

Ministry of Higher Education and Scientific Research - Iraq University of Technology-Iraq Department of Computer Science Networks Management Branch

MODULE DESCRIPTOR FORM نموذج وصف المادة الدر اسية

Module Information معلومات المادة الدر اسية							
Module Title	INTELLIGE	NT SEARCH TECH	INIQUES	Μ	Module Delivery		
Module Type	CORE				Theory Lecture		
Module Code	INST225						
ECTS Credits	5	Lab Tutorial					
SWL (hr/sem)	125						
Module Level		2	Semester of Delivery 4		4		
Administering Department		Department of Computer Science	College	Computer Science			
Module Leader	Rasha M. Moł	isin	e-mail	Rasha	asha.m.mohsin@uotechnology.edu.iq		echnology.edu.iq
Module Leader's Acad. Title		Asst. Lect	Module Leader's QualificationM.Sc.		M.Sc.		
Module Tutor Rasha M. Moh		isin	e-mail	Rasha	a.m.m	nohsin@uot	echnology.edu.iq
Peer Reviewer Name			e-mail				
Review Committee Approval		01/06/2024	Version N	umber		1.0	

Relation With Other Modules العلاقة مع المواد الدر اسية الأخرى					
Prerequisite module		Semester	2		
Co-requisites module		Semester			
Module Aims, Learning Outcomes and Indicative Contents					
أهداف المادة الدر اسية ونتائج التعلم والمحتويات الإرشادية					

	The module aims to:
	 Problem Formulation: Understand how to precisely formulate a search problem so that it can be effectively solved using search algorithms. Discuss the characteristics of the environment and the available information critical for choosing the right search method.
Module Aims أهداف المادة الدر اسية	 2. Uninformed Search Methods: Explore search techniques that require minimal knowledge about the problem being solved.
	 3. Informed Search Techniques: Study methods that provide optimal solutions but require background knowledge about the solution.
	 4. Evaluation and Definitions: Define search techniques consistently and discuss how to evaluate search algorithms.
	The learning outcomes:
	1. Understanding Search Algorithms:
	 Describe the fundamental principles of search algorithms used in artificial intelligence. Explain various uninformed
	2. Implementing Search Techniques:
Madala Lasarian	 Implement basic and advanced search algorithms in a programming language. Evaluate the performance of different search algorithms in terms of
Module Learning Outcomes	time complexity, space complexity, and optimality.
مخرجات التعلم للمادة الدراسية	3. Optimization and Heuristics:
	 Design heuristic functions for informed search techniques to improve search efficiency. Apply optimization techniques such as local search and population- based search.
	4. Problem-Solving Skills:
	 Formulate real-world problems as search problems. Develop solutions for complex problems using appropriate search techniques.
	5. Critical Analysis:

	 Compare and contrast various search techniques in terms of their strengths and weaknesses. Critically analyze case studies and research papers on intelligent search methods. Application of Search Techniques: Apply intelligent search techniques to specific domains such as robotics, game playing, scheduling, and planning. Demonstrate the use of search algorithms in practical applications through projects or assignments.
Indicative Contents المحتويات الإرشادية	 What means by A.I. Principles &Fundamentals of A.I. Knowledge Representation Methods. Logical Representation Network Representation Clause Form Resolution Theorem Proving Problem state space, Search space Problem solving approach Search Methods Blind Search Depth First Search, Breadth First Search Heuristic Search Hill Climbing Search, Best First Search, A-algorithm, A*-algor Using Heuristics in games 8-Puzzle Problem Tic Tac Toe Problem Control Strategy Backward Chaining
	Learning and Teaching Strategies استر اتيجيات التعلم و التعليم

	I eaching and learning strategies for an Intelligent Search Techniques module :
	1. Lectures
	Conceptual Understanding: Lectures should cover the fundamental
	concepts, algorithms, and theories behind intelligent search techniques.
	• Use of Visual Aids: Incorporate slides, diagrams, and flowcharts to
	explain complex algorithms and processes.
	2. Hands-On Labs and Practical Sessions
Strategies	Programming Exercises
Sti utegies	Simulation Tools
	• Experimentation
	3. Project-Based Learning
	4. Seminars and Workshops
	5. Assessment and Feedback: Conduct quizzes, mid-term exams, and peer
	assessments to evaluate students' understanding continuously.
	6. Reading: Assigned Readings, Provide a list of textbooks

Student Workload (SWL) الحمل الدراسي للطالب				
Structured SWL (h/sem) الحمل الدر اسي المنتظم للطالب خلال الفصل	78	Structured SWL (h/w) الحمل الدر اسي المنتظم للطالب أسبو عيا	5.2	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	47	Unstructured SWL (h/w) الحمل الدر اسي غير المنتظم للطالب أسبو عيا	3.1	
Total SWL (h/sem) الحمل الدر اسي الكلي للطالب خلال الفصل	125			

Module Evaluation تقييم المادة الدر اسية						
	Time/Nu mberWeight (Marks)Week DueRelevant Learning Outcome					
Formative assessment	Quizzes	2	10% (10)	Continuous	LO #5	
	Assignments	2	10% (10)	Continuous	LO # 3 and 5	
	Projects / Lab.	2	10%(10)	Continuous	LO # 2, 3 and 5	
	Report	1	10%(10)	12	LO # 2, 3 and 5	
Summative	Midterm Exam	2hr	10% (10)	7	LO # 1-6	
assessment	Final Exam	2hr	50% (50)	16	LO # 1-6	
Total assessme	ent		100% (100 Marks)			

Delivery Plan (Weekly Syllabus) المنهاج الاسبوعي النظري				
	Material Covered			
Week 1	What means by AI ? AI principles and fundamentals			
Week 2	Knowledge representation methods- Logical representation			

Week 3	Knowledge representation -Network representation
Week 4	Problem state space and search space
Week 5	Intelligent search techniques and problem solving approach
Week 6	Search Techniques Types ,Blind search (Depth First Search Algorithm)
Week 7	Blind search (Breadth First Search Algorithm)
Week 8	Heuristic search (Hill Climbing Algorithm)
Week 9	Heuristic search (Best First Search Algorithm)
Week 10	Heuristic search (A Search Algorithm)
Week 11	Heuristic search (A* Search Algorithm)
Week 12	Using Heuristics in Games (8-puzzle game)
Week 13	Using Heuristics in Games (Tic-Tac-Toe game)
Week 14	Control strategy / backward chaining
Week 15	Control strategy / forward chaining

Delivery Plan (Weekly Lab. Syllabus) المنهاج الاسبوعي للمختبر				
	Material Covered			
Week 1	Python principles and fund			
Week 2	Python conditions & loops			
Week 3	How to use functions in python			
Week 4	How to design simple intelligent task in python			
Week 5	Tree structure building and representation (cost, without cost, remove, add nodes)			
Week 6	Program of depth first search			
Week 7	Program of breadth first search			
Week 8	Program of hill climbing search			
Week 9	Program of best first search			
Week 10	Program of A-search algorithm			
Week 11	Program of A*-search algorithm			
Week 12	Program of Games (8-puzzle game)			
Week 13	Program of backward chaining			
Week 14	Programming of forward chaining			
Week 15	Practical test			

Learning and Teaching Resources				
مصادر التعلم والتدريس				
	Text	Available in the		

		Library?
Required Texts	 Stefan Edelkamp Stefan Schr odl , "Heuristic Search Theory and Applications", ELSEVIER, 2012. George F. Luger, "Artificial Intelligence Structures and Strategies for Complex Problem Solving", Pearson Education Asia (Singapore), Sixth edition 2009. M. Tim Jones, "Artificial Intelligence A Systems Approach", Infinity Science Press, 2008. 	Yes
Recommended Texts		
Websites		

APPENDIX				
GRADING SCHEME				
Group	Grade	التقدير	Marks (%)	Definition
Success Group (50 - 100)	A - Excellent	امتياز	90 - 100	Outstanding Performance
	B - Very Good	جيد جدا	80 - 89	Above average with some errors
	C - Good	جيد	70 - 79	Sound work with notable errors
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group (0 – 49)	FX – Fail	مقبول بقرار	(45-49)	More work required but credit awarded
	F – Fail	راسب	(0-44)	Considerable amount of work required
Note:				

NB Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.