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3D simulation and
rendering
2"dSemester

Part one
(3D-Geometry and
vectors)
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Three-dimensional Transformation

e The world composed of three-dimensional images.
e Objects have height, width, and depth.

e The computer uses a mathematical model to create the image. -

1-:Coordinate System:

A three dimensional coordinate systemcan be view as an

extension of the two dimensional coordinate system.
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The third-dimension depth is represented by the Z-axis

which is at right angle to the x, y coordinate plane.

A point can be described by triple (X, y, z) of coordinate values

Ex./ Draw the figutre:(0,0,3); (0,1,3), (2,0,3), (2,1,3), (0,1,0) (2,0,0), (2,1,0)
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2-Vectors in 3D: Vectors can represents as V(X, Y, Z) = V=[x y»z] =

V=Xi+Yj+Zk

2.1 Modules of vectors: the modules of a vector is given by length, of the arrow
by using length of line from (0,0,0) to (X, y, z) & term the modules of vector P is
[P].

Where |P|=+/Px? + Py? + Pz?

Ex/ if p(5,-2,3) and Q(2,-4,-4),find |P| and |Q|
Sol/|P|=5 + (-2)* +3° =38 , [Q[=2° + (-4)+ (4)° =+/36

2.2 Unit vectors: the unit vectors in direction of vectors P is written as P, which

is calculated as following : Pt ;in apply of vector P on example p=51-2j+3k,

1P|
Ip=+/38

~s5i 2j 3k " ) )
pP= - + = P=0.8111i-0.3244j +0.4867k
/38 /38 /38 !

Direct in axis

2.3 Angles Vector about axis:- using Direction Cosine where =

|vector|
A. About X-axis & U=Cos*( Vi/ |V|)
B. About Y-axis = b =Cos™(Vj/ [V])
C. About Z-axis = d =Cos*( Vk/ |V])

Note: A unit vector is direction cosine for all axes depend of components.

2.4 Add of vectors: let P=Pi+P;+P,. Q=Qi+Qi+Qx >
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P+Q = Q+P = (Pi+ Q)i +(Pj+ Q))j +(Pr+ Quk NGRS F EoOLTEY

2.4 Subtraction of vectors: let P=P;+P;+Py, Q=Qi+Q+Qx =
P-Q = (Pi- Q)i +(P;. Qy)j +(Px-Quk = P-Q #Q-P

2.5 Scalar of vectors: let P=P; +P; +Px  n>1 then nP= nP; +nP; +nPy but Keep
direction

But if n= -1 change only direction & n<0 then change both components

2.6 multiply of vectors by using Dot product: let P=P;+P+Px Q=0Q;i+Qj+Qx 2>
P.Q=Q.P=(Pi+ Qi) +(Pj+ Q) +(P+ Q) =M
The dot product is useful to find angle betweenon two vectors by

P.Q= |P|*|Q|*cos© -)GZCOS'I(%)
2.7 multiply of vectors by using Cross product: let P=Pi+P;+Pyx Q=Q;+Q;+Qx

>

+i —j +k
PxQ=| Pi Pj Pk |= PxQ#QxP
Qi Qj Qk

[(Pi+ Qi) - (Pic+ Q)] 1 -[(Pi+ Q) - (Prcx Q)] J +[(Pi+ Qy) - (P« Qi) k

OR [PxQ[=[P[*|Q[*sin©

OR PxQ= [P|*|Q[*d*sin© where { is unit normal vector

Therefore i T j=kthenjTi=-k
JTk=ithenkTj=-i
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Ex/if p =[5 -2 3], A= -21+6j -7k find AxP, angle for two P,A
Sol/ ATP=( 4, -29, -26) why?

PTA (H.W)

Angle ? (H.W)

Ex/if p =[5 -2 3], A= -21+6j -7k find angle A-P in main axes.
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Part two
(3D Transformation)
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2: Transformation:

Transformations of 3 dimensions are simply extension of two dimension
transformation.A three-dimensional point (X, y, z) will be associated with
homogeneous row vector [Xx, y, z, 1]. We can represent all three-dimensional
linear transformation by multiplication of 4*4 matrixes.

2.1 Translate (shift, Move)

The new coordinate of a translate point can be ¢alculate by using transformation.

X=X+a
T: Y=Y+b
Z=7Z+c

1 0 0 O

- /10 1 0 O

a b ¢ 1

2.2:Scaling:

e Allows for a contraction or stretching in any of the x, y, or z direction. To
scale an object:
1. Translate the fixed point to the origin.
2. Scale the object.

3. Perform the inverse of the original translation.

MM Branch 3rd Class Cpnll e (g - -J-e-i 3ol e
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e The scaling matrix with scale factors Sx, Sy, Sz in X, y, z direction is iV

by the matrix

And see that matrices are as follows. The window shift is given by

X=8x*X
S Y=8Sy*Y
Z=871*7
Sx O 0 O
[X,Y.z]=xyzyT|g > 00
0 0 0 1 \

2.3 Mirror 3D
e Aboutorigin: (X,Y, 2)= (-X, -Y, -Z)

[X,Y,Z]=[XYZ1]T

-1 0 0 0 N
0 -1 0 O ‘ N
0 0
0 0 0 1

e Mirror about Main Axes N
> X-axis: (X, Y, Z2)D(X,=Y, -2)

1 0 00
[X,X,Z]:[xvz1]([g -1 0 0

o -1 0
0 O 0 1 X

> Y-axis: (X, Y, 2) (-X, Y, -2)
v -1.0 0 0
\4 10 1 0 O
0 0 0 1

» Z-axis: (X,Y,2)=> (-X,-Y, Z2)
-1 0 0 O
- 10 -1 0 O
0 0 0 1

e Mirror about Main Plane
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» Plane XY: (X,Y,2)= (XY, -2) SERGECS SehsN
1 0 0 O

- 10 1 0 O
0O 0 0 1

> Plane YZ: (X,Y, 2)® (-X, Y, 2)
-1 0 0 O

— 10 1 0 O
0O 0 0 1

> Plane XZ: (X, Y, 2) (X, -Y, 2)
1 0 0 O

— 10 -1 0 0
0O 0 0 1

2.4: Shear 3D about main plane therefore shear 3D are:-

e Shear XY >
x = x + Shx*z

1 0 0 0
sh % sh sh sh — 5| O 1 00
y*=y+ Shy*z = [X",Y™", 7] Xyzin shy 1 0
0 0 0 1
7h=7
e Shear XZ 2>
XSh=X+th*y
1 0 0 0
sh sh sh shq — ylshx 1 shz 0
yr=y =X, YN, 72" =[XYZ1]1 o 0 1 0
0 0 01
ZSh=Z+ShZ*y
e ShearYZ>
xS = x
1 shy shz 0
y"=y+Shy*sx > [x" vz =xvzyils o 90
0 0 0 1

7" = 7+ Shz*x

MM Branch 3rd Class Cpnll e (g - -J-e-i 3ol e



L]
<

0;@,%
“

10

1983
2nd-Semester 3D simulation and rendering

{0000NDI0I0ONODIDI

COMPUTER SCIENCE

wguulall oglc ouub

8129)gisill daolall
UNIVERSITY OF TECHNOLOBY

Note:

e if shear for example on plane XY is -3, therefore shx= -3, shy=-3

eif shear on z by -2 and shear on y by 5, therefore this shear at plane YZ and shy=
5, shz= -2

oif it apply shear directly then center of shearing (0,0,0), but if center shearing
not (0,0,0) need
a) Shift center (Xc, Yc, Zc) into (0, 0, 0) by shifting transform.
b) Apply shearing transform (or Scaling transform)
¢) Inverse step a (return center in the location (Xc, Yc, Zc))

d) These step (a, b, ¢) apply in scaling transform.

2.5 Rotation: 7
Rotation in three dimensions'is eonsiderably more complex than
rotation in two dimensions. In two dimensions, a rotation is prescribed

by an angle of rotation 6 and center of rotation p.

Three dimensional rotations require the prescription !

of an angle of rotation and an axis of rotation.

The canonical rotations are defined when one of the 0
p x 3y b

positive x,y, or z coordinate axes is chosen as the axis X p(%,5,0)
of rotation. Then the construction of the rotation transformation proceeds just

kike that of a rotation in two dimensions about the origin see figure above.

1 0 0 0
0 Cos(d) Sin(d) 0
0 -Sin(d)  Cos(d) 0

MM Branch 3rd Class Cpnll e (g - _a_(,_i 3ol e
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0 0 0 1 ﬂ

Rotation about X'= X
the X-Axis R(X,d) Y"= YCos(d) -ZSin(d)
Z"'= ZCos(d) +YSin(d)

Rotation about X"= XCos(d) -ZSin(d) Cos(d). 0 >in() 8
the Y-Axis R(Y,d) Y'=Y ° ’ ° X
Z'= ZCos(d) +XSin(d) 0 Cos(d) [0

sin(d)
0 0 0 1
Cos(d)  Sin(d) 0 0
Rotation about X'=_XCos(d)*-YSin(d) Sin(d) Cos(d) 0 0
the Z-Axis R(Z d) Y"= ¥Cos(d) +XSin(d) 0 1 0
Z'= Z 0 0 0 1

note that the direction of positive angle of rotation is chosen in accordance to the

right-hand rule with respect to the axis of rotation.

The general use of rotation about an axis L can be built up from these canonical
rotations using matrix multiplication in next section.

2.6: Rotation about an arbitrary Axis P2 -

MM Branch 3rd Class Cpnll e (g - _a_(,_i XN PRV
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e It is like a rotation in the two-dimension about an " R e
arbitrary point but it is more complicated. 1

e Two points P1(x1, y1, z1) and P2(x2, y2, z2) Define a line.
The equation for the line passing through these Point are :
x=(x2-x1)t+x1
y=(y2-yl)t+yl t: real value [0 to 1]
7z=(z2—-zl)t+zl
o Let a=(x2 — x1) & b=(y2 — yl) & c=(z2 — zl) then the equation of line
becomes
x=at + x1 & y=bt +yl & z=ct + z1 the difference P2 = P1 = (x2 —x1) (y2 —
yl) (z2 — z1) = (a, b, ¢) is the direction vector from P1 to P2'along the line

/

A line can be defined by a point on (x, y, z) and by a <
direction (a, b, c)

Steps of rotation:

Let (x1, y1, zlybe a point through which the rotation axis passes with (a, b, ¢)

direction. A rotation of angle 6 about an arbitrary axis is: l
1. Translate the point(x1, yl1, z1) to origin. S 1'51’2 '
1 0 0 0
Tr(-x1, -yl, -z1)= 8 (1) (1) 0 0 y
—-x1 -yl —z1 1 O
After this translation the direction vector (a, b, ¢) (a.b,c)
define the rotation axis as follows.
X

MM Branch 3rd Class Cpnll e (g - -J-e-i 3ol e



2nd-Semester 3D simulation and rendering

2. Rotate about the x-axis until the rotation axis corresponds to the z-axis.
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This can be considering being a rotation about the origin. With the axis coming

out of paper
When the rotation axis is projected onto the x,z plane,
any point on it has x coordinate equal to zero. In particular a=0.
The point (0,b,c) is rotated ~A degree until the line corresponds 7
to the z-axis. We have find the sin A and cos A we find that
distance from the origin to (0,b,c) is : Vb2 + c2=d1

Sin A= b/d1, Cos n=c/d1

Substituting these values into the x-axis rotation matrix we have:

1 0 0 0
_lo ¢/da1 brar o
RE N =10 “bja1 /a1 o
0 0 0o 1

Now the point(0,b,c)has been transformed to the point (0,0,d1) but since the

rotation about the x-axis doesn’t change the X coordinate value the point (a, b, c)

1s now at location (a, 0, d1).

3. Rotate about the y-axis until the rotation axis corresponds to the z-axis.

Since (a, 0, d1) lies'in the x, z plane we can visualize this as rotation about the

origin with the y=axis coming out of the paper.

: : C e ,0,d1
A rotation of angle G in clockwise direction, we need to compute (2

sin 3, cos D where: d2 = +/a?+ (d1)2= +a?+ b% + c? thus:
sin 3 =a/d2; cos D =dl/d2

Substituting the value into y rotation matrix given:

di/d2 0 a/d2 0

_ 0 1 00
Ry, ¢) = —a/d2 0 di/d2 0

0 0 0 1

MM Branch 3rd Class
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4. Rotate about the z-axis angle 0. This require the Rz(?) matrix
cos(@) sin(@) 0 O

R(Z, B) = —sig() cosO() (1) g
0 0 01

5. Perform the inverse rotation of step (3) . requires Ry(-2)
di/d2 0 Ba/d2 0

-C) = 0 1 00
RY:-9) = |ga/az 0 da1/az o

0 0 0 1

6. Perform the inverse rotation of step (2). Requires Rx(-®)

1 0 0 0
0 c¢/d1 Bb/dl 0
0 Eb/dl c/d1 0
0 0 0o 1

R(X, -A) =

7. Perform the inverse translation of step (1). Require Tr (x1,y1,z1)

1 0 0 O

0 1 0 O

0 0 1 0
+x1 #Fyl #+z1 1

Tr(+x1, +yl,+z1)=

The composite transformation is:

Tr(-x1,-y1,-z1) * Rx(®) * Ry(3) * Rz(n) *
Ry(-3) * Rx(-®) * Tr(x1,y1,z1)

MM Branch 3rd Class Cpnll e (g - -J-e-i 3ol e
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Ex/ Rotate figure { W(-1,1,3), U(-3,2,-5), V(5,-2,7), K( -2, -4,-6)....} around
line where start (-7,6,-5) and end (4,-3,2) by 56° Clockwise. [In Matrix Form.]
Sol// dx= 11, dy= -9, dz= 7, d=,/(-9)? +72? =130,

=» Cos(a)= Sin(a)=

777

V130 sin(b)=
N \/2_51 {need in step3}

v130 {need in step2}

d1=,/@1)? +(-9)> + 7% =/251 =» Cos(b)=

Vo, ou o JiE 90 0 0] 1000

J251 251 0.-— — o0/|0 1 0O
0 1 0 0 130 130

V251 J251 V130 V130 /7 -6 5 1

0 0 0 1[0 0 0 1]~ -

1 1 3 1]

-3 2 -51

5 -2 7 1

—2 -4 -6 1

L 1_

[ c0s-56 sin-56 0 O]
—-sin-56 cos-56 0 O
0 0 10

L 0 0 0 1- Rotate about 56 clockwise in example

MM Branch 3rd Class Cpnll e (g - -J-e-i 3ol e
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__“130 0 -11 0_ 1 0 8 olr 1.0 0 0O
51y ||o S
0 1 0 O J130 /130 1 0
- 0 V130 0ll0 -9 / 0 0 0
J251 251 J130 V130 76 5 1
0 0 0 10 O 0 1)t i
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Part three
(3D Projections)
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3. Projection

A projection is transformations that perform a conversion from three-dimension
representation to a two dimension representation.

3.1 Parallel (orthogonal) projection:

A parallel projection is to discard one of the coordinate. Like dropping the Z

coordinate and project the X, Y, Z coordinate system in to the X, Y plape-
7 .o

The projection of a point Q(X, y, z) lying on the cube

is point Q' (xp, Xy) in the X, y plane where a line passing

through Q and parallel to the Z-axis intersect the

X, Y plane these parallel line called projectors and

we get Xp=X; Yp=Y. plane z

e Straight lines are transformed into straight lines. o
e Only endpoints of a line in three-dimension ¢
are projected and then draw two-dimensional line between these projected
points.
e The major disadvantages of parallel projection are its lack of depth
information.
Explanation:

o Let[xp yp 7p]is a vector of the direction of projection.The image is to be
projected-onto the x y plane.

o _If we have a point on the object at (x1, y1, z1) we wish to determine where
the projected point (x2, y2) will lie. The equation for a line passing through
the point (X, y, z) and in the direction of projection

X=x1+xp*u
Y=yl +yp*u
Z=7z1+zp*u IfZ=0 thenu=-zl/zp

Substituting this into the first two equations:

MM Branch 3rd Class Cpnll e (g - _a_(,_i 3ol e
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X2=xI — zI (xp / zp) [x2 y2 72 1]9[x1 yl s
1 0 0 0
17 0 1 0 0
—xp/zp —yp/zp 0 O
0 0 0 1

Y2=yl—-zI (yp/zp)

Written in matrix form we set=»
This projection don't care depth object and far near object. it is parallelism of
X-axis or y-axis or z-axis and any parallel axis this axis discard in 2D.or must

be zero in 3D

Parallel Projection 2D — environment 3D —environment
(X,Y,Z)
Para-X (v,2) (0,y,2)
Para-y (x,2) (x,0,2)
Para-z (x,y) (x,y,0)

Ex// show figure {(7,11,2), (-9, 1,21), (61,19,-2), (17,-31,2), (-72,-18,-22), (4.-
11,-92)} that parallel on X-axis and what happen if parallel y-axis ,z-axis in 3D
Sol// Parallel X-axis=® figurel {(0,11,2), (0, 1,21), (0,19,-2), (0,-31,2), (0,-18,-
22), (0,-11,-92)}

Parallel y-axis=¥» figure2 {(7,0,2), (-9, 0,21), (61,0,-2), (17,0,2), (-72,0,-22),
(4,0,-92)}

Parallel z-axis=» figure3 {(7,11,0), (-9, 1,0), (61,19,0), (17,-31,0), (-72,-18,0),
(4,-11,0)}

H.W// in 2D Figurel, figure2 and figure3 what happen?

3.2 Perspective projection

e The further away an object is from the viewer the smaller it appears.

e These provide the viewer with a depth cue.

MM Branch 3rd Class Cpnll e (g - -J-e-i 3ol e
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e All line are converging at a single point called the center of projection. | msasmsbme

7
< - z

X

If the center of projection is at (xc, yc, zc) and the point on the object is (x1, y1,
z1) then the projection ray will be the line containing these point and will give
by:
X=xc+ (X17TXxc)u
Y=yc+(ylTyc)u
Z=1z2c+(z17Tzc) u
The projection point (x2, y2) will be the point where this line intersects the xy
plane.
The third equation tells us that u for this intersection point (Z=0) is u= - zc/(z1-
z¢C)
substituting into the first two equation gives:
x2=xc—-zc [(xI-xc)/(zl-zc)]
y2=yc—zc [(v]-y)/zl -z0) |
this can be written as:
x2=(xc*zl-xI*zc)/(zl-zc)
y2=(yc*zl1-YI*zc)/(zI —zc)

This projection can be put into the form of transformation matrix.

MM Branch 3rd Class Cpnll e (g - _a_(,_i 3ol e
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—Zc 0 0 0 NS O TEDWLY
Xc Yc 0 1
0 0 0 —Zc
It is equivalent from of the projection transformations
1 0 0 0
p= 0 1 0 0
—Xc/Zc —Yc/Zc 0 -—1/Zc
0 0 0 1

Note: If Q(x, y, z) be a point that project to the point Q' (xp, yp)«n center of
projection (0, 0, D) where is distance from the eye to the projection plane the
perspective transformation

xp=D*x)/(z+D); yp=D*y)/(z+D) ;.2p=0

The perspective transformation matrix

1 0

o o
<

R N0 ©
>

1
00
0

e}

ex// figure { A(-5,8,0), B(7,-9,11) ;C( 1,4,-6)} projection at plane XZ where
COP( -3,2,-7)
Sol/(x-xc) 1s dx because x is final, xc is start same as (y-yc) is dy and (z-zc) is

dz => Y must be 0

Points dx d dz ——
Y Uy_(y—yC)

A -54+3=» -2 8-2=>» 6 0+7=> 7 23 1

6 3
B 7+3=» 10 -9-2=>» -11 11+7=>» 18 232
-11 7 11

C 1+3=> 4 4-2=> 2 -6+7=> 1 231

2
Points X y z Result

MM Branch 3rd Class Cpnll e (g - -J-e-i 3ol e
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A 2523 230 77 (Ax0A7) |
3 3 3

B 102 23 11*2 90 182 .7  (Bx,0,Bz)
11 11 11

C 4513 21420 1*-1-7  (Cx,0,C2)

H.W // projection Plane XY and YZ?
Hint projection Plane XY then Z=0, Plane YZ then X=0
Table one only change Filed (U)

3.3 Oblique projection

Remove oblique-axis (slope-axis) and analysis into polar coordinate
U angle C-axis with —B axis and b angle C-axis with —Aaxis

finally c-axis remove then become 2D coordinate (B',A'") ,

B: Horizontal-axis and A vertical-axis.

(Horizontal)=»B'=B- C*cos(a)

Where B'=B- C*cos(a)
and A'=A — C*sin(p)

(Vertical)® A'=A — C*sin(B)

That show 3D reality by equation:- a=p=45°
Z-Axis is oblique coordinate as following:-
X'=X+(Z2*-0.7) & Y'=Y+ (Z*-0.7)

Sin45=cos45 =0.7 in three quarter are too negative

Matrix representation

1 0 0 0
X Y'Z]S[X Y Z 1]* cOso(a) Sinl(ﬁ) 0 9 =[x-Z¥cosa Y-Z#sinp 0 1]
0 0 0 1

If you care distance, you add (D: distance in this projection) by
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é (1) 0 0 NVERSTY 0 LY
0 0
" 70— * =[X-D*/* -
[X'Y'Z'[=[XY Z 1] D xCos(a) Dx*Sin(B) 0 1 [X-D*Z*cosa. Y-
0 0 0 1

D*Z*sinf 0 1]

x// figure { A(-5,8,0), B(7,-9,11) ,C( 1,4,-6)} where X-axis oblique on Vertical
by 30°

Sol/ X-axis oblique on Vertical by 30°=» X-axis oblique on horizontal by 90 ° -
30°=60° 7
X is Remove then projection on plane YZ
(Horizontal )= Y'=Y- X*cos(60)

(Vertical)=» Z'=Z — X*sin(30)

Then apply all figure points (H.W) & draw: this figure after
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Line 3D

Line 3D can describe by parametric as following:
x= (x2-x1)*t+x1 where t=[0..1]
y=(y2-yl)*t+yl in t=0 = x=x1, y=y1, z=z1
7= (22-z1)*t+z1 in t=1 = X=X2, y=y2, z=z2

To generate line 3D at start(x1, y1, z1) and end(x2, y2, z2)
For t=0 to 1 step 0.01
X= (x2-x1)*t+x1
Y= (y2-yl)*t+yl
Z=(z2-z1)*t+z1
Plot(X ,Y ,Z)
Next t
H.W/ generate line where start (-8, 10, 30) and-end (70, -40, -5),find at segment
(0.74)

Helix

A cylindrical helix may be described by the following parametric equations:
X=Xc+r*Cost)
Y=Yc+ r *Sin()
Z=Zc+p *()'it's round about Z-axis

where t [angle] € (-00,0)
(Xc, Yc, Zc) is center of Helix

If cylindrical helix may be round about X-axis therefore:-
X=Xc+p * (@ 'it's round about X-axis
Y=Yc+ r * Cos(t)
Z=Zc+r *Sin()

MM Branch 3rd Class Cpnll e (g - -J-e-i 3ol e
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same as cylindrical helix may be round about Y-axis therefore:-
X=Xc+r *Cos(t)
Y=Yc+p * (¥ 'it's round about Y-axis
Z=Zc+r *Sin()

Ex// generate helix where center (-5,11,-8),radius is 56,displace between rings
by 33 around x-axis on 76° into 1112°.
Find helix point at © = -177 (t=-177)
xc= -5, yc=11, z¢= -8, r=56 ,p=33 ,t=[76 .. 1112] >X
Sol// for =76 to 1112

X=-5+33* () 'it's round about X-axis

Y=11+ 56 * Cos(1)

Z=-8+ 56 * Sin(1)

Plot point(X, Y, Z)

Next t

H.W //if you around in Y-axis or Z-axis how to solve it.
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« (1, 6, 0)
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Y : y 9
QP 7
P > I
N
X
-
Sphere Coordinate h o radius r and p, r is constant but P depend of r where
X=P*cos(®)
Y=P*sin(@)
Z=r*cos(0O,
Then

X=r*sin(0)*cos(v)
Y=r*sin(0) *sin(@)
Z=r*cos(6)
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For k=0 To 360 Step m "m is a number circle ball
Forn=10 To 360 Step v 'v is Texture Ball
X=r *8in (n) * Cos (k)
Y=r *S8in (n) * Sin (k)
Z=r*Cos (n)

'Z-rotation
X2=X*Cos (az) - Y * Sin (az) "az:-angle rotate about Z-axis
Y2 =X *S8in (az) + Y * Cos (az)

'X-rotation
z22=7*Cos (ax) - Y2 * Sin (ax) "ax:- angle rotate about X-axis

Y1 =7z *S8in (ax) + Y2 * Cos (ax)

'Y-rotation
X1 =X2 * Cos (ay) - z2 * Sin (ay) "ay:- angle rotate about Y-axis
zI1 = X2 * Sin (ay) + 72 * Cos (ay)
picturel.PSet (X1 + (z1 *-0.7), YI + (zI *-0.7)) "using oblique
Projection
Next n
Next k
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e Generate ball (sphere) with center (60,-90,-20), size 30 units, rotate about
Y-axis by -70 and X-axis by 120 and Z-axis by 30.

¢ Find location at sphere where (r=11, ©=45°, ®=-30)

T-axis

MM Branch 3rd Class

Sphere ax=120, ay= -70, az=30
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(3D & 2D curve spline)
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Spline Curve

This Part talk’s method for curve drawing & curve fitting are {Bezier Curve,
B-spline curve, Cubic interpolation curve}

Bezier Curve uses a sequence of control points, P;, P>, P;, P4to construct a well

defined curve P(?) at each value of # from 0 to /.This provides a way to generate
a curve from a set of points. Changing the points will change the curve. P (?) is
defined as:
P@)=(1-’P1+3(1-1)’tP2+3(1-)FPs+t3Py ... (1)  {can apply 2D, 3D}

How discover this equ.(1)
T=0 = P(0)=P1 & T=1 =»P(1)=P4 therefore equ.(1) Bezier.Curve
Code Segment :- Let X1,X2,x3,X4 & Y1,Y2,Y3,Y4 are control points
Fort=0 To 1 Step 0.0001 "to smooth

x=[1-)"3*XI1+3*%A-0) "2*t*X2+3%(-1) *t"2*%x3+t"3*
X4

y=[A-9)"3*YI+3*A-0) "2*%t*Y2+3*%(A-t) *t"2%y3+t"3*

y4

plot point (x, y)

Next t

Finally: the first and last points are fitting but other are effected not fitting.

AL

Ex// generate Curve where equation is P(t )= (1-t)’ P+ 3(1-1)’t P2 +3(1-0)*P3+t3P4 on
Control points (9,-50),(67,13),(4,-8),(-22,-97).(H. W) find curve at section=0.67.
T=0=P(0)=P; and T=1= P(1)=P,

Then X1=9, YI=-50, X2= 67,Y2= 13, X3=4,Y3=-8, X4=-22,Y4=-97
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Fort=0 To 1 Step 0.0001 "to smooth 8:29)gisill daolall
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x=([1-0)"3*XI+3*(A-0)"2*t*X2+3*(1-0) *t"2*x3+t"3*X4
y=(1A-9)"3*YI+3*A-0) "2%t*Y2+3%(-¢) *t"2*y3+t"3 *y4

Plot point (x, y)

Next t

Or (can apply this values in code segments without assign variables)

B-spline Curve:- uses a sequence of control points, P;, P,, P;, P,to construct.a
well-defined curve of degree three, at each value of # from 0 to [.This provides
a way to generate a curve from a set of points. Changing the points will change

the curve. F' (?) defined as
1 3 1 3 2 1 3 2 1 3
F(t):g(l—t) p1+g{3t — 6t +4}p2+6{—3t +3t +3t+1}p3+gt Pyeeernenns @)

How discover this equ.(2) is B-spline
T=0DP(0)=¢ Py + Py + 3 Py and T=19 P(1)==P; += P34 =P, therefore equ.(2)

B-spline Curve

Code Segment :- Let X1,X2,x3,X4 & Y1,Y2,Y3,Y4 are control points
Fort=0To 1 Step 0.0001

x = ((I-9"3*XT + @*t"3 -6*t"2 +4)*X2 + (-3*t"3 +3*t"2 +3*t+1)*x3 +
t"3%x4) /6

y = ((1I-9"3*Y1 + (3*t"3 - 6%t"2 +4)*Y2 + (-3*t"3 +3*t"2 +3*t +1)*y3
+t"3%y4) / 6

Plot point (x, y)
Next t
Finally: the B-spline curve is not fitting any control point but it inside curve
points grouping
Ex// generate Curve where on Control points are (9,-50,-1), (67, 13, 66), (4,-8, 99), (-22,-97,-

21) by equation is:  P(t) = ¢ (1= £)*Py + = {3t — 6% + 4)P, + - {—3t° + 3> + 3t +

1P + <3P,

MM Branch 3rd Class Cpnll e (g - -J-e-i 3ol e
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Sol/ X1=9, YI=-50, Z1=-1, X2= 67, Y2= 13, Z2=66, X3= 4, Y3=-8, Z3=99, X4=-22, Y45
UNIVERSITY DF TECHNOLOBY
97, Z4=-21

Fort=07o I Step 0.0001
X =((1-1)"3*X1 + (3*"3 -6*"2 +4)*X2 + (-3*"3 +3*"2 +3*t+1)*x3 + "3*x4) /6
Vv =((1-)"3*Y1 + (3*"3 - 6¥t"2 +4)*Y2 + (-3*"3 +3*"2 +3% +1)*y3 +t"3*y4) / 6
z =((1-)"3*Z1 + (3*"3 - 6*t"2 +4)*Z2 + (-3*"3 +3*"2 +3%t +1)*Z3 +t"3*Z4) /6
Plot point (x, z)

Next t. (H.W) find curve at section=0.25.

150
P1(20,120)
100
50+ P2(-160,50)
ol
P4F0 -30)
-50
S0 P20 -90)
-150
p—— \ : \ " L " ; y
200 150 100 50 5] 50 100 150 200
200
150
P2(E0 120)
100
50 - P (- 160 50)
ot
Pa70,-30)
ol
i PE(-20,-30)
150
s . L L L L . L |
200 -150 -100 50 0 50 100 150 200

Cubic Curve interpolation:- n points curve points that enable fitting all curve
points where F()=@)> a+( t)* bi+ (¢) ci+ P; . where t=[0..1] and F(0)= P;but F(1)=
Piy

ai:(Di+1 - Di) /6. & bi: Di /2. & . Ci:(X i+l - Xi)-(ZDi +Di+1) /6. Or
ci=(Yi+1 - Yi)-2Di+Dj1) /6. & P=x oryior z

Dxi= [ (X i+l - Xi)‘ (Xi -X i-1)] * (3/2) where Dx start point — 0 & DX end point — 0
DYi: [ (y i+l = Yi)‘ (Y1 - Yi-l)] * (3/2) where Dy start point — 0& Dy end point — 0
Dz= [ (Z ir1-2 i)‘ (Z i-Z i-1)] * (3/2) where DZ start point — 0 & DZ cna point — 0
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How can find this &34
F@®)=()’ ai+@®)’ bi+ @) ci+ P é .(1)
F')=31)% art2(t) b+ ¢i  en.... )
F"(W=6(t) ar+2 b; .... (3) > F"(0)=D; & F"(1)=Di.,
let t=0 in equ.(3) = D;=0+2b; =» bi=Di/2 ..(4) where D=F"(0)
let t=1 in equ.(3)=>»D;1=6a;+D;=»ai=(Di+1-Di)/6 € ..(5) where D;,,=F"(1)
Apply equ.(4,5) in equ(l) in t=1 then
D. ., — D, D, D, +2D;
Py = =ML+ DLt G, + B —> (P, — R),— (O 2220 4 C, —

+ 2D,

D,
C =(F..—FR)—( '“6

).....(6) == Ci = (P, —P)—a, —b,

Ci=(Pi+1-Pi)-ai-bi

'step 1: WHERE np = number of control points
dx(1) = 0: dx(np) = 0: dy(1) =0: dy(np) =0
Fori=2Tonp - 1
dx(i) = (X *.1) - X(@)) - (X() - X(i- 1))) * (3/2)
dy(i) = ((Y( +1) 2 Y (i) - (Y() - Y(i - ) * (3/2)
Next 1
‘step 2: " find a,b,c,e for x in all points
Forj=1Tomnp - 1
ax(j) = (dx(j + 1) - dx(j)) / 6.0 : bx(j)=dx(j)/2
ex() = ((XG + 1) - X()) + (-2 * dx()) - dx(G + 1)) / 6.0) : ex(G)=X(j)
'find a,b,c,e for y for all points
ay(j) = (dy( + 1) - dy(j)) / 6.0 - by(j)=dy(j)/2
cy() =((YG+ D -Y(G) + (-2 *dy(j) - dy( + 1))/ 6.0) : ey(J) = Y(J)
Next j

MM Branch 3rd Class Cpnll e (g - -J-e-i 3ol e



oo
@Q

@

COMPUTER SCIENCE

wguiall oglc Quid
'find a,b,c,e for Z for all points R e

az(j) = (dz(j + 1) - dz(j)) / 6.0 : bZ(J)=dZ(j)/2
cz(j) =((ZG + 1) - Z() + (-2 * dZ(j) - dZ( + 1)) / 6.0) : eZ(j) = Z()
Next ]
‘step 3 apply equ.(1)
For P=1 Tonp
For T=0 To 1 Step 0.0001
xp =(T"3)*ax(P) + (T " 2) * bx(P) + (T) * cx(P) + ex(P)
yp = (T A 3) * ay(P) + (T 2) * by(P) + (T) * cy(P) + ey(P)
zp=(T*3) *az(P) + (T *2) *bz(P) + (T) * cz(P) + ez(P)

s
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Plot point (xp, yp, zp) ' draw Curve points or 2D curve

Next T

Next P

End Sub

Let see figure

3 5
E]
“Pe

F>1

Figure A. design in V.B by L. Ali Hassan Hammadie
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Figure B. design in V.B by L. Ali Hassan Hammadie

Ex// generate Curve where equation is P(t) = at3+ bt? + ct + P; on Control points are

(9,-50),(67,13), (4,-8),(-22,-97)

Sol// T=0 P(0)=P; and T=1= P(1)=P;+a+h+c DP(1)=P;,,

4Point D3pieces P pieces (n) =

P 1)~ Pw)

Piecel {67-9, 13+50)} = Piecel {58,63)}
Piece2 {4-67,-8-13)} = Piece? 1~63,-21)}

Piece3 {-22-4,-97+8)}' = Piece3 {-26,-89)}

Find Dx;

Find Dy;

Find Dz (if exist)

D=0

D=0

—363

—3 - — —_——_——
DZ_E{ 63 — 58} o=
—-181.5

D= {-21-63})=—126

Ds=2{—26+ 63}=—==55.5

Ds=2{—89 + 21}=—102

D4=0

D4=0

Find a, bi, ci, ei for all pieces

MM Branch 3rd Class
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iT 6 & b; ) & c;=P1—P)—a;— b il
Find ax; Find bx; Find cx; Find exi=X;
—-181.5-0 0 -181.
a, = T bl = E (o5} =58 - 1:1 5+0 9
55.5 +181.5 —181.5 _ 237\ -1815
a, = 22—  =— ¢ =-63-(20)-— 67
0 — 555 55.5 -55.5) 55.5
az = G 3 = T C3 =-26-(T)-T 4

<==Jal/ (gdsill X, =ai+ b+ cit X;
Piecel (start x1 to x2) X2=ax1+bx1+cx1+ex] =9-30.25+0+88.25+9 = X2=67
Piece2(start x2 to x3) X3=ax2+bx2+cx2+ex2 =39.5-90.75-11.75+67 = X3=4
Piece2(start x3 to x4) X4=ax3+bx3+cx3+ex3=$-9.25+27.75-44.5+4 = X4=-22

Find ay; Find by; Find cyi Find eyi=Y;
a, = ? b, = g ¢ =63-(=21)+0 -50
a, = w b, = % ¢, =-21-(4)-(—63) 13
a, =2 +6102 L= % c5 =-89-(17)-(=51) -8

MM Branch 3rd Class

<== ) Gl Yis=ai+bi+ci+Yi
Piecel (start y1 to y2) Y2=ayl+byl+cyl+eyl &-21+0+84-50 2 Y2=13
Piece2(start y2 to y3) Y 3=ay2+by2+cy2+ey2 94-63+38+13 2 Y3=-8
Piece2(start y3 to y4) Y 4=ay3+by3+cy3+ey3 ?17-51-55-8 9 Y4=-97
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(Normal vector &
plane equation)
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6.1.Normal Vector

The normal vector, often simply called the
"normal," to a surface is a vector which

is perpendicular to the surface at a given
point. When normal are considered on
closed surfaces, the inward-pointing
normal (pointing towards the interior of the

surface) and outward-pointing normal are

usually distinguished.

How Find Normal Vector at surface or plane?

LetP (3, 1,4), Q(0, -1, 2), S(5, 3, -2)

= P-Q=(3, 2, 2), P-S= (-2, -2, 6)

P-QxP-S = (16, -22, -2) =¥n1=16i-22J-2k = n1=8i-11j-k
P-SxP-Q = (-16, 22, 2) =n2= -161+22j+2k = n2= -8i+11j+k

Note n1, n2 may be front side surface or back face surface

6.2Plane Equation

In mathematics, a plane is a flat, two-dimensional surface that extends infinitely
far. A plane is the two-dimensional analogue of a point (zero dimensions), a line
(one dimension) and three-dimensional space. Planes can arise as subspaces of
some higher-dimensional space, as with one of a room's walls, infinitely
extended, or they may enjoy an independent existence in their own right, as in

the setting of Euclidean geometry.

When working exclusively in two-dimensional Euclidean space, the definite
article is used, so the plane refers to the whole space. Many fundamental tasks
in mathematics, geometry, trigonometry, graph theory, and graphing are

performed in a two-dimensional space, or, in other words, in the plane.
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A plane in three-dimensional space has the equation (ax + by + cz +d =0) where
at least one of the numbers a, b, and ¢ must be non-zero. A plane in 3D
coordinate space is determined by a point and a vector that is perpendicular to

the plane.

How find plane equation in the following figure?

Let P (3, 1,4), Q(0, -1, 2), S5, 3, -2)

Stepl: find normal vector(] P-Q= (3, 2, 2), P-S= (-2, -2, 6), P-QxP-S = (16, -
22,-2)

=2>n1=16i-22j-2k

Step2: plane = 16(x-Xi)-22(y-Y1)-22(k-Ki) =» apply on P=>»16(x-3)-22(y-1)-
2(k-4) = 16x-22y-2k-18—0=> plane= 8x-11y-k-9 (H.W) apply n with Q
and S what happen?

6.3 Test arbitrary point on plane

Plane Equation is Ax+ By+ Cz +D =0 if arbitrary point (x,, y, zp) how detect

this point is inside or outside or boundary of plane’s.

If Axp + By, + Cz, +D =0 =» point (X,, ¥, z,) on boundary plane (edge plane)
If Axp + By, + Cz, +D <0 =>» point (X,, ¥, Zp) is inside on plane

If Axp + By, + Cz, +D >0 =» point (X,, ¥, Z,) is outside on plane

For example plane=8x-11y=-k=9 check (1,-2, 0), (1, 2, 0) belong to plane or not
why?

Check (1,-2, 0) =» 8*1 -11*-2 -1*0 -9 = 21 =»outside on plane

Check (1, 2, 0) =» 8*1 -11*2 -1*0 -9 = -23 =»inside on plane
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T
S

@

COMPUTER SCIENCE

s

2nd-Semester 3D simulation and rendering

{0000N0IDI00NDDION:

wguwiall ogle o

a12glgisill Gaolall
UNIVERSITY OF TECHNOLOBY

6.4 Detect Front TBack side on plane

How detect front side (Visible Surface Detection) and back face (Hidden
Surface Elimination)? If find Normal n (X 1, Y 1, Z 1) of plane and have view
point V (Xv, Yv, Zv), therefore find {n .V}

If .V >0 then Surface back face (Hidden Surface Elimination)

Otherwise if 1.V <0 then Surface front face (Visible Surface Detection)
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Part seven
(Hlumination)
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IHlumination in Computer Graphics

IHlumination refers to the simulation of how light interacts with objects in a scene, providing
a sense of depth, realism, and visual appeal. In computer graphics, this is essential for rendering
3D objects convincingly on 2D screens. The process involves calculating how light sources
(natural or artificial) affect the appearance of surfaces based on various physical principles.

Types of Light Sources

1. Ambient Light:

o Aglobal light source that provides a constant illumination level across the entire
scene. It is used to simulate light that has been scattered multiple times in the
environment and therefore affects all objects evenly.

o Formula:

lambient = Ka .1a
Where
lambient is the ambient intensity,
Ka 1s the ambient reflection coefficient of the surface,
lais the intensity of ambient light.
Point Light:

e A localized light source that emits light in all directions from a single point. Light
intensity decreases with distance from the source, according to the inverse square law.
e Formula

L Kl
point — T

Where

Ipoint“is the intensity of the point light,

Kqis the diffuse reflection coefficient,

Ip.is the intensity of the point light source

L is the vector pointing from the surface point to the light source
N is the surface normal at the point,

d is the distance from the light source.

Directional Light:
o Represents light from a source that is far away (e.g., the sun), so the light rays are

assumed to be parallel. This type of light does not diminish with distance.
Formula:
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Ldirectiona=ka-Iq* (L N) ;fau%m oF nmmli:
Where

kq 1is the direction of the light
14 is the intensity of the directional light
4. Spotlight:

A point light source with restricted coverage, illuminating only within a cone of a
specified angle.

Formula:
o Ispotign=Ip-(L-D)’
where:
D is the direction of the spotlight,
B is the spotlight concentration factor.
Light Interaction with Surfaces
1. Diffuse Reflection:
Light that is scattered uniformly in all directions after hitting a rough surface.
Formula:
Liitfuse=kaq*I-(L-N)
where:
kq 1s the diffuse reflection.coefficient,
I is the light intensity.

L is the light direction,
N is the normal to the surface,

Phong HHlumination Model
A common model used in computer graphics, combining ambient, diffuse, and specular
reflections:

I:Iambient+Idiffuse+Ispecular

Shading Models

1. Flat Shading:
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o Applies a single illumination calculation per polygon, resulting in fac iU Sacte

surfaces.
2. Gouraud Shading:
o Computes illumination at vertices and interpolates the color across the surface
of the polygon.
3. Phong Shading:
o Interpolates surface normals across the polygon and computes illumination at
each pixel, providing smoother shading and more accurate specular highlights.

Importance in Computer Graphics
[Nlumination is crucial in computer graphics to create realistic and visually.appealing images.
Correct simulation of light interaction with objects improves the depth perception, shadows,

and highlights in a scene. Understanding illumination is fundamental in fields like video games,
simulations, movies, and virtual reality.

Example: Phong Illumination Model

Consider a surface illuminated by a point light source: The parameters for the surface and the
light are:

e Ambient light intensity [.=0.2

o Diffuse reflection coefticient kq=0.8

e Specular reflection coefficient ks=0.5

e Ambient reflection coefficient k,=0.3

o Light intensity I=1.0

o The angle between the light vector L and surface normal N is 45°, so L-N=cos
(45)=0.707.

e Reflection vector R and view vector V are aligned, so R-V=1.

e Shininess factor n=10

Step-by-Step Calculation

1. Ambient Reflection:
Lambient=ka-1.=0.3-0.2=0.06

2. Diffuse Reflection:
Laitruse=ka-1:(L-N)=0.8-1.0-0.707=0.5656

3. Specular Reflection:

Ispecular:ks'l'(R'V)n:0.5 -1.0-110=0.5

4. Total Illumination:
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Example 2: Multiple Light Sources with Phong Model
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Consider a surface illuminated by two point light sources. The parameters are:

e Light Source 1:
o Intensity: [;=0.7

o Direction: Makes an angle of 30° with the surface normal, so Li-N=cos

(30°)=0.866.

o Specular reflection direction is aligned with the view vector,'so Ri-V=I.

e Light Source 2:
o Intensity: b=0.5

o Direction: Makes an angle of 60° with the surface normal, so L>-N=cos

(60°)=0.5.

o Specular reflection direction is misaligned with the view vector, so R2-V=0.5.

Other constants are:
e Ambient light intensity [.=0.2
o Diffuse reflection coefficient kq=0.7
e Specular reflection coefficient ks=0.3
e Ambient reflection coefficient k,=0.2
e Shininess factor n=5
Step-by-Step Calculation
1. Ambient Reflection:
Iambient:ka'Ia:0.2'0.2:0.04
2. Diffuse Reflection for Light Source 1:
Laitfuse1=Ka-11-(L1-N)=0.7-0.7-0.866=0.42342
3. Specular.Reflection for Light Source 1:
Ispecularlzks'll'(Rl‘V)n:O.3'O.7'15:0.21
4. Diffuse-Reflection for Light Source 2:
Laitfuse2=ka-I2-(L2-N)=0.7-0.5-0.5=0.175
5. Specular Reflection for Light Source 2:
Ispecularzzks'IZ'(R2'V)“ZO.3'0.5'0.55:0.00375

6. Total Illumination:
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I:Iambient+(Idiffuse 1 +Ispecular1 )+(IdiffuseZ+Ispecular2)
[=0.04+(0.42342+0.21)+(0.175+0.00375)=0.04+0.63342+0.17875=0.85217
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This example illustrates how to handle multiple light sources within the Phong illumination

model by summing up the contributions from each light source.
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