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Compiler Design 
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3. Compilers : principles, techniques, and 

tools Alfred V. Aho & Jeffrey D. Ullman 
 

Compiler  
Is a program (translator) that reads a program written in one language, (the 

source language) and translates into an equivalent program in another 

language (the target language). A translator, which transforms a high level 

language such as C in to a particular computers machine or assembly 

language, called Compiler. 

  
 
 
 
 
 
 
 
 
 

 

Figure (1) compiler structure  
The time at which the conversion of the source program to an object 

program occurs is called (compile time) the object program is executed at (run 

time).Figure (2) illustrate the compilation process Note that the program and 

data are processed at different times, compile time and run time respectively. 
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  Figure (2) Compilation process     
 

Compiler structure :  
A compiler operates in phases, each of which transforms the source 

program from one representation to another. A typical decomposition 

of a compiler is shown in figure (3). 

 

1- lexical analysis 

The lexical analyzer is the first stage of a compiler. Its main task is to read the 

input characters and produce as output a sequence of tokens that the parser 

uses for syntax analysis. 

 

2- syntax analysis (parsing)  
The syntax analysis (or parsing) is the process of determining if a string of 

tokens can be generated by grammar. Every programming language has rules 

that prescribe the syntactic structure of well-formed programs. Syntax 

Analyzer takes an out of lexical analyzer and produces a large tree 
 

3- Semantic analysis  
The semantic analysis phase checks the source program for semantics errors 

and gathers type information for the subsequent code-generation phase. It uses 

the hierarchical structure determined by the syntax-analysis phase to identify 

the operators and operands of expressions and statements. 

Semantic analyzer takes the output of syntax analyzer and produces another 

tree. 
 

4- Intermediate code generation  
Generate an explicit intermediate representation of the source program. This 

representation should have two important properties, it should be easy to 

produce and easy to translate into the target program. 
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5- Code Optimization  
Attempts to improve the intermediate code so that faster running machine code will 

result. 
 

6- code generation  
Generates a target code consisting normally of machine code or an assemble code. 

Memory locations are selected for each of the variables used by the program. Then 

intermediate instructions are each translated in to a sequence of machine 

instructions that perform the same task. 

 

- Symbol table management : 
 

Portion of the compiler keeps tracks of the name used by the program and records 

essential information about each, such as type ( integer, real, etc.). The data structure 

used to record this information is called symbolic table. 

 

A symbol table is a table with two fields. A name field and an information field. 

This table is generally used to store information about various source language 

constructs. The information is collected by the analysis phase of the compiler and 

used by the synthesis phase to generate the target code. 

We required several capabilities of the symbol table we need to be able to: 1- 

Determine if a given name is in the table, the symbol table routines are concerned 

with saving and retrieving tokens.  
insert(s,t) : this function is to add a new name to the table 

Lookup(s) : returns index of the entry for string s, or 0 if s is not found. 2- Access 

the information associated with a given name, and add new information for a given 

name. 

3- Delete a name or group of names from the tables. 

For example consider tokens begin , we can initialize the symbol-table using the 

function: insert("begin",1) 

 

-Error handler:  
Is called when an error in the source program is detected. It must warn the 

programmer by issuing a diagnostic, and adjust the information being passed from 

phase to phase so that each phase can produced. 
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Source program  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (3) Phases of a Compiler 
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Types of errors  
The syntax and semantic phases usually handle a large fraction of errors 

detected by compiler.  
1. Lexical error: The lexical phase can detect errors where the characters 

remaining in the input do not form any token of the language . few errors are 

discernible at the lexical level alone ,because a lexical analyzer has a very 

localized view of the source program. Example : If the string fi is encountered 

in a C program for the first time in context:  
fi ( a== f(x)…. 

A lexical analyzer cannot tell whether fi is a misspelling of the keyword if or 

an undeclared function name. since fi is a valid identifier, the lexical analyzer 

must return the token for an identifier and let some other phase of the compiler 

handle any error. 
 

2- syntax error: The syntax phase can detect Errors where the token stream 

violates the structure rules (syntax) of the language. 
 

3- semantic error: During semantic analysis the compiler tries to detect 

constructs that have the right syntactic structure but no meaning to the 

operation involved, e.g., if we try to add two identifiers, one of which is the 

name of an array, and the other the name of a procedure. 
 

4- runtime error. 
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Lexical Analyzer  
The lexical analyzer is the first phase of compiler. The main task of lexical 

Analyzer is to read the input characters and produce a sequence of tokens such 

as names, keywords, punctuation marks etc.. for syntax analyzer. This 

interaction, summarized in fig.6, is commonly implemented by making the 

lexical analyzer be a subroutine of the parser. Up on receiving a "get next 

token" command from the parser, the lexical analyzer reads input characters 

until it can identify the next token.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure (4) Interaction of lexical analyzer with parser 
 

Preliminary scanning :  
Since the lexical analyzer is the part of compiler that reads the source text; it 

may also perform certain secondary tasks at the user interface. One such task 

is stripping out from the source program comments and white space in the 

form of blank, tab, and new line characters. Another is correlating error 

messages from the compiler with the source program. For example, the lexical 

analyzer may keep track of the number of new line characters seen, so that a 

line number can be associated with an error message.  
Some times, lexical analyzers are divided into a cascade of two phases, the 

first called "scanning" and the second "lexical analysis". The scanner is 

responsible for doing simple tasks, while the lexical analyzer proper does the 

more complex operations. For example, a FORTRAN compiler might use a 

scanner to eliminate blanks from the input.
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Syntax Analysis  
In our compiler model, the parser obtains a string of tokens from the lexical 

analyzer, and verifies that the string can be generated by the grammar for the 

source program. We expect the parser to report any syntax errors in an 

intelligible fashion. It should also recover from commonly occurring errors so 

that it can continue processing the remainder of its input.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (5) Position of parser in Compiler model 

 

The methods commonly used in compilers are classified as being either Top-

down or bottom up. As indicated by their names, Top down parsers build parse 

trees from the top (root) to the bottom (leaves) and work up to the root. In both 

cases, the input to the parser is scanned from left to right, one symbol at time.  
We assume the output of the parser is some representation of the parse tree for 

the stream of tokens produced by the lexical analyzer. In practice there are a 

number of tasks that might be conducted during parsing, such as collecting 

information about various tokens into the symbol table, performing type 

checking and other kinds of semantic analysis, and generating intermediate code. 
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Top down parser 
 

In this section there are basic ideas behind top-down parsing and show how 

constructs an efficient non- backtracking form of top-down parser called a predictive 

parser. 

 

Top down parsing can be viewed as attempt to find a left most derivation for an input 

string. Equivalently, it can be viewed as an attempt to construct a parse tree for the 

input starting from the root and creating the nodes of the parse tree in preorder. 

 

The following grammar requires backtracking:  
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 now try the second alternative for A to obtain the tree:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

- problems of grammar 
1- Ambiguity:   
A grammar that produces more than one parse tree for some sentence is said 

to be ambiguous. An ambiguous grammar is one that produces more than one 

leftmost or more than one right most derivation for the same sentence. For 

certain types of parsers, it is desirable that the grammar be made 

unambiguous, for if it is not, we cannot uniquely determine which parse tree 

to select for a sentence. 
 

Sometimes an ambiguous grammar can be rewritten to eliminate the 

ambiguity. As an example ambiguous "else" grammar 
 

Stmt  Expr then Stmt 
 

  | if Expr then Stmt else Stmt 

  |other  
 

According to this grammar, the compound conditional statement 

If El then S1 else if E2 then S2 else S3 has the parse tree link below: 
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The grammar above is ambiguous since the 

string If E1 then if E2 then S1 else S2 

Has the two parse trees shown below
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   2- Left Recursion  
A grammar is left recursion if it has a nonterminal A, such that there is a 

derivation A Aα For some string α. Top-down parsing methods cannot 

handle left recursion grammars, so a transformation that eliminates left 

recursion is needed. 
In the following example, we show how that left recursion pair of production 

    could be replaced by the non-left recursion productions:  
A Aα|β  

A Aα|β 

A βA' 

A' αA'| λ 
 

Example: Consider the following grammar for arithmetic expressions.  
E  E+T |T 

T  T*F|F  
F  (E) | id 

 

Eliminating the immediate left recursion (productions of the form A  Aα 
 

to the production for E and then for T, we obtain:   

E 
 

TE' 
  

   

E'  +T E'| λ   

   

T  FT'   
   

T'  *FT' | λ   
   

F  (E) | id   
    

 

No matter how many A productions there are, we can eliminate immediate left 

recursion from them by the following technique. First we group the A 

production as  
A  Aα1| Aα2| …| Aαn| β1| β2| … βn 

 
 
 

where no βi begins with an A. then, we replace the A -productions by  
A β1A'| β2A'| …| βnA' 

A α1A'| α2A'| …| αnA' | λ 
 

This produce eliminates all immediate left recursion from A and A' 

production. but it does not eliminate left recursion involving derivation of two 

or more steps. 
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S  Aa | b     
     

A  Ac | Sd | λ     
     

The non-terminal S is left recursion because S 
 

Aa 
 

Sda, but is not   

immediately left recursion.      
 

 

3- Left Factoring  
left factoring is a grammar transformation that is useful for producing a 

grammar suitable for predictive parsing. The basic idea is that when it is not 

clear which of two alternative productions to use to expand a nonterminal A, 

we may be able to rewrite the A-productions to defer the decision until we 

have seen enough of the input to make the right choice. For example, if we 

have the two productions 
 

Stmt  if Expr then Stmt else Stmt | 

if Expr then Stmt 
 

on seeing the input token if, we cannot immediately tell which production to  
choose to expand stmt. In general, if A  α β1| α β2 are two A 

productions, and the input begins with a non -empty string derived from α ,we 

do not know whether to expand A to α β1 or to α β2. However, we may defer 

the decision by expanding A to αA', then after seeing the input derived from 

α, we expand A' to β1 or to β2. that is, left factored, the original production 

become: 
 

A  αA'  
A' β1| β2 
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FIRST and FOLLOW: 

 

The construction of a predictive parser is aided by two functions associated 

with a grammar G. These functions, FIRST and FOLLOW, allow us to fill 

in the entries of a predictive parsing table for G, whenever possible. 

 

Define the FIRST(α) to be the set of terminals that begin the strings 
 

derived from α, and the FOLLOW(A) for nonterminal A, to be the set of terminals a 

that can appear immediately to the right of A in some sentential form. 

 
To compute FIRST(x) for all grammar symbols x, apply the following rules until no 

more terminals or ε can be added to any first set. 

 

1- If x is terminal, then FIRST(x) is {x}. 

 

2- If X→ a ; is a production, then add a to FIRST(X) and 

 

If X → ε ; is a production, then add ε to FIRST(X). 

 

3- If X is nonterminal and X→Y1,Y2…Yi ; is a production, then add FIRST(Y1) to 

FIRST(X). 
 

4- a- for (i = 1; if Yi can derive epsilon ε; i++) 

b- add First(Yi+1) to First(X)  

If Y1 does not derive ε , then we add nothing more to FIRST(X), but if 

Y1→ ε , then we add FIRST(Y2) and so on . 

 

First function example 

 

1- FIRST (terminal) = {terminal } 

 

S →  aSb │ba │  ε 
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FIRST (a) ={a} 

 

FIRST (b) ={b} 

 

2- FIRST(non terminal) = FIRST (first char) 

 

FIRST (S)= {a,b, ε } 

 

To compute FOLLOW(A) for all non terminals A, is the set of terminals that can 

appear immediately to the right of A in some sentential form S → aAxB... To compute 

Follow, apply these rules to all nonterminals in the grammar: 

 

1- Place $ in FOLLOW(S) , where S is the start symbol and $ is the input right 

end marker. 

 

FOLLOW(START) = {$} 

 

2- If there is a production X→ α Aβ , then everything in FIRST(β) except for  ε 

 

is placed in FOLLOW(A). 

 

i.e. FOLLOW(A) = FIRST(β) 

 

3- If there is a production X→ α A, or a production X→ α Aβ , where FIRST(β) 

 

Contains ε (β → ε ), then everything in FOLLOW(X) is in FOLLOW(A). 

 

i.e. : FOLLOW(A)= FOLLOW(X) 

 

Follow function examples: 

 

Example 1: 

 

S → aSb │X 

 

X → cXb │b 

 

X → bXZ 
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Z → n 

 

 First   Follow 

S a , c , b $ , b 

X c , b b , n , $ 

Z n b , n , $ 
 

Example 2: 

 

S → bXY 

 

X → b | c 

 

Y → b | ε 

 

 First    Follow  

S b $   

X b , c   b , $ 

Y b , ε $   

Example 3:      

S → ABb │bc      

A → ε │abAB      

B → bc │cBS      

 First   Follow  

S b , a , c $ , b , c , a 

A ε , a   b , c 
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B b , c  b , c , a 

Example 4:    

X → ABC │ nX    

A → bA │ bb │ ε    

B → bA │CA    

C → ccC │CA │ cc    

 First   Follow  

X n , b , c $  

A b , ε b , c , $ 

B b , c  c 

C c  b,$,c 

H.W:    

S → bSX | Y    

X → XC | bb    

Y → b | bY    

C → ccC | CX | cc    

Note: there is a left recursion problem here trying to solve this Problem and find 

the first and follow for this grammar. 

S → bSX | Y    

X → bbX’ X’ → CX’| ε 

Y → b | bY C → ccC | CX | cc 
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 First   Follow  

S b  $ , b 

X b  $ , b , c 

X’ c , ε  $ , b , c 

Y b  $ , b 

C c  $ , b , c 
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Predictive Parsing Method 

 

In many cases, by carefully writing a grammar eliminating left recursion from it, and 

left factoring the resulting grammar, we can obtain a grammar that can be parsed by a 

non backtracking predictive parser. 

 

We can build a predictive parser by maintaining a stack. The key problem during 

predictive parser is that of determining the production to be applied for a nonterminal. 

The nonrecursive parser looks up the production to be applied in a parsing table. 

 

A table-driven predictive parser has an input buffer, a stack, a parsing table, and an 

output stream. The input buffer contains the string to be parsed, followed by $, (a 

symbol used as a right endmarker to indicate the end of the input string). The stack 

contains a sequence of grammar symbols with $ on the bottom,( indicating the bottom 

of the stack). Initially, the stack contains the start symbol of the grammar on 

 

the top of $. The parsing table is a two-dimensional array M[A,a], where A is a 

nonterminal, and a is a terminal or the symbol $. 
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The parser is controlled by a program that behaves as follows. The program considers 

X, the symbol on top of the stack, and a, the current input symbol. These two symbols 

determine the action of the parser. There are three possibilities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If M[X,a]= error, the parser calls an error recovery routine. 
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Example: 

 

E→ E+T │ T 

 

T → T*F │ F 

 

F → (E) │id 

 

Parse the input id * id + id by using predictive parsing: 

 

1- we must solve the left recursion and left factoring if it founded in the 

grammar 

 

E → TE' 

 

E' → +TE' │ ε 

 

T → FT' 

 

T' → *FT' │ ε 

 

F → (E) │ id 

 

2- we must find the first and follow to the grammar: 
 First    Follow  

E ( , id  $ , )  

T ( , id  + , ) , $ 

E’ + ,  ε $ , )  

T’ * , ε  + , ( , $ 

F ( , id  + , * , ( , $  
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3-The parse table M for the grammar:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4-The moves made by predictive parser on input id+id*id  
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LL(1) grammars: 
 

The previous algorithm can be applied to any grammar G to produce a parsing 
 

table M. For some grammars, M may have some entries that are multiply 
 

defined. If G is left recursive or ambiguous, then M will have at least one 
 

multiply-defined entry. 
 

Example:  
 
 
 
 
 
 
 

FIRST(S) = { i, a} FOLLOW(S) = { $, e } 
 

FIRST(S’) = { e, ε} FOLLOW(S’) = { $, e } 
 

FIRST(E) = { b } FOLLOW(E) = { t } 
 

So the parsing table for our grammar is: 
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The entry for M[S’,e] contains both S’→ eS and S’→ ε, since FOLLOW(S’) 

={e, $}. The grammar is ambiguous and the ambiguity is manifested by a 

choice in what production to use when an e (else) is seen. We can resolve the 

ambiguity if we choose S’→ eS. Note that the choice S’→ ε would prevent e 

from ever being put on the stack or removed from the input, and is therefore 

surely wrong. 

 
 
 

A grammar whose parsing table has no multiply-defined entries is said 

to be LL(1). The first “L” in LL(1) indicates the reading direction (left-

to-right), the second “L” indicates the derivation order (left), and the “1” 

indicates that there is a one-symbol or look ahead at each step to make 

parsing action decisions. 
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Bottom – Up Parsing 
 

Bottom up parsers start from the sequence of terminal symbols and work their 

way back up to the start symbol by repeatedly replacing grammar rules' right 

hand sides by the corresponding non-terminal. This is the reverse of the 

derivation process, and is called "reduction". 

 

Example: consider the grammar  
 
 
 
 
 
 
 
 

 

The sentence abbcde can be reduced to S by the following steps:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Definition: a handle is a substring that 
 

1- matches a right hand side of a production rule in the grammar and  
2- Whose reduction to the nonterminal on the left hand side of that  

grammar rule is a step along the reverse of a rightmost derivation. 
 

There is a general style of bottom-up syntax analysis, known as shift 
 

reduces parsing. 

 

An easy to implement form of this parsing, called operator precedence 

parsing. 
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A much more general method of shift reduce parsing called LR parsing , used 

in a number of automatic parsing generators. 

 
Shift reduces parsing attempts to construct a parse tree for an input string 

beginning at the leaves (bottom) and working up towards the root (the top). 

 

Shift Reduce Parsing Method 

 

There are two problems that must be solved if we are to parse by handle 

pruning. The first is to determine the handel, and the second is to determine 

what production to choose in case there is more than one production with that 

substring on the right side. A convenient way to implement a shift reduce 

parser is to use stack to hold grammar symbols and an input buffer to hold the 

string (W) to be parsed. Use $ to mark the bottom of the stack and also the 

right end of the input. Initially the stack is empty and the string (W) is on the 

input, as follows: 

 

Stack Input 

 

$ W $ 

 

The parser operates by shifting zero or more input symbol onto the stack until 

a handle β is on top of the stack. The parser then reduces β to the left side of 

the appropriate production. The parser repeat this cycle until it has detected an 

error or until the stack contains the start symbol and the input is empty. 

 

Stack Input 

 

$ S $ 



27 
 

 

After entering this configuration the parser halts and announces successful 

completion of parsing. 

 

At each step, the parser performs one of the following actions. 
 

1- Shift one symbol from the input onto the parse stack  
2- Reduce one handle on the top of the parse stack. The symbols from 

the right hand side of a grammar rule are popped of the stack, and the 

nonterminal symbol is pushed on the stack in their place. 

3- Accept is the operation performed when the start symbol is alone on 

the parse stack and the input is empty. 

4- Error actions occur when no successful parse is possible. 
 

Example 1: parse the input id +id *id for this grammar 

 

E → E+E 

 

E → E*E 

 

E → (E) 

 

E → id  
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Example 2: parse the input id +* id for the same grammar 
 
 
 
 
 

Stack Input Action 
   

$ id1 + * id2 $ Shift 
   

$ id1 + * id2 $ Reduce by E → id 

   

$ E+ * id2 $ Shift 
   

$ E+* id2 $ Shift 
   

$ E +* id $ Shift 
   

$ E +*E $ Reduce by E→ id 

   

$ E +*E $ Not Accept 

   
 
 
 

H.W. :  For this grammar 

 

E → E+T | T 

 

T → T*F | F 

 

F → id | (E) 

 

Parse the input id * id + id 
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1­ Operator ­ precedence parser:  

The operator-precedence parser is a shift –reduce parser that can be 

easily constructed by hand. It used for a small class of grammars which 

is called operator grammar. These grammars have the property: 
 

- That no production right side is ε  
- And no production right side has two adjacent nonterminals. 

 

Example: The following grammar for expressions: 
 

E → EAE | (E) | –E |id 
 

A → + | - | * | / | ^ 
 

Is not an operator grammar, because the right side EAE has two (in fact 

three) consecutive nonterminals. However, if we substitute for A each of 

its alternatives, we obtain the following operator grammar: 
 

E → E+E | E-E | E*E | E/E | E^E| (E) | –E | id 
 

In operator-precedence parser, we define three disjoint precedence 

relations, <. , =, and .>, between certain pairs of terminals. These 

precedence relations guide the selection of handlers. If a <. b, we say a 

“yields precedence” to b; if a .> b , a “takes precedence over” b. 
 

Now suppose we remove the nonterminals from the string and place the 

correct relation, <. , = or .> between each pair of terminals and between 

the endmost terminal and the $’s marking the ends of the string. For 

example, suppose we initially have the right-sentential form id + id * id 

and precedence relations are those given in below 
 
 
 
 
 
 
 

 
1 
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Then the string with the precedence relations inserted is:  
 
 
 

 

The handle can be found by the following process: 
 

1- Scan the string from the left end until the first .> is encountered. In 

our example, this occurs between the first id and +. 

2- Then scan backwards (to the left) over any = until a<. is 

encountered, we scan back to $ 

3- The handle contains everything to the left of the first .> and to the 

right of the <. encountered in step (2). 
 

So our first handler is the first id. We then reduce id to E. At this 

point we have the sentential form E+id *id. After reducing the two 

remaining id’s to E by the same steps, we obtain the right-sentential 

form E+E*E. consider now the string $+*$ obtained by deleting the 

nonterminals. Inserting the precedence relations, we get: 
 
 
 

 

These precedence relations indicate that, in E+E*E, the handle is E*E 
 

and then E+E. 
 

Stack implementation of operator precedence parser: 
 

Suppose we are given the expression id+id to parse we set up the 

stack and input as: 

 
2 
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Stack  Input  

$ <. id + id $ 

We shift id giving:   

$ <. id .> + id $ 

The handle id is reduced to F 

$ E <. + id $ 

$ <. E + <. id $ 

$  E + <.id .> $ 

$ <. E + E .> $ 
 

Now we are told to reduce the handle E+E: 
 

$ E $ 
 

h.w.: 
 

try input  with the following relations  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3 



32 
 

LR parser  
This section presents an efficient bottom-up syntax analysis technique 

that can be used to parse a large class of context-free grammars. These 

technique is called LR parsing; the L is for left-right scanning of the input, 

the R for constructing a rightmost derivation in reverse.  
This method present three techniques for construct an LR parsing table for 

grammar .  
The first method, called simple LR (SLR), is easiest to implement. But the 

least powerful.  
The second method, called canonical LR, is the most powerful and will 

work on a very large class of grammars and the most expensive.  
The third method, called look ahead LR (LALR), is intermediate in power 

and cost between the SLR and the canonical LR methods. 
 

1.SLR Parser  
This method of parsing is the weakest of three in terms of the number of 

grammar for which it succeeds, but it is easiest to implement this parsing 

method there are four basic steps:  
1. Find first & follow.  
2. Find set of I.  
3. Find parsing table.  
4. Check the sentence (parse the input). 

 

The CLOSURE operation  
If I is a set of items for a grammar G then the set of items CLOSURE(I)  

is constructed from I by the rules:  
1. Every item in I is in CLOSURE(I).  

2. lf A  α.Bβ is in CLOSURE(I) and B  is a production, then add ץ 

the item B  .to I, if it is not already there ץ . 
 

Example: consider the grammar:  
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The function closure can be computed bellow:  
function CLOSURE(I);  
begin  

J=I;  
repeat  
for each item A   α.Bβ in I and each production B  

 
 
 
 
 
 
 

 

 in G such ץ

 
that B . ץ is not in I do  
add B . ץ to J.  

until no more items can be added to J;  
return J  
end 

 

 

GO TO operation  
The second useful function is GOTO( I, X) where I is a set of items and 

X is a grammar symbol. GOTO( I, X) is defined to be the closure of the  
set of all items A αX. β such that A  αX. β is in I.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The Set of items Constructions: 

 

procedure ITEMS(G');  
begin  

c = {closure({S̀  .S})};  
repeat  

for each set of items I in c and each grammar symbol x 

such that GOTO(I, x) is not empty and is not in c do 

add GOTO(I, x) to C  
until no more sets of items can be added to C 

end 
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Example: consider the grammar:  

E  E+T | T  

T  T*F | F  
F  (E) | id 

 

1. Find first and follow 

 First Follow 

E ( , id $ , ) , + 

T ( , id $ , ) , + ,* 

F ( , id $ , ) , +, * 
 

2. Find set of I.  
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3. Find parsing table.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4. Check the sentence (parse the input).  
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Semantic Analysis 
 

The semantic analysis phase checks the source program for 

semantic errors and gathers type information for the subsequent 

code-generation phase.  
It uses the parse tree to identify the operators and operands of 

expressions and statements.  
An important component is type checking.  

Here the compiler checks that each operator has operands that are 

permitted by the source language specification.  
Static semantic checks are performed at compile time 

Type checking  
Every variable is declared before used  

Identifiers are used in appropriate contexts 

Check subroutine call arguments  
Dynamic semantic check are performed at run time, and the 

compiler produces code that performs these checks  
Array subscript values are within bounds 

Arithmetic errors, e.g. division by zero  
A variable is used but hasn't been initialized  
When a check fails at run time, an exception is raised 

 
 
 

Type checking  
A type checker verifies that the type of a construct matches that expected 

by its context. For example, the –in arithmetic operator mod in pascal 

requires integer operands, so a type checker must verify that the 

operands of mod have type integer.  
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Intermediate Code Generation 
 

Translate from abstract-syntax trees to intermediate codes. 
 

Generating a low-level intermediate representation with two properties: 

o It should be easy to produce 

o It should be easy to translate into the target machine 
 

One of the popular intermediate code is three-address code. A three-

address code: 
 

  Each statement contains at most 3 operands; in addition to “: =”, i.e., 

assignment, at most one operator. 
 

An” easy” and “universal” format that can be translated into most 

assembly languages. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

some of the basic operations which in the source program, to change in the 
 

Assembly language: 
 

operations H.L.L Assembly language 
   

Math. OP + , - , * , / Add, sub, mult, div 

Boolean. OP &, | , ~ And, or, not 

Assignment = mov 

Jump goto JP, JN, JC 

conditional If, then CMP 

Loop instruction For,  do,  repeat These most have and I.C.G before 

 until, while do change it to assembly language. 
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The operation which change H.L.L to assembly language, is called the 

intermediate code generation and there is the division operation come with it, 

which mean every statement have a single operation. 
 

Ex (1):  

X = A + B * C / D – Y * N  

T1 T3  
T2  

T4  

T5  
T1 = B * C  
T2 = T1 / D  

T3 = Y * N  

T4 = A + T2  

T5 = T4 - T3 
 

Ex (2):  

Y = cos (A * B) + C / N - Y * P   

T1 T4 T3  
 

T2  
 

T5  
 

T6 
 

 

T1 = A * B  

T2 = cos T1  

T3 = Y * P 

T4 = C / N  

T5 = T2 + T4  

T6 = T5 – T3 
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Mathematical operation 
 

There are two kinds of operation, which are deals with 

mathematical operation, such as the parsing for these operations: 

1. Triple form 
 

Ex: X = A + B * C / ( - N )  

 OP Arg1 Arg2 

(0) * B C 

(1) - N __ 

(2) / (0) (1) 

(3) + A (2) 

 = X (3) 

Ex: Y = A + C * X / B [i]   

 OP Arg1 Arg2 

(0) * C X 

(1) =[ ] B i 

(2) / (0) (1) 

(3) + A (2) 

 = Y (3) 

Ex: X[i] = N * C / Y[i]   

 OP Arg1 Arg2 

(0) * N C 

(1) =[ ] Y i 

(2) / (0) (1) 

(3) [ ]= X i 

 = (3) (2) 

Ex: X = A + B * ( c / d ) - y   

 OP Arg1 Arg2 

(0) / c d 

(1) * B (0) 

(2) + A (1) 

(3) - (2) y 

 = X (3) 
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Ex: A = C * X [i,j]  

 OP Arg1 Arg2 

(0) =[ ] X P 

(1) * C (0) 

 = A (1) 
 
 
 
 
 

2. Quadruple form 

Ex: X = A * C / N + P 

OP  Arg1 Arg2 Result 

*  A C t1 

/  t1 N t2 
     

+  t2 P t3 

=  t3  X 

Ex: A = N[i] * C / N    

OP  Arg1 Arg2 Result 

=[ ]  N i t1 

*  t1 C t2 

/  t2 N t3 

=  t3  A 

Ex: A = C * y / X[i,j]    

OP  Arg1 Arg2 Result 

*  C y t1 

=[ ]  X P t2 

/  t1 t2 t3 

=  t3  A 
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Ex: X = A + B * ( c / d ) - y  

OP Arg1 Arg2 Result 

/ c d t1 

* B t1 t2 

+ A t2 t3 

- t3 y t4 

= t4  X 

Ex: X[i] = a * c + y[i] – n[j] / V   

OP Arg1 Arg2 Result 

* a c t1 

=[ ] n j t2 

/ t2 V t3 

=[ ] y i t4 

+ t1 t4 t5 

- t5 t3 t6 

[ ]= X i t7 

= t6  t7 
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Code Optimization  
Compilers should produce target code that is as good as can be 

written by hand. The code produced by straightforward compiling 

algorithms can often be made to run faster or take less space, or both. This 

improvement is achieved by program transformations that are traditionally 

called Optimizations. 
 

Function- Preserving Transformations  
There are a number of ways in which a compiler can improve a 

program without changing the function it computes. Common sub 

expression elimination, copy propagation, dead- code elimination, and 

constant floding are common examples of such function- preserving 

transformations. 
 

1. Common sub expressions 
 

Ex1: X = A + C * N – M  
Y = B + C * N * e 

 

Sol: Q = C * N  
X = A + Q – M  
Y = B + Q * e 

 

Ex2:    

Before optimize after optimize 

t6 = 4 * i t6 = 4 * i 

X = a [t6] X = a [t6] 

t7 = 4 * i t8 = 4 * j 

t8 = 4 * j t9 = a [t8] 

t9 = a [t8] a [t6] = t9 

a [t7] = t9 a[t8] = X 

t10 = 4 * j   

a[t10] = X   
 
 

Note: The value of the variable which are optimize will not be change. 
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2. Copy Propagation 
 

Ex:  
 
 
 
 
 
 
 

 

When the common sub expression in c = d + e is eliminated in 

previous section, the algorithm uses a new variable t to hold the value of d 

+ e. Since control may reach c = d + e either after the assignment to a or 

after the assignment to b, it would be incorrect to replace c = d + e by either 

c=a or by c=b 
 

 

3. Dead- Code Elimination  
A variable is live at a point in a program if its value can be used 

subsequently; otherwise, it is dead at that point. A related idea is dead or 

useless code, statements that compute values that never get used. 
 

Ex1:  X=3  
If X > 4 Then  
.  
.  
end 

 

*This condition will not do, so we must use the optimization. 

 

Ex2:  A= false  
If A Then  
Begin  
.  
.  
end 

 

*This condition also will not do 
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4. Loop Optimization  
The running time of a program may be improved if we decrease the 

number of instructions in an inner loop, even if we increase the amount of 

code outside the loop. Three techniques are important for loop optimization: 

Code Motion, which moves code outside a loop; Induction Variable 

elimination; and, reduction in strength. 

 

Code Motion  
An important modification that decreases the amount of code in a 

loop is code motion. This transformation takes an expression that yields the 

same result independent of the number of times a loop is executed and 

places the expression before the loop. 
 

Ex1:  While ( I <= limit-2) 
 

Sol: t = limit-2  
While (I <= t ) 

 
Ex2: While X<A + C*y do  

Begin 
. 
.  
end 

 
Sol: P = C * y  

While X<A + P do 
Begin 
. 
.  
end 

 

Induction Variable 
 

Ex: X = 2 * y + 2 * h + 4  
Sol:  X = 2 * (y + h) +4 

 

Note: use the algebra method to optimize the mathematical expression. 

 

Reduction in strength  
Reduction in strength, which replaces an expensive operation by a 

cheaper one, such as a multiplication by an addition. 
 

Ex: t4 = 4*j - 4 
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Code Generation 
 

The final phase in compiler is the code generator. It takes as input 

an intermediate representation of the source program and produces as 

output an equivalent target program, as indicated in Fig  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (6) Position of code generator 
 

Code generation takes a linear sequence of 3-address intermediate code 

instructions, and translates each instruction into one or more 

instructions. The big issues in code generation are  
Instruction selection  
Register allocation and assignment 

 

 

Instruction selection: for each type of three-address statement, we can 

design a code selection that outlines the target code to be generated for 

that construct. 

 

Register allocation and assignment  
The efficient utilization of registers involving operands is 

particularly important in generating good code. The use of registers is 

often subdivided into two sub problems:  
Register allocation: selecting the set of variables that will reside in 

registers at each point in the program 

 

            Resister assignment: selecting specific register that a variable reside   

in, the goal of these operations is generally to minimize the total number of 

memory accesses required by the program. 

 

 

 

 

 


