],
'name': ['Sara']},
'id2': {'subject_integration': ['Python', 'Perl’', 'Prolog'l],
'class': ['V'],
'name': ['David']},
'id4': {'subject_integration': ['Python', 'Perl', 'Prolog'],
'class': ['V'],

98

'name': ['Surya']}}

10-Write a Python program to create a dictionary from a string.
Note: Track the count of the letters from the string.

Sample string : ‘w3resource'

output: {"3:1,'s"'1,'r: 2,'u"1,'w: 1, 'c:1,'e" 2, 0" 1}.

#Solution
from collections import defaultdict, Counter
strl = 'w3resource'’
my dict = {}
for letter in stri:
my _dict[letter] = my_dict.get(letter, 0) + 1
print(my_dict)
#Output:{'o": 1, '3': 1, 's': 1, 'r': 2, 'w': 1, 'u': 1, 'e': 2, 'c': 1}

H.W1: Write a Python program to match key values in two
dictionaries

Sample dictionary: {'keyl'" 1, 'key2" 3, 'key3" 2}, {'keyl" 1, 'key2". 2}
Expected output: keyl: 1 is present in both x and y

H.W2: Write a Python program to replace dictionary values with
their sum.

Sample dictionary: {'keyl" 1, 'key2'": 3, 'key3". 2}

Expected output: {'keyl": 6, 'key2". 6, 'key3'": 6}

99

PYTHON FUNCTIONS

A function is a block of organized, reusable code that is used to perform a single, related action.
Functions provide better modularity for your application and a high degree of code reusing.

As you already know, Python gives you many built-in functions like print, etc. but you can also
create your own functions. These functions are called user-defined functions.

Defining a Function

You can define functions to provide the required functionality. Here are simple rules to define a
function in Python.

¢ Function blocks begin with the keyword def followed by the function name and parentheses (

).

¢ Any input parameters or arguments should be placed within these parentheses. You can also
define parameters inside these parentheses.

e The first statement of a function can be an optional statement - the documentation string of
the function or docstring.

e The code block within every function starts with a colon : and is indented.

¢ The statement return [expression] exits a function, optionally passing back an expression to
the caller. A return statement with no arguments is the same as return None.

Syntax

def functionname(parameters):
"function_docstring"
function_suite
return [expression]

By default, parameters have a positional behavior and you need to inform them in the same order
that they were defined.

Example

The following function takes a string as input parameter and prints it on standard screen.

def printme(str):
"This prints a passed string into this function"
print str
return

Calling a Function

Defining a function only gives it a name, specifies the parameters that are to be included in the
function and structures the blocks of code.

Once the basic structure of a function is finalized, you can execute it by calling it from another
function or directly from the Python prompt. Following is the example to call printme function —

#1/usr/bin/python

Function definition is here

def printme(str):
"This prints a passed string into this function"
print str
return;

100

Now you can call printme function
printme("I'm first call to user defined function!")
printme("Again second call to the same function")

When the above code is executed, it produces the following result —

I'm first call to user defined function!
Again second call to the same function

Pass by reference vs value

All parameters arguments in the Python language are passed by reference. It means if you change
what a parameter refers to within a function, the change also reflects back in the calling function.
For example —

#!/usr/bin/python

Function definition is here

def changeme(mylist):
"This changes a passed list into this function"
mylist.append([1,2,3,4]);
print "Values inside the function: ", mylist
return

Now you can call changeme function

mylist = [10,20,30];

changeme(mylist);

print "Values outside the function: ", mylist

Here, we are maintaining reference of the passed object and appending values in the same object.
So, this would produce the following result —

Values inside the function: [10, 20, 30, [1, 2, 3, 4]]
Values outside the function: [10, 20, 30, [1, 2, 3, 4]]

There is one more example where argument is being passed by reference and the reference is
being overwritten inside the called function.

#!1/usr/bin/python

Function definition is here
def changeme(mylist):
"This changes a passed list into this function"
mylist = [1,2,3,4]; # This would assig new reference in mylist
print "Values inside the function: ", mylist
return

Now you can call changeme function
mylist = [10,20,30];

changeme(mylist);
print "Values outside the function: ", mylist

4

The parameter mylist is local to the function changeme. Changing mylist within the function does
not affect mylist. The function accomplishes nothing and finally this would produce the following
result:

Values inside the function: [1, 2, 3, 4]
Values outside the function: [10, 20, 30]

Function Arguments
You can call a function by using the following types of formal arguments:

¢ Required arguments

101

e Keyword arguments
e Default arguments

e Variable-length arguments

Required arguments

Required arguments are the arguments passed to a function in correct positional order. Here, the
number of arguments in the function call should match exactly with the function definition.

To call the function printme, you definitely need to pass one argument, otherwise it gives a syntax
error as follows —

#1/usr/bin/python

Function definition is here

def printme(str):
"This prints a passed string into this function"
print str
return;

Now you can call printme function
printme()

When the above code is executed, it produces the following result:

Traceback (most recent call last)
File "test.py", line 11, in <module>
printme();
TypeError: printme() takes exactly 1 argument (0 given)

Keyword arguments

Keyword arguments are related to the function calls. When you use keyword arguments in a
function call, the caller identifies the arguments by the parameter name.

This allows you to skip arguments or place them out of order because the Python interpreter is
able to use the keywords provided to match the values with parameters. You can also make
keyword calls to the printme function in the following ways —

#1/usr/bin/python

Function definition is here

def printme(str):
"This prints a passed string into this function"
print str
return;

Now you can call printme function
printme(str = "My string")

When the above code is executed, it produces the following result —
My string

The following example gives more clear picture. Note that the order of parameters does not
matter.

#!/usr/bin/python

Function definition is here

def printinfo(name, age):
"This prints a passed info into this function"
print "Name: ", name

102

print "Age ", age
return;

Now you can call printinfo function
printinfo(age=50, name="miki")

When the above code is executed, it produces the following result —

Name: miki
Age 50

Default arguments

A default argumentis an argument that assumes a default value if a value is not provided in the
function call for that argument. The following example gives an idea on default arguments, it
prints default age if it is not passed —

#!1/usr/bin/python

Function definition is here
def printinfo(name, age = 35):
"This prints a passed info into this function"

print "Name: ", name
print "Age ", age
return;

Now you can call printinfo function
printinfo(age=50, name="miki")
printinfo(name="miki")

When the above code is executed, it produces the following result —

Name: miki

Age 50
Name: miki
Age 35

Variable-length arguments

You may need to process a function for more arguments than you specified while defining the
function. These arguments are called variable-length arguments and are not named in the
function definition, unlike required and default arguments.

Syntax for a function with non-keyword variable arguments is this —

def functionname([formal_args,] *var_args_tuple):
"function_docstring"
function_suite
return [expression]

An asterisk * is placed before the variable name that holds the values of all nonkeyword variable
arguments. This tuple remains empty if no additional arguments are specified during the function
call. Following is a simple example —

#!/usr/bin/python

Function definition is here
def printinfo(argl, *vartuple):
"This prints a variable passed arguments"
print "Output is: "
print argl
for var in vartuple:
print var
return;

103

Now you can call printinfo function
printinfo(10)
printinfo(70, 60, 50)

When the above code is executed, it produces the following result —

Output is:
10
Output is:
70
60
50

The Anonymous Functions

These functions are called anonymous because they are not declared in the standard manner by
using the def keyword. You can use the lambda keyword to create small anonymous functions.

¢ Lambda forms can take any number of arguments but return just one value in the form of an
expression. They cannot contain commands or multiple expressions.

¢ An anonymous function cannot be a direct call to print because lambda requires an
expression

e Lambda functions have their own local namespace and cannot access variables other than
those in their parameter list and those in the global namespace.

e Although it appears that lambda's are a one-line version of a function, they are not
equivalent to inline statements in C or C++, whose purpose is by passing function stack
allocation during invocation for performance reasons.

Syntax

The syntax of lambda functions contains only a single statement, which is as follows —

lambda [argl [,arg2, argn]] :expression

Following is the example to show how /lambda form of function works —

#1/usr/bin/python

Function definition is here
sum = lambda argl, arg2: argl + arg2;

Now you can call sum as a function
print "Value of total : ", sum(10, 20)
print "Value of total : ", sum(20, 20)

When the above code is executed, it produces the following result —

Value of total : 30
Value of total : 40

The return Statement

The statement return [expression] exits a function, optionally passing back an expression to the
caller. A return statement with no arguments is the same as return None.

All the above examples are not returning any value. You can return a value from a function as
follows —

#!1/usr/bin/python

104

Function definition is here

def sum(argl, arg2):
Add both the parameters and return them."
total = argl + arg2
print "Inside the function : ", total
return total;

Now you can call sum function
total = sum(10, 20);
print "Outside the function : ", total

When the above code is executed, it produces the following result —

Inside the function : 30
Outside the function : 30

Scope of Variables

All variables in a program may not be accessible at all locations in that program. This depends on
where you have declared a variable.

The scope of a variable determines the portion of the program where you can access a particular
identifier. There are two basic scopes of variables in Python —

e Global variables

e Local variables

Global vs. Local variables

Variables that are defined inside a function body have a local scope, and those defined outside
have a global scope.

This means that local variables can be accessed only inside the function in which they are
declared, whereas global variables can be accessed throughout the program body by all functions.
When you call a function, the variables declared inside it are brought into scope. Following is a
simple example —

#!/usr/bin/python

total = 0; # This is global variable.

Function definition is here

def sum(argl, arg2):
Add both the parameters and return them."
total = argl + arg2; # Here total is local variable.
print "Inside the function local total : ", total
return total;

Now you can call sum function
sum(10, 20);
print "Outside the function global total : ", total

When the above code is executed, it produces the following result —

Inside the function local total : 30
outside the function alobhal total : 0

105

Examples Sheet #8 (Python Functions)

Exercises with Solutions
1- Write a Python function to find the Max of three numbers.

#Solution:
def max_of _two(x, y):

if x > y:

return x

return y
def max_of_three(x, y, z):

return max_of_two(x, max_of_two(y, z))
print(max_of_three(3, 6, -5))
#0Output:6

2- Write a Python function to sum all the numbers in a list.
Sample set: (8, 2,3,0,7)
Output : 20

#Solution:
def sum(numbers):

total = ©

for x in numbers:

total += x

return total
print(sum((8, 2, 3, 0, 7)))
#0utput:20

3-Write a Python function to reverse a string.
Sample String : "1234abcd"
Output : "dcba4321"

#Solution:
def string_reverse(strl):
rstrl = "'
index = len(strl)
while index > 0:
rstrl += strl[index - 1]
index = index - 1
return rstril
print(string_reverse('1234abcd"))
#Output: "dcba4321"

4- Write a Python function to calculate the factorial of a number (a non-
negative integer). The function accepts the number as an argument

#Solution:
def factorial(n):
if n ==
return 1
else:
return n * factorial(n-1)

106

n=int(input("Input a number to compute the factiorial : "))
print(factorial(n))

#Output: Input a number to compute the factiorial : 4

#24

5- Write a Python function to check whether a number is in a given range.

#Solution:
def test_range(n):
if n in range(3,9):
print(" %s is in the range"%str(n))
else :
print("The number is outside the given range.")
test_range(5)
#Output: 5 is in the range

H.W: Write a Python function to print the even numbers from a given
list.

Sample List: [1,2,3,4,5,6,7,8,9]
Output:2 4 6 8

107

PYTHON MODULES

A module allows you to logically organize your Python code. Grouping related code into a module
makes the code easier to understand and use. A module is a Python object with arbitrarily named
attributes that you can bind and reference.

Simply, a module is a file consisting of Python code. A module can define functions, classes and
variables. A module can also include runnable code.

Example

The Python code for a module named aname normally resides in a file named aname.py. Here's
an example of a simple module, support.py

def print_func(par):
print "Hello : ", par
return

The import Statement

You can use any Python source file as a module by executing an import statement in some other
Python source file. The import has the following syntax:

import modulel[, module2[,... moduleN]

When the interpreter encounters an import statement, it imports the module if the module is
presentin the search path. A search path is a list of directories that the interpreter searches before
importing a module. For example, to import the module hello.py, you need to put the following
command at the top of the script —

#1/usr/bin/python

Import module support
import support

Now you can call defined function that module as follows
support.print_func("Zara")

When the above code is executed, it produces the following result —

Hello : Zara

A module is loaded only once, regardless of the number of times it is imported. This prevents the
module execution from happening over and over again if multiple imports occur.

The from...import Statement

Python's from statement lets you import specific attributes from a module into the current
namespace. The from...import has the following syntax —

from modname import namel[, name2[, ... nameN]]

For example, to import the function fibonacci from the module fib, use the following statement —

from fib import fibonacci

This statement does not import the entire module fib into the current namespace; it just introduces
the item fibonacci from the module fib into the global symbol table of the importing module.

108

The from...import * Statement:

Itis also possible to import all names from a module into the current namespace by using the
following import statement —

from modname import *

This provides an easy way to import all the items from a module into the current namespace;
however, this statement should be used sparingly.

Locating Modules

When you import a module, the Python interpreter searches for the module in the following
sequences —

e The current directory.

¢ If the module isn't found, Python then searches each directory in the shell variable
PYTHONPATH.

¢ If all else fails, Python checks the default path. On UNIX, this default path is normally
/usr/local/lib/python/.

The module search path is stored in the system module sys as the sys.path variable. The sys.path
variable contains the current directory, PYTHONPATH, and the installation-dependent default.

The PYTHONPATH Variable:

The PYTHONPATH is an environment variable, consisting of a list of directories. The syntax of
PYTHONPATH is the same as that of the shell variable PATH.

Here is a typical PYTHONPATH from a Windows system:

set PYTHONPATH=c:\python20\1lib;

And here is a typical PYTHONPATH from a UNIX system:

set PYTHONPATH=/usr/local/lib/python

Namespaces and Scoping

Variables are names identifiers that map to objects. A namespace is a dictionary of variable names
keys and their corresponding objects values.

A Python statement can access variables in a local namespace and in the global namespace. If a
local and a global variable have the same name, the local variable shadows the global variable.

Each function has its own local namespace. Class methods follow the same scoping rule as
ordinary functions.

Python makes educated guesses on whether variables are local or global. It assumes that any
variable assignhed a value in a function is local.

Therefore, in order to assign a value to a global variable within a function, you must first use the
global statement.

The statement global VarName tells Python that VarName is a global variable. Python stops
searching the local namespace for the variable.

For example, we define a variable Money in the global namespace. Within the function Money, we
assign Money a value, therefore Python assumes Money as a local variable. However, we accessed
the value of the local variable Money before setting it, so an UnboundLocalError is the result.
Uncommenting the global statement fixes the problem.

#1/usr/bin/python
109

Money = 2000
def AddMoney():
Uncomment the following line to fix the code:
global Money
Money = Money + 1
print Money

AddMoney ()
print Money

The dir Function
The dir built-in function returns a sorted list of strings containing the names defined by a module.

The list contains the names of all the modules, variables and functions that are defined in a
module. Following is a simple example —

#!/usr/bin/python

Import built-in module math
import math

content = dir(math)

print content

When the above code is executed, it produces the following result —

['_doc__ ', '__file ', '__name__', 'acos', 'asin', 'atan',
'atan2', 'ceil', 'cos', 'cosh', ‘'degrees', 'e', 'exp',
'fabs', 'floor', 'fmod', 'frexp', 'hypot', 'ldexp', 'log',
'log10', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh',

'sgrt', 'tan', 'tanh']

Here, the special string variable __name__ is the module's name, and _ file__is the filename from
which the module was loaded.

The globals and locals Functions —

The globals and locals functions can be used to return the names in the global and local
namespaces depending on the location from where they are called.

If locals is called from within a function, it will return all the names that can be accessed locally
from that function.

If globals is called from within a function, it will return all the names that can be accessed globally
from that function.

The return type of both these functions is dictionary. Therefore, names can be extracted using the
keys function.

The reload Function

When the module is imported into a script, the code in the top-level portion of a module is
executed only once.

Therefore, if you want to reexecute the top-level code in a module, you can use the reload
function. The reload function imports a previously imported module again. The syntax of the
reload function is this —

reload(module_name)

Here, module_name is the name of the module you want to reload and not the string containing
the module name. For example, to reload hello module, do the following —

110

reload(hello)

Packages in Python

A package is a hierarchical file directory structure that defines a single Python application
environment that consists of modules and subpackages and sub-subpackages, and so on.

Consider a file Pots.py available in Phone directory. This file has following line of source code —

#1/usr/bin/python

def Pots():
print "I'm Pots Phone"

Similar way, we have another two files having different functions with the same name as above —
e Phone/lsdn.py file having function Isdn
e Phone/G3.py file having function G3

Now, create one more file _init__.py in Phone directory —
e Phone/__init__.py

To make all of your functions available when you've imported Phone, you need to put explicit
import statements in __init__.py as follows —

from Pots import Pots
from Isdn import Isdn
from G3 import G3

After you add these linesto __init__.py, you have all of these classes available when you import the
Phone package.

#!1/usr/bin/python

Now import your Phone Package.
import Phone

Phone .Pots()

Phone.Isdn()
Phone .G3()

When the above code is executed, it produces the following result —

I'm Pots Phone
I'm 3G Phone
I'm ISDN Phone

In the above example, we have taken example of a single functions in each file, but you can keep
multiple functions in your files. You can also define different Python classes in those files

111

PYTHON FILES 1/O

This chapter covers all the basic I/O functions available in Python. For more functions, please refer
to standard Python documentation.

Printing to the Screen
The simplest way to produce output is using the print statement where you can pass zero or more

expressions separated by commas. This function converts the expressions you pass into a string
and writes the result to standard output as follows —

#!/usr/bin/python

print "Python is really a great language,", "isn't it?"
This produces the following result on your standard screen —

Python is really a great language, isn't it?

Reading Keyboard Input

Python provides two built-in functions to read a line of text from standard input, which by default
comes from the keyboard. These functions are —

e raw_input
e input
The raw_input Function

The raw_input[prompt] function reads one line from standard input and returns it as a string
removingthetrailingnewline.

#!/usr/bin/python

str = raw_input("Enter your input: ");
print "Received input is : ", str

This prompts you to enter any string and it would display same string on the screen. When | typed
"Hello Python!", its output is like this —

Enter your input: Hello Python
Received input is : Hello Python

The input Function

The input[prompt] function is equivalent to raw_input, except that it assumes the inputis a valid
Python expression and returns the evaluated result to you.

#1/usr/bin/python

str = input("Enter your input: ");
print "Received input is : ", str

This would produce the following result against the entered input —

Enter your input: [x*5 for x in range(2,10,2)]
Recieved input is : [10, 20, 30, 40]

112

Opening and Closing Files

Until now, you have been reading and writing to the standard input and output. Now, we will see
how to use actual data files.

Python provides basic functions and methods necessary to manipulate files by default. You can do
most of the file manipulation using a file object.

The open Function

Before you can read or write a file, you have to open it using Python's built-in open function. This
function creates a file object, which would be utilized to call other support methods associated
with it.

Syntax

file object = open(file_name [, access_mode][, buffering])

Here are parameter details:

¢ file_name: The file_name argument is a string value that contains the name of the file that
you want to access.

e access_mode: The access_ mode determines the mode in which the file has to be opened,
i.e., read, write, append, etc. A complete list of possible values is given below in the table.
This is optional parameter and the default file access mode is read r.

« buffering: If the buffering value is set to 0, no buffering takes place. If the buffering value is
1, line buffering is performed while accessing a file. If you specify the buffering value as an
integer greater than 1, then buffering action is performed with the indicated buffer size. If
negative, the buffer size is the system defaultdefaultbehavior.

Here is a list of the different modes of opening a file —

Modes Description

r Opens a file for reading only. The file pointer is placed at the beginning of the file. This
is the default mode.

rb Opens a file for reading only in binary format. The file pointer is placed at the
beginning of the file. This is the default mode.

r+ Opens a file for both reading and writing. The file pointer placed at the beginning of
the file.

rb+ Opens a file for both reading and writing in binary format. The file pointer placed at
the beginning of the file.

w Opens a file for writing only. Overwrites the file if the file exists. If the file does not
exist, creates a new file for writing.

wb Opens a file for writing only in binary format. Overwrites the file if the file exists. If the
file does not exist, creates a new file for writing.

w+ Opens a file for both writing and reading. Overwrites the existing file if the file exists. If
the file does not exist, creates a new file for reading and writing.

wb+ Opens a file for both writing and reading in binary format. Overwrites the existing file if
the file exists. If the file does not exist, creates a new file for reading and writing.

a Opens a file for appending. The file pointer is at the end of the file if the file exists.
That s, the file is in the append mode. If the file does not exist, it creates a new file for
writing.

ab Opens a file for appending in binary format. The file pointer is at the end of the file if

113

the file exists. That is, the file is in the append mode. If the file does not exist, it creates
a new file for writing.

a+ Opens a file for both appending and reading. The file pointer is at the end of the file if
the file exists. The file opens in the append mode. If the file does not exist, it creates a
new file for reading and writing.

ab+ Opens a file for both appending and reading in binary format. The file pointer is at the

end of the file if the file exists. The file opens in the append mode. If the file does not
exist, it creates a new file for reading and writing.

The file Object Attributes

Once a file is opened and you have one file object, you can get various information related to that
file.

Here is a list of all attributes related to file object:

Attribute Description

file.closed Returns true if file is closed, false otherwise.
file.mode Returns access mode with which file was opened.
file.name Returns name of the file.

file.softspace Returns false if space explicitly required with print, true otherwise.

Example

#1/usr/bin/python

Open a file
fo = open("foo.txt", "wb")

print "Name of the file: ", fo.name
print "Closed or not : ", fo.closed
print "Opening mode : ", fo.mode

print "Softspace flag : ", fo.softspace

This produces the following result —

Name of the file: foo.txt
Closed or not : False
Opening mode : wb
Softspace flag : O

The close Method

The close method of a file object flushes any unwritten information and closes the file object, after
which no more writing can be done.

Python automatically closes a file when the reference object of a file is reassigned to another file.
Itis a good practice to use the close method to close a file.

Syntax

fileObject.close();

Example

114

#1/usr/bin/python

Open a file
fo = open("foo.txt", "wb")
print "Name of the file: ", fo.name

Close opend file
fo.close()

This produces the following result —

Name of the file: foo.txt

Reading and Writing Files

The file object provides a set of access methods to make our lives easier. We would see how to use
read and write methods to read and write files.

The write Method

The write method writes any string to an open file. It is important to note that Python strings can
have binary data and not just text.

The write method does not add a newline character "\n' to the end of the string —

Syntax
fileObject.write(string);

Here, passed parameter is the content to be written into the opened file.

Example

#!1/usr/bin/python

Open a file

fo = open("foo.txt", "wb")

fo.write("Python is a great language.\nYeah its great!!\n");

Close opend file
fo.close()

The above method would create foo.txt file and would write given content in that file and finally it
would close that file. If you would open this file, it would have following content.

Python is a great language.
Yeah its great!!

The read Method

The read method reads a string from an open file. It is important to note that Python strings can
have binary data. apart from text data.

Syntax

fileObject.read([count]);

Here, passed parameter is the number of bytes to be read from the opened file. This method starts
reading from the beginning of the file and if count is missing, then it tries to read as much as
possible, maybe until the end of file.

Example
115

Let's take a file foo.txt, which we created above.

#!/usr/bin/python

Open a file

fo = open("foo.txt", "r+")

str = fo.read(10);

print "Read String is : ", str
Close opend file

fo.close()

This produces the following result —

Read String is : Python is

File Positions

The tell method tells you the current position within the file; in other words, the next read or write
will occur at that many bytes from the beginning of the file.

The seekoffset[, from] method changes the current file position. The offset argument indicates the
number of bytes to be moved. The from argument specifies the reference position from where the

bytes are to be moved.

If from is setto 0, it means use the beginning of the file as the reference position and 1 means use
the current position as the reference position and if itis set to 2 then the end of the file would be

taken as the reference position.
Example
Let us take a file foo.txt, which we created above.

#!/usr/bin/python

Open a file

fo = open("foo.txt", "r+")

str = fo.read(10);

print "Read String is : ", str

Check current position
position = fo.tell();
print "Current file position : ", position

Reposition pointer at the beginning once again

position = fo.seek(0, 0);

str = fo.read(10);

print "Again read String is : ", str
Close opend file

fo.close()

This produces the following result —

Read String is : Python is
Current file position : 10
Again read String is : Python is

Renaming and Deleting Files

Python os module provides methods that help you perform file-processing operations, such as

renaming and deleting files.

To use this module you need to import it first and then you can call any related functions.

The rename Method

116

The rename method takes two arguments, the current filename and the new filename.

Syntax

os.rename(current_file_name, new_file_name)

Example
Following is the example to rename an existing file testl.txt:

#!/usr/bin/python
import os

Rename a file from testl.txt to test2.txt
os.rename("testl.txt", "test2.txt")

The remove Method

You can use the remove method to delete files by supplying the name of the file to be deleted as
the argument.

Syntax

os.remove(file_name)

Example
Following is the example to delete an existing file test2.txt —

#!1/usr/bin/python
import os

Delete file test2.txt
os.remove ("text2.txt")

Directories in Python

All files are contained within various directories, and Python has no problem handling these too.
The os module has several methods that help you create, remove, and change directories.

The mkdir Method

You can use the mkdir method of the os module to create directories in the current directory. You
need to supply an argument to this method which contains the name of the directory to be
created.

Syntax

os.mkdir ("newdir")

Example
Following is the example to create a directory test in the current directory —

#!1/usr/bin/python
import os

Create a directory "test"
os.mkdir ("test")

117

The chdir Method

You can use the chdir method to change the current directory. The chdir method takes an
argument, which is the name of the directory that you want to make the current directory.

Syntax

os.chdir ("newdir")

Example
Following is the example to go into "/home/newdir" directory —

#!1/usr/bin/python
import os

Changing a directory to "/home/newdir"
os.chdir ("/home/newdir")

The getcwd Method

The getcwd method displays the current working directory.

Syntax

os.getcwd()

Example
Following is the example to give current directory —

#1/usr/bin/python
import os

This would give location of the current directory
os.getcwd()

The rmdir Method

The rmdir method deletes the directory, which is passed as an argument in the method.

Before removing a directory, all the contents in it should be removed.

Syntax:

os.rmdir('dirname")

Example

Following is the example to remove "/tmp/test" directory. It is required to give fully qualified name
of the directory, otherwise it would search for that directory in the current directory.

#!/usr/bin/python
import os

This would remove "/tmp/test" directory.
os.rmdir("/tmp/test")

File & Directory Related Methods

There are three important sources, which provide a wide range of utility methods to handle and

118

manipulate files & directories on Windows and Unix operating systems. They are as follows —

o File Object Methods: The file object provides functions to manipulate files.

~_N0<c Nhiact Mathods: This provides methods to process files as well as directories.

119

Examples Sheet #9 (Python FILES 1/O)

Exercises with Solutions
1- Write a Python program to read an entire text file text.txt stored in E

partition. For example, let the content of the text.txt is:
"What is Python language?
Python is a widely used high-level, general-purpose, interpreted, dynamic programming
language.”
#Solution:
def file_read(fname):
txt = open(fname)
print(txt.read())

file read('E:/text.txt")

#Output:

What is Python language?

Python is a widely used high-level, general-purpose, interpreted, dynamic
programming language.

2- Write a Python program to append text to file text.txt and display the
text.

#Solution:
def file_read(fname):

from itertools import islice

with open(fname, "a") as myfile:

myfile.write("Python Exercises")

txt = open(fname)

print(txt.read())
file read('E:/text.txt")
#Output:
What is Python language?
Python is a widely used high-level, general-purpose, interpreted, dynamic
programming language.
Python Exercises
#Note: if you use <open(fname, "w") as myfile> then the new text will
#overwrite the old one and the output will just be as below:
#Python Exercises

3- Write a Python program to read a file line by line and store it into a list.

#Solution:
def file_read(fname):
with open(fname) as f:

#Content_list is the list that contains the read lines.
content_list = f.readlines()
print(content_list)

file read('E:/text.txt")

#Output:

120

["What is Python language? \n',
'Python is a widely used high-level, general-purpose, interpreted, dynamic
programming language.\n', 'Python Exercises']

4-Write a Python program to count the number of lines in a text file.

#Solution:
def file_ lengthy(fname):

with open(fname) as f:

for i, 1 in enumerate(f):
pass

return i + 1
print("Number of lines in the file: ",file lengthy('E:/text.txt"'))
#Output: ('Number of lines in the file: ', 4)

5-Write a Python program to write a list to a file.

#Solution:

color = ['Red', 'Green', 'White', 'Black’', 'Pink', 'Yellow']

with open('E:/abc.txt', "w") as myfile:
for ¢ in color:

myfile.write("%s\n" % c)

content = open('E:/abc.txt")

print(content.read())

#Output:

Red

Green

White

Black

Pink

Yellow

6-Write a Python program to copy the contents of a file to another file
#Solution: from shutil import copyfile; copyfile('E:/abc.txt', 'E:/abcl.txt')

121

