

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

1

__

 الجامعة التكنولوجية

 قسم علوم الحاسوب

 ذكاء الاصطناعيفرع ال

 ثانيةالمرحلة ال

 لثانيالكورس ا

 طرق البحث الموجه

 علي م.د. ندى حسين

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

2

1- Intelligent Search Methods and Strategies

Search is inherent to the problem and methods of artificial intelligence (AI).

This is because AI problems are intrinsically complex. Efforts to solve

problems with computers which human can routinely innate cognitive abilities,

pattern recognition, perception and experience, invariably must turn to

considerations of search. All search methods essentially fall into one of two

categories, exhaustive (blind) methods and heuristic or informed methods.

2 ‐State Space Search

The state space search is a collection of several states with appropriate

connections (links) between them. Any problem can be represented as such

space search to be solved by applying some rules with technical strategy

according to suitable intelligent search algorithm.

What we have just said, in order to provide a formal description of a problem,

we must do the following:

1‐ Define a state space that contains all the possible configurations of the

relevant objects (and perhaps some impossible ones). It is, of course, possible

to define this space without explicitly enumerating all of the states it contains.

2‐ Specify one or more states within that space that describe possible situations

from which the problem‐solving process may start. These states are called the

initial states.

3‐ Specify one or more states that would be acceptable as solutions to the

problem. These states are called goal states.

4‐ Specify a set of rules that describe the actions (operators) available. Doing

this will require giving thought to the following issues:

• What unstated assumptions are present in the informal problem description?

• How general should the rules be?

• How much of the work required to solve the problem should be precomputed

and represented in the rules?

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

3

The problem can then be solved by using rules, in combination with an

appropriate control strategy, to move through the problem space until a path

from an initial state to a goal state is found. Thus the process of search is

fundamental to the problem‐solving process. The fact that search provides the

basis for the process of problem solving does not, however, mean that other,

more direct approaches cannot also be exploited. Whenever possible, they can

be included as steps in the search by encoding them rules. Of course, for

complex problems, more sophisticated computations will be needed. Search is

a general mechanism that can be used when no more direct methods is known.

At the same time, it provide the framework into which more direct

methods for solving subparts of a problem can be embedded.

To successfully design and implement search algorithms, a programmer must

be able to analyze and predict their behavior. Questions that need to be

answered include:

• Is the problem solver guaranteed to find a solution?

• Will the problem solver always terminate, or can it become caught in an

infinite loop?

• When a solution is found, is it guaranteed to be optimal?

• What is the complexity of the search process in terms of time usage? Memory

usage?

• How can the interpreter most effectively reduce search complexity?

• How can an interpreter be designed to most effectively utilize a representation

language?

To get a suitable answer for these questions search can be structured into three

parts. A first part presents a set of definitions and concepts that lay the

foundations for the search procedure into which induction is mapped. The

second part presents an alternative approaches that have been taken to

induction as a search procedure and finally the third part present the version

space as a general methodology to implement induction as a search procedure.

If the search procedure contains the principles of the above three requirement

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

4

parts, then the search algorithm can give a guarantee to get an optimal solution

for the current problem.

3 ‐General Problem Solving Approaches

There exist quite a large number of problem solving techniques in AI that rely

on search. The simplest among them is the generate‐and‐test method. The

algorithm for the generate‐and‐test method can be formally stated in figure (1).

It is clear from the algorithm that the algorithm continues the possibility of

exploring a new state in each iteration of the repeat‐until loop and exits only

when the current state is equal to the goal. Most important part in the algorithm

is to generate a new state. This is not an easy task.

Figure (1), Generate and Test Algorithm

If generation of new states is not feasible, the algorithm should be

terminated. In simple algorithm, we, however, did not include this intentionally

to keep it simplified. But how does one generate the states of a problem? To

formalize this, we define a four tuple, called state space, denoted by

{nodes, arc, goal, current },

where

Nodes represent the set of existing states in the search space;

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

5

an arc denotes an operator applied to an existing state to cause

transition to another state;

Goal denotes the desired state to be identified in the nodes;

and current represents the state, now generated for matching with the goal.

The state space for most of the search problems takes the form of a tree or a

graph. Graph may contain more than one path between two distinct nodes,

while for a tree it has maximum value of one.

To build a system to solve a particular problem, we need to do four things:

1. Define the problem precisely. This definition must include precise

specifications of what the initial situation(s) will be as well as what final

situations constitute acceptable solutions to the problem.

2. Analyze the problem. A few very important features can have an immense

impact on the appropriateness of various possible techniques for solving the

problem.

3. Isolate and represent the task knowledge that is necessary to solve the

problem.

4. Choose the best problem‐solving technique(s) and apply it (them) to the

particular problem.

Measuring problem‐solving performance is an essential matter in term of any

problem solving approach. The output of a problem‐solving algorithm is either

failure or a solution. (Some algorithm might get stuck in an infinite loop and

never return an output.) We will evaluate an algorithm's performance in four

ways:

• Completeness: Is the algorithm guaranteed to find a solution when there is

one?

• Optimality: Does the strategy find the optimal solution?

• Time complexity: How long does it take to find a solution?

• Space complexity: How much memory is needed to perform the search?

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

6

4 ‐ Search Technique

Having formulated some problems, we now need to solve them. This is done

by a search through the state space. The root of the search tree is a search node

corresponding to the initial state. The first step is to test whether this is a goal

state. Because this is not a goal state, we need to consider some other states.

This is done by expanding the current state; that is, applying the successor

function to the current state, thereby generating a new set of states. Now we

must choose which of these possibilities to consider further. We continue

choosing, testing and expanding either a solution is found or there are no more

states to be expanded. The choice of which state to expand is determined by the

search strategy. It is important to distinguish between the state space and the

search tree. For the route finding problem, there are only N states in the state

space, one for each city. But there are an infinite number of nodes.

There are many ways to represent nodes, but we will assume that a node is a

data structure with five components:

• STATE: the state in the state space to which the node corresponds؛

• PARENT-NODE: the node in the search tree that generated this node؛

• ACTION: the action that was applied to the parent to generate the node؛

• PATH‐COST: the cost, traditionally denoted by g(n), of the path from the

initial state to the node, as indicated by the parent pointers; and

• DEPTH: the number of steps along the path from the initial state.

As usual, we differentiate between two main families of search strategies:

systematic search and local search. Systematic search visits each state that

could be a solution, or skips only states that are shown to be dominated by

others, so it is always able to find an optimal solution.

5. Heuristic Search Algorithms

In this section, we can saw that many of the problems that fall within the

purview of artificial intelligence are too complex to be solved by direct

techniques; rather they must be attacked by appropriate search methods armed

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

7

with whatever direct techniques are available to guide the search. These

methods are all varieties of heuristic search.

They can be described independently any particular task or problem domain.

But when applied to Particular problems, their efficacy is highly dependent on

the way they exploit domain‐specific knowledge since in and of themselves

they are unable to overcome the combinatorial explosion to which search

processes are so vulnerable. For this reason, these techniques are often called

weak methods. Although a realization of the limited effectiveness of these

weak methods to solve hard problems by themselves has been an important

result that emerged from the last decades of AI research, these techniques

continue to provide the framework into which domain‐specific knowledge can

be placed, either by hand or as a result of automatic learning.

Hill climbing is a variant of generate‐and‐test in which feedback from the test

procedure is used to help the generator decide which direction to move in the

search space. In a pure generate‐and‐test procedure, the test function responds

with only a yes or no. but if the test function is augmented with a heuristic

function that provide an estimate of how close a given is to a goal state. This is

particularly nice because often the computation of the heuristic function can be

done at almost no cost at the same time that the test for a solution is

being performed. Hill climbing is often used when a good heuristic function is

available for evaluating states but when no other useful knowledge is available.

For example, suppose you are in an unfamiliar city without a map and you

want to get downtown. You simply aim for the tall buildings. The heuristic

function is just distance between the current location and the location of the tall

buildings and the desirable states are those in which this distance is minimized.

For each state f(n) = h(n) where h(n) is the heuristic function that
computes the heuristic value for each state n.

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

8

Function Hill Climbing Search

Begin

 Open: = [Initial state]; %initialize

 Closed: = [];

 CS= initial state;

 Path= [initial state];

 Stop= FALSE;

 While open <> [] do %states remain

 Begin

 If CS=goal then return path

 Generate all children of CS and put them into open;

 If open= [] then

 Stop= TRUE

 Else

 Begin

 X= CS;

 For each state Y in open do

 Begin

 Compute the heuristic value of y (h(Y));

 If Y is better than X then

 X=Y

 End;

 If X is better than CS then

 CS=X

 Else

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

9

 Stop= TRUE;

 End;

 End;

 Return (FAIL); %open is empty

End.

Consider the following problem state space then:

Find the path from a to m using Hill Climbing search algorithm.

Open Closed

 [a] []

[b5, c4, d8] [a]

[c4, b5, d8] [a]

[f5, g3, b5, d8] [a, c4]

[g3, f5, b5, d8] [a, c4]

[n8, m7, f5, b5, d8] [a, c4, g3]

[m7, n8, f5, b5, d8] [a, c4, g3]

Stop the goal (m) is found

 a

 b c d

 e f g h

 i j k n m l p

5 4

8
6

 7 5

8

3 8

4 3 6 8 7 4 2

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

10

Now let us discuss a new heuristic method called "Best First Search",

which is a way of combining the advantages of both depth‐first and

breadth‐first search into a single method.

The actual operation of the algorithm is very simple. It proceeds in steps,

expanding one node at each step, until it generates a node that

corresponds to a goal state. At each step, it picks the most promising of the

nodes that have so far been generated but not expanded. It generates the

successors of the chosen node, applies the heuristic function to them, and

adds them to the list of open nodes, after checking to see if any of them

have been generated before. By doing this check, we can guarantee that each

node only appears once in the graph, although many nodes may point to it as a

successors. Then the next step begins.

For each state f(n) = h(n) where h(n) is the heuristic function that

computes the heuristic value for each state n.

Function Best‐First Search

Begin

 Open: = [Initial state]; %initialize

 Closed: = [];

 While open <> [] do %states remain

 Begin

 Remove leftmost state from open, call it X;

 If X = goal then return the path from initial to X

 Else

 Begin

 Generate children of X;

 For each child of X do

 Case

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

11

 The child is not on open or closed;

 Begin

 Assign the child a heuristic value;

 Add the child to open

 End;

 The child is already on open;

 If the child was reached by a shorter path

 Then give the state on open the shorter path

 The child is already on closed;

 If the child was reached by a shorter path then

 Begin

 Remove the state from closed;

 Add the child to open

 End;

 End; %case

 Put X on closed;

 Re‐order states on open by heuristic merit (best leftmost)

 End;

Return FAIL %open is empty

End.

Consider the following problem state space then:

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

12

Find the path from a to k using Best first Search algorithm.

Open Closed

 [a] []

[z8, y9, x7] [a]

[x7, z8, y9] [a]

[p8, q7, z8, y9] [a, x7]

[q7, p8, z8, y9] [a, x7]

[k4, g2, p8, z8, y9] [a, x7, q7]

[g2, k4, p8, z8, y9] [a, x7, q7]

[k4, p8, z8, y9] [a, x7, q7, g2]

The goal (k) is found

The first advance approach to the best first search is known as A‐search

algorithm. A algorithm is simply define as a best first search plus specific

function. This specific function represent the actual distance (levels) between

the initial state and the current state and is denoted by g(n). A notice will be

mentioned here that the same steps that are used in the best first search are used

in an A algorithm but in addition to the g(n) as follow;

f(n) = h(n) + g(n) where h(n) is the heuristic function that computes the

heuristic value for each state n, and g(n) is the generation function that

computes the actual distance (levels) between initial state to current state n.

 a

 z y x

 m n p q

 r t v u h k g

8 9

7
6

8 7

7

6 8

4 3 6 9 7 4 2

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

13

Example:

Find the path from a to k using A-search algorithm

Open Closed

 [a] []

[b4, c3, d5] [a]

[b4+1, c3+1, d5+1] [a]

 [c4, b5, d6] [a]

[f5, g4, b5, d6] [a, c4]

[f5+2, g4+2, b5, d6] [a, c4]

[f7, g6, b5, d6] [a, c4]

[b5, g6, d6,, f7] [a, c4]

[e6, f7, g6, d6, f7] [a, c4, b5]

[e6+2, f7+2, g6, d6, f7] [a, c4, b5]

[g6, d6, f7, e8, f9] [a, c4, b5]

[n1, k2, d6, f7, e8, f9] [a, c4, b5, g6]

[n1+3, k2+3, d6, f7, e8, f9] [a, c4, b5, g6]

[n4, k5, d6, f7, e8, f9] [a, c4, b5, g6]

[k5, d6, f7, e8, f9] [a, c4, b5, g6, n4]

Stop the goal (k) is found

 a

b c d

e f g h

m i j n k p l

4 3

3
7

6 5

5

4 3

5 2 8 1 2 4 3

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

14

The second advance approach to the best first search is known as

A*‐search algorithm. A* algorithm is simply define as a best first

search plus specific function. This specific function represent the actual

distance (levels) between the current state and the goal state and is denoted by

g(n).

f(n) = h(n) + g(n) where h(n) is the heuristic function that computes the

heuristic value for each state n, and g(n) is the generation function that

computes the actual distance (levels) between current state n to goal state.

Function A* Search Algorithm

Begin

 Open: = [Initial state]; %initialize

 Closed: = [];

 While open <> [] do %states remain

 Begin

 Remove leftmost state from open, call it X;

 If X = goal then return the path from initial to X

 Else

 Begin

 Generate children of X;

 For each child of X do

 Begin

 Add the distance between current state to goal state to the heuristic
value for each child %make the g(n)

 Case

 The child is not on open or closed;

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

15

 Begin

 Assign the child a heuristic value;

 Add the child to open

 End;

 The child is already on open;

 If the child was reached by a shorter path

 Then give the state on open the shorter path

 The child is already on closed;

 If the child was reached by a shorter path then

 Begin

 Remove the state from closed;

 Add the child to open

 End;

 End; %case

 Put X on closed;

 Re‐order states on open by heuristic merit (best leftmost)

 End;

Return FAIL %open is empty

End.

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

16

Example:

Find the path from a to k using A*-search algorithm

Open Closed

[a] []

[b4, c3, d5] [a]

[b4+4, c3+2, d5+2] [a]

[c5, d7, b8] [a]

[f5, e4, d7, b8] [a, c5]

[f5+3, e4+1, d7, b8] [a, c5]

[e5, d7, f8, b8] [a, c5]

[h2, k2, d7, f8, b8] [a, c5, e5]

[h2+2, k2+0, d7, f8, b8] [a, c5, e5]

[k2, h4, d7, f8, b8] [a, c5, e5]

Stop, the goal (k) is found

 a

b c d

i f e g

m p j h k q r

4 3

3
4

6 5

5

4 3

5 2 8 2 2 4 3

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

17

Heuristic Search Methods with Heuristic Function

Hill climbing

For each state f(n) = h(n) where h(n) is the heuristic function that computes the

heuristic value for each state n.

Best First Search

For each state f(n) = h(n) where h(n) is the heuristic function that computes the

heuristic value for each state n.

A‐search algorithm

f(n) = h(n) + g(n) where h(n) is the heuristic function that computes the heuristic

value for each state n, and g(n) is the generation function that computes the actual

distance (levels) between initial state to current state n.

A*‐search algorithm

f(n) = h(n) + g(n) where h(n) is the heuristic function that computes the heuristic

value for each state n, and g(n) is the generation function that computes the actual

distance (levels) between current state n to goal state.

Problems with Hill Climbing Search Procedure

1- Fost Hill (Local Minima)

This problem causes stopping search procedure.

The algorithm not found the goal state although it is existed in the search space, this is

because of the algorithm search performance and behavior which depends on a

determined strategy without backing path from dead end state which causes algorithm

termination, this problem can be solved by using backtracking process in the

algorithm strategy.

2- Plateau Problem

This problem causes stopping search procedure.

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

18

When the search procedure reach to a state has an equivalent heuristic values

(choices), the algorithm stops searching for the goal and not get the solution path

although it is existed in the search space, in other words, there is a state has two or

more children with the same heuristic value (Plateau partial search space), this

problem can be solved by some kind of search procedures such as continuing search

with the most left side.

3- Ridge Problem

This problem does not cause stopping search procedure.

The search procedure gets the solution path with some cost measurements which is

not considered the best, since the best path is existed in dominate partial search

space; this problem can be solved by applying more than one rule in each search

procedure stage.

A Comparison between Heuristic Search and Blind Search

 Blind Search Heuristic Search

1
In term of complexity: it is less
complex.

In term of complexity: it is more
complex.

2
In term of memory capacity:
usually need more memory
capacity.

In term of memory capacity: usually
need less memory capacity.

3
In term of run time consuming:
usually consumes more run
time.

In term of run time consuming:
usually consumes less run time.

4
Guarantee for solution. Guarantee for solution, except Hill

Climbing (not always).

5
Usually does not find the
optimal solution path.

Usually finds the optimal solution
path or nearly the optimal solution
path.

6
It does not have a guider in
search behavior.

It has a guider in search behavior
(Heuristic Function).

7
It is not efficient in game
playing.

It is efficient in game playing such as
Minmax or Alpha-Beta procedures.

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

19

Using Heuristic in Games

The sliding-tile puzzle consists of three black tiles, three white tiles, and

an empty space in the configuration shown in Figure (1). The puzzle has

two legal moves with associated costs:

 A tile may move into an adjacent empty location. This has a cost of 1.

 A tile can hop over one or two other tiles into the empty' position,

this has a cost equal to the number of tiles jumped over.

The goal is to have all the white tiles to the left of all the black tiles. The

position of the blank is not important.

a. Analyze the state space with respect to complexity and looping.

b. Propose a heuristic for solving this problem and analyze it.

Figure (5), the sliding block puzzle

The 8-puzzle Problem

We now evaluate the performance of several different heuristics for

solving the 8-puzzle. Figure (6), shows a start and goal state for the 8-

puzzle, along with the first three states generated in the search.

The simplest heuristic counts the tiles out of place in each state when it is

compared with the goal. This is intuitively appealing, because it would

seem that, all else being equal; the state that had fewest tiles out of place

is probably closer to the desired goal and would be the best to examine

next.

However, this heuristic does not use all of the information available in a

board configuration, because it does not take into account the distance the

tiles must be moved.

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

20

A "better" heuristic would sum all the distances by which the tiles are out

of place, one for each square a tile must be moved to reach its position in

the goal state. Both of these heuristics can be criticized for failing to

acknowledge the difficulty of tile reversals. That is, if two tiles are next to

each other and the goal requires their being in apposite locations, it takes

(many) more than two moves to put them back in place, as the tiles must

"go around" each other (Figure 7).

Figure(6), The start state, first moves, and goal state for an example 8-puzzle.

Figure (7) An 8-puzzle state with a goal and two reversals: 1 and 2, 5 and 6.

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

21

Figure (8), the 8-puzzle problem solving with heuristic values

For the 8-puzzle Grid

There is one center location.

There are four corners location.

There are four sides location.

Possible Moves

 When the space position is in the center of the grid, possible moves = 4.

 When the space position is in the corner of the grid, possible moves = 2

 When the space position is in the side of the grid, possible moves = 3.

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

22

Figure (9), the 8-puzzle problem solved by A-search algorithm

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

23

Another Examples of 8-Puzzle Problem

Consider the following 8-puzzle problem then draw the problem state space to find the

goal using A-search algorithm (or Best first or Hill climbing) then list the solution path.

 R I

 A O O

 P L G

 A I

 P R O

 L O G

I.S G.S

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

24

Consider the following 8-tiles problem then draw the problem state space to

give the following requirements:

Find the goal using Best first search (or A-algorithm or Hill climbing) algorithm

The Minmax and Alpha-Beta search Algorithms

The idea for alpha‐beta search is simple: rather than searching the entire

space to the ply depth, alpha‐beta search proceeds in a depth‐first fashion.

Two values, called alpha and beta, are created during the search. The

alpha value associated with MAX nodes, can never decrease, and the beta

value associated with MIN nodes, can never increase. Two rules for

terminating search, based on alpha and beta values, are:

1. Search can be stopped below any MIN node having a beta value less

than or equal to the alpha value of any of its MAX ancestors.

2. Search can be stopped below any MAX node having an alpha value

greater than or equal to the beta value of any of its MIN node ancestors.

Alpha‐beta pruning thus expresses a relation between nodes at ply n and

nodes at ply n + 2 under which en re sub-trees rooted at level n + 1 can

be eliminated from consideration. Note that the resulting backed‐up value

is identical to the minimax result and the search saving over minimax is

considerable. With fortuitous ordering states in the search space,

alpha‐beta can effectively double the depth of the search considered with

a fixed space/time computer commitment. If there is a particular

A B

B C A

C C B

 A A

B B B

C C C

I.S G.S

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

25

unfortunate ordering, alpha‐beta searches no more of the space than

normal minimax; however, the search is done in only one pass.

c(n) = M(n) – O(n) Where M(n) = number of my possible winning lines.

Now, we will discuss a new type of algorithm, which does not require

expansion of the entire space exhaustively. This algorithm is referred to

as alpha‐beta cutoff algorithm. In this algorithm, two extra ply of

movements are considered to select the current move from alternatives.

Alpha and beta denote two cutoff levels associated with MAX and MIN

nodes. As it is mentioned before the alpha value of MAX node cannot

decrease, whereas the beta value of the MIN nodes cannot increase. But

how can we compute the alpha and beta values? They are the backed up

values up to the root like MINIMAX. There are a few interesting points

that may be explored at this stage. Prior to the process of computing

MAX / MIN of the backed up values of the children, the alpha‐beta cutoff

algorithm estimates e(n) at' all fringe nodes n. Now, the values are

estimated following the MINIMAX algorithm. Now, to prune the

unnecessary paths below a node, check whether:

• The beta value of any MIN node below a MAX node is less than or

equal to its alpha value. If yes. prune that path below the MIN node.

• The alpha value of any MAX node below a MIN node exceeds the beta

value of the MIN node. if yes prune the nodes below the MAX node.

Based on the above discussion, we now present the main steps in the α-β

search algorithm.

1. Create a new node, if it is the beginning move, c1seexpand the existing

tree by depth first manner. To make a decision about the selection of a

move at depth d, the tree should be expanded at least up to a depth (d+ 2).

2. Compute e(n) for all leave (fringe) nodes n in the tree.

3. Computer αmin (for max nodes) and βmax values (for min nodes) at

the ancestors of the fringe nodes by the following guidelines. Estimate the

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

26

minimum of the values (e or α) possessed by the children of a

MINIMIZER node N and assign it its βmax value. Similarly, estimate the

maximum of the values (e or β) possessed by the children of a

MAXIMIZER node N and assign it its αmin value.

4. If the MAXIMIZER nodes already possess αmin values, then their

current αmin value = Max (αmin value, αmin,); on tile other hand, if the

MANIMIZER nodes already possess βmax values, then their current

βmax value = MIN (βmax value, βmax).

5. If the estimated βmax value of a MINIMIZER node N is less than the

αmin value of its parent MAXIMIZER node N' then there is no need to

search below the node MINIMIZER node N. Similarly, if the αmin value

of a MAXIMIZER node N is more than the βmax value of its parent node

N then there is no need to search below node N.

Figure (10), state space for the minmax game

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

27

Figure (11), the Tic Tac Toe state space for the Alpha-Beta procedure

In heuristic Search, two aims must be achieved to overcome the

limitations in other search methods which are:

1- Problem Reduction

2- Guarantee of Solution

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

28

Figure (12), first three levels of the tic-rae-toe state space reduced by symmetry

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

29

Figure (13), heuristically reduced state space for tic-tao-toe.

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

30

Systems Based on Simple Search and Pattern Recognition (1)

Text Recognition System (An AI Program for Psychology Counseling)

Pattern in Sentence

From human Machine (Computer) Responds

…..I fell….. How long have you felt that way?

….. father ….. Tell me more about your family.

…..friendly….. Better friends help you when you need.

…..hell….. Please do not use words like that.

…..yes or no…. Please be more explicit.

…..high performance….. This gives you additional respecting.

…..sadness or anger….. How are you feeling right now?

…..complex or fixation….. Too many mind games

……..father………. Earlier you mentioned your father.

…………………….. …………………………………….

clauses

helpme :-

 write("Speak up, what is your problem?"), nl,

 repeat,

 getclause(L),

 makeans(L),

 fail.

getclause(L) :-

 readln(S),

 str_to_list(S,L).

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

31

makeans(L) :-

recognize(L,1),

write ("How long have you felt that way?"), nl, !.

makeans(L) :-

recognize(L,2),

write ("Tell me more about your family"), nl, !.

makeans(L) :-

recognize(L,3),

write ("better friends help you when you need."), nl, !.

makeans(L) :-

recognize(L,4),

write ("Please do not use words like that."), nl, !.

makeans(L) :-

recognize(L,5),

write ("Please be more explicit."), nl, !.

makeans(L) :-

recognize(L,6),

write ("This gives you additional respecting."), nl, !.

makeans(L) :-

recognize(L, 7),

write ("How are you felling right now?"), nl, !.

makeans(L) :-

recognize(L,8),

write ("Too many mind games."), nl, !.

makeans(L) :-

recognize(L,9),

write ("Earlier you mentioned your father."), nl, !.

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

32

makeans(L) :-

recognize(L,10), write ("Tell me more."), nl, !.

recognize(L, 1) :- contains([i, feel], L).

recognize(L, 2) :- contains([father], L) assert(father).

recognize(L, 3) :- contains([friendly], L)

recognize(L, 4) :- contains([hell], L).

recognize(L, 5) :- L= [yes]; L=[no].

recognize(L, 6) :- contains([high, performance], L).

recognize(L, 7) :- contains([sadness], L); contains([anger], L).

recognize(L, 8) :- contains([complex], L) ; contains([fixation], L).

recognize(L, 9) :- father.

recognize(_, 10).

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

33

Systems Based on Heuristic Search and Pattern Recognition (2)

The Chemical Synthesis System

domains

rxnlist = reactions*.

reactions = rxn(symbol, ls, integer, integer).

ls = symbol*.

chemicalList= chemicalForm*.

chemicalForm= chemical(symbol, rxnList, integer, integer).

Li= integer*.

predicates

rxn(symbol, ls, integer, integer).

rawmaterial(symbol, integer, integer).

chemical(symbol, rxnlist, integer, integer).

all_chemical(symbol, chemicalList).

best_chemical(symbol, chemicalForm).

one_chemical(symbol, chemicalForm).

append(rxnlist, rxnlist, rxnlist).

min(chemicalList, chemicalForm).

run(symbol).

clauses

rxn(a, [b1, c1], 12, 60).

rxn(b1, [d1, e1], 5, 45).

rxn(c1, [f1, g1], 3, 15).

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

34

rxn(a, [b2, c2], 10, 50).

rxn(b2, [d2, e2], 2, 20).

rxn(c2, [f2, g2], 6, 30).

rawmaterial(d1, 2, 0).

rawmaterial(e1, 0, 0).

rawmaterial(f1, 2, 0).

rawmaterial(g1, 0, 0).

rawmaterial(d2, 0, 0).

rawmaterial(e2, 1, 0).

rawmaterial(f2, 1, 0).

rawmaterial(g2, 0, 0).

chemical(Y, [], Cost, Time):- rawmaterial(Y, Cost, Time).

chemical(Y, L, Ct, T):-

 rxn(Y, [X1, X2], C, T1),

chemical(X1, L1, C1, T2),

chemical(X2, L2, C2, T3),

 append(L1, L2, Q),

Ct = C+C1+C2,

 T = T+T2+T3,

append([rxn(Y, [X1, X2], C, T1)], Q, L).

best_chemical(Y, M):- all_chemical(Y, X), min(X, M).

all_ chemical(Y, X):- findall(S, one_chemical(Y, S), X).

one_chemical(Y, chemical(Y, L, Ct, T)):- chemical(Y, L, Ct, T).

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

35

append([], L, L):-!.

append([H|T], L, [H|T1]):- append(T, L, T1).

min([chemical(Y, L, Ct, T)], chemical(Y, L, Ct, T)).

min([chemical(Y, L, Ct, Time)|T], chemical(Y, L, Ct, Time)):-

min(T, chemical(Y1, L1, C1, Time1)), Ct <= C1.

min([chemical(Y, L, Ct, Time)|T], chemical(Y, L2, Ct2, Time2)):-

 min(T, chemical(Y, L2, Ct2, Time2)), Ct2 <= Ct.

run(X):- write(“ chemical synthesis is:”), nl, chemical(X, L, Cost, Time),

 write(L, “\n with total cost =”, Cost, “ Time =”, Time), nl, fail.

run(X):- write(“\n Best chemical synthesis:”), nl, best_chemical(X, Y),

write(Y), nl.

Goal: run(a).

chemical synthesis:

[rxn(“a”, [“b1”, “c1”], 12, 60), rxn(“b1”, [“d1”, “e1”], 5, 45), rxn(“c1”,

[“f1”, “g1”], 3, 15)]

with total cost = 24 time = 120

[rxn(“a”, [“b2”, “c2”], 10, 50), rxn(“b2”, [“d2”, “e2”], 2, 20), rxn(“c2”,

[“f2”, “g2”], 6, 30)]

with total cost = 20 time = 100

best chemical synthesis :

chemical(“a”, [rxn(“a”, [“b2”, “c2”], 10, 50) rxn(“b2”, [“d2”, “e2”], 2,

20), rxn(“c2”, [“f2”, “g2”], 6, 30)], 20, 100

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

36

Search with Heuristic Embedded in Rules

Student Advisor System

/* Set of Facts */

given_now(logic design).

given_now(Mathematics).

given_now(prolog language).

given_now(computation theory).

given_now(data structure).

given_now(artificial intelligence).

given_now(expert systems).

given_now(computation theory).

given_now(computer architecture).

.

.

.

required(prolog).

required(logic design).

required(artificial intelligence).

required(expert systems).

required(machine learning).

required(data structure).

required(c++).

.

.

.

elective(computer graphics).

elective(object oriented programming).

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

37

elective(data security).

elective(web programming).

elective(operations researches).

.

.

.

waived(digital signal processing).

waived(image processing).

waived(information systems principles).

waived(software engineering).

waived(data hiding).

.

.

.

impreq(object oriented programming, c++).

impreq(prolog language, logic design).

impreq(artificial intelligence, prolog language).

impreq(expert systems, artificial intelligence).

impreq(computer architecture, logic design).

impreq(data structure, c++).

.

.

.

passed(logic design).

passed(prolog language).

passed(artificial intelligence).

passed(mathematics).

passed(data structure).

passed(c++).

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

38

passed(computation theory).

passed(computer organization).

.

.

.

pos_req_course(X) :-

 required(X),

 given_now(X),

 not(done_with(X)),

 have_preq_for(X).

pos_elec_course(X) :-

 elective(X),

 given_now(X),

 not(done_with(X)),

 have_preq_for(X).

done_with(X) :- waived(X).

done_with(X) :- passed(X).

all_done_with(L) :- findall(X, done_with(X), L).

have_preq_for(X) :-

 all_preq_for(X, Z),

 all_done_with(Q),

 subset(Z, Q).

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

39

all_preq_for(X, Z):-

 findall(Y, preq(X, Y), Z).

preq(X,Y):- impreq(X, Y).

preq(X, Y):- impreq(X, W), preq(W, Y).

HEURISTIC SEARCH METHODS Dr. Nada Hussain Ali

40

References:

1. George F. Luger, “Artificial Intelligence Structures and Strategies

for Complex Problem Solving”, Pearson Education Asia

(Singapore), Sixth edition.

2. Stuart J. Russell and Peter Norvig, "Artificial Intelligence A

Modern Approach", Second Edition, Prentice Hall.

3. Amit Konar, "Artificial Intelligence and Soft Computing",

Behavior and Cognitive Modeling of the Human Brian, CRC Press.

4. Daniel H. .Marcellus,” Expert Systems Programming in Turbo

Prolog”, prentice Hall (New Jersey).

