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Chapter One: Neural Networks 

1.1. Background 

The Artificial Neural Network (ANN), or simply Neural Network (NN), is a machine 

learning method evolved from the idea of simulating the human brain, which consists 

of processing elements (called neurons or nodes), and connections between them 

with coefficients (weights) bound to the connections. NNs "learn" from examples (as 

children learn to recognize dogs from examples of dogs) and exhibit some capability 

for generalization beyond the training data. 

In general, an ANN can be divided into three parts, named layers, which are known as: 

a. Input layer: This layer is responsible for receiving information (data), signals, 

features, or measurements from the external environment. These inputs (samples 

or patterns) are usually normalized within the limit values produced by activation 

functions. This normalization results in better numerical precision for the 

mathematical operations performed by the network. 

b. Hidden, intermediate, or invisible layers: These layers are composed of 

neurons which are responsible for extracting patterns associated with the process 

or system being analyzed. These layers perform most of the internal processing 

from a network. 

c. Output layer: This layer is also composed of neurons, and thus is responsible for 

producing and presenting the final network outputs, which result from the 

processing performed by the neurons in the previous layers. 

The main architectures of ANN, considering the neuron disposition, as well as how 

they are interconnected and how its layers are composed, can be divided as follows: 

− Single-layer network 

This ANN has just one input layer and a single neural layer, which is also the output 

layer. Fig. 1.1 illustrates a simple single-layer network composed of n inputs and 

m outputs. The information always flows in a single direction (thus, 
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unidirectional), which is from the input layer to the output layer. From Fig. 1.1, it 

is possible to see that in networks belonging to this architecture, the number of 

network outputs will always coincide with the number of neurons. 

 

Fig. 1.1: Single-layer network 

− Multi-layer network 

Multiple layers are composed of one or more hidden neural layers. Fig. 1.2 shows 

an NN with multiple layers composed of one input layer with n sample signals, two 

hidden neural layers consisting of n1 and n2 neurons respectively, and, one output 

neural layer composed of m neurons representing the respective output values of 

the problem being analysed. It is possible to understand that the number of 

neurons composing the first hidden layer is usually different from the number of 

signals composing the input layer of the NN. The number of hidden layers and 

their respective number of neurons depend on the nature and complexity of the 

problem being mapped by NN, as well as the quantity and quality of the available 

data about the problem. 

 

Fig. 1.2: Multi-layer network 
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− Full connected network 

In a fully connected network, the output of a node returns as input to all other 

nodes, but not to the same node as shown in Fig. 1.3. 

 

Fig. 1.3: Full connected network 

There are two types of connections between nodes. One is a one-way connection with 

no loopback (feedforward network). Because the signal travels one way only, the 

feedforward network is static; that is, one input is associated with one particular 

output. Fig. 1.4 shows this type. 

 

Fig. 1.4: Feedforward network 

The other is a loop-back connection in which the output of the nodes can be the input 

to previous or same-level nodes (feedback/recurrent network). The feedback 

network is dynamic. For one input, the state of the feedback network changes for 

many cycles, until it reaches an equilibrium point, so one input produces a series of 

outputs. Fig. 1.5 illustrates this type. 

X3 

X1 

X2 
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Fig. 1.5: Feed backward network 

The problem-solving process using neural networks consists of two major phases and 

they are: 

a. Training phase: During this phase, the network is trained with training examples 

and the rules are inserted in its structure. 

b. Recall phase/Testing phase: When new data is fed to the trained network the 

recall algorithm is used to calculate the results. 

1.2. The Neuron: Biological and Simulated Neuron 

The basic component of an ANN is an artificial neuron like a biological neuron (see 

Fig. 1.6) in a biological neural network. A biological neuron may be modelled 

artificially to perform computation and then the model is termed an artificial neuron. 

 

Fig. 1.6: Biological neuron 
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A neuron is the basic processor or processing element in a neural network. Each 

neuron receives one or more inputs over these connections (i.e., synapses) and 

produces only one output. Also, this output is related to the state of the neuron and 

its activation function. This output may fan out to several other neurons in the 

network. The inputs are the outputs i.e., activations of the incoming neurons 

multiplied by the connection or synaptic weights. Each weight is associated with an 

input of a network. The activation of a neuron is computed by applying a threshold 

function (popularly known as activation function) to the weighted sum of the inputs 

plus a bias. Fig. 1.7 represents an artificial neuron. 

 

Fig. 1.7: An artificial neuron 

1.3. Types of Learning Strategies 

It is the algorithm that is used to train the ANNs. Lots of research has been carried out 

in trying various phenomena and it gives the researchers an enormous amount of 

flexibility and opportunity for innovation and discussing the complete set of learning 

algorithms. Nevertheless, the learning algorithms so far used are currently classified 

into three groups. These groups are: 

− Supervised learning: The training examples consist of input vectors x and the 

desired output vector y and training is performed until the neural network 

“learns” to associate each input vector x to its corresponding output vector y 

(approximate a function y = f (x)). It encodes the example in its internal structure. 
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− Unsupervised learning: Only input vector x is supplied and the neural network 

learns some internal feature of the complete set of all the input vectors presented 

to it. Contemporary unsupervised algorithms are further divided into two (i) non-

competitive and (ii) competitive. 

− Reinforcement learning: Also referred to as reward penalty learning. The input 

vector is presented, and the neural network can calculate the corresponding 

output if it is good then the existing connection weights are increased (rewarded), 

otherwise the connection weights involved are decreased (punished). 

1.4. Back Propagation Neural Network 

Although many NN models have been proposed, the Back Propagation (BP) NN is the 

most widely used model in terms of practical applications. It is a powerful mapping 

network that has been successfully applied to a wide variety of problems ranging from 

credit application scoring to image compression. 

BP NN is a systematic method for training multi-layer NN. It has a mathematical 

foundation that is strong if not highly practical. BP NN is usually layered with each 

layer fully connected to the layers before and after neurons are not connected to other 

neurons in the same layer. Typically, BP NN employs three or more layers of neurons 

including the input layer. 

BP NN training algorithm is as follows: 

Step 1: Initialize weights to small random values 

Step 2: While the stopping condition is false do steps 3 to 10 

Step 3: for each training pair do steps 4 to 9 

Feedforward 

Step 4: each input unit (xi, i = 1 to n) receives input signal xi and broadcasts this signal 

to all units in the layer above (the hidden layer) 

Step 5: each hidden layer unit (zj, j = 1 to p) sums its weighted input signals 
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𝑧𝑖𝑛𝑗
= 𝑣0𝑖 + ∑ 𝑥𝑗 𝑣𝑖𝑗  

and applies its binary sigmoid activation function to compute its output signal and 

sends this signal to all units in the layer above (the output layer) 

Step 6: each output unit (yk, k = 1 to m) sums its weighted input signal 

𝑦𝑖𝑛𝑘
= 𝑤0𝑘 + ∑ 𝑧𝑗 𝑤𝑗𝑘 

and applies its binary sigmoid activation function to compute its output signal 

Back propagate error 

Step 7: each output unit (yk, k = 1 to m) receives a target pattern corresponding to the 

input training patterns, computes its error information term and calculates its 

weights correction term used to update wjk later 

𝛿2𝑘 = 𝑦𝑘(1 − 𝑦𝑘)(𝑇𝑘 − 𝑦𝑘) 

where Tk is the target pattern and k = 1 to m 

Step 8: each hidden unit (zj, j = 1 to p) computes its error information term and 

calculates its weights correction term used to update vij later 

𝛿1𝑗 = 𝑧𝑗(1 − 𝑧𝑗) ∑ 𝛿2𝑘 𝑤𝑗𝑘 

Update weights 

Step 9: each output unit (yk, k = 1 to m) updates its weights 

𝑛𝑒𝑤 𝑤𝑗𝑘 = 𝜂𝛿2𝑘𝑧𝑗 + 𝛼 𝑜𝑙𝑑 𝑤𝑗𝑘          𝑗 = 1 𝑡𝑜 𝑝 

Step 9: each hidden unit (zj, j = 1 to p) updates its weights 

𝑛𝑒𝑤 𝑣𝑖𝑗 = 𝜂𝛿1𝑗𝑥𝑖 + 𝛼 𝑜𝑙𝑑 𝑣𝑖𝑗           𝑖 = 1 𝑡𝑜 𝑛 

Step 10: test stopping condition 
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Example: suppose you have BP NN with 2 input, 2 hidden, and 1 output nodes with 

the following matrices weight where the moment coefficient 𝛼 = 0.9, learning rate 𝜂 = 

0.45, x = (1 0) and T = 1. Trace this BP NN with two iterations. 

𝑣 = [
0.10 −0.3
0.75 +0.2

] , 𝑤 = [
+0.3
−0.5

] 

Solution: 

First iteration 

𝑧𝑖𝑛𝑗
= 𝑣0𝑖 + ∑ 𝑥𝑗 𝑣𝑖𝑗   

𝑧𝑖𝑛1
= 𝑥1𝑣11 + 𝑥2𝑣21 = 1 ∗ 0.1 + 0 ∗ 0.75 = 0.1  

𝑧𝑖𝑛2
= 𝑥1𝑣12 + 𝑥2𝑣22 = 1 ∗ (−0.3) + 0 ∗ 0.2 = −0.3  

𝑧𝑗 = 𝑓 (𝑧𝑖𝑛𝑗
) =

1

1+𝑒
−𝑧𝑖𝑛𝑗

  

𝑧1 = 𝑓(𝑧𝑖𝑛1
) =

1

1+𝑒−0.1 = 0.5  

𝑧2 = 𝑓(𝑧𝑖𝑛2
) =

1

1+𝑒−0.3 = 0.426  

𝑦𝑖𝑛𝑘
= 𝑤0𝑘 + ∑ 𝑧𝑗 𝑤𝑗𝑘  

𝑦𝑖𝑛1
= 𝑧1𝑤11 + 𝑧2𝑤21 = 0.5 ∗ 0.3 + 0.426 ∗ (−0.5) = −0.063  

𝑦𝑘 = 𝑓(𝑦𝑖𝑛𝑘
) =

1

1+𝑒
−𝑦𝑖𝑛𝑘

  

𝑦1 = 𝑓(𝑦𝑖𝑛1
) =

1

1+𝑒−0.063
= 0.484  

𝛿2𝑘 = 𝑦𝑘(1 − 𝑦𝑘)(𝑇𝑘 − 𝑦𝑘)  

𝛿21 = 0.484(1 − 0.484)(1 − 0.484) = 0.129  

𝛿1𝑗 = 𝑧𝑗(1 − 𝑧𝑗) ∑ 𝛿2𝑘 𝑤𝑗𝑘  

𝛿11 = 0.5(1 − 0.5) ∗ 0.129 ∗ 0.3 = 0.009  
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𝛿12 = 0.426(1 − 0.426) ∗ 0.129 ∗ (−0.5) = −0.016  

𝑛𝑒𝑤 𝑤𝑗𝑘 = 𝜂𝛿2𝑘𝑧𝑗 + 𝛼 𝑜𝑙𝑑 𝑤𝑗𝑘          𝑗 = 1 𝑡𝑜 𝑝  

𝑛𝑒𝑤 𝑤11 = 0.45 ∗ 0.129 ∗ 0.5 + 0.9 ∗ 0.3 = 0.299  

𝑛𝑒𝑤 𝑤21 = 0.45 ∗ 0.129 ∗ 0.426 + 0.9 ∗ (−0.5) = −0.425  

𝑛𝑒𝑤 𝑣𝑖𝑗 = 𝜂𝛿1𝑗𝑥𝑖 + 𝛼 𝑜𝑙𝑑 𝑣𝑖𝑗           𝑖 = 1 𝑡𝑜 𝑛  

𝑛𝑒𝑤 𝑣11 = 0.45 ∗ 0.009 ∗ 1 + 0.9 ∗ 0.1 = 0.094   

𝑛𝑒𝑤 𝑣12 = 0.45 ∗ (−0.016) ∗ 1 + 0.9 ∗ (−0.3) = 0.277  

𝑛𝑒𝑤 𝑣21 = 0.45 ∗ 0.009 ∗ 0 + 0.9 ∗ 0.75 = 0.675  

𝑛𝑒𝑤 𝑣22 = 0.45 ∗ (−0.016) ∗ 0 + 0.9 ∗ 0.2 = 0.18  

𝑣 = [
0.094 0.277
0.675 0.180

] , 𝑤 = [
0.299

−0.425
] 

Second iteration 

It is your homework 

1.5. Hopfield Neural Network 

The Hopfield network model is probably one of the most popular types of NN. There 

are several versions of Hopfield networks. They can be used as auto-associated 

memory. 

The basic idea of the Hopfield network is that it can store a set of exemplar patterns 

as multiple stable states. Given a new input pattern, which may be partial or noisy, the 

network can converge to one of the exemplar patterns that is nearest to the input 

pattern. This is the basic concept of applying the Hopfield network as associative 

memory. 

The Hopfield network consists of a single layer of neurons. The network is fully 

interconnected; that is, every neuron in the network is connected to every other 

neuron. The network is recurrent; that is, it has feed forward/feed backward 
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capabilities, which means input to the neurons comes from external inputs as well as 

from the neurons themselves internally. Each input/output, xi or yi, takes discrete 

bipolar values of either +1 or -1. 

There are two types of Hopfield NN; continuous Hopfield NN and discrete Hopfield 

NN. The algorithm of discrete Hopfield NN is shown below: 

Step 1: Initialize weights to store patterns 

Step 2: While activations of the net are not converged do steps 3 to 9 

Step 3: For each input vector x do steps 4 to 8 

Step 4: Set initial activations of net equal to the external input vector 

yi = xi for i = 1 to n 

Step 5: Do steps 6 to 8 for each unit yi 

Step 6: Compute net input 

𝑦𝑖𝑛𝑗
= 𝑥𝑖 + ∑ 𝑦𝑗 𝑤𝑗𝑖  

Step 7: Determine activation (output signal, note: the standard steps activation 

function) 

Step 8: Broadcast the value of yi to all other units 

Step 9: Test for convergence 

Example: Consider the following samples are stored in a net 

[
0 1 0 0
1 1 0 0
0 0 1 1

] 

The binary input is (1 1 1 0). We want to train the net using Hopfield to know which 

of the samples the input is near. 
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Solution: 

𝑤𝑖𝑗 = ∑ (2𝑥𝑖
𝑝 − 1)(2𝑥𝑗

𝑝 − 1)𝑛
𝑝=1  𝑤𝑖𝑗 = 𝑤𝑗𝑖  𝑤𝑖𝑖 = 0 

𝑤𝑖𝑗 = (2𝑥𝑖
𝑝 − 1)(2𝑥𝑗

𝑝 − 1) 

[0 1 0 0] 

𝑤12 = (2(0) − 1)(2(1) − 1) = −1 

𝑤13 = (2(0) − 1)(2(0) − 1) = +1 

𝑤14 = (2(0) − 1)(2(0) − 1) = +1 

𝑤23 = (2(1) − 1)(2(0) − 1) = −1 

𝑤24 = (2(1) − 1)(2(0) − 1) = −1 

𝑤34 = (2(0) − 1)(2(0) − 1) = +1 

𝑤1 = [

+0 −1 +1 +1
−1 +0 −1 −1
+1
+1

−1
−1

+0
+1

+1
+0

] 

[1 1 0 0] 

𝑤12 = (2(1) − 1)(2(1) − 1) = +1 

𝑤13 = (2(1) − 1)(2(0) − 1) = −1 

𝑤14 = (2(1) − 1)(2(0) − 1) = −1 

𝑤23 = (2(1) − 1)(2(0) − 1) = −1 

𝑤24 = (2(1) − 1)(2(0) − 1) = −1 

𝑤34 = (2(0) − 1)(2(0) − 1) = +1 

𝑤2 = [

+0 +1 −1 −1
+1 +0 −1 −1
−1
−1

−1
−1

+0
+1

+1
+0

] 
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[0 0 1 1] 

𝑤12 = (2(0) − 1)(2(0) − 1) = +1 

𝑤13 = (2(0) − 1)(2(1) − 1) = −1 

𝑤14 = (2(0) − 1)(2(1) − 1) = −1 

𝑤23 = (2(0) − 1)(2(1) − 1) = −1 

𝑤24 = (2(0) − 1)(2(1) − 1) = −1 

𝑤34 = (2(1) − 1)(2(1) − 1) = +1 

𝑤3 = [

+0 +1 −1 −1
+1 +0 −1 −1
−1
−1

−1
−1

+0
+1

+1
+0

] 

𝑤 = 𝑤1 + 𝑤2 + 𝑤3 

𝑤 = [

+0 −1 +1 +1
−1 +0 −1 −1
+1
+1

−1
−1

+0
+1

+1
+0

] + [

+0 +1 −1 −1
+1 +0 −1 −1
−1
−1

−1
−1

+0
+1

+1
+0

] + [

+0 +1 −1 −1
+1 +0 −1 −1
−1
−1

−1
−1

+0
+1

+1
+0

] 

𝑤 = [

+0 +1 −1 −1
+1 +0 −3 −3
−1
−1

−3
−3

+0
−3

+3
+0

] 

[
0 1 0 0
1 1 0 0
0 0 1 1

] → [
−1 +1 −1 −1
+1 +1 −1 −1
−1 −1 +1 +1

] 

The input vector x = (1 1 1 0), for this vector: 

y = x = (1 1 1 0) 

𝑦𝑖𝑛𝑗
= 𝑥𝑖 + ∑ 𝑦𝑗 𝑤𝑗𝑖  

𝑦𝑖𝑛1
= 𝑥1 + ∑ 𝑦𝑗 𝑤𝑖1 = 1 + 0 = 1 > 0, ∴ 𝑦𝑖𝑛1

= 1, ∴ 𝑦 = (1 1 1 0)  

𝑦𝑖𝑛2
= 𝑥2 + ∑ 𝑦𝑗 𝑤𝑖2 = 1 − 2 = −1 < 0, ∴ 𝑦𝑖𝑛2

= 0, ∴ 𝑦 = (1 0 1 0)  
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𝑦𝑖𝑛3
= 𝑥3 + ∑ 𝑦𝑗 𝑤𝑖3 = 1 − 4 = −3 < 0, ∴ 𝑦𝑖𝑛3

= 0, ∴ 𝑦 = (1 0 0 0)  

𝑦𝑖𝑛4
= 𝑥4 + ∑ 𝑦𝑗 𝑤𝑖4 = 0 − 1 = −1 < 0, ∴ 𝑦𝑖𝑛4

= 0, ∴ 𝑦 = (1 0 0 0)  

Test for convergence, false, so continue 

The input vector x = (1 0 0 0), for this vector: 

y = x = (1 0 0 0) 

𝑦𝑖𝑛𝑗
= 𝑥𝑖 + ∑ 𝑦𝑗 𝑤𝑗𝑖  

𝑦𝑖𝑛1
= 𝑥1 + ∑ 𝑦𝑗 𝑤𝑖1 = 1 + 0 = 1 > 0, ∴ 𝑦𝑖𝑛1

= 1, ∴ 𝑦 = (1 0 0 0)  

𝑦𝑖𝑛2
= 𝑥2 + ∑ 𝑦𝑗 𝑤𝑖2 = 0 + 1 = +1 > 0, ∴ 𝑦𝑖𝑛2

= 1, ∴ 𝑦 = (1 1 0 0)  

𝑦𝑖𝑛3
= 𝑥3 + ∑ 𝑦𝑗 𝑤𝑖3 = 0 − 1 = −1 < 0, ∴ 𝑦𝑖𝑛3

= 0, ∴ 𝑦 = (1 1 0 0)  

𝑦𝑖𝑛4
= 𝑥4 + ∑ 𝑦𝑗 𝑤𝑖4 = 0 − 1 = −1 < 0, ∴ 𝑦𝑖𝑛4

= 0, ∴ 𝑦 = (1 1 0 0)  

Test for convergence, true, try again 

The input vector x = (1 1 0 0), for this vector: 

y = x = (1 1 0 0) 

𝑦𝑖𝑛𝑗
= 𝑥𝑖 + ∑ 𝑦𝑗 𝑤𝑗𝑖  

𝑦𝑖𝑛1
= 𝑥1 + ∑ 𝑦𝑗 𝑤𝑖1 = 1 + 1 = 2 > 0, ∴ 𝑦𝑖𝑛1

= 1, ∴ 𝑦 = (1 1 0 0)  

𝑦𝑖𝑛2
= 𝑥2 + ∑ 𝑦𝑗 𝑤𝑖2 = 1 + 1 = +2 > 0, ∴ 𝑦𝑖𝑛2

= 1, ∴ 𝑦 = (1 1 0 0)  

𝑦𝑖𝑛3
= 𝑥3 + ∑ 𝑦𝑗 𝑤𝑖3 = 0 − 4 = −4 < 0, ∴ 𝑦𝑖𝑛3

= 0, ∴ 𝑦 = (1 1 0 0)  

𝑦𝑖𝑛4
= 𝑥4 + ∑ 𝑦𝑗 𝑤𝑖4 = 0 − 4 = −4 < 0, ∴ 𝑦𝑖𝑛4

= 0, ∴ 𝑦 = (1 1 0 0)  

Test for convergence, true, so the input is near to the second sample. 
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1.6. Bidirectional Associative Memory Neural Network 

Bidirectional Associative Memory (BAM) is a type of recurrent NN. BAM is hetero 

associative memory, meaning given a pattern, it can return another pattern which is 

potentially of different size. 

The topology of BAM contains two layers of neurons x and y. Layer x and layer are fully 

connected. Once the weights have been established, input into layer x, present the 

pattern in layer y and vice versa. 

BAM network uses vector pairs in binary format and it will convert these vector pairs 

to bipolar format (+1 and -1 only), so if the value is 0 it will be converted to -1. 

Example: using BAM NN trying to train it to remember three binary vector pairs Ai 

and Bi then apply it on input vector A1. (Note: Ai is the original vector while Bi is 

the associative vector) 

A1 = (1 0 0)    B1 = (0 0 1) 

A2 = (0 1 0)    B2 = (0 1 0) 

A3 = (0 0 1)    B3 = (1 0 0) 

Solution: 

A’1 = (+1 -1 -1)   B’1 = (-1 -1 +1) 

A’2 = (-1 +1 -1)   B’2 = (-1 +1 -1) 

A’3 = (-1 -1 +1)   B’3 = (+1 -1 -1) 

w = ∑ A′i
T Bi 

𝑤 = 𝐴𝑖
𝑇 [

+1 −1 −1
−1 +1 −1
−1 −1 +1

] ∗ 𝐵𝑖 [
−1 −1 +1
−1 +1 −1
+1 −1 −1

] = [
−1 −1 +3
−1 +3 −1
+3 −1 −1

] 
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A1(1 0 0) ∗ w [
−1 −1 +3
−1 +3 −1
+3 −1 −1

] = (−1 − 1 + 3) → (0 0 1) = B1 

B1(0 0 1) ∗ 𝑤𝑇 [
−1 −1 +3
−1 +3 −1
+3 −1 −1

] = (3 − 1 − 1) → (1 0 0) = A1 

1.7. Kohonen Neural Network 

The objective of a Kohonen network is to map input vectors (patterns) of arbitrary 

dimension N onto a discrete map with 1 or 2 dimensions. Patterns close to one 

another in the input space should be close to one another in the map: they should be 

topologically ordered.  A Kohonen network is composed of a grid of output units and 

N input units.  The input pattern is fed to each output unit.  The input lines to each 

output unit are weighted.  These weights are initialized to small random numbers.   

There is no hidden layer in a Kohonen NN.  First, we will examine the input and output 

of a Kohonen NN.  The input to a Kohonen NN is given to the NN using the input 

neurons.  These input neurons are each given the floating-point numbers that make 

up the input pattern to the network.  A Kohonen NN requires that these inputs be 

normalized to the range between 1 − and 1.  Presenting an input pattern to the 

network will cause a reaction from the output neurons.  The output of a Kohonen NN 

is very different from the output of a feed-forward NN.  In a typical feed-forward 

network with five output neurons, the number of output values is consistent to be 

five.  However, in the case of a Kohonen NN, only one of the five output neurons 

produces a value.   Additionally, this single value is either true or false.  When the 

pattern is presented to the Kohonen NN, one single output neuron is chosen as the 

output neuron.  Therefore, the output from the Kohonen NN is usually the index of the 

neuron (i.e., Neuron #5) that fired.  The structure of a typical Kohonen NN is shown 

in Fig. 1.8. 
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Fig. 1.8: Kohonen NN 

The Kohonen NN algorithm is stated below: 

Step 0: Initialize weights wij 

Set topological neighbourhood parameters 

Set Learning rate parameters 

Step 1: While the stopping condition is false, do steps 2 – 8 

Step 2: for each input vector x, do step 3 – 5 

Step 3: for each j, compute the distance 

𝐷(𝑗) = ∑ (𝑥𝑖 − 𝑤𝑖𝑗)2
𝑖   Euclidean distances 

Step 4: Find index J such that D(J) is a minimum 

Step 5: For all units j within a specified neighbourhood of J, and all i: 

Wij(new) = Wij(old) + ∝ (xi + Wij(old)) 

Step6: Update learning rate 

Step7: Reduce the radius of the topological neighbourhood at specified times 

Step8: Test stopping condition 

Example: A Kohonen NN to be cluster four vectors 

Vector1 (1 1 0 0) 
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Vector2 (0 0 0 1) 

Vector3 (1 0 0 0) 

Vector4 (0 0 1 1) 

The maximum no. of clusters to be formed is m = 2 with a learning rate ∝ = 0.6. 

Solution: 

With only 2 clusters available, the neighbourhood of node J is set so that only one 

cluster updates its weight at each step. 

Initial weight matrix: 

[

0.2 0.8
0.6
0.5
0.9

0.4
0.7
0.3

] 

For the first vector 

(1  1  0  0) 
  x1 x2 x3 x4 

D(i) = (1 – 0.2)2 + (1 – 0.6)2 + (0 – 0.5)2 + (0 – 0.9)2 = 1.86 

D(2) = (1 – 0.8)2 + (1 – 0.4)2 + (0 – 0.7)2 + (0 – 0.3)2 = 0.98 (minimum) 

∴ J = 2 (the input vector is closed to output node 2) 

∴ The weight on the winning unit is updated: 

W21(new) = W12(old) + 0.6 (xi + W12(old)) 

W21(new) = 0.8 + 0.6 (1 – 0.8) = 0.92 

W22(new) = 0.4 + 0.6 (1 – 0.4) = 0.76 

W23(new) = 0.7 + 0.6 (0 – 0.7) = 0.28 

W24(new) = 0.3 + 0.6 (0 – 0.3) = 0.12 
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This gives the weight matrix: 

[

0.2 0.92
0.6
0.5
0.9

0.76
0.28
0.12

] 

For the second vector 

(0  0  0  1) 
 x1 x2 x3 x4 

D(i) = (1 – 0.2)2 + (1 – 0.6)2 + (0 – 0.5)2 + (1 – 0.9)2 = 0.66 (minimum) 

D(2) = (0 – 0.92)2 + (0 – 0.76)2 + (0 – 0.28)2 + (1 – 0.12)2 = 2.2768 

∴ J = 1 (the input vector is closed to output node 1) 

After updating the first column of the weight matrix: 

[

0.08 0.92
0.24
0.20
0.96

0.76
0.28
0.12

] 

For the third vector 

(1  0  0  0) 
 x1 x2 x3 x4 

D(i) = (1 – 0.08)2 + (0 – 0.24)2 + (0 – 0.20)2 + (1 – 0.96)2 = 1.856 

D(2) = (1 – 0.92)2 + (0 – 0.76)2 + (0 – 0.28)2 + (1 – 0.12)2 = 2.2768 (minimum) 

∴ J = 2 (the input vector is closed to output node 2) 

After updating the second column of the weight matrix: 

[

0.08 0.968
0.24
0.20
0.96

0.304
0.112
0.048

] 

For the fourth vector 
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(0  0  1  1) 
 x1 x2 x3 x4 

D(i) = (1 – 0.08)2 + (0 – 0.24)2 + (1 – 0.20)2 + (1 – 0.96)2 = 0.7056 (minimum) 

D(2) = (0 – 0.968)2 + (0 – 0.304)2 + (1 – 0.112)2 + (1 – 0.048)2 = 2.724 (minimum) 

∴ J = 1 (the input vector is closed to output node 1) 

After updating the first column of the weight matrix: 

[

0.032 0.968
0.096
0.680
0.984

0.304
0.112
0.048

] 

∴ Reduce the learning rate 

∝ (t + 1) × ∝ (t) = 0.5 × 0.6 = 0.3 

After one iteration the weight matrix will be: 

[

0.032 0.970
0.096
0.680
0.984

0.300
0.110
0.048

] 
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Chapter Two: Genetic Algorithm 

2.1. Introduction 

Genetic Algorithm (GA) is a type of Evolutionary Algorithms (EAs), a subset of 

machine learning, i.e., a search algorithm inspired by the Darwinian’s theory of 

biological evolution. In the 1970s, Holland designed the GA as a way of exploiting the 

potential of the natural evolution to employ on computers. Natural evolution has 

observed the growth of complex organisms such as animals and plants from simpler 

single-celled life forms. Holland's GAs are models of the vitals of natural evolution and 

inheritance. 

GA is a search algorithm based on the mechanics of natural selection and natural 

genetics. From a mechanistic view, GA is a variation in the generated and test method. 

Solutions are generated and sent to an evaluator. The evaluator reports whether the 

solution posed is optimal. In GAs, this generation and test process is repeated 

iteratively over a set of solutions. The evaluator returns information to guide the 

selection of new solutions for following iterations. In other words, we can say that GAs 

is problem solving methods requiring domain-specific knowledge that is often 

heuristic and they are a family of adaptive search procedure. GA derives their name 

from the fact that they are loosely based on models of genetic change in a population 

of individuals. 

The genetic information that is operated on by a GA is contained in the chromosome. 

A chromosome contains an encoding of the variables of the problem being optimized, 

and is a finite-length string comprised of elements from a finite alphabet. A gene is a 

position in the chromosome string, and may take on values from the alphabet; the 

alphabet is analogous to the set of alleles in a natural system. The nature of the 

alphabet used to encode the chromosome strings depends on the particular problem 

being optimized. There are many types of encoding, some of these types illustrate in 

the following:  
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− Binary, this is the most common types of encoding. This type used for some 

applications of GA such as; logic design, graph theory, and so on. 

− Character, this type of the encoding is used in some applications of GA such as; 

artificial intelligence, graph theory, scene recognition, and so on. 

− Real-valued, this form is very useful in the mathematical algebra and the matters 

related with them, such as; weights of artificial neural networks, and so on. 

− Integer, this type of encoding is used in some applications of GA such as; job shop 

scheduling, and so on. 

The GA algorithm operating on fixed-length character strings can be summarized as 

follows: 

a. Randomly create an initial population of individual fixed-length character string. 

b. Iteratively perform the following sub-steps on the population of    strings until the 

termination criterion has been satisfied: 

i. Evaluate the fitness of each individual in the population . 

ii. Create a new population of strings by applying at least the first two of the 

following three operations. The operations are applied to individual string(s) in 

the population chosen with a probability based on fitness. 

1. Copy existing individual strings to the new population. 

2. Create two new strings by genetically recombining randomly chosen 

substrings from two existing strings. 

3. Create a new string from an existing string by randomly mutating the 

character at one position in the string. 

c. The best individual string that appeared in any generation (i.e., the best-so-far 

individual) is designated as the result of the GA for the run. The result may 

represent a solution (or an approximate solution) to the problem. 

2.2. Components of Algorithms 

The key components of GAs are: 

− Genotype, this is an encoding which describes the Phenotype. 
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− Phenotype, it is the objects that “live” and interact with the environment and is 

defined by GA.   

− Fitness Function, a performance measure of the Phenotype induced by a 

Genotype. This function of the Genotype as well as environmental factors. The aim 

of the GA is to evolve a Phenotype that maximizes the fitness function. Using an 

appropriate definition of fitness, this translates into finding the best model 

structure and parameters for the given data. 

− Selection Criteria, these are the criteria used to select individuals for 

reproduction and creation of new individual. It is common to select pairs of 

parents on the basis of fitness so that the probability of an individual being chosen 

for reproduction is proportional to its fitness value. 

− Breeding Operators, the breeding operators take individuals chosen by selection 

criteria and use these as “parents” to create new offspring individuals. 

− Population Stabilization, the offspring created by the breeding operators is 

added to the population, increasing its size. To keep the population size stable, 

some members must be added. This is carried out on the basis of fitness by 

choosing members at random from a distribution that favors those with lowest 

fitness values. 

 

2.3. Selection Methods 

Selection is the attribute of GA that determines which individuals will create will 

advance to the population of the next generation. The basic method of selection is to 

simply choose the highest fitness individuals formed from the children of one 

generation and uses them to form the next generation. Some of the selection methods 

are described below. 

− Steady State Selection, this is a means of selection in which the population 

remains fairly consistent from generation to generation. In this type of selection, 

only a small percentage of the population is replaced by the children of the 

previous generation. In this way, the algorithm is sure to keep the “knowledge” of 

the previous generations, and incremental learning is emphasized. This is not in 
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itself a method of selection, but is used with other forms of selection to retain 

knowledge. 

− Elitist Selection, this is a form of GA selection in which at least a few members of 

each generation carry on to the next generation. Again, at least a few members of 

the parent population must “survive” to the next generation. This is like steady 

state selection is not in itself a method of selection, but rather a tactic that is 

utilized along with different methods of selection to ensure some knowledge is 

transferred from one generation to the next. 

− Tournament Selection, this is a means of selection in which two individuals are 

chosen randomly from the population and scored against one another according 

to fitness. The winner is allowed to participate in crossover and create offspring 

for the next generation. After this occurs, both individuals are put back into the 

population and could be selected again randomly at a later time. This method 

allows all individuals the chance for being selected as a parent (except the one 

with lowest score) and in this way tries to make the next generation somewhat 

diverse. The Tournament selection algorithm is illustrated in the following 

algorithm: 

For each member of the population; 
{ 

Select a random parent that hasn’t already been used. 
Select a second random parent that hasn’t already been used. 
Select the most fit of the pair, and mark it as used. 
Add the individual to the array of the next population. 

}  

− Roulette Selection, the basic idea is to determine selection probability or survival 

probability for each chromosome proportional to the fitness value. Then a 

Roulette Wheel can be made displaying these probabilities. The selection process 

is based on spinning the wheel a number of times equal to population size, each 

time selecting a single chromosome for the new population. The Roulette Wheel 

selection algorithm is illustrated in the following algorithm: 
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Begin 
P=0; 
J=0; 
Rand=Random × sum of fitness; 
Repeat 

J=J+1; 
P=P + fitness of J; 

Until ((P>Rand) OR (J=Max. population)); 
Select =J; 

End 

2.4. Crossover 

Reproduction occurs in two ways: 

− The parent is simply copied (possibly with random changes, i.e., mutation).  

− We mean crossover. 

In GA, evaluation from generation to generation is simulated both by preserving the 

genetic information contained in the chromosome strings of fit individuals and by 

altering this information by means of random genetic changes. Both of these goals are 

affected by genetic operators. The goal of preserving the genetic information of fit 

individuals is achieved through crossover. Crossover creates child individuals by 

crossing over portions of two parent individuals’ chromosomes. One or both of the 

child individuals are retained in the new child population, and the child individuals 

are required to be unique with respect to the other children and to the parent 

population. The child population is unique but the crossover operator ensures that 

the genetic information of the parent population is preserved. Note that crossover 

point, that point where the crossover takes place is randomly determined. Some types 

of crossovers are illustrated below: 

− One-Point Crossover at Random Point (PX), two parent individuals are selected 

at random (with selection biased towards choosing the fittest parents), and their 

chromosome strings are cut at a randomly determined point. In single point 

crossover either one or two offspring will be created. In order to create two 

offspring, it will be created by join the first part of one parent with the second part 
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of the other parent, and the second part of the one parent with the first part of the 

other parent. This process will produce two offspring shown in Fig. 2. 

Parent 1                                                  Child 1                    

 Parent 2            Child 2 

Fig. 2.1: One-point crossover generated two offspring 

In order to create one offspring, this will be created by join the first part of one 

parent with the second part of the other parent as shown in Fig. 2.2. 

Parent 1                    Parent 2 

          Child 

Fig. 2.2: One-point crossover generated one offspring 

− K-Points Crossover, this is a multiple crossover position chosen at random and 

the parts of the two parents after the crossover positions are exchanged to form 

two offspring as shown in Fig. 2.3. 

Parent 1                                                                  Child 1                          

Parent 2                                                                  Child 2 

Fig. 2.3: K-points crossover 

2.5. Mutation 

The mutation operator introduces new information into the chromosome string of an 

individual by randomly altering one or more genes in that string. Mutation is used to 

prevent getting stuck in local maxima in a population. A randomly determined gene 

in the chromosome is changed to take on a new value from alphabet. The following 

example illustrates the mutation. 

Chromosome before mutation  3 2 3 1 3 3 1 1 3 2 3 1 

Chromosome after mutation  3 2 3 1 3 3 2 1 3 2 3 1 



ADAPTIVE SYSTEMS 01/17/2025 

  
 

 27 

 

2.6. Other Operators 

The goal of introducing change to the information in the chromosome string of 

individuals created by crossover is achieved with the mutation, addition, deletion and 

permutation operators. These operators are explained in the subsections bellow: 

− Addition, the addition operator randomly adds a gene to the chromosome string. 

In the following example, a randomly determined gene from alphabet is added at 

random point in the chromosome. The randomly selected addition point is 

denoted by the symbol. In this example, addition causes the number of actual gene 

in the chromosome to increase from 12 to 13. 

Chromosome before addition       3 2 3 1 3 3 2 1 3 2 3 1 

Chromosome after addition             3 2 3 1 3 3 2 1 3 3 2 3 1  

− Deletion, the deletion operator randomly deletes a gene from the chromosome 

string. In the following example, a randomly determined gene is removed from the 

chromosome. In this example, deletion causes the number of actual genes in the 

chromosome to decrease from 13 to 12. 

Chromosome before deletion        3 2 3 1 3 3 2 1 3 3 2 3 1 

Chromosome after deletion           3 2 3 1 3     2 1 3 3 2 3 1  

2.7. Parameters of Genetic Algorithm 

If we use GA, we must set parameters that control the behaviour of GA. These 

parameters include: 

− The population size of GA. 

− The number of generations of the GA around the main loop. 

− The initial number of runs of the GA. 

− The probabilities of crossover rate (Pc) and mutation rate (Pm). 

− The length of the chromosome. 



ADAPTIVE SYSTEMS 01/17/2025 

  
 

 28 

 

The value of population size must not exceed 100 are illustrated in many researches. 

The number of generation values must be reasonably large to guarantee the solution. 

The length of the chromosome depends on the problem encoding. The most used 

values of crossover probability are from 0.3 to 0.95 and the most used values of 

mutation probability are from 0.001 to 0.1, these values depend largely on the 

application. The value of the initial numbers of runs of the GA depends on the problem 

we try to find the solution for. 

2.8. Genetic Algorithm Termination Criteria 

Each run of the conventional Genetic Algorithm requires specification of a 

termination criterion for deciding when to terminate a run and a method of result 

designation. Among the frequently used stopping criteria are: 

− Stopping after a preset number of generations.  

− Computing time is limit. 

− Stopping when the fitness of the fittest member of the population is within the 

user specified rang. 

− Stopping when the population diversity drops below a certain threshold. 

− When all individuals in a generation are identical, which means the evaluation 

functions for all individuals are same. 

− GA can also be halted if the solution quality of the population does not improve by 

more than a specified amount in a specified number of successive generations. 

2.9. Genetic Programming and Applications 

Genetic Programming (GP) is an intelligence technique whereby computer programs 

are encoded as a set of genes which are evolved utilizing a GA. In other words, the GP 

employs novel optimization techniques to modify computer programs; imitating the 

way humans develop programs by progressively re-writing them for solving problems 

automatically. Trial programs are frequently altered in the search for obtaining 

superior solutions due to the base is GA. These are evolutionary search techniques 
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inspired by biological evolution such as mutation, reproduction, natural selection, 

recombination, and survival of the fittest. The power of GAs is being represented by 

an advancing range of applications; vector processing, quantum computing, VLSI 

circuit layout, and so on. But one of the most significant uses of GAs is the automatic 

generation of programs. Technically, the GP solves problems automatically without 

having to tell the computer specifically how to process it. To meet this requirement, 

the GP utilizes GAs to a “population” of trial programs, traditionally encoded in 

memory as tree-structures. Trial programs are estimated using a “fitness function” 

and the suited solutions picked for re-evaluation and modification such that this 

sequence is replicated until a “correct” program is generated. GP has represented its 

power by modifying a simple program for categorizing news stories, executing optical 

character recognition, medical signal filters, and for target identification, etc. This 

paper reviews existing literature regarding the GPs and their applications in different 

scientific fields and aims to provide an easy understanding of various types of GPs for 

beginners. 

GP is a type of Evolutionary Algorithms (EAs), a subset of machine learning, i.e., a 

search algorithm inspired by the Darwinian’s theory of biological evolution. For the 

first time, the GP was introduced by Mr. John Koza which enables computers to solve 

problems without being clearly programmed. The GP functions based on John 

Holland's GAs to generate programs for solving various complex optimization and 

search problems automatically. 

During the past forty years, the GPs have been applied to solve a wide range of 

complex optimization problems, patentable new inventions, producing a number of 

human-competitive results, etc. in the emerging scientific fields. Like many other 

fields of computer science, GP still is developing briskly, with new ideas and 

applications being continuously advanced. 

Some of GP’s applications are: 

− Image and Signal Processing. 
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− Artistic. 

− Medicine, Biology and Bioinformatics. 

− Industrial Process Control. 

− Entertainment and Computer Games. 
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Chapter Three: Fuzzy Logic 

3.1. Introduction 

Fuzzy Logic (FL) is a method of reasoning that resembles human reasoning. The 

approach of FL imitates the way of decision-making in humans that involves all 

intermediate possibilities between digital values YES and NO. 

The conventional logic block that a computer can understand takes precise input and 

produces a definite output as TRUE or FALSE, which is equivalent to a human’s YES or 

NO. 

The inventor of fuzzy logic, Lotfi Zadeh, observed that, unlike computers, human 

decision-making includes a range of possibilities between YES and NO, such as: 

The fuzzy logic works on the levels of possibilities of input to achieve the definite 

output. 

A proposition can be true on one occasion and false on another. If a proposition is true, 

it has a truth value of 1; if it is false, its truth value is 0. These are the only possible 

truth values. Propositions can be combined to generate other propositions, using 

logical operations. 

When you say it will rain today or that you will have an outdoor picnic today, you are 

making statements with certainty. Of course, your statements in this case can be 

either true or false. The truth values of your statements can be only 1, or 0. Your 

statements then can be said to be crisp. 

On the other hand, there are statements you cannot make with such certainty. You 

may be saying that you think it will rain today. If pressed further, you may be able to 

say with a degree of certainty in your statement that it will rain today. Your level of 

certainty, however, is about 0.8, rather than 1. This type of situation is what fuzzy logic 

was developed to model. 
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Fuzzy logic deals with propositions that can be true to a certain degree somewhere 

from 0 to 1. Therefore, a proposition’s truth value indicates the degree of certainty 

about which the proposition is true. The degree of certainty sounds like a probability 

(perhaps subjective probability), but it is not quite the same. Probabilities for 

mutually exclusive events cannot add up to more than 1, but their fuzzy values may. 

Suppose that the probability of a cup of coffee being hot is 0.8 and the probability of 

the cup of coffee being cold is 0.2. These probabilities must add up to 1.0. Fuzzy values 

do not need to add up to 1.0. The truth value of a proposition that a cup of coffee is 

hot is 0.8. The truth value of a proposition that the cup of coffee is cold can be 0.5. 

There is no restriction on what these truth values must add up to. 

Fuzzy logic is a superset of conventional (Boolean) logic that has been extended to 

handle the concept of partial truth- truth values between "completely true" and 

"completely false". As its name suggests, it is the logic underlying modes of reasoning 

which are approximate rather than exact. The importance of fuzzy logic derives from 

the fact that most modes of human reasoning especially common-sense reasoning are 

approximate. 

3.2. Fuzzy Sets 

There is a strong relationship between Boolean logic and the concept of a subset. 

Similarly, there is a strong relationship between fuzzy logic and fuzzy subset theory. 

A subset U of a set S can be defined as a set of ordered pairs, each with a first element 

that is  

an element of the set S, and a second element that is an element of the set {0, 1}, with 

exactly one ordered pair present for each element of S. This defines a mapping 

between elements of S and elements of the set {0, 1}. The value zero is used to 

represent non-membership, and the value one is used to represent membership. The 

truth or falsity of the statement: x is in U is determined by finding the ordered pair 

whose first element is x. The statement is true if the second element of the ordered 

pair is 1, and the statement is false if it is 0.  
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Similarly, a fuzzy subset F of a set S can be defined as a set of ordered pairs, each with 

a first element that is an element of the set S, and a second element that is a value in 

the interval [0, 1], with exactly one ordered pair present for each element of S. This 

defines a mapping between elements of the set S and values in the interval [0, 1]. The 

value zero is used to represent complete non-membership, the value one is used to 

represent complete membership, and values in between are used to represent 

intermediate degrees of membership. The set S is referred to as the universe of 

discourse for the fuzzy subset F. Frequently, the mapping is described as a function, 

the membership function of F. The degree to which the statement: x is in F is true is 

determined by finding the ordered pair whose first element is x. The degree of truth 

of the statement is the second element of the ordered pair.  

This can be illustrated with an example. Let's talk about people and "youngness". In 

this case, the set S (the universe of discourse) is the set of people. A fuzzy subset 

YOUNG is also defined, which answers the question "To what degree is person x 

young?" To each person in the universe of discourse, we have to assign a degree of 

membership in the fuzzy subset YOUNG. The easiest way to do this is with a 

membership function based on the person's age.  

Young (x) = {1, if age(x) ≤ 20, (30-age(x))/10, if 20 < age(x) ≤ 30, 0, if age(x) > 30} 

Given this definition, here are some example values: 

Person Age Degree of Youth 
Mohamed 10 1.00 
Ahmed 21 0.90 
Mustafa 25 0.50 
Mahmud 26 0.40 
Taha 83 0.00 

So given this definition, we would say that the degree of truth of the statement 

“Mustafa is YOUNG" is 0.50. 

3.3. Logical Operators: Fuzzy Intersection, Fuzzy Union, Fuzzy Complement 

− Intersection: The intersection of two fuzzy sets A and B is a fuzzy set such that: 
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MA ∩ MB(x) = min [MA(x), MB(x)] for every x ∈ X, and it corresponds to AND 

− Union: The union of two fuzzy sets A and B is a fuzzy set A ∪ B such that: 

MA ∪ MB(x) = max [MA(x), MB(x)] for every x ∈ X, and it is corresponding to OR 

− Complement the membership grades range in closed intervals [0, 1]. The 

complement of a fuzzy set, concerning the universal set, is denoted by: 

MA̅(x)  = 1 - MA(x) for every x ∈ X 

Example: To illustrate the previous concepts listed below (which is about 

temperature): 

Temperature Cold Warm Hot Very Hot 
-10 1 0 0 0 
0 1 0 0 0 

10 0.50 0.20 0 0 
20 0.10 0.65 0 0 
30 0 0.95 0.10 0 
40 0 1 0.25 0.10 
50 0 1 0.75 0.50 
60 0 1 1 0.95 
70 0 1 1 1 
80 0 1 1 1 

Union 

Cold ∪ Hot = [1//-10 + 1//0 + 0.50//10 + 0.10//20 + 0.10//30 + 0.25//40 + 0.75//50 

+ 1//60 + 1//70 + 1//80] 

Warm ∪ Hot = [0//-10 + 0//0 + 0.20//10 + 0.65//20 + 0.95//30 + 1//40 + 1//50 + 

1//60 + 1//70 + 1//80] 

Intersection 

Cold ∩ Warm = [0//-10 + 0//0 + 0.20//10 + 0.10//20 + 0//30 + 0//40 + 0//50 + 

0//60 + 0//70 + 0//80] 
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Complement 

Not Cold = [0//-10 + 0//0 + 0.50//10 + 0.9//20 + 1//30 + 1//40 + 1//50 + 1//60 + 

1//70 + 1//80] 

Not Warm = [1//-10 + 1//0 + 0.80//10 + 0.35//20 + 0.05//30 + 0//40 + 0//50 + 

0//60 + 0//70 + 0//80] 

3.4. Compositional Rule of Inference 

Compositional Rule of Inference (CRI) is the first and principal approximate 

reasoning approach. It allows inferring a result from a function which contains two 

operators: a t-norm and an implication. Triangular norm (t-norm for short) is a binary 

function which is used as a conjunction function in fuzzy systems. Fuzzy implication 

is a function that allows evaluating a rule from the values of its premise and 

conclusion. 

According to some authors, some combinations of t-norms and implications do not 

always fit human intuitions. For that and to ensure an appropriate inference result, it 

is necessary to study all the possible combinations and their compatibility. This will 

establish a general guide for fuzzy inference systems developers when choosing its 

parameters. 

CRI was proposed by Zadeh, to give approximate reasoning and to determine new 

deductions in a fuzzy inference system. 

To extend the fuzzy sets considered in the CRI, linguistic modifiers can be used. A 

linguistic modifier is a tool to give a new characterization to a fuzzy set and to modify 

its meaning which is not far from the original. 

3.5. Fuzzification and Defuzzification 

3.5.1. Fuzzification 

Fuzzification is the process of making a crisp quantity fuzzy. We would do this by simply 

recognizing that many of the quantities that we consider to be crisp and deterministic are not 
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deterministic at all: they carry considerable uncertainty. If the form of uncertainty happens 

to arise because of imprecision, ambiguity, or vagueness, then the variable is probably fuzzy 

and can be represented by a membership function. In the real-world hardware (digital 

voltmeter) generates crisp data, but this data is subject to experimental error. The 

information shown in Fig. 3.1 shows one possible range of errors for a typical voltage reading 

and the associated membership function which might represent such imprecision. The 

representation of imprecise data as fuzzy sets is a useful, but not mandatory step when that 

data is used in fuzzy systems. This idea is shown in Fig. 3.1, where we consider the data as a 

crisp reading, Fig. 3.1a, or when we consider the data as a fuzzy reading, as shown in Fig. 3.1b. 

In Fig. 3.1a we might want to compare how a crisp voltage reading might compare to a fuzzy 

set, say "low voltage". In the figure we see that the crisp reading intersects the fuzzy set "low 

voltage" at a membership of 0.3; i.e., the fuzzy set and the reading can be said to agree at a 

membership value of 0.3. 

In Fig. 3.1b the intersection of the fuzzy set "medium voltage" and a fuzzified voltage reading 

occurs at a membership of 0.4. We can see in Fig. 3.1b that the set intersection of the two fuzzy 

sets is a small triangle, whose largest membership occurs at the membership value of 0.4. 

 

Fig. 3.1: Two comparisons of fuzzy sets and (a) crisp or (b) fuzzy readings 
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3.5.2. Defuzzification 

Even though the bulk of the information we assimilate every day is fuzzy, most of the 

actions or decisions implemented by humans or machines are crisp or binary. The 

decisions we make are binary, the hardware we use is binary, and certainly, the 

computers we use are based on binary digital instructions. For example, in deciding 

to develop a new biomedical product the eventual decision is to go forward with 

development or not; the fuzzy choice to "partially go forward" might be acceptable in 

the planning stages, but eventually, funds are released for development or they are 

not released. In giving instructions to a digital thermometer, it is not possible to 

increase the temperature "slightly"; a machine does not understand the natural 

language of a human. We have to increase the temperature by 3.4 degrees, for 

example, a crisp number. An electrical circuit typically is either on or off, not partially 

on. 

Section 3.5.1 of this chapter illustrates procedures to "fuzzify" the mathematical and 

physical principles we have so long considered to be deterministic. But, as mentioned, 

there will be a need in various applications and medical scenarios to "denazify" the 

fuzzy results we generate through a fuzzy set analysis. In other words, we may 

eventually find a need to convert the fuzzy results to crisp results. For example, in 

classification we may want to transform a fuzzy partition matrix into a crisp partition; 

in pattern recognition, we may want to compare a fuzzy pattern to a crisp pattern; in 

blood pressure control during anaesthesia, we may want to give a single-valued input 

to an intravenous drug device instead of a fuzzy input command. This process of 

"defuzzification" has the result of reducing a fuzzy set to a crisp single-valued 

quantity, or a crisp set, converting a fuzzy matrix to a crisp matrix, or making a fuzzy 

number crisp. 

Mathematically, the defuzzification of a fuzzy set is the process of "rounding it off" 

from its location in the unit hypercube to the nearest (in a geometric sense) vertex. 


