

Ministry of Higher Education and Scientific Research - Iraq University of Technology Department of Computer Science Information System Branch

MODULE DESCRIPTOR FORM نموذج وصف المادة الدر اسية

Module Information معلومات المادة الدر اسية							
Module Title	e NUMERICAL ANALYSIS				Module Delivery		
Module Type	BASIC						
Module Code	NUAN213				-Theory Lecture -Lab -PracticalSeminar		
ECTS Credits	5						
SWL (hr/sem)	125	125					
Module Level		2	Semester of Delivery		of Delivery	3	
Administering Department		Department of Computer Sciences	College Computer Sci		Computer Science	ces	
Module Leader	Assist.lec. ma	nar musab	e-mail		Manar.m.alani@uotechnology.ed		
Module Leader's Acad. Title		Assist. lec.	Module Leader's Qualification		ader's on	M.SC.	
Module Tutor None		e- mail	No	one			
Peer Reviewer Name			e- mail				
Review Committee Approval			Versior Numbe	ı r			

Relation With Other Modules العلاقة مع المواد الدر اسية الأخرى				
Prerequisite module	MATH112	Semester	1	
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents					
Module Aims أهداف المادة الدر اسية	 Explain and apply various numerical methods for mathematical problem-solving. Implement numerical algorithms using MATLAB for solving mathematical problems. Analyze and quantify errors associated with numerical methods. Apply numerical techniques to solve real-world engineering and scientific problems. 				
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 Understand and explain fundamental numerical methods. Implement numerical algorithms using MATLAB. Analyze and control errors in numerical computations. Apply numerical techniques to solve engineering and scientific problems. Communicate results of numerical analyses clearly and effectively. 				
Indicative Contents المحتويات الإرشادية	 Introduction to Numerical Methods Error Analysis and Computer Arithmetic Solutions of Equations in One Variable Interpolation and Polynomial Approximation Numerical Differentiation and Integration Numerical Solution of Initial Value Problems for Ordinary Differential Equations Direct Methods for Solving Linear Systems Iterative Techniques in Matrix Algebra Approximation Theory and Least Squares Approximation Approximation of Eigenvalues and Eigenvectors Numerical Solution of Boundary Value Problems for Ordinary Differential Equations Finite Difference Methods for Boundary Value Problems Numerical Solution of Partial Differential Equations Introduction to MATLAB for Numerical Analysis These contents typically cover a wide range of numerical methods and algorithms 				
Learning and Teaching Strategies استر اتيجيات التعلم والتعليم					
Strategies	 The learning outcomes for a Numerical Analysis course include: Understanding and implementing numerical methods for solving mathematical problems, such as root finding, interpolation, and approximation of functions. Analyzing the properties of numerical algorithms including convergence, stability, and accuracy. Applying numerical techniques to solve practical engineering and scientific problems, such as differential equations, optimization, and linear algebraic equations. Developing proficiency in programming and utilizing computational tools like MATLAB, Python, or numerical solutions. 				

	 5. Critically evaluating the results obtained from numerical including error analysis and comparing with analytical where possible. 6. Exploring advanced topics in numerical analysis, such element methods, numerical integration, and solving o problems. 			numerical methods, analytical solutions lysis, such as finite l solving eigenvalue	
Student Workload (SWL) الحمل الدر اسي للطالب					
Structured SWL (h/sem) الحمل الدر اسي المنتظم للطالب خلال الفصل		78	Structured SWL (h/w) الحمل الدر اسي المنتظم للطالب أسبو عيا	5	
Unstructured SWL (h/se الدراسي غير المنتظم للطالب خلال الفصل	m) الحمل	47	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل		125			

Module Evaluation تقييم المادة الدر اسية						
	Time/Nu mberWeight (Marks)Week DueRelevant Learning Outcome					
Formative assessment	Quizzes	1	10% (10)	5	LO # 1 and 3	
	Practical Seminar(Lab).	2	15% (15)	Continuous	LO # 2 , 4 and 5	
Summative assessment	Midterm Exam	1 hr	15% (15)	14	LO # 1 to 5	
	Final Exam	3hr	60% (60)	16	All	
Total assessment			100% (100 Marks)			

Delivery Plan (Weekly Syllabus) المنهاج الاسبوعي النظري				
	Material Covered			
Week 1	Introduction to numerical analysis+ Solution of non-linear equations, Newton Raphson method for approximating, Lagrange approximation			
Week 2	Numerical differentiation and numerical integration, The Solutions of Integral equations, Trapezoidal method Simpsons method			
Week 3	Simpsons method(3/8)			
Week 4	numarical differentiation, Euler method, modified Euler method			
Week 5	Rung Kutta method, Rung Kutta-merson method			
Week 6	Introduction and solution of Partial differential equations			

Week 7	Formation of Partial differential equations And solution of separable first order
Week 8	Types of partial differential equations, wave equation, heat equation
Week 9	Solution sys of linear equation, Elimination and iterative methods
Week 10	Solution sys of linear eq by Cramer's rule, solve by inverse matri
Week 11	Method of least square
Week 12	introduction to Fourier series
Week 13	Fourier series for odd and even functions, Half range Fourier series
Week 14	Change of interval Fourier series
Week 15	Mid Term Exam and Preparatory Week
Week 16	Final Exam

٦

Delivery Plan (Weekly Lab. Syllabus) المنهاج الاسبو عي للمختبر				
Delivery Plan (Weekly Lab. Syllabus)	Material Covered			
Week 1	Introduction to MATLAB for numerical computations			
Week 2	Solving linear systems of equations iin matlab			
Week 3	Interpolation and curve fitting			
Week 4	Numerical differentiation and integration			
Week 5	Solution of nonlinear equations			
Week 6	Numerical solutions of ordinary differential equations (ODEs)			
Week 7	Finite difference methods			
Week 8	Numerical solutions of partial differential equations (PDEs)			
Week 9	Optimization techniques Error Analysis in Numerical Computations			
Week 10	MATLAB programming for numerical analysis			
Week 11	Simple introduction about using matlab program			
Week 12	Vectors in matlab prog.			
Week 13	Matrix in matlab prog.			
Week 14	Application of numerical analysis in matlab			
Week 15	Final Exam			

Learning and Teaching Resources مصادر التعلم والتدريس				
	Text	Available in the Library?		
Required Texts	1. Thomas, G. Calculus and Analytic Geometry, Fifth Edition, Addition Wesly, 1999	No		
Recommended Texts	1. matlab programming language.	No		
Websites	Any sources take in lectures and examples			

APPENDIX:

GRADING SCHEME مخطط الدرجات						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success Group (50 - 100)	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
	C - Good	جنز	70 - 79	Sound work with notable errors		
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	مقبول بقرار	(45-49)	More work required but credit awarded		
(0 - 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		
Note:						

NB Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.