

Ministry of Higher Education and Scientific Research - Iraq University of Technology Computer Science Department Software Branch

MODULE DESCRIPTOR FORM نموذج وصف المادة الدر اسية

Module Information معلومات المادة الدر اسية						
Module Title	ANALYSIS AND DESIGN OF ALGORITHMS		Module Deliver	Module Delivery		
Module Type	Core					
Module Code	ANDA215			Theory	Theory Lecture	
ECTS Credits	5			-		
SWL (hr/sem)	125					
Module Level		2	Semester of Delivery		3	
Administering D	epartment	Type Dept. Code	College	Type College Code		
Module Leader	EMAN SHAKI	R MAHMOOD	e-mail	110036@uotechno	logy.edu.iq	
Module Leader's Acad. Title		Assit. Lecturer	Module Leader's QualificationMsc.		Msc.	
Module Tutor None			e-mail	None		
Peer Reviewer Name			e-mail			
Review Committee Approval			Version N	umber 1.0		

Relation With Other Modules العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	Prerequisite module None Semester			
Co-requisites module None Semester				

Module Aims, Learning Outcomes and Indicative Contents					
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية				
Module Aims أهداف المادة الدر اسية	 Enable the student to be able to identify, the best way to design and Analyze an algorithm. Study the basic types of algorithms to solve a group of known problems with their Practical application. Enable the student to know the Basic methods of how to ana- lyze complexity of algorithms. 				
Module Learning Outcomes مخرجات التعلم للمادة الدر اسية	 Enable the student to Know and understand the theoretical Principles of algorithms and calculate their complexity. Enable the student to understand the correct analysis Methods for the complexity of algorithms. Enable the student to handle cases of high complexity to achieve optimization, Motivate the student to practically apply the algorithm and use it to solve a set of problems. 				
Indicative Contents المحتويات الإر شادية	Indicative content includes the following. - Concepts and properties of algorithms - Differences among best, expected, and worst case behaviors of an algorithm - Computing by calculating how programs are evaluated. - Rule of algorithms in problem solving process - Problem solving strategies, Iteration and recursive traversal of data struc- ture, Modularity - implementation of algorithms - Algorithms strategy - 4-color mapping - Traveling Salesman - Shortest Path - Brute force algorithm - Greedy algorithm - Divide and conquer - Recursive backtracking - Dynamic programming - Network flow - Branch and bound - heuristics - reduction : transform and conquer - Approximation Algorithms (Euclidian tour, Vertex cover, Knapsack).				

 algorithms efficiency (e.g. operation count). fundamental design concepts and principals abstraction decomposition encapsulation 					
	Learning and Teaching Strategies استر اتيجيات التعلم و التعليم				
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.				

Student Workload (SWL) الحمل الدر اسي للطالب				
Structured SWL (h/sem) 78 Structured SWL (h/w) 5.2				
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	47	Unstructured SWL (h/w) الحمل الدر اسي غير المنتظم للطالب أسبو عيا	3.1	
Total SWL (h/sem) الحمل الدر اسي الكلي للطالب خلال الفصل	125			

Module Evaluation تقييم المادة الدر اسية					
	Time/NumberWeight (Marks)Week DueRelevant Learning Outcome				
	Quizzes	2	5% (5)	5, 10	LO #1, 2,3 and 4
Formative	Assignments	2	5% (5)	2, 12	LO #1, 2,3 and 4
assessment					
Summative	Midterm Exam	2 hr	20% (20)	7	LO #1, 2,3 and 4
assessment	Final Exam	2hr	70% (70)	16	All
Total assessment			100% (100 Marks)		

	Delivery Plan (Weekly Syllabus) المنهاج الاسبوعي النظري			
	Material Covered			
Week 1	Concepts and properties of algorithms			
Week 2	Differences among best ,expected, and worst case behaviours of an algorithm			
Week 3	 Computing by calculating how programs are evaluated. Rule of algorithms in problem solving process 			
Week 4	Problem solving strategies •Iteration and recursive traversal of data structure •Modularity			
Week 5	 implementation of algorithms Algorithms strategy 4-color mapping 			
Week 6	Traveling Salesman Shortest Path			
Week 7	 Brute force algorithm Greedy algorithm 			
Week 8	 Divide and conquer Recursive backtracking 			
Week 9	Oynamic programming Network flow			
Week 10	Branch and bound heuristics			
Week 11	reduction : transform and conquer			
Week 12	•Approximation Algorithms (Euclidian tour, Vertex cover, Knapsack).			
Week 13	algorithms efficiency (e.g. operation count).			
Week 14	fundamental design concepts and principals abstraction 			

	 decomposition encapsulation
Week 15	Final exam

	Delivery Plan (Weekly Lab. Syllabus) المنهاج الاسبوعي للمختبر			
	Material Covered			
Week 1	What are data type in python			
Week 2	pattern in python			
Week 3	Solve any number pattern			
Week 4	Solve any number pattern			
Week 5	Solve any character pattern			
Week 6	Solve any character pattern			
Week 7	Python lambda function			
Week 8	Python lambda function			
Week 9	recursive function			
Week 10	recursive function			
Week 11	Greedy algorithm			
Week 12	Greedy algorithm			
Week 13	Divide and conquer algorithm			
Week 14	Divide and conquer algorithm			
Week 15	Final Exam			

Learning and Teaching Resources مصادر التعلم والتدريس			
Text Available in the Library?			
Required Texts	 1-Algorithm Design" by Jon Kleinberg & Eva Tardos, Addison Wesley (Pearson Inc.),2008 2-DESIGN AND ANALYSIS OF ALGORITHMS,Fall 2008 	No	

	1.	
Recommended Texts		
Websites		

APPENDIX:

GRADING SCHEME مخطط الدر جات					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
a a	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors	
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	مقبول بقرار	(45-49)	More work required but credit awarded	
(0-49)	F – Fail	راسب	(0-44)	Considerable amount of work required	
Note:					

NB Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.