
1

University of Technology
 الجامعة التكنولوجية

Computer Science Department

 كل الافرع /قسم علوم الحاسوب

Compiler Design
 تصميم المترجمات

 اعداد

 ا.د. عبير طارق مولود
 ا. علاء نوري مزهر

0202-0202

 cs.uotechnology.edu.iq

2

Compiler Design

References:
1. Principle of compiler design

Alfred V. Aho & Jeffrey D. Ullman
2. Basics of compiler Design

Torben Egidius Mogensen

3. Compilers : principles, techniques, and

tools Alfred V. Aho & Jeffrey D. Ullman

Compiler
Is a program (translator) that reads a program written in one language, (the

source language) and translates into an equivalent program in another

language (the target language). A translator, which transforms a high level

language such as C in to a particular computers machine or assembly

language, called Compiler.

Figure (1) compiler structure
The time at which the conversion of the source program to an object

program occurs is called (compile time) the object program is executed at (run

time).Figure (2) illustrate the compilation process Note that the program and

data are processed at different times, compile time and run time respectively.

3

 Data

Source Compiler Object Execution Results

Program Program

Compile time

Run time

 Figure (2) Compilation process

Compiler structure :
A compiler operates in phases, each of which transforms the source

program from one representation to another. A typical decomposition

of a compiler is shown in figure (3).

1- lexical analysis

The lexical analyzer is the first stage of a compiler. Its main task is to read the

input characters and produce as output a sequence of tokens that the parser

uses for syntax analysis.

2- syntax analysis (parsing)
The syntax analysis (or parsing) is the process of determining if a string of

tokens can be generated by grammar. Every programming language has rules

that prescribe the syntactic structure of well-formed programs. Syntax

Analyzer takes an out of lexical analyzer and produces a large tree

3- Semantic analysis
The semantic analysis phase checks the source program for semantics errors

and gathers type information for the subsequent code-generation phase. It uses

the hierarchical structure determined by the syntax-analysis phase to identify

the operators and operands of expressions and statements.

Semantic analyzer takes the output of syntax analyzer and produces another

tree.

4- Intermediate code generation
Generate an explicit intermediate representation of the source program. This

representation should have two important properties, it should be easy to

produce and easy to translate into the target program.

4

5- Code Optimization
Attempts to improve the intermediate code so that faster running machine code will

result.

6- code generation
Generates a target code consisting normally of machine code or an assemble code.

Memory locations are selected for each of the variables used by the program. Then

intermediate instructions are each translated in to a sequence of machine

instructions that perform the same task.

- Symbol table management :

Portion of the compiler keeps tracks of the name used by the program and records

essential information about each, such as type (integer, real, etc.). The data structure

used to record this information is called symbolic table.

A symbol table is a table with two fields. A name field and an information field.

This table is generally used to store information about various source language

constructs. The information is collected by the analysis phase of the compiler and

used by the synthesis phase to generate the target code.

We required several capabilities of the symbol table we need to be able to: 1-

Determine if a given name is in the table, the symbol table routines are concerned

with saving and retrieving tokens.
insert(s,t) : this function is to add a new name to the table

Lookup(s) : returns index of the entry for string s, or 0 if s is not found. 2- Access

the information associated with a given name, and add new information for a given

name.

3- Delete a name or group of names from the tables.

For example consider tokens begin , we can initialize the symbol-table using the

function: insert("begin",1)

-Error handler:
Is called when an error in the source program is detected. It must warn the

programmer by issuing a diagnostic, and adjust the information being passed from

phase to phase so that each phase can produced.

5

Source program

Figure (3) Phases of a Compiler

6

Types of errors
The syntax and semantic phases usually handle a large fraction of errors

detected by compiler.
1. Lexical error: The lexical phase can detect errors where the characters

remaining in the input do not form any token of the language . few errors are

discernible at the lexical level alone ,because a lexical analyzer has a very

localized view of the source program. Example : If the string fi is encountered

in a C program for the first time in context:
fi (a== f(x)….

A lexical analyzer cannot tell whether fi is a misspelling of the keyword if or

an undeclared function name. since fi is a valid identifier, the lexical analyzer

must return the token for an identifier and let some other phase of the compiler

handle any error.

2- syntax error: The syntax phase can detect Errors where the token stream

violates the structure rules (syntax) of the language.

3- semantic error: During semantic analysis the compiler tries to detect

constructs that have the right syntactic structure but no meaning to the

operation involved, e.g., if we try to add two identifiers, one of which is the

name of an array, and the other the name of a procedure.

4- runtime error.

7

Lexical Analyzer
The lexical analyzer is the first phase of compiler. The main task of lexical

Analyzer is to read the input characters and produce a sequence of tokens such

as names, keywords, punctuation marks etc.. for syntax analyzer. This

interaction, summarized in fig.6, is commonly implemented by making the

lexical analyzer be a subroutine of the parser. Up on receiving a "get next

token" command from the parser, the lexical analyzer reads input characters

until it can identify the next token.

Figure (4) Interaction of lexical analyzer with parser

Preliminary scanning :
Since the lexical analyzer is the part of compiler that reads the source text; it

may also perform certain secondary tasks at the user interface. One such task

is stripping out from the source program comments and white space in the

form of blank, tab, and new line characters. Another is correlating error

messages from the compiler with the source program. For example, the lexical

analyzer may keep track of the number of new line characters seen, so that a

line number can be associated with an error message.
Some times, lexical analyzers are divided into a cascade of two phases, the

first called "scanning" and the second "lexical analysis". The scanner is

responsible for doing simple tasks, while the lexical analyzer proper does the

more complex operations. For example, a FORTRAN compiler might use a

scanner to eliminate blanks from the input.

8

Syntax Analysis
In our compiler model, the parser obtains a string of tokens from the lexical

analyzer, and verifies that the string can be generated by the grammar for the

source program. We expect the parser to report any syntax errors in an

intelligible fashion. It should also recover from commonly occurring errors so

that it can continue processing the remainder of its input.

Figure (5) Position of parser in Compiler model

The methods commonly used in compilers are classified as being either Top-

down or bottom up. As indicated by their names, Top down parsers build parse

trees from the top (root) to the bottom (leaves) and work up to the root. In both

cases, the input to the parser is scanned from left to right, one symbol at time.
We assume the output of the parser is some representation of the parse tree for

the stream of tokens produced by the lexical analyzer. In practice there are a

number of tasks that might be conducted during parsing, such as collecting

information about various tokens into the symbol table, performing type

checking and other kinds of semantic analysis, and generating intermediate code.

9

Top down parser

In this section there are basic ideas behind top-down parsing and show how

constructs an efficient non- backtracking form of top-down parser called a predictive

parser.

Top down parsing can be viewed as attempt to find a left most derivation for an input

string. Equivalently, it can be viewed as an attempt to construct a parse tree for the

input starting from the root and creating the nodes of the parse tree in preorder.

The following grammar requires backtracking:

10

 now try the second alternative for A to obtain the tree:

- problems of grammar
1- Ambiguity:
A grammar that produces more than one parse tree for some sentence is said

to be ambiguous. An ambiguous grammar is one that produces more than one

leftmost or more than one right most derivation for the same sentence. For

certain types of parsers, it is desirable that the grammar be made

unambiguous, for if it is not, we cannot uniquely determine which parse tree

to select for a sentence.

Sometimes an ambiguous grammar can be rewritten to eliminate the

ambiguity. As an example ambiguous "else" grammar

Stmt Expr then Stmt

 | if Expr then Stmt else Stmt

 |other

According to this grammar, the compound conditional statement

If El then S1 else if E2 then S2 else S3 has the parse tree link below:

11

The grammar above is ambiguous since the

string If E1 then if E2 then S1 else S2

Has the two parse trees shown below

12

 2- Left Recursion
A grammar is left recursion if it has a nonterminal A, such that there is a

derivation A Aα For some string α. Top-down parsing methods cannot

handle left recursion grammars, so a transformation that eliminates left

recursion is needed.
In the following example, we show how that left recursion pair of production

 could be replaced by the non-left recursion productions:
A Aα|β

A Aα|β

A βA'

A' αA'| λ

Example: Consider the following grammar for arithmetic expressions.
E E+T |T

T T*F|F
F (E) | id

Eliminating the immediate left recursion (productions of the form A Aα

to the production for E and then for T, we obtain:

E

TE'

E' +T E'| λ

T FT'

T' *FT' | λ

F (E) | id

No matter how many A productions there are, we can eliminate immediate left

recursion from them by the following technique. First we group the A

production as
A Aα1| Aα2| …| Aαn| β1| β2| … βn

where no βi begins with an A. then, we replace the A -productions by
A β1A'| β2A'| …| βnA'

A α1A'| α2A'| …| αnA' | λ

This produce eliminates all immediate left recursion from A and A'

production. but it does not eliminate left recursion involving derivation of two

or more steps.

13

S Aa | b

A Ac | Sd | λ

The non-terminal S is left recursion because S

Aa

Sda, but is not

immediately left recursion.

3- Left Factoring
left factoring is a grammar transformation that is useful for producing a

grammar suitable for predictive parsing. The basic idea is that when it is not

clear which of two alternative productions to use to expand a nonterminal A,

we may be able to rewrite the A-productions to defer the decision until we

have seen enough of the input to make the right choice. For example, if we

have the two productions

Stmt if Expr then Stmt else Stmt |

if Expr then Stmt

on seeing the input token if, we cannot immediately tell which production to
choose to expand stmt. In general, if A α β1| α β2 are two A

productions, and the input begins with a non -empty string derived from α ,we

do not know whether to expand A to α β1 or to α β2. However, we may defer

the decision by expanding A to αA', then after seeing the input derived from

α, we expand A' to β1 or to β2. that is, left factored, the original production

become:

A αA'
A' β1| β2

14

FIRST and FOLLOW:

The construction of a predictive parser is aided by two functions associated

with a grammar G. These functions, FIRST and FOLLOW, allow us to fill

in the entries of a predictive parsing table for G, whenever possible.

Define the FIRST(α) to be the set of terminals that begin the strings

derived from α, and the FOLLOW(A) for nonterminal A, to be the set of terminals a

that can appear immediately to the right of A in some sentential form.

To compute FIRST(x) for all grammar symbols x, apply the following rules until no

more terminals or ε can be added to any first set.

1- If x is terminal, then FIRST(x) is {x}.

2- If X→ a ; is a production, then add a to FIRST(X) and

If X → ε ; is a production, then add ε to FIRST(X).

3- If X is nonterminal and X→Y1,Y2…Yi ; is a production, then add FIRST(Y1) to

FIRST(X).

4- a- for (i = 1; if Yi can derive epsilon ε; i++)

b- add First(Yi+1) to First(X)

If Y1 does not derive ε , then we add nothing more to FIRST(X), but if

Y1→ ε , then we add FIRST(Y2) and so on .

First function example

1- FIRST (terminal) = {terminal }

S → aSb │ba │ ε

15

FIRST (a) ={a}

FIRST (b) ={b}

2- FIRST(non terminal) = FIRST (first char)

FIRST (S)= {a,b, ε }

To compute FOLLOW(A) for all non terminals A, is the set of terminals that can

appear immediately to the right of A in some sentential form S → aAxB... To compute

Follow, apply these rules to all nonterminals in the grammar:

1- Place $ in FOLLOW(S) , where S is the start symbol and $ is the input right

end marker.

FOLLOW(START) = {$}

2- If there is a production X→ α Aβ , then everything in FIRST(β) except for ε

is placed in FOLLOW(A).

i.e. FOLLOW(A) = FIRST(β)

3- If there is a production X→ α A, or a production X→ α Aβ , where FIRST(β)

Contains ε (β → ε), then everything in FOLLOW(X) is in FOLLOW(A).

i.e. : FOLLOW(A)= FOLLOW(X)

Follow function examples:

Example 1:

S → aSb │X

X → cXb │b

X → bXZ

16

Z → n

 First Follow

S a , c , b $, b

X c , b b , n , $

Z n b , n , $

Example 2:

S → bXY

X → b | c

Y → b | ε

 First Follow

S b $

X b , c b , $

Y b , ε $

Example 3:

S → ABb │bc

A → ε │abAB

B → bc │cBS

 First Follow

S b , a , c $, b , c , a

A ε , a b , c

17

B b , c b , c , a

Example 4:

X → ABC │ nX

A → bA │ bb │ ε

B → bA │CA

C → ccC │CA │ cc

 First Follow

X n , b , c $

A b , ε b , c , $

B b , c c

C c b,$,c

H.W:

S → bSX | Y

X → XC | bb

Y → b | bY

C → ccC | CX | cc

Note: there is a left recursion problem here trying to solve this Problem and find

the first and follow for this grammar.

S → bSX | Y

X → bbX’ X’ → CX’| ε

Y → b | bY C → ccC | CX | cc

18

 First Follow

S b $, b

X b $, b , c

X’ c , ε $, b , c

Y b $, b

C c $, b , c

19

Predictive Parsing Method

In many cases, by carefully writing a grammar eliminating left recursion from it, and

left factoring the resulting grammar, we can obtain a grammar that can be parsed by a

non backtracking predictive parser.

We can build a predictive parser by maintaining a stack. The key problem during

predictive parser is that of determining the production to be applied for a nonterminal.

The nonrecursive parser looks up the production to be applied in a parsing table.

A table-driven predictive parser has an input buffer, a stack, a parsing table, and an

output stream. The input buffer contains the string to be parsed, followed by $, (a

symbol used as a right endmarker to indicate the end of the input string). The stack

contains a sequence of grammar symbols with $ on the bottom,(indicating the bottom

of the stack). Initially, the stack contains the start symbol of the grammar on

the top of $. The parsing table is a two-dimensional array M[A,a], where A is a

nonterminal, and a is a terminal or the symbol $.

20

The parser is controlled by a program that behaves as follows. The program considers

X, the symbol on top of the stack, and a, the current input symbol. These two symbols

determine the action of the parser. There are three possibilities.

If M[X,a]= error, the parser calls an error recovery routine.

21

Example:

E→ E+T │ T

T → T*F │ F

F → (E) │id

Parse the input id * id + id by using predictive parsing:

1- we must solve the left recursion and left factoring if it founded in the

grammar

E → TE'

E' → +TE' │ ε

T → FT'

T' → *FT' │ ε

F → (E) │ id

2- we must find the first and follow to the grammar:
 First Follow

E (, id $,)

T (, id + ,) , $

E’ + , ε $,)

T’ * , ε + , (, $

F (, id + , * , (, $

22

3-The parse table M for the grammar:

4-The moves made by predictive parser on input id+id*id

23

LL(1) grammars:

The previous algorithm can be applied to any grammar G to produce a parsing

table M. For some grammars, M may have some entries that are multiply

defined. If G is left recursive or ambiguous, then M will have at least one

multiply-defined entry.

Example:

FIRST(S) = { i, a} FOLLOW(S) = { $, e }

FIRST(S’) = { e, ε} FOLLOW(S’) = { $, e }

FIRST(E) = { b } FOLLOW(E) = { t }

So the parsing table for our grammar is:

24

The entry for M[S’,e] contains both S’→ eS and S’→ ε, since FOLLOW(S’)

={e, $}. The grammar is ambiguous and the ambiguity is manifested by a

choice in what production to use when an e (else) is seen. We can resolve the

ambiguity if we choose S’→ eS. Note that the choice S’→ ε would prevent e

from ever being put on the stack or removed from the input, and is therefore

surely wrong.

A grammar whose parsing table has no multiply-defined entries is said

to be LL(1). The first “L” in LL(1) indicates the reading direction (left-

to-right), the second “L” indicates the derivation order (left), and the “1”

indicates that there is a one-symbol or look ahead at each step to make

parsing action decisions.

25

Bottom – Up Parsing

Bottom up parsers start from the sequence of terminal symbols and work their

way back up to the start symbol by repeatedly replacing grammar rules' right

hand sides by the corresponding non-terminal. This is the reverse of the

derivation process, and is called "reduction".

Example: consider the grammar

The sentence abbcde can be reduced to S by the following steps:

Definition: a handle is a substring that

1- matches a right hand side of a production rule in the grammar and
2- Whose reduction to the nonterminal on the left hand side of that

grammar rule is a step along the reverse of a rightmost derivation.

There is a general style of bottom-up syntax analysis, known as shift

reduces parsing.

An easy to implement form of this parsing, called operator precedence

parsing.

26

A much more general method of shift reduce parsing called LR parsing , used

in a number of automatic parsing generators.

Shift reduces parsing attempts to construct a parse tree for an input string

beginning at the leaves (bottom) and working up towards the root (the top).

Shift Reduce Parsing Method

There are two problems that must be solved if we are to parse by handle

pruning. The first is to determine the handel, and the second is to determine

what production to choose in case there is more than one production with that

substring on the right side. A convenient way to implement a shift reduce

parser is to use stack to hold grammar symbols and an input buffer to hold the

string (W) to be parsed. Use $ to mark the bottom of the stack and also the

right end of the input. Initially the stack is empty and the string (W) is on the

input, as follows:

Stack Input

$ W $

The parser operates by shifting zero or more input symbol onto the stack until

a handle β is on top of the stack. The parser then reduces β to the left side of

the appropriate production. The parser repeat this cycle until it has detected an

error or until the stack contains the start symbol and the input is empty.

Stack Input

$ S $

27

After entering this configuration the parser halts and announces successful

completion of parsing.

At each step, the parser performs one of the following actions.

1- Shift one symbol from the input onto the parse stack
2- Reduce one handle on the top of the parse stack. The symbols from

the right hand side of a grammar rule are popped of the stack, and the

nonterminal symbol is pushed on the stack in their place.

3- Accept is the operation performed when the start symbol is alone on

the parse stack and the input is empty.

4- Error actions occur when no successful parse is possible.

Example 1: parse the input id +id *id for this grammar

E → E+E

E → E*E

E → (E)

E → id

28

Example 2: parse the input id +* id for the same grammar

Stack Input Action

$ id1 + * id2 $ Shift

$ id1 + * id2 $ Reduce by E → id

$ E+ * id2 $ Shift

$ E+* id2 $ Shift

$ E +* id $ Shift

$ E +*E $ Reduce by E→ id

$ E +*E $ Not Accept

H.W. : For this grammar

E → E+T | T

T → T*F | F

F → id | (E)

Parse the input id * id + id

29

1­ Operator ­ precedence parser:

The operator-precedence parser is a shift –reduce parser that can be

easily constructed by hand. It used for a small class of grammars which

is called operator grammar. These grammars have the property:

- That no production right side is ε
- And no production right side has two adjacent nonterminals.

Example: The following grammar for expressions:

E → EAE | (E) | –E |id

A → + | - | * | / | ^

Is not an operator grammar, because the right side EAE has two (in fact

three) consecutive nonterminals. However, if we substitute for A each of

its alternatives, we obtain the following operator grammar:

E → E+E | E-E | E*E | E/E | E^E| (E) | –E | id

In operator-precedence parser, we define three disjoint precedence

relations, <. , =, and .>, between certain pairs of terminals. These

precedence relations guide the selection of handlers. If a <. b, we say a

“yields precedence” to b; if a .> b , a “takes precedence over” b.

Now suppose we remove the nonterminals from the string and place the

correct relation, <. , = or .> between each pair of terminals and between

the endmost terminal and the $’s marking the ends of the string. For

example, suppose we initially have the right-sentential form id + id * id

and precedence relations are those given in below

1

30

Then the string with the precedence relations inserted is:

The handle can be found by the following process:

1- Scan the string from the left end until the first .> is encountered. In

our example, this occurs between the first id and +.

2- Then scan backwards (to the left) over any = until a<. is

encountered, we scan back to $

3- The handle contains everything to the left of the first .> and to the

right of the <. encountered in step (2).

So our first handler is the first id. We then reduce id to E. At this

point we have the sentential form E+id *id. After reducing the two

remaining id’s to E by the same steps, we obtain the right-sentential

form E+E*E. consider now the string $+*$ obtained by deleting the

nonterminals. Inserting the precedence relations, we get:

These precedence relations indicate that, in E+E*E, the handle is E*E

and then E+E.

Stack implementation of operator precedence parser:

Suppose we are given the expression id+id to parse we set up the

stack and input as:

2

31

Stack Input

$ <. id + id $

We shift id giving:

$ <. id .> + id $

The handle id is reduced to F

$ E <. + id $

$ <. E + <. id $

$ E + <.id .> $

$ <. E + E .> $

Now we are told to reduce the handle E+E:

$ E $

h.w.:

try input with the following relations

3

32

LR parser
This section presents an efficient bottom-up syntax analysis technique

that can be used to parse a large class of context-free grammars. These

technique is called LR parsing; the L is for left-right scanning of the input,

the R for constructing a rightmost derivation in reverse.
This method present three techniques for construct an LR parsing table for

grammar .
The first method, called simple LR (SLR), is easiest to implement. But the

least powerful.
The second method, called canonical LR, is the most powerful and will

work on a very large class of grammars and the most expensive.
The third method, called look ahead LR (LALR), is intermediate in power

and cost between the SLR and the canonical LR methods.

1.SLR Parser
This method of parsing is the weakest of three in terms of the number of

grammar for which it succeeds, but it is easiest to implement this parsing

method there are four basic steps:
1. Find first & follow.
2. Find set of I.
3. Find parsing table.
4. Check the sentence (parse the input).

The CLOSURE operation
If I is a set of items for a grammar G then the set of items CLOSURE(I)

is constructed from I by the rules:
1. Every item in I is in CLOSURE(I).

2. lf A α.Bβ is in CLOSURE(I) and B is a production, then add ץ

the item B .to I, if it is not already there ץ .

Example: consider the grammar:

33

The function closure can be computed bellow:
function CLOSURE(I);
begin

J=I;
repeat
for each item A α.Bβ in I and each production B

 in G such ץ

that B . ץ is not in I do
add B . ץ to J.

until no more items can be added to J;
return J
end

GO TO operation
The second useful function is GOTO(I, X) where I is a set of items and

X is a grammar symbol. GOTO(I, X) is defined to be the closure of the
set of all items A αX. β such that A αX. β is in I.

The Set of items Constructions:

procedure ITEMS(G');
begin

c = {closure({S̀ .S})};
repeat

for each set of items I in c and each grammar symbol x

such that GOTO(I, x) is not empty and is not in c do

add GOTO(I, x) to C
until no more sets of items can be added to C

end

34

Example: consider the grammar:

E E+T | T

T T*F | F
F (E) | id

1. Find first and follow

 First Follow

E (, id $,) , +

T (, id $,) , + ,*

F (, id $,) , +, *

2. Find set of I.

35

3. Find parsing table.

4. Check the sentence (parse the input).

36

Semantic Analysis

The semantic analysis phase checks the source program for

semantic errors and gathers type information for the subsequent

code-generation phase.
It uses the parse tree to identify the operators and operands of

expressions and statements.
An important component is type checking.

Here the compiler checks that each operator has operands that are

permitted by the source language specification.
Static semantic checks are performed at compile time

Type checking
Every variable is declared before used

Identifiers are used in appropriate contexts

Check subroutine call arguments
Dynamic semantic check are performed at run time, and the

compiler produces code that performs these checks
Array subscript values are within bounds

Arithmetic errors, e.g. division by zero
A variable is used but hasn't been initialized
When a check fails at run time, an exception is raised

Type checking
A type checker verifies that the type of a construct matches that expected

by its context. For example, the –in arithmetic operator mod in pascal

requires integer operands, so a type checker must verify that the

operands of mod have type integer.

37

Intermediate Code Generation

Translate from abstract-syntax trees to intermediate codes.

Generating a low-level intermediate representation with two properties:

o It should be easy to produce

o It should be easy to translate into the target machine

One of the popular intermediate code is three-address code. A three-

address code:

 Each statement contains at most 3 operands; in addition to “: =”, i.e.,

assignment, at most one operator.

An” easy” and “universal” format that can be translated into most

assembly languages.

some of the basic operations which in the source program, to change in the

Assembly language:

operations H.L.L Assembly language

Math. OP + , - , * , / Add, sub, mult, div

Boolean. OP &, | , ~ And, or, not

Assignment = mov

Jump goto JP, JN, JC

conditional If, then CMP

Loop instruction For, do, repeat These most have and I.C.G before

 until, while do change it to assembly language.

38

The operation which change H.L.L to assembly language, is called the

intermediate code generation and there is the division operation come with it,

which mean every statement have a single operation.

Ex (1):

X = A + B * C / D – Y * N

T1 T3
T2

T4

T5
T1 = B * C
T2 = T1 / D

T3 = Y * N

T4 = A + T2

T5 = T4 - T3

Ex (2):

Y = cos (A * B) + C / N - Y * P

T1 T4 T3

T2

T5

T6

T1 = A * B

T2 = cos T1

T3 = Y * P

T4 = C / N

T5 = T2 + T4

T6 = T5 – T3

39

Mathematical operation

There are two kinds of operation, which are deals with

mathematical operation, such as the parsing for these operations:

1. Triple form

Ex: X = A + B * C / (- N)

 OP Arg1 Arg2

(0) * B C

(1) - N __

(2) / (0) (1)

(3) + A (2)

 = X (3)

Ex: Y = A + C * X / B [i]

 OP Arg1 Arg2

(0) * C X

(1) =[] B i

(2) / (0) (1)

(3) + A (2)

 = Y (3)

Ex: X[i] = N * C / Y[i]

 OP Arg1 Arg2

(0) * N C

(1) =[] Y i

(2) / (0) (1)

(3) []= X i

 = (3) (2)

Ex: X = A + B * (c / d) - y

 OP Arg1 Arg2

(0) / c d

(1) * B (0)

(2) + A (1)

(3) - (2) y

 = X (3)

40

Ex: A = C * X [i,j]

 OP Arg1 Arg2

(0) =[] X P

(1) * C (0)

 = A (1)

2. Quadruple form

Ex: X = A * C / N + P

OP Arg1 Arg2 Result

* A C t1

/ t1 N t2

+ t2 P t3

= t3 X

Ex: A = N[i] * C / N

OP Arg1 Arg2 Result

=[] N i t1

* t1 C t2

/ t2 N t3

= t3 A

Ex: A = C * y / X[i,j]

OP Arg1 Arg2 Result

* C y t1

=[] X P t2

/ t1 t2 t3

= t3 A

41

Ex: X = A + B * (c / d) - y

OP Arg1 Arg2 Result

/ c d t1

* B t1 t2

+ A t2 t3

- t3 y t4

= t4 X

Ex: X[i] = a * c + y[i] – n[j] / V

OP Arg1 Arg2 Result

* a c t1

=[] n j t2

/ t2 V t3

=[] y i t4

+ t1 t4 t5

- t5 t3 t6

[]= X i t7

= t6 t7

42

Code Optimization
Compilers should produce target code that is as good as can be

written by hand. The code produced by straightforward compiling

algorithms can often be made to run faster or take less space, or both. This

improvement is achieved by program transformations that are traditionally

called Optimizations.

Function- Preserving Transformations
There are a number of ways in which a compiler can improve a

program without changing the function it computes. Common sub

expression elimination, copy propagation, dead- code elimination, and

constant floding are common examples of such function- preserving

transformations.

1. Common sub expressions

Ex1: X = A + C * N – M
Y = B + C * N * e

Sol: Q = C * N
X = A + Q – M
Y = B + Q * e

Ex2:

Before optimize after optimize

t6 = 4 * i t6 = 4 * i

X = a [t6] X = a [t6]

t7 = 4 * i t8 = 4 * j

t8 = 4 * j t9 = a [t8]

t9 = a [t8] a [t6] = t9

a [t7] = t9 a[t8] = X

t10 = 4 * j

a[t10] = X

Note: The value of the variable which are optimize will not be change.

43

2. Copy Propagation

Ex:

When the common sub expression in c = d + e is eliminated in

previous section, the algorithm uses a new variable t to hold the value of d

+ e. Since control may reach c = d + e either after the assignment to a or

after the assignment to b, it would be incorrect to replace c = d + e by either

c=a or by c=b

3. Dead- Code Elimination
A variable is live at a point in a program if its value can be used

subsequently; otherwise, it is dead at that point. A related idea is dead or

useless code, statements that compute values that never get used.

Ex1: X=3
If X > 4 Then
.
.
end

*This condition will not do, so we must use the optimization.

Ex2: A= false
If A Then
Begin
.
.
end

*This condition also will not do

44

4. Loop Optimization
The running time of a program may be improved if we decrease the

number of instructions in an inner loop, even if we increase the amount of

code outside the loop. Three techniques are important for loop optimization:

Code Motion, which moves code outside a loop; Induction Variable

elimination; and, reduction in strength.

Code Motion
An important modification that decreases the amount of code in a

loop is code motion. This transformation takes an expression that yields the

same result independent of the number of times a loop is executed and

places the expression before the loop.

Ex1: While (I <= limit-2)

Sol: t = limit-2
While (I <= t)

Ex2: While X<A + C*y do

Begin
.
.
end

Sol: P = C * y

While X<A + P do
Begin
.
.
end

Induction Variable

Ex: X = 2 * y + 2 * h + 4
Sol: X = 2 * (y + h) +4

Note: use the algebra method to optimize the mathematical expression.

Reduction in strength
Reduction in strength, which replaces an expensive operation by a

cheaper one, such as a multiplication by an addition.

Ex: t4 = 4*j - 4

45

Code Generation

The final phase in compiler is the code generator. It takes as input

an intermediate representation of the source program and produces as

output an equivalent target program, as indicated in Fig

Figure (6) Position of code generator

Code generation takes a linear sequence of 3-address intermediate code

instructions, and translates each instruction into one or more

instructions. The big issues in code generation are
Instruction selection
Register allocation and assignment

Instruction selection: for each type of three-address statement, we can

design a code selection that outlines the target code to be generated for

that construct.

Register allocation and assignment
The efficient utilization of registers involving operands is

particularly important in generating good code. The use of registers is

often subdivided into two sub problems:
Register allocation: selecting the set of variables that will reside in

registers at each point in the program

 Resister assignment: selecting specific register that a variable reside

in, the goal of these operations is generally to minimize the total number of

memory accesses required by the program.

