

## Ministry of Higher Education and Scientific Research - Iraq University of Technology-Iraq Department of Computer Science



## MODULE DESCRIPTOR FORM نموذج وصف المادة الدراسية

| Module Information<br>معلومات المادة الدراسية |               |                 |                                  |                   |                  |  |
|-----------------------------------------------|---------------|-----------------|----------------------------------|-------------------|------------------|--|
| Module Title                                  | CODING TE     | CHNIQUES        |                                  | Mod               | Module Delivery  |  |
| Module Type                                   | Core          |                 |                                  |                   |                  |  |
| Module Code                                   | COTE124       |                 |                                  | Theory<br>Lecture |                  |  |
| ECTS Credits                                  | 4             |                 |                                  |                   | Tutorial         |  |
| SWL (hr/sem)                                  | 100           |                 |                                  |                   |                  |  |
| Module Level                                  |               | 1               | Semester of Delivery             |                   | 2                |  |
| Administering D                               | epartment     | Type Dept. Code | College                          | Туре Со           | llege Code       |  |
| Module Leader                                 | Module Leader |                 | e-mail                           |                   |                  |  |
| Module Leader's Acad. Title                   |               | Professor       | Module Leader's<br>Qualification |                   | Ph.D.            |  |
| Module Tutor Nuha jameel i                    |               | brahim          | e-mail Nuha.j.ibrahim@uoteo      |                   | echnology.edu.iq |  |
| Peer Reviewer Name                            |               |                 | e-mail                           |                   |                  |  |
| Review Committee Approval                     |               | 01/06/2023      | Version N                        | umber             | 1.0              |  |

| Relation With Other Modules<br>العلاقة مع المواد الدراسية الأخرى |  |  |  |  |  |
|------------------------------------------------------------------|--|--|--|--|--|
| Prerequisite moduleInformation TheorySemester1                   |  |  |  |  |  |
| Co-requisites module None Semester                               |  |  |  |  |  |

| Module Aims, Learning Outcomes and Indicative Contents |                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                        | أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                                                        | some common objectives that coding theory modules typically aim to achieve:  1. The course aims to teach students the properties of codes and their respective fitness for specific applications.  2. Developing the programming skills and knowledge of students in codes are used                                                                                                                                              |  |  |  |  |
|                                                        | for data compression, cryptography, error-correction, and networking.  3. Understanding Error Correction: Coding theory aims to provide a solid understanding of error correction techniques in communication systems.  4. Code Decoding: Coding theory aims to provide techniques for decoding received codewords to recover the original information. Students learn about decoding                                            |  |  |  |  |
| Module Aims<br>أهداف المادة الدر اسية                  | algorithms.  5. Performance Analysis: The module aims to analyze the performance of error-correcting codes. Students learn how to calculate and evaluate metrics like error probability, bit error rate, and throughput. They also study trade-offs between coding complexity, code rate, and error correction capability.                                                                                                       |  |  |  |  |
|                                                        | 6. Applications: Coding theory modules often aim to demonstrate the practical applications of coding theory in various fields. This may include applications in telecommunications, data compression, data storage, cryptography, and network coding. Students learn how coding theory contributes to improving data reliability, security, and efficiency in real-world scenarios.                                              |  |  |  |  |
|                                                        | 7. Mathematical Foundations: Coding theory relies on mathematical concepts and tools. The module aims to provide a solid mathematical foundation for understanding and analyzing coding theory. This includes learning relevant mathematical techniques, proofs, and theorems.                                                                                                                                                   |  |  |  |  |
|                                                        | 8. Problem Solving and Implementation: Coding theory modules often include practical assignments or projects to enhance problem-solving skills and implementation abilities. Students may be tasked with designing and implementing error-correcting codes, simulating their performance, and analyzing the results.                                                                                                             |  |  |  |  |
|                                                        | After studying the coding course, students will be able to:                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Module Learning Outcomes مخرجات التعلم للمادة الدراسية | <ol> <li>Explain concept of Dependent &amp; Independent Source, measure of information, Entropy, Rate of Information and Order of a source</li> <li>Represent the information using Shannon Encoding, Shannon Fano, binary Huffman Encoding, ternary Huffman Encoding Algorithms</li> <li>Determine a codeword comprising of the check bits computed using Linear Block codes, cyclic codes &amp; convolutional codes</li> </ol> |  |  |  |  |
|                                                        | 4. Understanding of basic concepts: Students should develop a solid understanding of fundamental concepts in coding theory, such as error detection and correction, coding schemes, and encoding and decoding algorithms.                                                                                                                                                                                                        |  |  |  |  |

Students should be able to analyze and apply different error detection and correction codes, including parity codes, Hamming codes. 6. Proficiency in coding theory algorithms: Students should develop the skills to implement encoding and decoding algorithms for different coding schemes. They should be able to apply these algorithms to detect and correct errors in data transmission or storage systems. 7. Application of coding theory in practical scenarios: Students should be able to apply coding theory principles to real-world scenarios, such as data communication channels, wireless networks, storage systems, and error-prone environments. They should understand how coding theory techniques can improve the reliability and efficiency of these systems. 8. Critical thinking and problem-solving skills: Students should develop critical thinking skills to analyze complex problems in coding theory and propose solutions. They should be able to evaluate the performance of different coding schemes, identify potential issues, and propose improvements or optimizations. some indicative contents that you might find in a coding theory module: 1. Introduction to coding theory: Basic concepts and definitions History and applications of coding theory Importance of error detection and correction 2. Coding techniques Fixed length coding Variable length coding 3. Linear codes: Definition and properties of linear codes **Indicative Contents** المحتويات الإرشادية Generator and parity-check matrices Syndrome decoding Hamming codes Reed-Solomon codes 4. Cyclic codes: • Definition and properties of cyclic codes Generator and parity-check polynomials Syndrome decoding for cyclic codes BCH codes 5. Error detection and correction techniques:

Hamming distance and error detection/correction capabilities Minimum distance of a code 6. Convolutional codes: Basic structure and properties of convolutional codes Encoding and decoding using the Viterbi algorithm Maximum likelihood decoding 7. Coding theory applications: Channel coding and error control in communication systems Error correction in storage systems Error detection and correction in digital transmission **Learning and Teaching Strategies** استراتيجيات التعلم والتعليم some effective strategies: 1. Lecture-Based Instruction: Conducting traditional lectures can be a valuable strategy for introducing coding theory concepts and theories. Provide clear explanations, examples, and visual aids to help students grasp the fundamental concepts. 2. Active Learning: Incorporate active learning strategies to engage students in the learning process. This can include group discussions, problem-solving activities, and hands-on coding exercises. Encourage students to participate actively, ask questions, and collaborate with their peers. 3. Practical Coding Assignments: Assign coding projects or assignments that allow students to apply the coding theory principles they have learned. This hands-on experience helps reinforce their understanding and develops their coding skills. **Strategies** Provide feedback and guidance throughout the process. 4. Real-World Applications: Showcasing real-world applications of coding theory can enhance students' motivation and understanding. Discuss how coding theory is used in error correction, data compression, cryptography, and other relevant fields. Explore case studies or examples that demonstrate the practical applications of coding theory. Online Resources and Interactive Tools: Utilize online resources and interactive tools to supplement classroom instruction. Point students to coding theory tutorials, simulations, and coding platforms where they can practice coding techniques and experiment with different algorithms. 6. Collaborative Learning: Encourage collaborative learning by assigning group projects or problem-solving tasks. This fosters teamwork and communication skills

while allowing students to explore coding theory concepts together.

7. Assessment and Feedback: Provide regular assessments, such as quizzes or exams, to gauge students' understanding of coding theory. Offer constructive feedback to help students identify areas for improvement. Consider incorporating both individual and group assessments to assess both individual comprehension and teamwork skills.

| Student Workload (SWL)<br>الحمل الدر اسي للطالب                          |     |                                                                 |   |  |  |
|--------------------------------------------------------------------------|-----|-----------------------------------------------------------------|---|--|--|
| Structured SWL (h/sem)         63         Structured SWL (h/w)         4 |     |                                                                 |   |  |  |
| Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل     | 37  | Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا | 3 |  |  |
| Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل                  | 100 |                                                                 |   |  |  |

| Module Evaluation<br>تقييم المادة الدر اسية |                                                                |     |                  |          |                    |  |  |
|---------------------------------------------|----------------------------------------------------------------|-----|------------------|----------|--------------------|--|--|
|                                             | Time/Nu mber Weight (Marks) Week Due Outcome Relevant Learning |     |                  |          |                    |  |  |
|                                             | Quizzes                                                        | 2   | 15% (15)         | 5, 10,12 | LO #1, 2, 7 and 8  |  |  |
| Formative                                   | Assignments                                                    | 2   | 10% (10)         | 2, 11    | LO # 3, 4, 6 and 7 |  |  |
| assessment                                  | Projects / Lab.                                                |     |                  |          |                    |  |  |
|                                             | Report                                                         | 1   | 10% (10)         | 13       | LO # 5, 6 and 8    |  |  |
| Summative                                   | Midterm Exam                                                   | 2hr | 15% (15)         | 7        | LO # 1-7           |  |  |
| assessment                                  | Final Exam                                                     | 2hr | 50% (50)         | 16       | All                |  |  |
| Total assessn                               | nent                                                           |     | 100% (100 Marks) |          |                    |  |  |

| Delivery Plan (Weekly Syllabus)<br>المنهاج الاسبوعي النظري |                                    |  |  |  |
|------------------------------------------------------------|------------------------------------|--|--|--|
|                                                            | Material Covered                   |  |  |  |
| Week 1                                                     | Principles of information theory.  |  |  |  |
| Week 2                                                     | Introduction to coding techniques. |  |  |  |
| Week 3                                                     | Entropy, Average length of a code. |  |  |  |
| Week 4                                                     | code efficiently, code redundancy. |  |  |  |
| Week 5                                                     | Fixed length coding.               |  |  |  |

| Week 6  | Variable length coding, Shannon-Fano coding algorithm.                                                                            |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Week 7  | Mid Exam                                                                                                                          |  |  |  |
| Week 8  | Lempel-Ziv coding algorithm.                                                                                                      |  |  |  |
| Week 9  | Arithmetic coding algorithm                                                                                                       |  |  |  |
| Week 10 | Huffman coding  Huffman Binary coding.  Huffman Ternary coding.                                                                   |  |  |  |
| Week 11 | Extension of a source                                                                                                             |  |  |  |
| Week 12 | Error Control Types of errors, Single-bit Error, Burst Error                                                                      |  |  |  |
| Week 13 | Hamming code.  • Error detection  • Error Correction                                                                              |  |  |  |
| Week 14 | Error detection:  One-dimension Parity Check Two-dimension Parity Check Checksum Cyclic Redundancy Checks (CRC), CRC performance. |  |  |  |
| Week 15 | Single-bit error correction algorithm                                                                                             |  |  |  |
| Week 16 | Final Exam                                                                                                                        |  |  |  |

| Delivery Plan (Weekly Lab. Syllabus)<br>المنهاج الاسبوعي للمختبر |                  |  |  |  |
|------------------------------------------------------------------|------------------|--|--|--|
|                                                                  | Material Covered |  |  |  |
| Week 1                                                           |                  |  |  |  |
| Week 2                                                           |                  |  |  |  |
| Week 3                                                           |                  |  |  |  |
| Week 4                                                           |                  |  |  |  |
| Week 5                                                           |                  |  |  |  |
| Week 6                                                           |                  |  |  |  |
| Week 7                                                           |                  |  |  |  |

| Learning and Teaching Resources<br>مصادر التعلم والتدريس |                                                                                                                                               |                              |  |  |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|
|                                                          | Text                                                                                                                                          | Available in the<br>Library? |  |  |
| Required Texts                                           | Coding and Information Theory, Richard Wesley<br>Hamming<br>Prentice-Hall, 1986                                                               | No                           |  |  |
| Recommended<br>Texts                                     | Information Theory and Coding, Dr. J. S. Chitode<br>Technical Publications, Jan 1, 2021<br>An introduction to Information theory by fazlollah | No                           |  |  |
| Websites                                                 |                                                                                                                                               |                              |  |  |

## **APPENDIX:**

| GRADING SCHEME<br>مخطط الدرجات |                         |             |           |                                       |  |  |
|--------------------------------|-------------------------|-------------|-----------|---------------------------------------|--|--|
| Group                          | Grade                   | التقدير     | Marks (%) | Definition                            |  |  |
|                                | A - Excellent           | امتياز      | 90 - 100  | Outstanding Performance               |  |  |
| Success Group<br>(50 - 100)    | <b>B</b> - Very Good    | جيد جدا     | 80 - 89   | Above average with some errors        |  |  |
|                                | C - Good                | جيد         | 70 - 79   | Sound work with notable errors        |  |  |
|                                | <b>D</b> - Satisfactory | متوسط       | 60 - 69   | Fair but with major shortcomings      |  |  |
|                                | E - Sufficient          | مقبول       | 50 - 59   | Work meets minimum criteria           |  |  |
| Fail Group                     | FX – Fail               | مقبول بقرار | (45-49)   | More work required but credit awarded |  |  |
| (0-49)                         | F – Fail                | راسب        | (0-44)    | Considerable amount of work required  |  |  |
|                                |                         |             |           |                                       |  |  |
| Note:                          |                         |             |           | <u> </u>                              |  |  |

NB Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

