Ministry of Higher Education and Scientific Research - Iraq University of Technology Department of Computer Science ## MODULE DESCRIPTOR وصف المادة الدراسية | Module Information
معلومات المادة الدراسية | | | | | | | | |---|--------------------------|----------------------------|----------------------------------|------|---|-------------|-----------| | Module Title | HEURISTIC SEARCH METHODS | | | Modu | le Deliver | y | | | Module Type | Core | | | | Theory
Lecture
Lab
Tutorial
Practical | | | | Module Code | HESM225 | | | | | | | | ECTS Credits | 5 | | | | | | | | SWL (hr/sem) | 125 | | | | | Seminar | | | Module Level | | 2 | Semester of Delivery | | 4 | | | | Administering Department | | Artificial
Intelligence | College | Со | mpute | r Science D | epartment | | Module Leader | Dr. Nada Hus | sain ALi | e-mail | | | | | | Module Leader's Acad. Title | | Lecturer | Module Leader's
Qualification | | | Ph.D. | | | Module Tutor | None | | e-mail | No | ne | | | | Peer Reviewer Name | | | e-mail | | | | | | Review Committee Approval | | | Version N | umb | oer | | | | | Relation With Other Modules
العلاقة مع المواد الدراسية الأخرى | | | | |---|--|--|--|--| | Prerequisite module Searching Strategies Semester 3 | | | | | | Co-requisites module | Planning & Robotics | Semester | 8 | | | | |--|--|-------------------|--------------|--|--|--| | Module Aims, Learning Outcomes and Indicative Contents | | | | | | | | | هداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية | | | | | | | Module Aims
أهداف المادة الدر اسية | Understanding the problem state space and problem solving. Implementing and employing intelligent search methods to solve problems that are not solved with traditional methods. Using Heuristics in games. Understanding knowledge discovery, acquisition and Engineering approach. | | | | | | | | 1-Understand the concept of heuristic search and its applications in problem-solving. | | | | | | | | 2-Learn about different heuristic search algorithms, search, A* search, and their variants. | such as greedy b | est-first | | | | | | 3-Analyze the time and space complexities of these | algorithms. | | | | | | Module Learning
Outcomes | 4-Understand the role of heuristic functions and their consistency, etc.). | r properties (adm | nissibility, | | | | | مخرجات التعلم للمادة الدراسية | 5-Apply heuristic search techniques to solve various problems, such as path-finding, game-playing, and optimization problems. | | | | | | | | 6-Implement heuristic search algorithms in programming languages. 7-Evaluate the performance trade-offs of different heuristic search algorithms based on problem characteristics. | | | | | | | | | | | | | | | Indicative Contents
المحتويات الإرشادية | Problem state space, search space and problem solvi Heuristic search Fundamentals, characteristics and aims Heuristic function and Heuristic value Heuristic search methods Hill climbing search algorithm Best first search algorithm A-search algorithm A*- search algorithm Minmax search algorithm Minmax search algorithm Using Heuristic in games The 8-puzzle problem The sliding-tile puzzle problem The tic tac toe problem Searching with heuristic embedded in rules The student advisor system | ng approach | | | | | | | Systems based on heuristic search and pattern recognition The chemical synthesis system Principles of Meta-Heuristic Search | | | | | |---|---|--|--|--|--| | Learning and Teaching Strategies
استراتیجیات التعلم والتعلیم | | | | | | | Lectures (Theoretical and Practical) Examples, Homework and Programs Exams and using modern data show devices to display lectures subjects. References as books, internet subjects. | | | | | | | Student Workload (SWL)
الحمل الدراسي للطالب | | | | | |--|----|---|---|--| | Structured SWL (h/sem) 78 Structured SWL (h/w) 5 | | | | | | Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل | 47 | Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا | 3 | | | otal SWL (h/sem) 125 | | | | | | Module Evaluation | | | | | | | |-----------------------|---|------|----------|------------|--------------------|--| | تقييم المادة الدراسية | | | | | | | | | Time/Nu weight (Marks) Week Due Relevant Learning Outcome | | | | | | | | Quizzes | 2 | 10% (10) | 5, 10 | LO #1, 2, 3 and 6 | | | Formative | Assignments | 2 | 10% (10) | 2, 12 | LO # 3, 4, 5 and 7 | | | assessment | Projects / Lab. | 1 | 10% (10) | Continuous | | | | | Report | 1 | 10% (10) | 13 | LO # 4, 5 and 6 | | | Summative | Midterm Exam | 2 hr | 10% (10) | 7 | LO # 1-7 | | | assessment | Final Exam | 2hr | 50% (50) | 16 | All | | | Total assessn | Total assessment 100% (100 Marks) | | | | | | | | Delivery Plan (Weekly Syllabus)
المنهاج الاسبوعي النظري | | | | |---------|--|--|--|--| | | Material Covered | | | | | Week 1 | Problem state space, search space and problem solving approach | | | | | Week 2 | Heuristic search-Fundamentals, characteristics and aims | | | | | Week 3 | Heuristic function and Heuristic value | | | | | Week 4 | Hill climbing search algorithm | | | | | Week 5 | Best first search algorithm | | | | | Week 6 | A-search algorithm | | | | | Week 7 | A*- search algorithm | | | | | Week 8 | Minmax search algorithm | | | | | Week 9 | Alpha-Beta - search algorithm | | | | | Week 10 | Using Heuristic in games-The 8-puzzle problem | | | | | Week 11 | The sliding-tile puzzle problem | | | | | Week 12 | The tic tac toe problem | | | | | Week 13 | Searching with heuristic embedded in rules | | | | | Week 14 | Systems based on heuristic search and pattern recognition | | | | | Week 15 | Principles of Meta-Heuristic Search | | | | | | Delivery Plan (Weekly Lab. Syllabus)
المنهاج الاسبوعي للمختبر | | | | |--------|--|--|--|--| | | Material Covered | | | | | Week 1 | Hill climbing search algorithm | | | | | Week 2 | Best first search algorithm | | | | | Week 3 | A-search algorithm | | | | | Week 4 | A-search algorithm | | | | | Week 5 | A*- search algorithm | | | | | Week 6 | A*- search algorithm | |---------|---------------------------------| | Week 7 | Minmax search algorithm | | Week 8 | Alpha-Beta - search algorithm | | Week 9 | The sliding-tile puzzle problem | | Week 10 | The sliding-tile puzzle problem | | Week 11 | The tic tac toe problem | | Week 12 | The tic tac toe problem | | | Learning and Teaching Resources
مصادر التعلم والتدريس | | |----------------------|--|------------------------------| | | Text | Available in the
Library? | | Required Texts | George F. Luger, "Artificial Intelligence Structures and Strategies for Complex Problem Solving", Pearson Education Asia (Singapore), Sixth edition 2009 | Yes | | Recommended
Texts | Stuart J. Russell and Peter Norvig, "Artificial Intelligence, A Modern Approach", Fourth Edition, ,Pearson, 2022 | No | | Websites | https://cs.uotechnology.edu.iq/index.php/ar/branches/ai#3 | 1 | ## **APPENDIX:** | GRADING SCHEME
مخطط الدرجات | | | | | |--------------------------------|----------------------|-------------|-----------|---------------------------------------| | Group | Grade | التقدير | Marks (%) | Definition | | | A - Excellent | امتياز | 90 - 100 | Outstanding Performance | | | B - Very Good | جيد جدا | 80 - 89 | Above average with some errors | | Success Group
(50 - 100) | C - Good | جيد | 70 - 79 | Sound work with notable errors | | | D - Satisfactory | متوسط | 60 - 69 | Fair but with major shortcomings | | | E - Sufficient | مقبول | 50 - 59 | Work meets minimum criteria | | Fail Group | FX – Fail | مقبول بقرار | (45-49) | More work required but credit awarded | | (0-49) | F – Fail | راسب | (0-44) | Considerable amount of work required | | | | | | | | Note: | | | • | | NB Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.