

University of Technology
 الجامعة التكنولوجية

Computer Science Department

 قسم علوم الحاسوب

Operating System1

 1نظم التشغيل

Dr. Rehab Flaih & Dr. Rana M. Zaki
 رنا محمدحسن زكي .د رحاب فليح & د .م.ا

cs.uotechnology.edu.iq

Chapter-one-

Operating System

Structure

2.2 User and Operating-System Interface 59

1.Introduction

An operating system provides the environment within which programs are
executed.

We can view an operating system from several vantage points. One view
focuses on the services that the system provides; another, on the interface that
it makes available to users and programmers; a third, on its components and
their interconnections.

1.1 Operating-System Services

An operating system provides an environment for the execution of programs.
It provides certain services to programs and to the users of those programs.
The specific services provided, of course, differ from one operating system to
another, but we can identify common classes. These operating system services
are provided for the convenience of the programmer, to make the programming
task easier. Figure 1.1 shows one view of the various operating-system services
and how they interrelate.

One set of operating system services provides functions that are helpful to
the user.

• User interface. Almost all operating systems have a user interface (UI).

This interface can take several forms. One is a command-line interface

(CLI), which uses text commands and a method for entering them (say, a

keyboard for typing in commands in a specific format with specific

options). On systems with multiple command interpreters to choose from, the

interpreters are known as shells, Another is a batch interface, in which

commands and directives to control those commands are entered into

files, and those files are executed.

Most commonly, a is used. Here, the interface is a window system with a

pointing device to direct I/O, choose from menus, and make selections

and a keyboard to enter text.
Some systems provide two or all three of these variations.

• Program execution. The system must be able to load a program into
memory and to run that program. The program must be able to end its
execution, either normally or abnormally (indicating error).

• I/O operations. A running program may require I/O, which may involve a
file or an I/O device. For specific devices, special functions may be desired
(such as recording to a CD or DVD drive or blanking a display screen). For
efficiency and protection, users usually cannot control I/O devices directly.
Therefore, the operating system must provide a means to do I/O.

2.2 User and Operating-System Interface 59

Figure 1.1 A view of operating system services.

• File-system manipulation. The file system is of particular interest. Ousley,
programs need to read and write files and directories. They also need to create and
delete them by name, search for a given file, and list file information. Finally,
some operating systems include permissions management to allow or deny access
to files or directories based on file ownership. Many operating systems provide a
variety of file systems, sometimes to allow personal choice and sometimes to
provide specific features or performance characteristics.

• Communications. There are many circumstances in which one process needs to
exchange information with another process. Such communication may occur
between processes that are executing on the same computer or between processes
that are executing on different computer systems tied together by a computer
network. Communications may be implemented via shared memory, in which
two or more processes read and write to a shared section of memory, or message
passing, in which packets of information in predefined formats are moved
between processes by the operating system.

• Error detection. The operating system needs to be detecting and correcting errors
constantly. Errors may occur in the CPU and memory hardware (such as a memory
error or a power failure), in I/O devices (such as a parity error on disk, a connection
failure on a network, or lack of paper in the printer), and in the user program (such
as an arithmetic overflow, an attempt to access an illegal memory location, or a
too-great use of CPU time). For each type of error, the operating system should
take the appropriate action to ensure correct and consistent computing.
Sometimes, it has no choice but to halt the system. At other times, it might
terminate an error-causing process or return an error code to a process for the
process to detect and possibly correct.

2.2 User and Operating-System Interface 59

Another set of operating system functions exists not for helping the user but rather for

ensuring the efficient operation of the system itself. Systems with multiple users can
gain efficiency by sharing the computer resources among the users.

• Resource allocation. When there are multiple users or multiple jobs running at the
same time, resources must be allocated to each of them. The operating system manages
many different types of resources. Some (such as CPU cycles, main memory, and file
storage) may have special allocation code, whereas others (such as I/O devices) may
have much more general request and release code. For instance, in determining how
best to use the CPU, operating systems have CPU-scheduling routines that take into
account the speed of the CPU, the jobs that must be executed, the number of registers
available, and other factors. There may also be routines to allocate printers, USB storage
drives, and other peripheral devices.

• Accounting. We want to keep track of which users use how much and what kinds of
computer resources. This record keeping may be used for accounting (so that users
can be billed) or simply for accumulating usage statistics. Usage statistics may be a
valuable tool for researchers who wish to reconfigure the system to improve
computing services.

• Protection and security.
Protection, is any mechanism for controlling the access of processes or users to the resources

defined by a computer system. This mechanism must provide means to specify the controls to

be imposed and to enforce the controls.

The job of the security is to defend a system from external and internal attacks. Such attacks

spread across a huge range and include viruses and worms, denial-of service attacks (which

use all of a system’s resources and so keep legitimate users out of the system), identity theft,

and theft of service (unauthorized use of a system).

2.2 User and Operating-System Interface 61

1.3 System Calls

System calls provide an interface to the services made available by an operating
system. These calls are generally available as routines written in C and
C++, although certain low-level tasks (for example, tasks where hardware
must be accessed directly) may have to be written using assembly-language
instructions.

Before we discuss how an operating system makes system calls available,
let’s first use an example to illustrate how system calls are used: writing a
simple program to read data from one file and copy them to another file. The
first input that the program will need is the names of the two files: the input file
and the output file. These names can be specified in many ways, depending on
the operating-system design. One approach is for the program to ask the user
for the names. In an interactive system, this approach will require a sequence of
system calls, first to write a prompting message on the screen and then to read
from the keyboard the characters that define the two files. On mouse-based and
icon-based systems, a menu of file names is usually displayed in a window.
The user can then use the mouse to select the source name, and a window
can be opened for the destination name to be specified. This sequence requires
many I/O system calls.

Once the two file names have been obtained, the program must open the
input file and create the output file. Each of these operations requires another
system call. Possible error conditions for each operation can require additional
system calls. When the program tries to open the input file, for example, it may
find that there is no file of that name or that the file is protected against access.
In these cases, the program should print a message on the console (another
sequence of system calls) and then terminate abnormally (another system call).
If the input file exists, then we must create a new output file. We may find that
there is already an output file with the same name. This situation may cause
the program to abort (a system call), or we may delete the existing file (another
system call) and create a new one (yet another system call). Another option,
in an interactive system, is to ask the user (via a sequence of system calls to
output the prompting message and to read the response from the terminal)
whether to replace the existing file or to abort the program.

When both files are set up, we enter a loop that reads from the input file
(a system call) and writes to the output file (another system call). Each read
and write must return status information regarding various possible error
conditions. On input, the program may find that the end of the file has been
reached or that there was a hardware failure in the read (such as a parity error).
The write operation may encounter various errors, depending on the output
device (for example, no more disk space).

2.3 System Calls 63

Finally, after the entire file is copied, the program may close both files
(another system call), write a message to the console or window (more system
calls), and finally terminate normally (the final system call). This system-call
sequence is shown in Figure 1.3.

As you can see, even simple programs may make heavy use of the
operating system. Frequently, systems execute thousands of system calls
per second. Most programmers never see this level of detail, however.
Typically, application developers design programs according to an application
programming interface (API). The API specifies a set of functions that are
available to an application programmer, including the parameters that are
passed to each function and the return values the programmer can expect.

source file destination file

Example System Call Sequence

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file

Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally

Figure 1.3 Example of how system calls are used.

For most programming languages, the run-time support system (a set of
functions built into libraries included with a compiler) provides a system-
call interface that serves as the link to system calls made available by the
operating system. The system-call interface intercepts function calls in the API
and invokes the necessary system calls within the operating system. Typically,
a number is associated with each system call, and the system-call interface
maintains a table indexed according to these numbers. The system call interface

2.3 System Calls 65

User application

user
mode

kernel
mode

open ()

System call interface

Open ()

Implementation

i of open ()
System call

Return

Figure 1.4 The handling of a user application invoking the open () system call.

then invokes the intended system call in the operating-system kernel and
returns the status of the system call and any return values.

The caller need know nothing about how the system call is implemented
or what it does during execution. Rather, the caller need only obey the API and
understand what the operating system will do as a result of the execution of
that system call. Thus, most of the details of the operating-system interface
are hidden from the programmer by the API and are managed by the run-time
support library. The relationship between an API, the system-call interface,
and the operating system is shown in Figure 2.6, which illustrates how the
operating system handles a user application invoking the open() system call.
.

Three general methods are used to pass parameters to the operating system.
The simplest approach is to pass the parameters in registers. In some cases,
however, there may be more parameters than registers. In these cases, the
parameters are generally stored in a block, or table, in memory, and the
address of the block is passed as a parameter in a register (Figure 2.7). This
is the approach taken by Linux and Solaris. Parameters also can be placed,
or pushed, onto the stack by the program and popped off the stack by the
operating system. Some operating systems prefer the block or stack method
because those approaches do not limit the number or length of parameters
being passed.

2.3 System Calls 65

66 Chapter 2 Operating-System Structures

X

register

X: parameters
for call

load address X

system call 13

use parameters

from table X

code for
system
call 13

user program

operating system

Figure 2.7 Passing of parameters as a table.

1.3.1 Types of System Calls

System calls can be grouped roughly into six major categories: process
control, file manipulation, device manipulation, information maintenance,
communications, and protection. In Sections 2.4.1 through 2.4.6, we briefly
discuss the types of system calls that may be provided by an operating system.
Most of these system calls support, or are supported by, concepts and functions
that are discussed in later chapters. Figure 2.8 summarizes the types of system
calls normally provided by an operating system. As mentioned, in this text,
we normally refer to the system calls by generic names. Throughout the text,
however, we provide examples of the actual counterparts to the system calls
for Windows, UNIX, and Linux systems.

2.4 Types of System Calls 9

• Process control

end, abort

load, execute

create process, terminate process

get process attributes, set process attributes

wait for time

wait event, signal event

allocate and free memory

• File management

create file, delete file

open, close

 read, write, reposition

get file attributes, set file attributes

• Device management

request device, release device

 read, write, reposition

get device attributes, set device attributes

logically attach or detach devices

• Information maintenance

get time or date, set time or date

get system data, set system data

get process, file, or device attributes

set process, file, or device attributes

• Communications

create, delete communication connection

send, receive messages

transfer status information

 attach or detach remote devices

2.4 Types of System Calls 10

1.4 System Programs

Another aspect of a modern system is its collection of system programs. Recall
Figure 1.4, which depicted the logical computer hierarchy. At the lowest level is
hardware. Next is the operating system, then the system programs, and finally
the application programs. System programs, also known as system utilities,
provide a convenient environment for program development and execution.
Some of them are simply user interfaces to system calls. Others are considerably
more complex. They can be divided into these categories:

• File management. These programs create, delete, copy, rename, print,

dump, list, and generally manipulate files and directories.

• Status information. Some programs simply ask the system for the date,
time, amount of available memory or disk space, number of users, or
similar status information. Others are more complex, providing detailed
performance, logging, and debugging information. Typically, these pro-
grams format and print the output to the terminal or other output devices
or files or display it in a window of the GUI. Some systems also support a
registry, which is used to store and retrieve configuration information.

• File modification. Several text editors may be available to create and
modify the content of files stored on disk or other storage devices. There
may also be special commands to search contents of files or perform
transformations of the text.

• Programming-language support. Compilers, assemblers, debuggers, and
interpreters for common programming languages (such as C, C++, Java,
and PERL) are often provided with the operating system or available as a
separate download.

• Program loading and execution. Once a program is assembled or com-
piled, it must be loaded into memory to be executed. The system may
provide absolute loaders, relocatable loaders, linkage editors, and overlay
loaders. Debugging systems for either higher-level languages or machine
language are needed as well.

• Communications. These programs provide the mechanism for creating
virtual connections among processes, users, and computer systems. They
allow users to send messages to one another ’s screens, to browse Web
pages, to send e-mail messages, to log in remotely, or to transfer files from
one machine to another.

• Background services. All general-purpose systems have methods for
launching certain system-program processes at boot time. Some of these
processes terminate after completing their tasks, while others continue
to run until the system is halted. Constantly running system-program
processes are known as services, subsystems, or daemons. One example is
the network daemon discussed in Section 2.4.5. In that example, a system
needed a service to listen for network connections in order to connect
those requests to the correct processes. Other examples include process
schedulers that start processes according to a specified schedule, system
error monitoring services, and print servers.

Chapter-2-

Processes

2.1 Introduction

Early computers allowed only one program to be executed at a time. This
program had complete control of the system and had access to all the system’s
resources. In contrast, contemporary computer systems allow multiple pro-
grams to be loaded into memory and executed concurrently. This evolution
required firmer control and more compartmentalization of the various pro-
grams; and these needs resulted in the notion of a process, which is a program
in execution. A process is the unit of work in a modern time-sharing system.

2.1.1 The Process

Informally, as mentioned earlier, a process is a program in execution. A

process is more than the program code, which is sometimes known as the

text section. It also includes the current activity, as represented by the

value of the program counter and the contents of the processor ’s registers.

A process generally also includes the process stack, which contains

temporary data (such as function parameters, return addresses, and local

variables), and a data section, which contains global variables. A process

may also include a heap, which is memory that is dynamically allocated

during process run time. The structure of a process in memory is shown in

Figure 3.1.

We emphasize that a program by itself is not a process. A program is a

passive entity, such as a file containing a list of instructions stored on

disk (often called an executable file). In contrast, a process is an active

entity, with a program counter specifying the next instruction to execute

and a set of associated resources. A program becomes a process when an

executable file is loaded into memory. Two common techniques for

loading executable files are double-clicking an icon representing the

executable file and entering the name of the executable file on the

command line (as in prog.exe). Although two processes may be associated

with the same program, they are nevertheless considered two separate

execution sequences. For instance, several users may be running different

copies of the mail program, or the same user may invoke many copies of

the web browser program. Each of these is a separate process; and although

the text sections are equivalent, the data, heap, and stack sections vary. It is

also common to have a process that spawns many processes as it runs.

Note that a process itself can be an execution environment for other code.

The Java programming environment provides a good example. In most

circumstances, an executable Java program is executed within the Java

virtual machine (JVM). The JVM executes as a process that interprets the

loaded Java code and takes actions (via native machine instructions) on

behalf of that code. For example, to run the compiled Java program

program. class, we would enter java Program The command java runs the

JVM as an ordinary process, which in turns executes the Java program

program in the virtual machine. The concept is the same as simulation,

except that the code, instead of being written for a different instruction set,

is written in the Java language.

max

stack

heap

data

text

0

Figure 3.1 Process in memory.

3.1.2 Process State

As a process executes, it changes state. The state of process is defined in part by
the current activity of that process. A process may be in one of the following states:

• New. The process is being created.

• Running. Instructions are being executed.

• Waiting. The process is waiting for some event to occur (such as an I/O
Completion or reception of a signal).

• Ready. The process is waiting to be assigned to a processor.

• Terminated. The process has finished execution.

These names are arbitrary, and they vary across operating systems. The states that
they represent are found on all systems, however. Certain operating systems
also more finely delineate process states. It is important to realize that only
one process can be running on any processor at any instant. Many processes may
be ready and waiting, however. The state diagram corresponding to these states is
presented in Figure 3.2.

new admitted interrupt exit terminated

ready running

I/O or event completion
scheduler dispatch

waiting

I/O or event wait

Figure 3.2 Diagram of process state.

3.1.3 Process Control Block

Each process is represented in the operating system by a process control block
(PCB) — also called a task control block. A PCB is shown in Figure 3.3. It contains
many pieces of information associated with a specific process, including these:

• Process state. The state may be new, ready, running, waiting, halted, and

so on.

• Program counter. The counter indicates the address of the next instruction
to be executed for this process.

• CPU registers. The registers vary in number and type, depending on
the computer architecture. They include accumulators, index registers,
stack pointers, and general-purpose registers, plus any condition-code
information. Along with the program counter, this state information must
be saved when an interrupt occurs, to allow the process to be continued

correctly afterward (Figure 3.4).

• CPU-scheduling information. This information includes a process priority,
pointers to scheduling queues, and any other scheduling parameters.
(Chapter 6 describes process scheduling.)

• Memory-management information. This information may include such
items as the value of the base and limit registers and the page tables, or the
segment tables, depending on the memory system used by the operating
system (Chapter 8)

• Accounting information. This information includes the amount of CPU

and real time used, time limits, account numbers, job or process numbers,
and so on

• I/O status information. This information includes the list of I/O

devices allocated to the process, a list of open files, and so on.

In brief, the PCB simply serves as the repository for any information that
may vary from process to process.

process state

process number

program counter

registers

memory limits

list of open files

• • •

Figure 3.3 Process control block (PCB).

process P0

executing

operating system

interrupt or system call

save state into PCB0

•
•
•

reload state from PCB1

process P1

idle

idle interrupt or system call executing

executing

save state into PCB1

•
•
•

reload state from PCB0

idle

Figure 3.4 Diagram showing CPU switch from process to process.

3.1.4 Threads

The process model discussed so far has implied that a process is a program that
performs a single thread of execution. For example, when a process is running a
word-processor program, a single thread of instructions is being executed. This
single thread of control allows the process to perform only one task at a time.
The user cannot simultaneously type in characters and run the spell checker
within the same process, for example. Most modern operating systems have
extended the process concept to allow a process to have multiple threads of
execution and thus to perform more than one task at a time. This feature is
especially beneficial on multicore systems, where multiple threads can run in
parallel. On a system that supports threads, the PCB is expanded to include
information for each thread. Other changes throughout the system are also
needed to support threads.

3.2 Process Scheduling

The objective of multiprogramming is to have some process running at all
times, to maximize CPU utilization. the CPU among processes so The objective
of time sharing is to switch frequently that users can interact with each
program

3.2 Process Scheduling 111

ready

queue header PCB7

head

PCB2

queue tail registers registers

mag
tape

unit 0

mag
tape

unit 1

head

tail

head

tail

•
•
•

PCB3

•
•
•

PCB14 PCB6

disk

unit 0

head

tail

terminal
unit 0

head

tail

•
•
•

PCB5

Figure 3.5 The ready queue and various I/O device queues.

While it is running. To meet these objectives, the process scheduler selects
an available process (possibly from a set of several available processes) for
program execution on the CPU. For a single-processor system, there will never
be more than one running process. If there are more processes, the rest will
have to wait until the CPU is free and can be rescheduled.

3.2.1 Scheduling Queues

As processes enter the system, they are put into a job queue, which consists
of all processes in the system. The processes that are residing in main memory
and are ready and waiting to execute are kept on a list called the ready queue.
This queue is generally stored as a linked list. A ready-queue header contains
pointers to the first and final PCBs in the list. Each PCB includes a pointer field
that points to the next PCB in the ready queue.

The system also includes other queues. When a process is allocated the
CPU, it executes for a while and eventually quits, is interrupted, or waits for
the occurrence of a particular event, such as the completion of an I/O request.
Suppose the process makes an I/O request to a shared device, such as a disk.
Since there are many processes in the system, the disk may be busy with the
I/O request of some other process. The process therefore may have to wait for
the disk. The list of processes waiting for a particular I/O device is called a
device queue. Each device has its own device queue (Figure 3.5).

3.2 Process Scheduling 112

ready queue CPU

I/O I/O queue I/O request

time slice
expired

child

executes

interrupt
occurs

fork a
child

wait for an
interrupt

Figure 3.6 Queueing-diagram representation of process scheduling.

A common representation of process scheduling is a queueing diagram,

such as that in Figure 3.6. Each rectangular box represents a queue. Two types
of queues are present: the ready queue and a set of device queues. The circles
represent the resources that serve the queues, and the arrows indicate the flow
of processes in the system.

A new process is initially put in the ready queue. It waits there until it is
Selected for execution, or dispatched. Once the process is allocated the CPU

and is executing.
One of several events could occur:

• The process could issue an I/O request and then be placed in an I/O queue.

• The process could create a new child process and wait for the child’s
termination.

• The process could be removed forcibly from the CPU, as a result of an
interrupt, and be put back in the ready queue.

In the first two cases, the process eventually switches from the waiting state

to the ready state and is then put back in the ready queue. A process continues
this cycle until it terminates, at which time it is removed from all queues and
has its PCB and resources deallocated.

3.2.2 Schedulers

A process migrates among the various scheduling queues throughout its
lifetime. The operating system must select, for scheduling purposes, processes
from these queues in some fashion. The selection process is carried out by the
appropriate scheduler.

Often, in a batch system, more processes are submitted than can be executed
immediately. These processes are spooled to a mass-storage device (typically a
disk), where they are kept for later execution. The long-term scheduler, or job
scheduler, selects processes from secondary storage and loads them into
memory for execution.

3.2 Process Scheduling 113

The short-term scheduler, or CPU scheduler, selects from among the

processes that are ready to execute and allocates the CPU to one of them.

The primary distinction between these two schedulers lies in frequency

of execution. The short-term scheduler must select a new process for the CPU

frequently. A process may execute for only a few milliseconds before waiting

for an I/O request. Often, the short-term scheduler executes at least once every

100 Milliseconds. Because of the short time between executions, the short-term

scheduler must be fast. If it takes 10 milliseconds to decide to execute a process

for 100 milliseconds, then 10/ (100 + 10) = 9 percent of the CPU is being used

(wasted) simply for scheduling the work.

The long-term scheduler executes much less frequently; minutes may sep-

arate the creation of one new process and the next. The long-term scheduler

controls the degree of multiprogramming (the number of processes in mem-

ory). If the degree of multiprogramming is stable, then the average rate of

process creation must be equal to the average departure rate of processes

leaving the system. Thus, the long-term scheduler may need to be invoked

only when a process leaves the system. Because of the longer interval between

executions, the long-term scheduler can afford to take more time to decide

which process should be selected for execution.

It is important that the long-term scheduler make a careful selection. In

general, most processes can be described as either I/O bound or CPU bound.

An I/O-bound process is one that spends more of its time doing I/O than

it spends doing computations. A CPU-bound process, in contrast, generates

I/O requests infrequently, using more of its time doing computations. It is

important that the long-term scheduler select a good process mix of I/O-bound

and CPU-bound processes. If all processes are I/O bound, the ready queue will

almost always be empty, and the short-term scheduler will have little to do.

If all processes are CPU bound, the I/O waiting queue will almost always be

empty, devices will go unused, and again the system will be unbalanced. The

system with the best performance will thus have a combination of CPU-bound

3.2 Process Scheduling 114

and I/O-bound processes.

On some systems, the long-term scheduler may be absent or minimal.

For example, time-sharing systems such as UNIX and Microsoft Windows

systems often have no long-term scheduler but simply put every new process in

memory for the short-term scheduler. The stability of these systems depends

either on a physical limitation (such as the number of available terminals)

or on the self-adjusting nature of human users. If performance declines to

unacceptable levels on a multiuser system, some users will simply quit.

Some operating systems, such as time-sharing systems, may introduce an

additional, intermediate level of scheduling. This medium-term scheduler is

diagrammed in Figure 3.7. The key idea behind a medium-term scheduler is

that sometimes it can be advantageous to remove a process from memory

(and from active contention for the CPU) and thus reduce the degree of

multiprogramming. Later, the process can be reintroduced into memory, and its

execution can be continued where it left off. This scheme is called swapping.

The process is swapped out, and is later swapped in, by the medium-term

scheduler. Swapping may be necessary to improve the process mix or because

a change in memory requirements has overcommitted available memory,

requiring memory to be freed up.

3.2. Context switching

Interrupts cause the operating system to change a CPU from its current task and

to run a kernel routine. Such operations happen frequently on general-purpose

systems. When an interrupt occurs, the system needs to save the current

context of the process running on the CPU so that it can restore that context

when its processing is done, essentially suspending the process and then

resuming it. The context is represented in the PCB of the process. It includes

the value of the CPU registers, the process state (see Figure 3.2), and memory-

management information. Generically, we perform a state save of the current

state of the CPU, be it in kernel or user mode, and then a state restore to

resume operations.

3.2 Process Scheduling 115

Switching the CPU to another process requires performing a state

save of the current process and a state restore of a different process.

This task is known as a context switch. When a context switch

occurs, the kernel saves the context of the old process in its PCB

and loads the saved context of the new process scheduled to run.

3.2 Process Scheduling 116

Chapter -3-

CPU Scheduling

3.1 Introduction

In a system with a single CPU core, only one process can run at a time. Others must wait until

the CPU’s core is free and can be rescheduled. The objective of multiprogramming is to have

some process running at all times, to maximize CPU utilization. The idea is relatively simple. A

process is executed until it must wait, typically for the completion of some I/O request. In a

simple computer system, the CPU then just sits idle. All this waiting time is wasted; no useful

work is accomplished. With multiprogramming, we try to use this time productively. Several

processes are kept in memory at one time. When one process has to wait, the operating system

takes the CPU away from that process and gives the CPU to another process. This pattern

continues. Every time one process has to wait, another process can take over use of the CPU. On

a multicore system, this concept of keeping the CPU busy is extended to all processing cores on

the system.

Scheduling of this kind is a fundamental operating-system function. Almost all computer

resources are scheduled before use. The CPU is, of course, one of the primary computer

resources. Thus, its scheduling is central to operating-system design.

Figure 3.1 Alternating sequence of CPU and I/O bursts.

3.2 CPU–I/O Burst Cycle

The success of CPU scheduling depends on an observed property of processes: process execution

consists of a cycle of CPU execution and I/O wait. Processes alternate between these two states.

Process execution begins with a CPU burst. That is followed by an I/O burst, which is followed

by another CPU burst, then another I/O burst, and soon. Eventually, the final CPU burst ends

with a system request to terminate execution (Figure 1).

The durations of CPU bursts have been measured extensively. Although they vary greatly from

process to process and from computer to computer, they tend to have a frequency curve similar

to that shown in Figure 2. The curve is generally characterized as exponential or

hyperexponential, with a large number of short CPU bursts and a small number of long CPU

bursts.

An I/O-bound process typically has many short CPU bursts. A CPU-bound program might have

a few long CPU bursts. This distribution can be important in the selection of an appropriate

CPU-scheduling algorithm.

Figure 3.2- Histogram of CPU-burst durations.

3.3 CPU Scheduler

Whenever the CPU becomes idle, the operating system must select one of the processes in the

ready queue to be executed. The selection process is carried out by the short-term scheduler, or

CPU scheduler. The scheduler selects a process from the processes in memory that are ready to

execute and allocates the CPU to that process. Note that the ready queue is not necessarily a first-

in, first-out (FIFO) queue.

As we shall see when we consider the various scheduling algorithms, a ready queue can be

implemented as a FIFO queue, a priority queue, a tree, or simply an unordered linked list.

Conceptually, however, all the processes in the ready queue are lined up waiting for a chance to

run on the CPU. The records in the queues are generally process control blocks (PCBs) of the

processes.

3.4 Preemptive and Non-preemptive Scheduling

CPU-scheduling decisions may take place under the following four circumstances:

1. When a process switches from the running state to the waiting state (for example, as the

result of an I/O request or an invocation of wait() for the termination of a child process).

2. When a process switches from the running state to the ready state (for example, when an

interrupt occurs)

3. When a process switches from the waiting state to the ready state (for example, at

completion of I/O)

4. When a process terminates.

For situations 1 and 4, there is no choice in terms of scheduling.

A new process (if one exists in the ready queue) must be selected for execution. There is a

choice, however, for situations 2 and 3.

When scheduling takes place only under circumstances 1 and 4, we say that the scheduling

scheme is non-preemptive or cooperative. Otherwise, it is preemptive. Under nonpreemptive

scheduling, once the CPU has been allocated to a process, the process keeps the CPU until it

releases the CPU either by terminating or by switching to the waiting state.

Virtually all modern operating systems including Windows, macOS, Linux, and UNIX use

preemptive scheduling algorithms.

Unfortunately, preemptive scheduling can result in race conditions when data are shared among

several processes. Consider the case of two processes that share data. While one process is

updating the data, it is preempted so that the second process can run. The second process then

tries to read the data, which are in an inconsistent state.

3.5 Dispatcher

Another component involved in the CPU-scheduling function is the dispatcher. The dispatcher is

the module that gives control of the CPU to the process selected by the short-term scheduler.

This function involves the following:

• Switching context

• Switching to user mode

• Jumping to the proper location in the user program to restart that program

The dispatcher should be as fast as possible, since it is invoked during every process switch. The

time it takes for the dispatcher to stop one process and start another running is known as the

dispatch latency and is illustrated in Figure 3.

Figure 3.3 The role of the dispatcher.

3.6 Scheduling Criteria

Different CPU-scheduling algorithms have different properties, and the choice of a particular

algorithm may favor one class of processes over another. In choosing which algorithm to use in a

particular situation, we must consider the properties of the various algorithms. Many criteria

have been suggested for comparing CPU-scheduling algorithms. Which characteristics are used

for comparison can make a substantial difference in which algorithm is judged to be best. The

criteria include the following:

• CPU utilization. We want to keep the CPU as busy as possible. Conceptually, CPU

utilization can range from 0 to 100 percent. In a real system, it should range from 40 percent

(for a lightly loaded system) to 90 percent (for a heavily loaded system).

• Throughput. If the CPU is busy executing processes, then work is being done. One

measure of work is the number of processes that are completed per time unit, called

throughput. For long processes, this rate may be one process per hour; for short transactions,

it may be ten processes per second.

• Turnaround time. From the point of view of a particular process, the important criterion is

how long it takes to execute that process. The interval from the time of submission of a

process to the time of completion is the turnaround time. Turnaround time is the sum of the

periods spent waiting to get into memory, waiting in the ready queue, executing on the CPU,

and doing I/O.

• Waiting time. The CPU-scheduling algorithm does not affect the amount of time during

which a process executes or does I/O. It affects only the amount of time that a process spends

waiting in the ready queue. Waiting time is the sum of the periods spent waiting in the ready

queue.

• Response time. In an interactive system, turnaround time may not be the best criterion.

Often, a process can produce some output fairly early and can continue computing new

results while previous results are being output to the user. Thus, another measure is the time

from the submission of a request until the first response is produced. This measure, called

response time, is the time it takes to start responding, not the time it takes to output the

response. The turnaround time is generally limited by the speed of the output device.

It is desirable to maximize CPU utilization and throughput and to minimize turnaround time,

waiting time, and response time. In most cases, we optimize the average measure. However,

under some circumstances, we prefer to optimize the minimum or maximum values rather than

the average. For example, to guarantee that all users get good service, we may want to minimize

the maximum response time.

3.7 Scheduling Algorithms

CPU scheduling deals with the problem of deciding which of the processes in the ready queue is

to be allocated the CPU. There are many different CPU-scheduling algorithms. In this section,

we describe several of them.

3.7.1 First-Come, First-Served Scheduling

By far the simplest CPU-scheduling algorithm is the first-come, first -served (FCFS) scheduling

algorithm. With this scheme, the process that requests the CPU first is allocated the CPU first.

The implementation of the FCFS policy is easily managed with a FIFO queue. When a process

enters the ready queue, its PCB is linked onto the tail of the queue. When the CPU is free, it is

allocated to theprocessattheheadofthequeue.Therunningprocessisthenremovedfrom the queue.

The code for FCFS scheduling is simple to write and understand. On the negative side, the

average waiting time under the FCFS policy is often quite long. Consider the following set of

processes that arrive at time 0, with the length of the CPU burst given in milliseconds:

Process Burst Time

P1 24

P2 3

P3 3

If the processes arrive in the order P1, P2, P3, and are served in FCFS order, we get the result

shown in the following Gantt chart, which is a bar chart that illustrates a particular schedule,

including the start and finish times of each of the participating processes:

P
1

P
2

P
3

0 24 27 30

the waiting time is 0 milliseconds for process P1, 24 milliseconds for process P2, and 27

milliseconds for process P3. Thus,

the average waiting time is (0 + 24 + 27)/3 = 17 milliseconds.

The Average turn-around time: (3 + 6 + 30)/3 = 13 millisecond.

If the processes arrive in the order P2, P3, P1, however, the results will be as shown in the

following Gantt chart:

P
2

P
3

P
1

0 3 6 30

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction is substantial.

Thus, the average waiting time under an FCFS policy is generally not minimal and may vary

substantially if the processes’ CPU burst times vary greatly.

There is a convoy effect as all the other processes wait for the one big process to get off the

CPU. This effect results in lower CPU and device utilization than might be possible if the shorter

processes were allowed to go first. Note also that the FCFS scheduling algorithm is non-

preemptive. Once the CPU has been allocated to a process, that process keeps the CPU until it

releases the CPU, either by terminating or by requesting I/O. The FCFS algorithm is thus

particularly troublesome for time-sharing systems, where it is important that each user get a

share of the CPU at regular intervals. It would be disastrous to allow one process to keep the

CPU for an extended period.

Reference

Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, “ Operating System Concepts”, Book,

Tenth Edition, John Wiley &Sons, 2018.

3.7.2 Shortest-Job-First Scheduling

A different approach to CPU scheduling is the shortest-job-first (SJF) scheduling algorithm. This algorithm

associates with each process the length of the process’s next CPU burst. When the CPU is available, it is

assigned to the process that has the smallest next CPU burst. If the next CPU bursts of two processes are

the same, FCFS scheduling is used to break the tie. Note that a more appropriate term for this scheduling

method would be the shortest-next- CPU-burst algorithm, because scheduling depends on the length of the

next CPU burst of a process, rather than its total length. As an example of SJF scheduling, consider the

following set of processes, with the length of the CPU burst given in milliseconds:

Process Burst Time

P1 6

P2 8

P3 7

P4 3

P4 P1 P3 P2

0 3 9 16 24

SJF (non-preemptive, simultaneous arrival)

The Average waiting time = (3 + 16+ 9+0)/4 = 7

The Average turn-around time = (9 + 24 + 16+ 3)/4 = 13

The SJF scheduling algorithm is provably optimal, in that it gives the minimum average waiting time for a

given set of processes. Moving a short process before a long one decreases the waiting time of the short

process more than it increases the waiting time of the long process. Consequently, the average waiting time

decreases.

The real difficulty with the SJF algorithm is knowing the length of the next CPU request. For long-term

(job) scheduling in a batch system, we can use the process time limit that a user specifies when he submits

the job. In this situation, users are motivated to estimate the process time limit accurately, since a lower

value may mean faster response but too low a value will cause a time-limit-exceeded error and require

resubmission. SJF scheduling is used frequently in long-term scheduling.

The SJF algorithm can be either preemptive or non-preemptive. The choice arises when anew process

arrives at the ready queue while a previous process is still executing. The next CPU burst of the newly

arrived process may be shorter than what is left of the currently executing process. A preemptive SJF

algorithm will preempt the currently executing process, whereas a non-preemptive SJF algorithm will allow

the currently running process to finish its CPU burst. Preemptive SJF scheduling is sometimes called

shortest-remaining-time-first scheduling.

As an example, consider the following four processes, with the length of the CPU burst given in

milliseconds:

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

If the processes arrive at the ready queue at the times shown and need the indicated burst times, then the

resulting preemptive SJF schedule is as depicted in the following Gantt chart:

P1 P2 P4 P1 P3

0 1 5 10 17 26

Process P1 is started at time 0, since it is the only process in the queue. Process P2 arrives at time 1. The

remaining time for process P1 (7 milliseconds) is larger than the time required by process P2 (4

milliseconds), so process P1 is preempted, and process P2 is scheduled. The average waiting time for this

example is [(10−1) + (1−1) + (17−2) + (5−3)]/4 = 26/4 = 6.5 milliseconds.

3.7.3 Round-Robin Scheduling

The round-robin (RR) scheduling algorithm is designed especially for time- sharing systems. It is similar

to FCFS scheduling, but preemption is added to enable the system to switch between processes. A small

unit of time, called a time quantum or time slice, is defined. A time quantum is generally from 10 to 100

milliseconds in length. The ready queue is treated as a circular queue.

The CPU scheduler goes around the ready queue, allocating the CPU to each process for a time interval of

up to 1 time quantum. To implement RR scheduling, we again treat the ready queue as a FIFO queue of

processes. New processes are added to the tail of the ready queue. The CPU scheduler picks the first process

from the ready queue, sets a timer to interrupt after 1 time quantum, and dispatches the process. One of two

things will then happen. The process may have a CPU burst of less than 1 time quantum. In this case, the

process itself will release the CPU voluntarily. The scheduler will then proceed to the next process in the

ready queue. If the CPU burst of the currently running process is longer than 1 time quantum, the timer will

go off and will cause an interrupt to the operating system. A context switch will be executed, and the process

will be put at the tail of the ready queue. The CPU scheduler will then select the next process in the ready

queue.

The average waiting time under the RR policy is often long.

Consider the following set of processes that arrive at time 0, with the length of the CPU burst given in

milliseconds:

Process Burst Time

P1 24

P2 3

P3 3

If we use a time quantum of 4 milliseconds, then process P1 gets the first 4 milliseconds. Since it requires

another 20 milliseconds, it is preempted after the first time quantum, and the CPU is given to the next

process in the queue, process P2. Process P2 does not need 4 milliseconds, so it quits before its time

quantum expires. The CPU is then given to the next process, process P3. Once each process has received 1

time quantum, the CPU is returned to process P1 for an additional time quantum. The resulting RR schedule

is as follows:

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

Let’s calculate the average waiting time for this schedule.

P1 waits for 6 milliseconds(10-4),

P2 waits for 4 milliseconds

P3 waits for 7 milliseconds.

Thus, the average waiting time is 17/3 = 5.66 milliseconds.

Figure 4.2 How a smaller time quantum increases context switches.

In the RR scheduling algorithm, no process is allocated the CPU for more than 1 time quantum in a row. If

a process’s CPU burst exceeds 1 time quantum, that process is preempted and is put back in the ready

queue. The RR scheduling algorithm is thus preemptive. If there are n processes in the ready queue and the

time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units.

Each process must wait no longer than (n − 1) × q time units until its next time quantum. For example, with

five processes and a time quantum of 20 milliseconds, each process will get up to 20 milliseconds every

100 milliseconds. The performance of the RR algorithm depends heavily on the size of the time quantum.

At one extreme, if the time quantum is extremely large, the RR policy is the same as the FCFS policy.

In contrast, if the time quantum is extremely small (say, 1 millisecond), the RR approach can result in a

large number of context switches.

Assume, for example, that we have only one process of 10 time units. If the quantum is 12 time units, the

process finishes in less than 1 time quantum, with no overhead. If the quantum is 6 time units, however, the

process requires 2 quanta, resulting in a context switch. If the time quantum is 1 time unit, then nine context

switches will occur, slowing the execution of the process accordingly (Figure 4). Thus, we want the time

quantum to be large with respect to the context- switch time. If the context-switch time is approximately

10 percent of the time quantum, then about 10 percent of the CPU time will be spent in context switching.

In practice, most modern systems have time quanta ranging from 10 to 100 milliseconds. The time required

for a context switch is typically less than 10 microseconds; thus, the context-switch time is a small fraction

of the time quantum.

Figure 3.4: How a smaller time quantum increases context switches.

Turnaround time also depends on the size of the time quantum. As we can see from Figure 3.5, the

average turnaround time of a set of processes does not necessarily improve as the time-quantum size

increases. In general, the average turnaround time can be improved if most processes finish their next

CPU burst in a single time quantum. For example, given three processes of 10 time units each and a

quantum of 1 time unit, the average turnaround time is 29. If the time quantum is 10, however, the

average turnaround time

drops to 20. If context-switch time is added in, the average turnaround time increases even more for a

smaller time quantum, since more context switches are required. Although the time quantum should be

large compared with the context- switch time, it should not be too large. As we pointed out earlier, if the

time quantum is too large, RR scheduling degenerates to an FCFS policy. A rule of thumb is that 80 percent

of the CPU bursts should be shorter than the time quantum.

Figure 3.5: How turnaround time varies with the time quantum.

represent low priority; others use low numbers for high priority. This difference can lead to confusion. In

CPU Scheduling

3.7.4 Priority Scheduling

The SJF algorithm is a special case of the general priority-scheduling algorithm. A priority is associated

with each process, and the CPU is allocated to the process with the highest priority. Equal-priority

processes are scheduled in FCFS order. An SJF algorithm is simply a priority algorithm where the priority

(p) is the inverse of the (predicted) next CPU burst. The larger the CPU burst, the lower the priority, and

vice versa. Note that we discuss scheduling in terms of high priority and low priority. Priorities are

generally indicated by some fixed range of numbers, such as 0 to 7 or 0 to 4,095. However, there is no

general agreement on whether 0 is the highest or lowest priority. Some systems use low numbers to

this text, we assume that low numbers represent high priority. As an example, consider the following set of

processes, assumed to have arrived at time 0 in the order P1, P2, ··· , P5, with the length of the CPU burst

given in milliseconds:

Process Burst time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

Using priority scheduling, we would schedule these processes according to the following Gantt chart:

P2 P5 P1 P1 P4

0 1 6 16 18 19

The average waiting time is 8.2 milliseconds.

3.4.4.1 Priorities types

• Internal

Internally defined priorities use some measurable quantity or quantities to compute the priority of a

process. For example, time limits, memory requirements, the number of open files, and the ratio of

average I/O burst to average CPU burst have been used in computing priorities.

• External

External priorities are set by criteria outside the operating system, such as the importance of the process,

the type and amount of funds being paid for computer use, the department sponsoring the work, and other,

often political, factors.

Priority scheduling can be either preemptive or nonpreemptive. When a process arrives at the ready queue,

its priority is compared with the priority of the currently running process. A preemptive priority

scheduling algorithm will preempt the CPU if the priority of the newly arrived process is higher than the

priority of the currently running process. A nonpreemptive priority scheduling algorithm will simply put

the new process at the head of the ready queue.

preemptive priority Scheduling

Process Arrival Time Burst time Priority

P1 0 10 3

P2 2 1 1

P3 5 2 4

P4 7 1 2

P5 9 5 1

Using priority scheduling, we would schedule these processes according to the following Gantt chart:

P1 P2 P1 P4 P1 P5 P1 P3

0 2 3 5 7 8 9 14 17 19

Waiting time of p1= (0-0) + (3-2)+ (8-7)+(14-9)=7

Waiting time of p2=(2-2)=0

Waiting time of p3=(17-5)=12

Waiting time of p4=(7-7)=0

Waiting time of p5=(9-9)=0

Average waiting time =(7+ 0+12+0+0)/5=19/5=3.8

3.7.4.2 Problems with Priority Scheduling Algorithm

A major problem with priority scheduling algorithms is indefinite blocking, or starvation. A process that

is ready to run but waiting for the CPU can be considered blocked. A priority scheduling algorithm can

leave some low- priority processes waiting indefinitely. In a heavily loaded computer system, a steady

stream of higher-priority processes can prevent a low-priority process from ever getting the CPU. A

solution to the problem of indefinite blockage of low-priority processes is aging.

Aging involves gradually increasing the priority of processes that wait in the system for a long time. For

example, if priorities range from 127 (low) to 0 (high), we could increase the priority of a waiting process

by 1 every 15 minutes. Eventually, even a process with an initial priority of 127 would have the highest

priority in the system and would be executed. In fact, it would take no more than 32 hours for a priority-

127 process to age to a priority-0 process.

 3.8 Multilevel Queue Scheduling

With both priority and round-robin scheduling, all processes may be placed in a single queue, and the

scheduler then selects the process with the highest priority to run.

In practice, it is often easier to have separate queues for each distinct priority, and priority scheduling

simply schedules the process in the highest-priority queue. This is illustrated in Figure 3.6. This approach—

known as multilevel queue— also works well when priority scheduling is combined with round-robin: if

there are multiple processes in the highest-priority queue, they are executed in round-robin order. In the

most generalized form of this approach, a priority is assigned statically to each process, and a process

remains in the same queue for the duration of its runtime.

Figure 3.6 Separate queues for each priority.

A multilevel queue scheduling algorithm can also be used to partition processes into several separate

queues based on the process type (Figure 3.7). For example, a common division is made between

foreground (interactive) processes and background (batch) processes. These two types of processes have

different response-time requirements and so may have different scheduling needs. In addition, foreground

processes may have priority (externally defined) over background processes. Separate queues might be

used for foreground and background processes, and each queue might have its own scheduling algorithm.

The foreground queue might be scheduled by an RR algorithm, for example, while the background queue

is scheduled by an FCFS algorithm.

In addition, there must be scheduling among the queues, which is commonly implemented as fixed-

priority preemptive scheduling. For example, the real-time queue may have absolute priority over the

interactive queue.

Let’s look at an example of a multilevel queue scheduling algorithm with four queues, listed below in

order of priority:

1. Real-time processes

2. System processes

3. Interactive processes

4. Batch processes

Each queue has absolute priority over lower-priority queues. No process in the batch queue, for example,

could run unless the queues for real-time processes, system processes, and interactive processes were all

empty. If an interactive process entered the ready queue while a batch process was running, the batch

process would be preempted.

Another possibility is to time-slice among the queues. Here, each queue gets a certain portion of the CPU

time, which it can then schedule among its various processes. For instance, in the foreground–background

queue example, the foreground queue can be given 80 percent of the CPU time for RR scheduling among

its processes, while the background queue receives 20 percent of the

CPU to give to its processes on an FCFS basis.

Figure 3.7 Multilevel queue scheduling

3.9 Multilevel Feedback Queue Scheduling

Normally, when the multilevel queue scheduling algorithm is used, processes are permanently assigned to

a queue when they enter the system. If there are separate queues for foreground and background

processes, for example, processes do not move from one queue to the other, since processes do not change

their foreground or background nature. This setup has the advantage of low scheduling overhead, but it is

inflexible.

The multilevel feedback queue scheduling algorithm, in contrast, allows

a process to move between queues. The idea is to separate processes according to the characteristics of

their CPU bursts. If a process uses too much CPU time, it will be moved to a lower-priority queue. This

scheme leaves I/O-bound and interactive processes in the higher-priority queues. In addition, a process

that waits too long in a lower-priority queue may be moved to a higher-priority queue. This form of aging

prevents starvation.

For example, consider a multilevel feedback queue scheduler with three queues, numbered from 0 to 2

(Figure 3.8). The scheduler first executes all

Figure3. 8 Multilevel feedback queues.

processes in queue 0. Only when queue 0 is empty will it execute processes in queue 1. Similarly,

processes in queue 2 will be executed only if queues 0 and 1 are empty. A process that arrives for queue 1

will preempt a process in queue 2. A process in queue 1 will in turn be preempted by a process arriving

for queue 0.

A process entering the ready queue is put in queue 0. A process in queue 0 is given a time quantum of 8

milliseconds. If it does not finish within this time, it is moved to the tail of queue 1. If queue 0 is empty,

the process at the head of queue 1 is given a quantum of 16 milliseconds. If it does not complete, it is

preempted and is put into queue 2. Processes in queue 2 are run on an FCFS basis but are run only when

queues 0 and 1 are empty.

This scheduling algorithm gives highest priority to any process with a CPU burst of 8 milliseconds or

less. Such a process will quickly get the CPU, finish its CPU burst, and go off to its next I/O burst.

Processes that need more than 8 but less than 24 milliseconds are also served quickly, although with

lower priority than shorter processes. Long processes automatically sink to queue 2 and are served in

FCFS order with any CPU cycles left over from queues 0 and 1.

In general, a multilevel feedback queue scheduler is defined by the following parameters:

• The number of queues

• The scheduling algorithm for each queue

• The method used to determine when to upgrade a process to a higher priority queue

• The method used to determine when to demote a process to a lower priority queue

• The method used to determine which queue a process will enter when that process needs service

The definition of a multilevel feedback queue scheduler makes it the most general CPU-scheduling

algorithm. It can be configured to match a specific system under design. Unfortunately, it is also the most

complex algorithm, since defining the best scheduler requires some means by which to select values for

all the parameters.

Reference

Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, “ Operating System Concepts”, Book, 10th

Edition, John Wiley &Sons, 2018.

Chapter -4-

Main Memory

The memory- management algorithms vary from a primitive bare-

machine approach to paging and segmentation strategies. Each approach has
its own advantages and disadvantages. Selection of a memory-management
method for a specific system depends on many factors, especially on the
hardware design of the system. As we shall see, many algorithms require
hardware support, leading many systems to have closely integrated
hardware and operating-system memory management.

4.1 Introduction

Memory is central to the operation of a modern computer system. Memory
consists of a large array of bytes, each with its own address. The CPU fetches
instructions from memory according to the value of the program counter.
These instructions may cause additional loading from and storing to specific
memory addresses.

A typical instruction-execution cycle, for example, first fetches an
instruction from memory. The instruction is then decoded and may cause
operands to be fetched from memory. After the instruction has been executed
on the operands, results may be stored back in memory. The memory unit
sees only a stream of memory addresses; it does not know how they are
generated (by the instruction counter, indexing, indirection, literal addresses,
and so on) or what they are for (instructions or data). Accordingly, we can
ignore how a program generates a memory address. We are interested only in
the sequence of memory addresses generated by the running program.

We begin our discussion by covering several issues that are pertinent
to manage memory: basic hardware, the binding of symbolic memory
addresses to actual physical addresses, and the distinction between logical
and physical addresses. We conclude the section with a discussion of dynamic
linking and shared libraries.

4.1.1 Basic Hardware

Main memory and the registers built into the processor itself are the only
general-purpose storage that the CPU can access directly. There are machine
instructions that take memory addresses as arguments, but none that take
disk addresses. Therefore, any instructions in execution, and any data being
used by the instructions, must be in one of these direct-access storage devices.
If the data are not in memory, they must be moved there before the CPU can
operate on them.

Registers that are built into the CPU are generally accessible within one
cycle of the CPU clock. Most CPUs can decode instructions and perform
simple operations on register contents at the rate of one or more operations
per clock tick. The same cannot be said of main memory, which is accessed
via a transaction on the memory bus. Completing a memory access may take
many cycles of the CPU clock. In such cases, the processor normally needs to

stall, since it does not have the data required to complete the instruction that
it is executing. This situation is intolerable because of the frequency of
memory accesses. The remedy is to add fast memory between the CPU and
main memory, typically on the CPU chip for fast access. Such a cache, to
manage a cache built into the CPU, the hardware automatically speeds up
memory access without any operating-system control.

Not only are we concerned with the relative speed of accessing physical
memory, but we also must ensure correct operation. For proper system
operation we must protect the operating system from access by user
processes.
On multiuser systems, we must additionally protect user processes from
one another. This protection must be provided by the hardware because the
operating system doesn’t usually intervene between the CPU and its memory
aaccesses. Hardware implements this production in several different ways, as
we show throughout the chapter. Here, we outline one possible
implementation.
We first need to make sure that each process has a separate memory space.

Separate per-process memory space protects the processes from each other
and is fundamental to having multiple processes loaded in memory for
concurrent execution. To separate memory spaces, we need the ability to
determine the range of legal addresses that the process may access and to
ensure that the process can access only these legal addresses. We can provide
this protection by using two registers, usually a base and a limit, as
illustrated in Figure 4.1.

The base register holds the smallest legal physical memory address;

the limit register specifies the size of the range. For example, if the base
register holds

0

256000

operating
system

process

300040 300040

420940

880000

1024000

process

process

base

120900

limit

Figure 4.1 A base and a limit register define a logical address space.

300040 and the limit register is 120900, then the program can legally access all
addresses from 300040 through 420939 (inclusive).

Protection of memory space is accomplished by having the CPU hardware
compare every address generated in user mode with the registers. Any attempt
by a program executing in user mode to access operating-system memory or
other users’ memory results in a trap to the operating system, which treats the
attempt as a fatal error (Figure 4.2). This scheme prevents a user program from
(accidentally or deliberately) modifying the code or data structures of either
the operating system or other users.

The base and limit registers can be loaded only by the operating system,
which uses a special privileged instruction. Since privileged instructions can
be executed only in kernel mode, and since only the operating system executes
in kernel mode, only the operating system can load the base and limit registers.

base base + limit

CPU
address yes

≥ <

no no

yes

trap to operating system

monitor—addressing error

memory

Figure 4.2 Hardware address protection with base and limit registers.

8.1.2 Address Binding

Usually, a program resides on a disk as a binary executable file. To be executed,
the program must be brought into memory and placed within a process.
Depending on the memory management in use, the process may be moved
between disk and memory during its execution. The processes on the disk that
are waiting to be brought into memory for execution form the input queue.

The normal single-tasking procedure is to select one of the processes
in the input queue and to load that process into memory. As the process
is executed, it accesses instructions and data from memory. Eventually, the
process terminates, and its memory space is declared available.

Most systems allow a user process to reside in any part of the physical
memory. Thus, although the address space of the computer may start at 00000,
the first address of the user process need not be 00000. You will see later how
a user program actually places a process in physical memory.

In most cases, a user program goes through several steps — some of which

may be optional — before being executed (Figure 8.3). Addresses may be
represented in different ways during these steps. Addresses in the source
program are generally symbolic (such as the variable count). A compiler
typically binds these symbolic addresses to relocatable addresses (such as
“14 bytes from the beginning of this module”). The linkage editor or loader
in turn binds the relocatable addresses to absolute addresses (such as 74014).
Each binding is a mapping from one address space to another.

Classically, the binding of instructions and data to memory addresses can
be done at any step along the way:

• Compile time. If you know at compile time where the process will reside
in memory, then absolute code can be generated. For example, if you know
that a user process will reside starting at location R, then the generated
compiler code will start at that location and extend up from there. If, at
some later time, the starting location changes, then it will be necessary
to recompile this code. The MS-DOS .COM-format programs are bound at
compile time.

• Load time. If it is not known at compile time where the process will reside
in memory, then the compiler must generate relocatable code. In this case,
final binding is delayed until load time. If the starting address changes, we
need only reload the user code to incorporate this changed value.

source

program

compiler or
assembler

compile
time

other
object

modules

object
module

linkage
editor

system
library

dynamically
loaded
system
library

dynamic
linking

load
module

loader

in-memory

binary
memory
image

load
time

execution
time (run
time)

Figure 4.3 Multistep processing of a user program.

• Execution time. If the process can be moved during its execution from

one memory segment to another, then binding must be delayed until run
time. Special hardware must be available faor this scheme to work. A
major portion of this chapter is devoted to showing how these various
bind- ings can be implemented effectively in a computer system and to
discussing appropriate hardware support.

4.1.3 Logical Versus Physical Address Space

An address generated by the CPU is commonly referred to as a logical
address, address seen by the memory unit — that is, the one loaded into the
memory-address register of the memory — is commonly referred to as a
physical address.

CPU

logical

address

346

relocation
register

14000

+

MMU

physical
address

14346

memory

Figure 4.4 Dynamic relocation using a relocation register.

The compile-time and load-time address-binding methods generate identical
logical and physical addresses. However, the execution-time address binding
scheme results in differing logical and physical addresses.

In this case, we usually refer to the logical address as a virtual address. We
use logical address and virtual address interchangeably in this text. The set of
all logical addresses generated by a program is a logical address space. The
set of all physical addresses corresponding to these logical addresses is a
physical address space. Thus, in the execution-time address-binding scheme,
the logical and physical address spaces differ.

The run-time mapping from virtual to physical addresses is done by a
hardware device called the memory-management unit (MMU). We can
choose from many different methods to accomplish such mapping, The base
register is now called a relocation register. The value in the relocation register
is added to every address generated by a user process at the time the address
is sent to memory (see Figure 8.4). For example, if the base is at 14000, then an
attempt by the user to address location
0 is dynamically relocated to location 14000; an access to location 346 is mapped
to location 14346.

The user program never sees the real physical addresses. The program can
create a pointer to location 346, store it in memory, manipulate it, and compare it
with other addresses — all as the number 346. Only when it is used as a memory
address (in an indirect load or store, perhaps) is it relocated relative to the base
register. The user program deals with logical addresses. The memory-mapping
hardware converts logical addresses into physical addresses. This form of
execution-time binding was discussed in Section 8.1.2. The final location of
a referenced memory address is not determined until the reference is made.

We now have two different types of addresses: logical addresses (in the
range 0 to max) and physical addresses (in the range R + 0 to R + max for a base
value R). The user program generates only logical addresses and thinks that
the process runs in locations 0 to max. However, these logical addresses must
be mapped to physical addresses before they are used. The concept of a logical

address space that is bound to a separate physical address space is central to
proper memory management.

4.1.4 Dynamic Loading

In our discussion so far, it has been necessary for the entire program and
all data of a process to be in physical memory for the process to execute.
The size of a process has thus been limited to the size of physical memory.
To obtain better memory-space utilization, we can use dynamic loading.
With dynamic loading, a routine is not loaded until it is called. All
routines are kept on disk in a relocatable load format. The main program
is loaded into memory and is executed. When a routine needs to call
another routine, the calling routine first checks to see whether the other
routine has been loaded. If it has not, the relocatable linking loader is
called to load the desired routine into memory and to update the

program’s address tables to reflect this change. Then control is passed to
the newly loaded routine.

4.1.5 Dynamic Linking and Shared Libraries

Dynamically linked libraries are system libraries that are linked to user
programs when the programs are run . Some operating systems support only
static linking, in which system libraries are treated like any other object
module and are combined by the loader into the binary program image.
Dynamic linking, in contrast, is similar to dynamic loading. Here, though,
linking, rather than loading, is postponed until execution time. This feature is
usually used with system libraries, such as language subroutine libraries.
Without this facility, each program on a system must include a copy of its
language library (or at least the routines referenced by the program) in the
executable image. This requirement wastes both disk space and main
memory.

Unlike dynamic loading, dynamic linking and shared libraries generally
require help from the operating system. If the processes in memory are
protected from one another, then the operating system is the only entity that
can check to see whether the needed routine is in another process’s memory
space or that can allow multiple processes to access the same memory
addresses.

4.2 Swapping

A process must be in memory to be executed. A process, however, can be
swapped temporarily out of memory to a backing store and then brought back
into memory for continued execution (Figure4.5). Swapping makes it possible
for the total physical address space of all processes to exceed the real physical
memory of the system, thus increasing the degree of multiprogramming in a
system.

4.2.1 Standard Swapping

Standard swapping involves moving processes between main memory and a
backing store.

operating
system

1 swap out

2 swap in

process P1

process P2

user

space

main memory

backing store

Figure 4.5 Swapping of two processes using a disk as a backing store.

The backing store is commonly a fast disk. It must be large enough to
accommodate copies of all memory images for all users, and it must provide
direct access to these memory images. The system maintains a ready queue
consisting of all processes whose memory images are on the backing store or
in memory and are ready to run. Whenever the CPU scheduler decides to
execute a process, it calls the dispatcher. The dispatcher checks to see whether
the next process in the queue is in memory. If it is not, and if there is no free
memory region, the dispatcher swaps out a process currently in memory and
swaps in the desired process. It then reloads registers and transfers control to
the selected process.

Swapping 8.2 359

4.3 Contiguous Memory Allocation

The main memory must accommodate both the operating system and the
various user processes. We therefore need to allocate main memory in the most
efficient way possible. This section explains one early method, contiguous
memory allocation.

The memory is usually divided into two partitions: one for the resident
operating system and one for the user processes. We can place the operating
system in either low memory or high memory. The major factor affecting this
decision is the location of the interrupt vector. Since the interrupt vector is
often in low memory, programmers usually place the operating system in low
memory as well. Thus, in this text, we discuss only the situation in which
the operating system resides in low memory. The development of the other
situation is similar.

We usually want several user processes to reside in memory at the same
time. We therefore need to consider how to allocate available memory to the
processes that are in the input queue waiting to be brought into memory. In
contiguous memory allocation, each process is contained in a single section of
memory that is contiguous to the section containing the next process.

4.3.1 Memory Protection

Before discussing memory allocation further, we must discuss the issue of
memory protection. We can prevent a process from accessing memory it does not
own by combining two ideas previously discussed. If we have a system with a
relocation register (Section 8.1.3), together with a limit register (Section
8.1.1), we accomplish our goal. The relocation register contains the value of the
smallest physical address; the limit register contains the range of logical
addresses (for example, relocation = 100040 and limit = 74600). Each logical
address must fall within the range specified by the limit register. The MMU maps
the logical address dynamically by adding the value in the relocation register.
This mapped address is sent to memory (Figure 4.6).

When the CPU scheduler selects a process for execution, the dispatcher
loads the relocation and limit registers with the correct values as part of the
context switch. Because every address generated by a CPU is checked against
these registers, we can protect both the operating system and the other users’
programs and data from being modified by this running process.

The relocation-register scheme provides an effective way to allow the
operating system’s size to change dynamically. This flexibility is desirable in
many situations. For example, the operating system contains code and buffer
space for device drivers. If a device driver (or other operating-system service)
is not commonly used, we do not want to keep the code and data in memory, as
we might be able to use that space for other purposes. Such code is sometimes
called transient operating-system code; it comes and goes as needed. Thus,
using this code changes the size of the operating system during program
execution.

=

limit
register

relocation
register

CPU

logical
address

yes

<

physical
address

+

memory

no

trap: addressing error

Figure 4.6 Hardware support for relocation and limit registers.

4.3.2 Memory Allocation

Now we are ready to turn to memory allocation. One of the simplest
methods for allocating memory is to divide memory into several fixed-sized
partitions. Each partition may contain exactly one process. Thus, the degree
of multiprogramming is bound by the number of partitions. In this multiple-
partition method, when a partition is free, a process is selected from the input
queue and is loaded into the free partition. When the process terminates, the
partition becomes available for another process. This method was originally
used by the IBM OS/360 operating system (called MFT)but is no longer in use.
The method described next is a generalization of the fixed-partition scheme
(called MVT); it is used primarily in batch environments. Many of the ideas
presented here are also applicable to a time-sharing environment in which
pure segmentation is used for memory management (Section 8.4).

In the variable-partition scheme, the operating system keeps a table
indicating which parts of memory are available and which are occupied.
Initially, all memory is available for user processes and is considered one
large block of available memory, a hole. Eventually, as you will see, memory
contains a set of holes of various sizes.

As processes enter the system, they are put into an input queue. The
operating system takes into account the memory requirements of each process
and the amount of available memory space in determining which processes are
allocated memory. When a process is allocated space, it is loaded into memory,
and it can then compete for CPU time. When a process terminates, it releases its
memory, which the operating system may then fill with another process from
the input queue.

=

At any given time, then, we have a list of available block sizes and an

input queue. The operating system can order the input queue according to
a scheduling algorithm. Memory is allocated to processes until, finally, the
memory requirements of the next process cannot be satisfied — that is, no
available block of memory (or hole) is large enough to hold that process. The
operating system can then wait until a large enough block is available, or it can
skip down the input queue to see whether the smaller memory requirements
of some other process can be met.

This procedure is a particular instance of the general dynamic storage-
allocation problem, which concerns how to satisfy a request of size n from a
list of free holes.

There are many solutions to dynamic storage- allocation problem. The

first-fit, best-fit, and worst-fit strategies are the ones most commonly used to
select a free hole from the set of available holes.

• First fit. Allocate the first hole that is big enough. Searching can start either at
the beginning of the set of holes or at the location where the previous first-fit
search ended. We can stop searching as soon as we find a free hole that is
large enough.

• Best fit. Allocate the smallest hole that is big enough. We must search the
entire list, unless the list is ordered by size. This strategy produces the
smallest leftover hole.

• Worst fit. Allocate the largest hole. Again, we must search the entire list,
unless it is sorted by size. This strategy produces the largest leftover hole,
which may be more useful than the smaller leftover hole from a best-fit
approach.

Simulations have shown that both first fit and best fit are better than worst fit

in terms of decreasing time and storage utilization. Neither first fit nor best fit is
clearly better than the other in terms of storage utilization, but first fit is
generally faster.

Allocation Memory Contiguous 8.3 363

4.3.3 Fragmentation

Both the first-fit and best-fit strategies for memory allocation suffer from
external fragmentation. As processes are loaded and removed from memory,
the free memory space is broken into little pieces. External fragmentation exists
when there is enough total memory space to satisfy a request but the available
spaces are not contiguous: storage is fragmented into a large number of small
holes. This fragmentation problem can be severe. In the worst case, we could
have a block of free (or wasted) memory between every two processes. If all
these small pieces of memory were in one big free block instead, we might be
able to run several more processes.

Memory fragmentation can be internal as well as external. Consider a
multiple-partition allocation scheme with a hole of 18,464 bytes. Suppose that
the next process requests 18,462 bytes. If we allocate exactly the requested block,
we are left with a hole of 2 bytes. The overhead to keep track of this hole will be
substantially larger than the hole itself. The general approach to avoiding this
problem is to break the physical memory into fixed-sized blocks and allocate
memory in units based on block size. With this approach, the memory allocated
to a process may be slightly larger than the requested memory. The difference
between these two numbers is internal fragmentation — unused memory that
is internal to a partition.

One solution to the problem of external fragmentation is compaction.
The goal is to shuffle the memory contents so as to place all free memory
together in one large block. Compaction is not always possible, however. If
relocation is static and is done at assembly or load time, compaction cannot be
done. It is possible only if relocation is dynamic and is done at execution time. If
addresses are relocated dynamically, relocation requires only moving the
program and data and then changing the base register to reflect the new base
address. When compaction is possible, we must determine its cost. The
simplest compaction algorithm is to move all processes toward one end of
memory; all holes move in the other direction, producing one large hole of
available memory. This scheme can be expensive.

Another possible solution to the external-fragmentation problem is
to permit the logical address space of the processes to be noncontiguous,
thus allowing a process to be allocated physical memory wherever such
memory is available. Two complementary techniques achieve this solution:
segmentation and paging.

Allocation Memory Contiguous 8.3 363

4.4 Segmentation

As we’ve already seen, the user ’s view of memory is not the same as the actual
physical memory. This is equally true of the programmer ’s view of memory.
Indeed, dealing with memory in terms of its physical properties is inconvenient
to both the operating system and the programmer. What if the hardware could
provide a memory mechanism that mapped the programmer ’s view to the
actual physical memory? The system would have more freedom to manage
memory, while the programmer would have a more natural programming
environment. Segmentation provides such a mechanism.

8.4.1 Basic Method

When writing a program, a programmer thinks of it as a main program
with a set of methods, procedures, or functions. It may also include various data
structures: objects, arrays, stacks, variables, and so on. Each of these modules or
data elements is referred to by name. The programmer talks about “the stack,”
“the math library,” and “the main program” without caring what addresses
in memory these elements occupy. She is not concerned with whether the
stack is stored before or after the Sqrt() function. Segments vary in length,
and the length of each is intrinsically defined by its purpose in the program.
Elements within a segment are identified by their offset from the beginning of
the segment: the first statement of the program, the seventh stack frame entry
in the stack, the fifth instruction of the Sqrt(), and so on.

Segmentation is a memory-management scheme that supports the

programmer view of memory. A logical address space is a collection of
segments.

Each segment has a name and a length. The addresses specify both the segment
name and the offset within the segment. The programmer therefore specifies
each address by two quantities: a segment name and an offset.

For simplicity of implementation, segments are numbered and are referred to
by a segment number, rather than by a segment name. Thus, a logical address
consists of a two tuple:

<segment-number, offset>.

Normally, when a program is compiled, the compiler automatically constructs
segments reflecting the input program.

A C compiler might create separate segments for the following:

1. The code

2. Global variables

3. The heap, from which memory is allocated

4. The stacks used by each thread

5. The standard C library

Libraries that are linked in during compile time might be assigned separate
segments. The loader would take all these segments and assign them segment
numbers.

subroutine stack

symbol
table

Sqrt

main

program

logical address

Figure 4.7 Programmer’s view of a program.

4.4.2 Segmentation Hardware

Although the programmer can now refer to objects in the program by a
two-dimensional address, the actual physical memory is still, of course, a one-
dimensional sequence of bytes. Thus, we must define an implementation to
map two-dimensional user-defined addresses into one-dimensional physical
addresses.

This mapping is effected by a segment table. Each entry in the
segment table has a segment base and a segment limit. The segment base
contains the starting physical address where the segment resides in memory,
and the segment limit specifies the length of the segment.

The use of a segment table is illustrated in Figure 4.8. A logical address
consists of two parts: a segment number, s, and an offset into that segment, d.

The segment number is used as an index to the segment table. The offset d
of the logical address must be between 0 and the segment limit. If it is not, we
trap to the operating system (logical addressing attempt beyond end of
segment). When an offset is legal, it is added to the segment base to produce
the address in physical memory of the desired byte. The segment table is thus
essentially an array of base – limit register pairs.

As an example, consider the situation shown in Figure 8.9. We have five
segments numbered from 0 through 4. The segments are stored in physical
memory as shown. The segment table has a separate entry for each segment,
giving the beginning address of the segment in physical memory (or base) and
the length of that segment (or limit). For example, segment 2 is 400 bytes long
and begins at location 4300. Thus, a reference to byte 53 of segment 2 is mapped
onto location 4300 + 53 = 4353. A reference to segment 3, byte 852, is mapped to
3200 (the base of segment 3) + 852 = 4052. A reference to byte 1222 of segment
0 would result in a trap to the operating system, as this segment is only 1,000
bytes long.

s

limit base

CPU s d

segment
table

yes
< +

no

trap: addressing error physical memory

Figure 4.8 Segmentation hardware.

4.5 Paging

Paging is another memory-management scheme that offers the advantage of
permits the physical address space of a process to be non- contiguous like
segmentation. However, paging avoids external fragmentation and the need
for compaction, whereas segmentation does not. It also solves the
considerable problem of fitting memory chunks of varying sizes onto the
backing store. Most memory-management schemes used before the
introduction of paging suffered from this problem. The problem arises
because, when code fragments or data residing in main memory need to be
swapped out, space must be found on the backing store. The backing store has
the same fragmentation problems discussed in connection with main
memory, but access is much slower, so compaction is impossible. Because of
its advantages over earlier methods, paging in its various forms is used in
most operating systems, from those for mainframes through those for
smartphones. Paging is implemented through cooperation between the
operating system and the computer hardware.

Paging 8.5 367

limit base

1000

400

400

1100

1000

1400

6300

4300

3200

4700

subroutine stack

segment 3

symbol

1400

2400

segment 0

segment 0 table

Sqrt

segment 1

segment 4

main

program

segment 2

0

1

2

3

4

segment table

3200

4300

4700

segment 3

segment 2

logical address space segment 4

5700

6300

6700

segment 1

physical memory

Figure 4.9 Example of segmentation.

4.5.1 Basic Method

The basic method for implementing paging involves breaking physical mem-
ory into fixed-sized blocks called frames and breaking logical memory into
blocks of the same size called pages. When a process is to be executed, its
pages are loaded into any available memory frames from their source (a file
system or the backing store). The backing store is divided into fixed-sized
blocks that are the same size as the memory frames or clusters of multiple
frames. This rather simple idea has great functionality and wide ramifications.
For example, the logical address space is now totally separate from the physical
address space, so a process can have a logical 64-bit address space even though
the system has less than 264 bytes of physical memory.

The hardware support for paging is illustrated in Figure 4.10. Every address
generated by the CPU is divided into two parts: a page number (p) and a page
offset (d). The page number is used as an index into a page table. The page table
contains the base address of each page in physical memory. This base address
is combined with the page offset to define the physical memory address that
is sent to the memory unit. The paging model of memory is shown in Figure
4.11.

Paging 8.5 367

page 0

page 2

page 1

page 3

1

4

3

7

f

logical

address
physical
address

f0000 … 0000

CPU p d f d

f1111 … 1111

p

f

page table

physical
memory

Figure 4.10 Paging hardware.

frame
number

page 0

page 1

page 2

page 3

logical
memory

0

0

1 1

2
2

3

page table 3

4

5

6

7

physical
memory

Figure 4.11 Paging model of logical and physical memory.

0

4 i
j
k
l

8 m
n
o
p

12

16

20 a
b
c
d

24 e
f
g
h

28

0
1
2
3

a
b
c
d

4
5
6
7

e
f
g
h

8
9

10
11

i
j
k
l

12
13
14
15

m
n
o
p

5

6

1

2

0

1

2

3

page table

logical memory

physical memory

Figure 4.12 Paging example for a 32-byte memory with 4-byte pages.

page 1

page 0

page 2

page 3

free-frame list
14

13
13
18

20 14

15
15

free-frame list
15

13

14

15

page 0 16
page 1

page 2 17
page 3

new process 18

19

20

21

page 0 16
page 1

page 2 17
page 3

new process 18

0 14 19
1 13

2 18 20
3 20

new-process page table 21

(a) (b)

Figure 4.13 Free frames (a) before allocation and (b) after
allocation.

4.5.3 Protection

Memory protection in a paged environment is accomplished by protection bits
associated with each frame. Normally, these bits are kept in the page table.

One bit can define a page to be read – write or read-only. Every reference
to memory goes through the page table to find the correct frame number. At
the same time that the physical address is being computed, the protection bits
can be checked to verify that no writes are being made to a read-only page. An
attempt to write to a read-only page causes a hardware trap to the operating
system (or memory-protection violation).

We can easily expand this approach to provide a finer level of protection.
We can create hardware to provide read-only, read – write, or execute-only
protection; or, by providing separate protection bits for each kind of access, we
can allow any combination of these accesses. Illegal attempts will be trapped
to the operating system.

One additional bit is generally attached to each entry in the page table: a
valid – invalid bit. When this bit is set to valid, the associated page is in the
process’s logical address space and is thus a legal (or valid) page. When the
bit is set toinvalid, the page is not in the process’s logical address space. Illegal
addresses are trapped by use of the valid – invalid bit. The operating system
sets this bit for each page to allow or disallow access to the page.

4.5.4 Shared Pages

An advantage of paging is the possibility of sharing common code. This
consideration is particularly important in a time-sharing environment. Consider a
system that supports 40 users, each of whom executes a text editor. If the text editor
consists of 150 KB of code and 50 KB of data space, we need 8,000 KB to support the
40 users. If the code is reentrant code (or pure code), however, it can be shared, as
shown in Figure 8.16. Here, we see three processes sharing a three-page editor —
each page 50 KB in size (the large page size is used to simplify the figure). Each
process has its own data page.

page 0

page 1

page 2

page 3

page 4

page 5

•
•
•

page n

page 0

page 1

page 2

page 3

page 4

page 5

2 v

3 v

4 v

7 v

8 v

9 v

0 i

0 i

0

1

00000

10,468

frame number

0

1

2

3

4

5

6

7

2

valid–invalid bit

3

4

5

6

7

8

12,287 page table

9

Figure 4.15 Valid (v) or invalid (i) bit in a page table.

ed 1

ed 2

ed 3

data 1

data 1

data 3

ed 1

ed 2

ed 3

data 2

3

4

6

1

0

1

2

process P
1

ed 1

ed 2

ed 3

data 3

process P
3

page

table for

P
1

3

4

6

2

page table

for P
3

ed 1

ed 2

ed 3

data 2

process P
2

3

3

4

4

5
6

7 6

page table

for P2
7

8

9

10

11

Figure 4.16 Sharing of code in a paging environment.

