
 

 
 
 
 

University of Technology 
 الجامعة التكنولوجية 

 
Computer Science Department 

 قسم علوم الحاسوب
 

 المهيكلة  البرمجة  
 

   م. ياسر منذر أ.م.د بشار سعدون ،
 ، م. رشا اسماعيل م.د انمار علي 

 
 
 
 
 
 
 
 
 
 
 

  

cs.uotechnology.edu.iq 
 



LECTURE 11 

1. fUV\-CttOV\-$: 
A function is a set of statements designed to accomplish a particular 

task. Experience has shown that the best way to develop and maintain a 

large program is to construct it from smaller pieces or (modules). Modules in 

C++ are called functions. 

Functions are very useful to read, write, debug and modify complex 

programs. They can also be easily incorporated in the main program. In C++, 

the main() itself is a function that means the main function is invoking the 

other functions to perform various tasks. The main advantages of using a 

function are: 

❖ Easy to write a correct small function. 

❖ Easy to read, write, and debug a function. 

❖ Easier to maintain or modify such a function. 

❖ Small functions tend to be self documenting and highly readable. 

❖ It can be called any number of times in any place with different 

parameters. 

2. DeftV\-[1/\,g ct fUl/\,Ct[QV\-
A function definition has a name, parentheses pair containing zero or 

more parameters and a body. For each parameter, there should be a 

corresponding declaration that occurs before the body. Any parameter not 

declared is taken to be an integer by default. The general format of the 

function definition is : 



General Form of Function: 

return-type function-name ( parameters-list) 
{ 

(body of function) 
statementl ; 
statement2 ; 

statement-n; 
(retum something) 

The type of the function may be int, float, char, etc. It may be declared 

as type (void), which informs the compiler not to the calling program. For 

example: 

Void function_name (---) 

Int function_name (---) 

Any variable declared in the body of a function is said to be local to that 

function. Other variables which are not declared either as arguments or in the 

function body are considered "global" to the function and must be defined 

externally. For example 

Void square (int a, int b) --+ 

Float output (void) --+ 

Example 1: 

void printmessage ( 
{ 

a,b are the formal arguments. 

function without formal arguments 

Example 2: 

int max (int a, int b) 
{ 

cout << "University of Technology"; int c; 
} 

void main ( 
{ 

prin tmessage ( ) ; 
} 

if ( a > b) c = a; 
else c = b; 

return (c); 

void main ( 
{ 

cout << max (5, 6); 



3. R.etUYV\, StetteVtA..eV\,t: 
The keyword return is used to terminate function and return a value to 

its caller. The return statement may also be used to exit a function without 

returning a value. The return statement may or may not include an expression. 

Its general syntax is: 

Return; 

Return (expression); 

The return statements terminate the execution of the function and pass the 

control back to the calling environment. 

Exam le 1 

~ Write C++ program to calculate the squared value of a number 
passed from main function. Use this function in a program to calculate 
the squares of numbers from 1 to 10: 

#i nclude<iostrea m.h> 

int square ( int y) 
{ 

} 

int z; 
z = y * y; 
return ( z ); 

void main() 
{ 

int x; 
for ( x=l; x <= 10; x++) 

cout << square ( x ) << end I; 
} 



Example 2 

~ Write C++ program using function to calculate the average of two 
numbers entered by the user in the main program: 

#i nclude<iostrea m.h> 

float aver (int xl, int x2) 
{ 

float z; 
z = ( xl + x2) / 2.0; 
return ( z); 

} 

void main() 
{ 

float x; 
int num1,num2; 
cout << "Enter 2 positive number \n"; 
cin >> numl >> num2; 
x = aver (numl, num2); 
cout << x; 

} 

Exam le 3 

~ Write C++ program, using function, to find the summation of the 

following series: 

#i nclude<iostrea m.h> 
int summation ( int x) 
{ 

int i = 1, sum = O; 
while ( i <= x) 
{ 

n 
[ j 2 : 12 + 22 + 32 + I I I + n2 
i= l 

sum+= i * i; 
i++; 

} 
return (sum); 

} 

void main ( ) 



{ 

} 

int n ,s; 
cout << "enter positive number"; 
cin >> n; 
s = summation ( n ); 
cout << "sum is:"<< s << endl; 

Example 4 

~ Write a function to find the largest integer among three integers 

entered by the user in the main function. 

#include <iostream.h> 
int max(int y1, int y2, int y3) 
{ 

} 

int big; 
big=y1; 
if (y2>big) big=y2; 
if (y3>big) big=y3; 
return (big); 

void main() 
{ 

int largest,x1 ,x2,x3; 
cout<<"Enter 3 integer numbers:"; 
ci n>>x1 >>x2>>x3; 
largest=max(x1 ,x2,x3); 
cout<<largest; 

} 

Exam le 5 

~ Write program in C++, using function, presentation for logic gates 
(AND, OR, NAN D, X-OR, NOT) by in A,B enter from user. 

#i nclude<iostrea m.h> 
void ANDF(int,int); 
void ORF(int,int); 
void XORF(int,int); 
void NOTF(int); 

void main() 
{ char s;int a,b; 
cout<<"Enter the value A,B :"; 
cin>>a>>b; 



cout<<"Enter the seled value \ n"; 
cout<<"\ ta--(AND gate)\ n \to--(OR gate)\ n \tx--(X-OR)\ n \tn--(NOT 
gate)\n\te--(<<EXIT>> :"; 
cin>>s; 
switch(s) 

} 

} 

{ 
case 'a':ANDF(a,b);break; 
case 'o':ORF(a,b);break; 
case 'x':XO RF( a,b );break; 
case 'n':NOTF(a);cout<<" ";NOTF(b);break; 
case 'e':break; 
deafult:cout<<":bad choose"; 

void ANDF(int a,int b) 
{ 
cout<<(a&&b); 
} 
void ORF(int a,int b) 
{ 
cout<<(a I I b); 
} 
void XO RF(int a,int b) 
{ 
cout<<(aAb); 
} 
void NOTF(int a) 
{ 
cout<<(!a); 
} 

4. 'PCISSLl/\,g PClrvt Vvteters: 
There are two main methods for passing parameters to a program: 

1) passing by value, and 2) passing by reference. 

When parameters are passed by value, a copy of the parameters 

value is taken from the calling function and passed to the called function. The 

original variables inside the calling function, regardless of changes made by 



the function to it are parameters will not change. All the pervious examples 

used this method. 

When parameters are passed by reference their addresses are copied 

to the corresponding arguments in the called function, instead of copying 

their values. Thus pointers are usually used in function arguments list to receive 

passed references. 

This method is more efficient and provides higher execution speed than the 

call by value method, but call by value is more direct and easy to use. 

Example 6: 

~ The following program illustrates passing parameter by reference. 

#include <iostream.h> 

void swap(int *a,int *b) 
{ 

} 

intt; 
t=*a; 
*a=*b; 
*b=t; 

void main( ) 
{ 

int x=10; 
int y=15; 

cout<<"x before swapping is:"<<x<<"\n"; 
cout<<"y before swapping is:"<<y<<"\n"; 

swap(&x,&y); 

cout<<"x after swapping is:"<<x<<"\ n"; 
cout<<"y after swapping is:"<<y<<"\n"; } 



LECTURE 12 

1. Tr:1:pes of fuV\,e,tLoV\-s: 
The user defined functions may be classified in the following three ways 

based on the formal arguments passed and the usage of the return 

statement, and based on that, there are three of user defined functions: 

1. A function is invoked without passing any formal argument from the 

calling portion of a program and also the function does not return back 

any value to the called function. 

2. A function is invoked with formal arguments from the calling portion of 

a program but the function does not return back any value to the 

calling portion. 

3. A function is invoked with formal arguments from the calling portion of 

a program which return back a value to the calling environment. 

Here are two programs that find the square of the number using and not 

using a return statement. 

Example 1: 

# include <iostream.h> 
Void main() 
{ 
Void square (int); 
Int max; 
Cout<<"Enter a value for n ?\n"; 
Cin>>max; 
For (int i=O;i<= max-1 ;++i) 
Square (i) 
} 
Void square(int n) 
{ 
Float value; 
Value=n*n; 
Cout<< "i= "<< n<< "square= "<<value<<endl; 
} 

# include <iostream.h> 
Void main() 
{ 
float square (float); 
float I,max,value; 
max=l.5; 
i=-1.5; 
while (i<= max) { 
value=square(i); 
Cout<< "i= "<<i<< "square= "<<value<<endl; 
l=i+0.5; 
} 
} 
Float square(float n) 
{ 
Float value; 
Value=n*n; 
Return (value); 
} 



Example 2: 

~ write C++ program, using function to find the sumation of the given 
series: Sum=x-(x3J/3!+ (x5J/5!- ... (xnJ/n! 

#include <iostream.h> 
Void main(void) 
{ 
Long int fad (int); 
Float power(float,int); 
Float sum,temp,x,pow; 
Int sign,l,n; 
Longint factorial; 

Cout<<"Enter a value for n?"<<endl; 
Cin>>n; 
Cout<<"Enter a value for x ?"<<endl; 
Cin>>x; 
1=3; sum=x; sign=l; 
While (i<=n) { 
Fadval=fact(i); 
Pow= power(x,i); 
Sig n=(-1 )*sign; 
Temp=sign*pow/fadval; 
Sum=sum+temp; 
l=i+2; 
} 
Cout<<"sum of series ="<<sum; 
} 

Long intfad (int max) 
{ 
Long intvalue; 
Value=l; 
For(int i=l;i<=max;++i) 
Va lue=val ue* I; 
Return (value); 
} 

Float power (float x, int n) 
{ 
Float value2; 
Value2=1; 
For(int j=l;j<=n;++j) 
Value2=value2*x; 
Return(value2); 
} 



2. ActuetL etV\-d forV!A.ClL ArguV1A-eV\-ts: 
The arguments may be classified under two groups, actual and formal 

arguments: 

(a)Actual arguments: An actual argument is a variable or an expression 

contained in a function call that replaces the formal parameter which 

is a part of the function declaration. Sometimes, a function may be 

called by a portion of a program with some parameters and these 

parameters are known as the actual arguments. 

(b) Formal arguments: are the parameters present in a function definition 

which may also be called as dummy arguments or the parametric 

variables. When the function is invoked, the formal parameters are 

replaced by the actual parameters. Formal arguments may be 

declared by the same name or by different names in calling a portion 

of the program or in a called function but the data types should b e 

the same in both blocks 

For exam pie: 

# include <iostream.h> 
Void main() 
{ 
Int x,y; 
Void output (int x, int y); // fundion declaration 

Output (x,y); // x and y are actual arguments 
} 
Void output (int a, int b) // forma or dummy arguments 
{ 

// body of function 
} 

3. LocCIL CIV\-d c;LobetL vetrtetbLes: 
The variables in general bay be classified as local or global variables. 

( a) Local variables: Identifiers, variables and functions in a block are said to 

belong to a particular block or function and these identifiers are known 



as the local parameters or variables. Local variables are defined inside 

a function block or a compound statement. For example, 

Void func (int I, int j) 
{ 
Int k,m; // local variables 

// bodyofthe fundion 
} 

Local variables are referred only the particular part of a block or a function. 

Same variable name may be given to different parts of a function or a block 

and each variable will be treated as a different entity. 

(b)Global variables: these are variables defined outside the main function 

block. These variables are referred by the same data type and by the 

same name through out the program in both the calling portion of the 

program and in the function block. 

Example 3: 

~ A program to find the sum of the given two numbers using the global 
variables. 
#include <iostream.h> 
Int x; 
Int y=5; 

void main( ) 
{ 

} 

X=lO; 
Void sum(void); 
Sum(); 

Void sum(void) 
{ 

} 

Int sum; 
Sum=x+y; 
Cout<< "x= "< <x< < end I; 
Cout<< "y= "< <y< < end I; 
Cout<< "sum= "<<su m<<endl; 



4. Recurs.tve fuV\,cttoll\,s.: 
A function which calls itself directly or indirectly again and again is 

known as the recursive function. Recursive functions are very useful while 

constructing the data structures like linked lists, double linked lists, and trees. 

There is a distinct difference between normal and recursive functions. A 

normal function will be invoked by the main function whenever the function 

name is used, where as the recursive function will be invoked by itself directly 

or indirectly as long as the given condition is satisfied. Forexample, 

# include <iostrem.h> 
Void main(void) 
{ 
Void funcl(); //function declaration 

Funcl(); //function calling 
} 
Void funcl() //function definition 
{ 

Funcl (); //function calls recursively 
} 

Example 4: 

~ A program to find the sum of the given non negative integer numbers 

usin a recursive function sum= 1+2+3+4+ ... +n 
#include <iostream.h> 
Void main(void) 
{ 
Int sum(int); 
Int n,temp; 
Cout<<"Enter any integer number"<<endl; 
Cin>>n; 
Temp=su m(n); 
Cout<<"value="<<n<<"and its sum="<<temp; 
} 
Int sum(int n) //recursive function 
{ 
Int sum(int); //local function declaration 



Int value=O; 
If (n==O) 
Return (value); 
Else 
Value=n+sum(n-1 ); 
Return (value); 
} 

The output of the above program: 

Enter any integer number 

Value= 11 and its sum=66 

The following illustrations will be helpful to understand the recursive function 

For value 1 For value 2 For value 3 
=1+sum(1-1) =2+sum(2-1) =3+sum(3-1) 
=1+0 =2+1+sum(1-1) =3+sum(2-1) 
=1 =3 =3+2+1+sum(1-1) 

=6 

Example 5: 

~ A program to find the factorial (n!) of the given number using the 
recursive function.Its the product of all integers from l ton (n is non negative) 
so n!= l if n=O and n!=n n-1 if n>O 

#include <iostream.h> 
Void main(void) 
{ 
Long int fad (long int); 
Int x,n; 
Cout<<"Enter any integer number"<<endl; 
Cin>>n; 
X=fad(n); 
Cout<<"value="<<n<<"and its fadorial="; 
Cout<<x<<endl; 
} 
Long int fad (long int n) //recursive function 
{ 
Long int fad(long int); //local fundion declaration 
Int value =1; 
If (n==1) 
Return(value) 
Else 
{value=n*fad(n-1); 
Return(value); 
} } 



The output of the above program: 

Enter any integer number 

Value= 5 and its factorial=l 20 

The following illustrations will be helpful to understand the recursive function 

For value 1 For value 2 For value 3 
=l*fact(l-1) =2*fad(2-1) =3*fa ct(3-1) 
=1 =2*1 =3*2*fact(2-1) 

=2 3*2*1 
=6 



WORK SHEET (5) 
Functions 

Ql: Write a C++ program, using function, to counts uppercase letter in a 20 
letters entered by the user in the main program. 

Q2: Write a C++ program, using function, that reads two integers (feet and 
inches) representing distance, then converts this distance to meter. 
Note: 1 foot = 12 inch 

1 inch = 2.54 Cm 
i.e.: 

Input: feet: 8 or inches: 9 

Q3: Write a C++ program, using function, which reads an integer value (T) 
representing time in seconds, and converts it to equivalent hours (hr), 
minutes (mn), and seconds (sec), in the following form: 
hr: mn: sec 

i.e.: 
Input: 4000 
Output: 1 : 6: 40 

Q4: Write a C++ program, using function, to see if a number is an integer 
(odd or even) or not an integer. 

Q5: Write a C++ program, using function, to represent the permutation of n. 

Q6: Write a C++ program, using function, to inputs a student's average and 
returns 4 if student's average is 90-100, 3 if the average is 80-89, 2 if the 
average is 70-79, 1 if the average is 60-69, and O if the average is lower 
than 60. 

Q7: The Fibonacci Series is: 0, 1, 1, 2, 3, 5, 8, 13, 21, ... It begins with the 
terms O and 1 and has the property that each succeeding term is the 
sum of the two preceding terms. Write a C++ program, using function, 
to calculate the nth Fibonacci number. 

Q8: Write a C++ program, using function, to calculate the factorial of an 
integer entered by the user at the main program. 

Q9: Write a C++ program, using function, to evaluate the following 
equation: 



Z = 
x! -y! 

(x - y)! 

Ql 0: Write a C++ program, using function, to test the year if it's a leap or 
not. 

Note: use y % 4 == 0 && y % 100 != 0 :: y % 400 ==0 

Ql 1: Y Write a C++ program, using function, to find X 

Note: use pow instruction with math.h library. 

Ql 2: Write C++ program, using function, to inverse an integer number: 
For example: 765432 ➔ 234567 

Write C++ program, using function, to find the summation of student's 
Q13: 

marks, and it's average, assume the student have 8 marks. 

Ql 4: Write C++ program, using function, to convert any char. From capital 
to small or from small to capital. 

Q15: 
Write C++ program using recursive function to find the power of n 
numbers. 



LECTURE 13 

1. An--~rJ$: 
An array is a consecutive group of homogeneous memory locations. 

Each element (location) can be referred to using the array name along with 

an integer that denotes the relative position of that element within the array. 

The data items grouped in an array can be simple types like int or float, or 

can be user-defined types like structures and objects. 

It is a single variable specifies each array element. The declaration of 
one dimensi I 

Examples: 

General Form of 1 D-Array: 

data-type Array-name [ size]; 

int 
int 
float 
char 

age [1 O]; 
num [30]; 
degree[5]; 
a [15]; 

index---~ 
\. 

array-name content 

The item in an array are called elements (in contrast to the items in a 

structure which are called members). The elements in an array are of the 

same type only the values vary. 



3. I 1AtttC-ILtzt1Ag Arrett1 6LeV1A.e1Ats: 
- The first element of array age: 

age [0] = 18; 

- The last element of array age: 
age [9] = 19; 

- All elements of array age: 
age [9] = { 18, 17, 18, 18, 19, 20, 17, 18, 19 }; 

- int x [ ] = { 12, 3, 5, 0, 11, 7, 30, 100, 22 }; 

-inty [10] ={8, 10, 13, 15,0, 1, 17,22}; 

4. AccesstV\-g Arrl-lt:1 6LeV1A.eV\-ts: 
We access each array element by written name of array, followed by 

brackets delimiting a variable (or constant) in the brackets which are called 

the array index. 

- Accessing the first element of array num to variable x: 
x = num [0]; 

- Accessing the last element of array num to variable y: 
y = num [9]; 

- cout << num [0] + num [9]; 

- num [0] = num [1] + num [2]; 

- num [7] = num [7] + 3; f-➔ num [7] += 3; 

s. R.el-l~ I wrtte I Process Arre1r1 6Lel/lA,el/\,ts: 
- cout << num [4]; 

- if ( n um [5] > 5 ) 
cout << "greater"; 

- for (int i=0; i< 1 0; i++) 
cin >> num[ i ]; 

- for (int i=0; i< 1 0; i++) 
cout << num [ i]; 

- for (int i=9; i>=0; i++) 
cout << num [ i]; 

- sum=0; 
for (int i=0; i< 1 0; i++) 

sum= sum+ num[i]; 



Example 1 

~ Write C++ program to display 2nd and 5th elements of array 
distance: 

#i nclude<iostrea m.h> 

void main() 
{ 

} 

double distance[ ] = { 23.14, 70.52, 104.08, 468.78, 6.28}; 
cout << "2nd element is: " << distance[l] << endl; 
cout << "5th element is: "<< distance[4]; 

Example 2 

~ Write C++ program to read 5 numbers and print it in reverse order: 

#in cl u de< iostrea m. h> 

void main() 
{ 

} 

int a [5]; 
cout << "Enter 5 numbers \n"; 
for ( inti =0; i <5; i++ ) 

{ 

} 

cout << i << ": "; 
cin >> a [ i ]; 
cout << "\n"; 

cout << "The reverse order is: \n"; 
for ( i =4; i >=0; i--) 

cout << i << ": " << a [ i ] << endl; 

Exam le 3 

~ Write C++ program, to find the summation of array elements: 

#i nclude<iostrea m.h> 

void main ( ) 
{ 

int const L = 10; 
int a [L]; 
int sum= 0; 
cout << "enter 10 numbers \n"; 
for (inti =0; i <L; i++) 

{ 
cout << "enter value "<< i << ": "; 
cin>> a [i]; 



sum+= a [ i ]; 
} 

cout << "sum is:"<< sum<< endl; 
} 

Example 4 

~ Write C++ program, to find the minimum value in array of 8 
numbers: 

#i nclude<iostrea m.h> 

void main ( ) 
{ int n = 8; int a [ ] = { 18, 25, 36, 44, 12, 60, 75, 89 }; 

int min= a [ 0 ]; 
for ( int i = O; i < n; i++ ) 
if ( a [ i] < min) min= a [ i ]; 
cout << "The minimum number in arra 

g Write C++ program, to give the number of days in each month: 

#i nclude<iostrea m.h> 
void main ( ) 
{ 
Int month, day, total_days; 
Int days_per_month[12]={31,28,31,30,31,30,31,31,30,31,30,31} 
Cout<<"\n Enter month(1 to 12):"; 
Cin>>month; 
Cout<<"enter day(1 to 31):"; 
Cin>>day; 
Total_days=day; 
For (int j=0;j<month-1 ;j++) 
Total_day+=day _per_monthU]; 
Cout<<"Total days from start of year is:"<<total_days; 
} 

Exam le 6 

~ Write C++ program, using function, to find (search) X value in 
array, and return the index of it's location: 

#include<iostrea m.h> 

int search( int a[], int y) 
{ 

int i= O; 
while ( a [ i ] != y ) 

i++; 



return ( i ); 
} 

void main ( ) 
{ 

} 

int X, f; 
int a [ 10] = { 18, 25, 36, 44, 12, 60, 75, 89, 10, 50 }; 
cout << "enter value to find it: "; 
cin >> X; 
f= search (a, X); 
cout << "the value" << X << " is found in location "<< f; 



Example 7 

~ Write C++ program, to split the odd numbers and even numbers of 
one array into two arrays: 

a = [ l , 2, 3, 4, 5, 6, 7, 8, ... , 20 l 
a odd = [ l, 3, 5, 7, ... , l 9 ] 

a even = [ 2, 4, 6, 8, ... , 20 ] 

#i nclude<iostrea m.h> 

void main ( ) 
{ 

} 

int a [ 20 ]= { 1, 2,3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 }; 
int aodd[20], aeven [20]; 
int i ,o=0, e=0; 
for ( i=0 ; i<20; i++ ) 

if (a[i] % 2 !=0) 
{ 

} 

a odd [o] =a [i]; 
o=o+l; 

else 
{ 

} 

aeven[e]=a[i]; 
e=e+l; 

for ( i=0 ; i<o; i++ ) 
cout<< a odd [i] < <" "; 

cout<<endl; 

for ( i=0 ; i<e; i++ ) 
cout<<aeven[i]<<" "; 



LECTURE 14 

Arrays can have higher dimension. There can be arrays of two 

dimension which is array of arrays. It is accessed with two index. Also there 

can be arrays of dimension higher than two. 

General Form of 2D-Array: 

data-type Array-name [ Row-size] [ Col-size]; 

Examples: int a [1 OJ [1 OJ; 
int num [3J [4J; 

col 

~ 
0 1 2 3 

index 

2. 111\,tttctLtzt~g 2D-Arrctt1 eLeVlA..e~ts: 
- The first element of array age: 

a [2J [3] = { {l, 2, 3}, {4, 5, 6} }; 



~ Write C++ program, to read 15 numbers, 5 numbers per row, the 
print them: 

#i nclude<iostrea m.h> 

void main ( ) 
{ 

int a [ 3] [ 5 ]; 
int i 'j; 
for ( i = 0 ; i < 3; i++ ) 

for ( j = 0 ; j < 5; j++ ) 
ci n >> a [ i ] [ j ] ; 

for ( i = 0; i < 3; i++ ) 
{ 

for ( j = 0 ; j < 5; j++ ) 
cout << a [ i] [ j ]; 

cout << endl; 
} 

} 

Exam le 2 

~ Write C++ program, to read 4*4 20-array, then find the summation 
of the array elements, finally print these elements: 

#i nclude<iostrea m.h> 

void main ( ) 
{ 

int a [ 4] [ 4 ]; 
inti,j,sum=O; 
for ( i = 0 ; i < 4; i++ ) 

for ( j = 0 ; j < 4; j++ ) 
ci n >> a [ i ] [ j ] ; 

for ( i = 0 ; i < 4; i++ ) 
for ( j = 0 ; j < 4; j++ ) 

sum += a [ i] [ j ]; 
cout << "summation is: "<<sum<< endl; 

for ( i = 0 ; i < 4; i++ ) 
{ 

for ( j = 0 ; j < 4; j++ ) 
cout << a [ i] [ j ]; 

cout << endl; 
} 

} 



Example 3 

~ Write C++ program, to read 3*4 2D-array, then find the summation 

of each row: 

#i nclude<iostrea m.h> 

void main ( ) 
{ 

int a [ 3] [ 4 ]; 
inti,j,sum=O; 
for ( i = 0; i < 3; i++ ) 

for ( j = 0 ; j < 4; j++ ) 
ci n >> a [ i ] [ j ] ; 

for ( i = 0; i < 3; i++ ) 
{ 

sum= O; 
for ( j = 0 ; j < 4; j++ ) 

sum+= a [ i] [ j ]; 

cout << "summation of row"<< i << "is:"<< sum<< endl; 
} 

} 

Exam le 4 

~ Write C++ program, to read 3*4 2D-array, then replace each value 
equal 5 with 0: 

#i nclude<iostrea m.h> 

void main ( ) 
{ 

int a [ 3] [ 4 ]; 
int i , j; 
for ( i = 0 ; i < 3; i++ ) 

for ( j = 0 ; j < 4; j++ ) 
ci n >> a [ i ] [ j ] ; 

for ( i = 0; i < 3; i++ ) 
for ( j = 0 ; j < 4; j++ ) 

if ( a [ i ] [ j ] == 5 ) a [ i ] [ j ] = O; 

for ( i = 0; i < 3; i++ ) 
{ 

for ( j = 0 ; j < 4; j++ ) 
cout << a [ i] [ j ]; 

cout << endl; 
} 

} 



Exam le 5 

~ Write C++ program, to addition two 3*4 arrays: 

#i nclude<iostrea m.h> 

void main ( ) 
{ 

} 

int a [ 3] [ 4], b [ 3] [ 4], c [ 3] [ 4 ]; 

int i , j; 
cout << "enter element of array A: \n"; 
for ( i = 0 ; i < 3; i++ ) 

for ( j = 0 ; j < 4; j++ ) 
ci n >> a [ i ] [ j ] ; 

cout << "enter element of array B: \n"; 
for ( i = 0 ; i < 3; i++ ) 

for ( j = 0 ; j < 4; j++ ) 
ci n >> b [ i ] [ j ] ; 

for ( i = 0; i < 3; i++ ) 
for ( j = 0 ; j < 4; j++ ) 

c [i] [j] = a [i] [j] + b [i] [j]; 
for ( i = 0; i < 3; i++ ) 

{ 

} 

for ( j = 0 ; j < 4; j++ ) 
cout << c [ i ] [ j ]; 

cout << endl; 

Example 6 

~ Write C++ program, to convert 20-array into 10-array: 

#i nclude<iostrea m.h> 

void main ( ) 
{ 

int a [ 3] [ 4 ]; 
int b [ 12 ]; 
int i , j, k = O; 

for ( i = 0 ; i < 3; i++ ) 
for ( j = 0 ; j < 4; j++ ) 

ci n >> a [ i ] [ j ] ; 

for ( i = 0; i < 3; i++ ) 
for ( j = 0 ; j < 4; j++ ) 

{ 
b[k]= a[i][j]; 



} 

k++· I 

} 
for ( i = 0 ; i < k; i++ ) 

cout << b [ i ]; 

Exam le 7 

~ Write C++ program, to replace each element in the main 
diameter (diagonal) with zero: 

#i nclude<iostrea m.h> 

void main ( ) 
{ 

} 

int a [ 3] [ 3 ]; 
int i , j; 

for ( i = 0 ; i < 3; i++ ) 
for ( j = 0 ; j < 3; j++ ) 

ci n >> a [ i ] [ j]; 

for ( i = 0; i < 3; i++ ) 
for ( j = 0 ; j < 3; j++ ) 

if ( i == j) a [ i ] [ j ] = O; 

for ( i = 0; i < 3; i++ ) 
{ 

} 

for ( j = 0 ; j < 3; j++ ) 
cout << a [ i] [ j ]; 

cout << endl; 

i = j i + j = n- 1 

010 

111 

212 

i = j 

i > j i < j 



Example 8 

~ Write C++ program, print the square root of an array: 

#i nclude<iostrea m.h> 

void main ( ) 
{ 

} } } 

int a [ 3] [ 3] , b [ 3] [ 3 ]; 
int i , j; 
for ( i = 0; i < 3; i++ ) { 

for ( j = 0 ; j < 3; j++ ) { 
b[ i ][ j ]= sqrt(a[ i ][ j ]); 
cout << b [ i ] [ j ]; 

Example 9 

~ Write C++ program, to read 3*3 20-array, then find the summation 
of the main diagonal and its secondary diagonal of the array 
elements, finally print these elements: 

#i nclude<iostrea m.h> 

void main ( ) 
{ 

} 

int a [ 3] [ 3 ]; 
int i , j, X, y; 
for ( i = 0; i < 3; i++ ) { 

for ( j = 0 ; j < 3; j++ ) { 
ci n >> a [ i ] [ j ] ; 

if ( i == j) 
x=x+a[ i ][ j ]; 
if ( i + j =4) 
y=y+a[ i ][ j ]; 

} } 
cout << "summation of diagonal is:"<< x << endl; 
cout << "summation of inverse diagonal is:"<< y << endl; 



,.--, __ ,_, __ ,_, __ ,_, __ ,_, __ ,_, __ ,_, __ ,_, __ ,-) 
L,""'""'""'""~Q~,~"e~,~§.!,J~),rr,rrn,rrrr,rrn,rr, 

Arrays 
Ql: Write a C++ program, using function, to find if the array's elements are 

in order or not. 

Q2: Write a C++ program, using function, to compute the number of zeros 
in the array. 

Q3: Write a C++ program, using function, to find the value of array C from 
add array A and array B. C[ i] = A [ i] + B [ i ]; 

Q4: Write a C++ program, using function, to multiply the array elements by 
2. A[ i l = A [ i l * 2; 

Q5: Write a C++ program, using function, to reads temperatures over the 
30 days and calculate the average of them. 

Q6: Write a C++ program, using function, to merge two arrays in one array. 

Q7: Write C++ program, to read 3*4 2D-array, then find the summation of 
each col. 

Q8: Write C++ program, to replace each element in the second diameter 
(diagonal) with zero. 

Q9: Write C++ program, to replace the elements of the main diameter with 
the elements of the second diameter. 

Ql 0: Write C++ program, to find the summation of odd numbers in 2D-array. 

Ql 1: Write C++ program, to find (search) X value in 2D-array, and return the 
index of it's location. 

Ql 2: Write C++ program, to convert 1 D-array that size [16] to 2D-array that 
size of [4] [4]. 

Ql 3: Write C++ program, to read A[ n, n ] of character, then find array B 
and array C, such that B contain only capital letters and C contain 
only small letters. 



Ql 4: Write C++ program, to read A[ n, n ] of numbers, then put 10 instead 
each even positive number. 

Ql 5: Write C++ program, to read A[ n, n ] of numbers, then put 10 instead 
each even positive number in the first diagonal. 

Ql 6: Write C++ program, to read A[ n, n ] of numbers, then find the 
minimum number in array. 

Ql 7: Write C++ program, to exchange rowl and row3 in 4*3 array. 

Ql 8: Write C++ program, to exchange row0 with col3 in 4*4 array. 

Ql 9: Write C++ program, to find the greatest number in the second 
diagonal, in 3*3 array. 

Q20: Write C++ program, to read X[ n ], and rotate the elements to the left 
by one position. 

,---"-o---,-~1c.--,-_2----,-~3c......,-4-'--,---"-s ---,-~6~ o 1 2 3 

110 1 3 I 23 I 4s 1 7 I 16 1 s 1 -+ 1 3 I 23 I 4s 1 7 
~: •-,-, ~: • ..,...., ~: ....,..t~:---,,t~:,....,t,--L--,-: •-,-, ~: ....,...,t 

: !.---~ !._ ___ J !,. ___ J !._ ___ J !._ ___ ! !._ ___ J : 
I I 

4 5 6 

116 1 s 110 1 

·-------------------------------------~ 
Q21: Write C++ program, to read A[ n ] and a location Z then delete the 

number at location Z from the array, and print the new array after 
deletion. 

Q22: Write C++ program to order the array in ascending and descending 
order. 

Q23: Write C++ program to read (n) no.sand find the average of the even 
no. on it. 

Q24: Create the array (b) from (a). 

Q25: Create the arrays bellow. 

1 2 3 
4 5 6 
7 8 9 

1 1 1 1 
2 2 2 2 
3 3 3 3 
4 4 4 4 

6 
10 
10 

2 1 1 1 
1 2 1 1 
1 1 2 1 
1 1 1 2 



LECTURE 15 

1.. StrLV\.,g: 
In C++ strings of characters are implemented as an array of characters. In 

addition a special null character, represented by \0, is appended to the end 

of string to indicate the end of the string. 

char String-name [ size ] ; 

Examples: char name (1 O] = "Mazin Alaa"; 

L 'M', 'a', 'z', 'i', 'n',' 

2. 

char str [ ] = "ABCD"; 

L 'A', 'B', 'C', 'D', '\0' 

str [O] : 'A' 

str [1] : 'B' 
str [2] : 'C' 
str [3] : 'D' 
str [4] : '\0' f-➔ null 

','A', 'I', 'a', 'a', '\0' 

~ Write C++ program to print string, then print it character by 
character: 

#i nclude<iostrea m.h> 

void main() 
{ 

char s [ ] = "ABCD"; 

cout << "Your String is: " << s << endl; 

for ( inti =O; i < 5; i++ ) 
cout << "S[" << i << "] is: " << s [ i ] << endl; 

Output is: 
Your String is: ABCD 
S[O] is: A 
S[l] is: B 
S[2] is: C 
S[3] is: D 
S[4] is: 



I 

~ Write C++ program to convert each lower case letter to upper 
case letter: 

#i nclude<iostrea m.h> 
#include< ctype.h> 

void main() 
{ 

} 

char s [ ] = "abed"; 
cout << s << endl; 

for ( inti =O; i < 4; i++ ) 
s [i] = char(toupper (s[i] )); 

cout << s; 

- ---- - -~----- - -~----- - -~----- - -~----- - -~----- - -~----- - - ~-
1 Note: 

I 

There are several ways to read and write 
input/output function) like: 

Apply it ... 

cin.getline ( str, 10 ); 
cin.get (ch); 
cin.ignor ( 80, '\n' ); 
cin.putback (ch); 
cout.put (ch): 

(there are several 

----~ - - ----~ - - ----~ - - ----~ - - ----~ - - ----~ - - ----~ - - ---- ' 



3. Mew.,ber ful/\,cttol/\, of strtl/\,g: 
The string library has many member functions of string like: 

strlen ( string ) 
Return the length of the a [ ] = "abed"; 
string cout << strlen (a); 

char a[ ]= "abed", b[ ]=" "· 
strcpy ( string2, stringl ) Copy the content of the ' 

l nd string into the :;zst string strcpy ( b' a ); 
cout << a<< b; 

street ( string 1, string2) 
Append the content of 
the 2nd string into the end 
of the l st string 

char a[ ]="abed", b[ ]="1234"; 
strcat ( a , b ) ; 
cout << a<< b; 
abcdl234 1234 

Return O if the l st string is 
equal to the 2nd string. char a[ ]="abed", b[ ]="abed"; 
Return a Positive number cout << strcmp (a, b ); 
if the 1st string is greater 

strcmp ( stringl, string2) than the 2nd string. 
0 if a== b 

Return a Negative 
number if the 1st string is 
smaller than the 2nd 

strin . 

+ if a> b 
if a< b 

4. st~Ltb Ltbretrt,1: 
The std lib library has many member functions of string like: 

A atoi (a) 

A atof (a) 

itoa ( i , a , 1 O); 

Converts string to int type. 

Converts string to float type. 

inti; char a [ ] = "1234"; 
i = atoi (a); 

float f; char a [ ] = "12.34"; 
f = atof (a); 

Converts integer number to int i = 1234; char a [ ] = ""; 
alphabet (char or string type). cout << itoa ( i, a, 10); 



WORK SHEET (7) 
String 

Ql: Write C++ program to print a string, and then print it character by 
character in reveres order. 
i.e: 

abed ➔ a 
b 
C 

d 

Q2: Write C++ program to check each character in the string to convert it 
to lower case letter if it's an upper case letter and convert it to upper 
case letter if it's a lower once. 

Q3: Write C++ program to read a sentence and print its words separately. 

Q4: Write C++ program to apply the following instructions: 
► cin.getline ( str, 10 ); 
► Gin.get ( ch ); 
► cin.ignor ( 80, '\n' ); 
► cin.putback ( ch ); 
► cout.put (ch); 

Q5: Write C++ program to apply the following instructions: 
► strle n ( string ) 
► strcpy ( string2, stringl ) 
► strcat ( stringl, string2) 
► strcmp ( stringl, string2) 

Q5: Write C++ program to apply the following instructions: 
► i atoi (a) 
► f atof ( a ) 
► itoa ( i, a, 1 O); 



LECTURE 16 

1.. structures: 
Structures are typically used to group several data items together to 

form a single entity. It is a collection of variables used to group variables into a 

single record. Thus a structure (the keyword struct is used in C++) is used. 

Keyword struct is a data-type, like the following C++ data-types ( int, float, 

char, etc ... ). This is unlike the array, which all the variables must be the same 

type. The data items in a structure are called the members of the structure. 

struct struct-name 
{ 

variables ... 
}; 

2. Tvte Three Wett9s for Peclare tvie structure: 
A. 

B. 

#include <iostream.h> 

struct data 
{ 

}; 

char *name; 
int age; 

void main() 
{ 

struct data student; 

struct data 

----{_ _ ------------------------------------------------



C. 

char *name; 
int age; 

____ } _student; ____________________________________ _ 

typedef struct 
{ 

char *name; 
int age; 

} student; 

► The above three ways are called structure specifier (tells how the 
structure is organized) or it is called structure declaration. 

► To access elements in a structure, use a record selector (. ). 

I •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •1 

' ' student. name="ahmed"; 
student. age=20; 

- - - } --- -- -- -- - - - - - - --- -- -- -- - - - - - - --- -- -- -- - - - - - - --- --· 

Note: we can assign more than one name as a structure-name, to the one 
structure. For example: 

typedef struct 
{ 

char *name; 
int age; 

} student, lecturer; 

~ This example uses parts inventory to demonstrate structures. 

#i nclude<iostrea m.h> 

Struct part // specify a structure 
{ 
Int model_no; 
Int part_no; 
Float cost; 
} 

Void main() 
{ 
Part pl; // define a structure variable. 
Pl. model_no=6244; 



Pl .part_no=373; 
Pl .cost=217.55; 
Cout<<"/n model"<<pl.model_no; 
Cout<<", part"<<pl.part_no; 
Cout<<", cost"<<p 1.cost; 
} 

The above program has three main aspects: specifying the structure, 

defining a structure variable, and accessing the members of the structure. 

3. A V1A,e1As1.-o--eV1A,eV'vt exlA VIA,:ple: 

Let's see how a structure can be used to group a different kind of 

information. If you have ever looked at an architectural drawing, you know 

that distances are measured in feet and inches. The length of a living room, 

for example, might be given as 12'-8", meaning 12 feet 8 inches. The hyphen 

is not a negative sign; it merely separates the feet from the inches. This is part 

of the English of measurement. The following program will show how two 

measurements of type distance can be added together. 

~ Write C++ program to find the distance in English system. 

#i nclude<iostrea m.h> 

strud distance 
{ 
int feet; 
float inches; 
} 
Void main() 
{ 
distance d1,d3; 
distance d2={11,6.25}; 
cout<<"\n Enter feet:"; 
ci n>>d 1.feet; 
cout<<"\n Enter inches:"; 
cin>>dl.inches; 
d3.inches=d 1.inches+d2.inches; 
d3.feet=O; 
If (d3.inches >=12.0) 
{ 



d3.inches -=12.0; 
d3.feet ++; 
} 
d 3.feet + = d 1.feet + d2 .feet; 
cout<<dl .feet<<"\' -"<<dl .inches<<"\"+"; 
cout<<d2.feet<< "\' -"<<d2.inches<<" \ "="; 
cout<<d3.feet<<"\' -"<<dl .inches<<"\ "\n"; 
} 

4. structures wttvit1A- structures: 
You can nest structures within other structures. Here's a variation on the 

English system program that shows how this looks. In the bellow program we 

want to create a data structure that stores the dimensions of a typical room: 

its length and width. Since we're working with English distances, we'll use two 

variables of type distance as the length and width variables. 

~ Write C++ program to find the area of the room in English system. 

#i nclude<iostrea m.h> 

strud distance 
{ 
int feet; 
float inches; 
} 

strud room 
{ 
distance length; 
distance width; 
}; 

Void main() 
{ 
room dining; 
dining .I ength.f eet= 13; 
dining.length.inches=6.5; 
dining.width.feet=l0; 
dining .width.i nches=0.0; 
float L=d ini ng.length.feet+di ning.length.i nches/12; 



float W=di ni ng.width.feet+dining.width.inches/12; 
cout<<"\n Dining room area is"<<L *W<<"Square feet"; 
} 

5. AYYlllk:J of structures: 
The struct is a data-type. So we can define an array as an array of 

struct, like define an array as an array of int, or of any other C++ data-types. 

Array~ 1 2 3 n 

Struct~-~-~ 11 (•--:g 

However, the following simple example shown how can create and use an 
array of struct. 

~ This simple example to show how can create and use an array of 
structure. 

#i nclude<iostrea m.h> 

typedef stru ct 
{ 

char *name; 
int age; 

} student; 

void main ( ) 
{ 

} 

student array [10]; 
array [1] . name= "ahmed"; 
array [1] . age = 20; 
cout << array[l] . name << endl; 
cout << array[l] . age; 

cin >> array [ l] . name ; 
cin >> array [ l] . age; 



~ Write a C++ Program, using structure type, to read name and age 
for ten students. 

#i nclude<iostrea m.h> 

typedef stru ct 
{ 

char *name; //Or name[10] 
int age; 

} student; 

void main ( ) 
{ 

} 

student array [10]; 

for ( i = 0; i < 10; i++ ) 
{ 

} 

cin >> array [i] . name; 
cin >> array [i] . age; 

for ( i = 0; i < 10 ; i++ ) 
{ 
cout << array[i] . name << endl; 
cout << array[i] . age; 
} 

~- futl\,cttol/\,s ~tl\,ot structures: 
A structure can be passed to a function as a single variable. The scope 

of a structure declaration should be an external storage class whenever a 

function in the main program is using a structure data types. The field or 

member data should be same throughout the program either in the main or 

in a function. 



# include <iostream.h> 
Strud sample { 
Int x; 
Floaty; 
}; 
Sample first; 
Void main (void) 
{ 
Void display (struct sample one); // function declaration 

Display (one); // fundion calling 

} 
Void display (struct sample out) // fundion definition 
{ 

Out.x=10; 
Out.y=-20.20; 

} 



~ Write C++ program to display the contents of a structure using 
function definition. 

#i nclude<iostrea m.h> 

strud date { 
int day; Output 
int month; 
int year; Todat's date is= 10/3/2011 
} ; 
Void main(void) 
{ 
date today; 
void display (struct date one); // fundion declaration 
today.day=l0; 
today .month=3; 
today .year=2011; 
display (today); 
} 
Void display (struct date one) 
{ 
cout<<"Today's date is="<< one.day<< "/"; 
cout<< one.month; 
cout<<"/" <<one.year<< endl; 
} 



WORK SHEET (8) 
Structures 

Ql: Write a C++ program, that declares the structure called 
Employee_lnfo, which having the following members: 

1- Employee name. (must be less than 25 characters) 

2- Employee age. (must be 2 digits) 

3- Employee address. (must be less than 20 characters) 

4- Phone number. (must be B or l l digits) 

5- Country name. (must be less than 29 characters) 

Then read and print this information for the 100 Employees. 

Q2: Show the declaration of the following: 

Employees: 
Ind- Employees: 

Home: 

ID. 
Name. 
Sex. 
Rate. 

Street. 
City. 
State. 

Birth Date: 
Month. 
Day. 
Year. 

StrartDate: 
Month. 
Day. 
Year. 

By using your declaration, write a C++ program that reads and stores 
data, then print only employees whose ID number less than 100. 



LECTURE17 

1.. 611t,uV1A-eratelii !)atC-l Trj:pes: 
The enumerated data type is a programmer-defined type that is limited 

to a fixed list of values. A specifier gives the type a name and specifies the 

permissible values definitions then create variables of this type. Internally, the 

compiler treats enumerated variables as integers. 

Structures should not be confused with enumerated data type. 

Structures are a powerful and flexible way of grouping a diverse collection of 

data into a single entity. 

enum user_defined_name { 
member_l; 
member_2; 

member_n; 

Where enum is a keyword for defining the enumeration data type and the 

braces are essential. The members of the enumeration data type are the 

indivisual identifiers. Once the enumeration data type is defined, it can be 

declared in the following ways: 

Storage_class enum user_defined_name var.1, var.2, ... var.n 

where the storage class is optional. For example: 

1) Enum sample { 
Mon, tue, wed, thu, fri, sat, sun }; 
Enum sample dayl, day2, day3; 

2) Enum drinks { 
Cola, tea, koffi,rani } 
Enum drinks dl, d2, d3; 

3) Enum games { 



Tennis, chess, football, swimming, walking }; 
Enum games student, staff; 

The EDT declaration can be written in a single declaration as: 

Enum sample { Mon, tue, wed, thu, fri, sat, sun } 
Dayl, day2, day3; 

Which is exactly equivalent to: 

1) Enum sample { Mon, tue, wed, thu, fri, sat, sun } 
Enum sample Day2, day3; 

2) Enum sample { Mon, tue, wed, thu, fri, sat, sun }; 
Enum sample Dayl; 
Enum sample Day2; 
Enum sample Day3; 

dayl; 

The enumeration constants can be assigned to the variable like dayl =man;. 

The enumeration constants are automatically assigned to integers starting 

from 0, 1, 2 etc. up to the last number in the enumeration. 

Write C++ program to declare the EDT and to display the integer 
values on the screen. 

#include <iostream.h> 
Void main(void) 

{ 
enum sample { Mon, tue, wed, thu, fri, sat, sun } 
day1,day2,day3,day4,day5,day6,day7; 
dayl=mon; 
day2=tue; 

day3=wed; 
day4=thu; 
day5=fri; 
day6=sat; 
day7=sun; 
cout<<"Monday = "<<dayl <<endl; 
cout<<"Tuesday = "<<day2 <<endl; 
cout<<"Wednesday = "<<day3 <<endl; 
cout<<"Thursday = "<<day4 <<endl; 
cout<<"Friday = "<<day5 <<endl; 

Output: 
Monday = 0 
Tuesday = 1 
Wednesday= 2 
Thursday = 3 
Friday = 4 
Saturday = 5 
Sunda =6 



} 

cout<< "Saturday 
cout<<"Sunday 

= "<<day6 <<endl; 
= "<<day7 <<endl; 

These integers are normally chosen automatically but they can also be 

specified by the programmer with negative or positive numbers, for example 

Enum sample {mon, tue, wed=lO, thu, fri, sat=-5, sun} 
day1,day2,day3,day4,day5,day6,day7; 

The C++ compiler assigns the enumeration constants as 
Monday = 0 
Tuesday = 1 
Wednesday = 10 
Thursday = 11 
Friday = 12 
Saturday = -5 
Sunday =-4 

Write C++ program to declare the EDT and to display the difference 
between days. 

#include <iostream.h> 
Enum days_of_week { Mon, tue, wed, thu, fri, sat, sun } 

Void main(void) 
{ 

days_of_week dayl, day2; 
dayl=mon; 
day2=thu; 
int diff=day2-day1; // can do integer arithmatic 
cout<<"Days between="<<diff<<endl; 
if (dayl < day2) // can do comparision 
cout<<"daul comes before day2 \n"; 

} 



Write C++ program to count the places in a sentence where a string of 
nonspaces character changes to spaces. 

#include <iostream.h> 
#include <conio.h> 

enum boolean {false,true}; I I false=O , true=l 
Void main() 

{ 
boolean isword=false; 
char ch='a'; 

I I true when word, false when whitespace 
I I character read from keyboard 

int wordcount=O; 
do 
{ 
ch=getche(); 

I I numbers of words reads 

II get character 
if (ch=='' 11 ch=='\r') 
{ 

I I if white space or enter key 

if (isword) 
{ 
word count++; 
isword=false; 
} 
} 
else 
if (! isword) 

isword=true; 
} 

I I count the word 
I I reset flag 

I I otherwise its normal char. 
I I if start of word 
II set flag 

while (ch!=' \r'); I I quit on enter key 
cout <<"\n --- word count is"<<wordcount<<"---\n"; 
} 



WORK SHEET (9) 
EDT 

Ql: Write C++ program to declare the EDT and to display the difference 
between months. 

Q2: Write C++ program to declare the EDT and to display the number of 
each season. 

Q3: Write C++ program to read 10 employee and display the information of 
each one when enter its number. 

Employee code 
Employee name 
Employee sex (EDT) 
Employee craduate (B.Sc., M.Sc., Ph. D.) (EDT) 



LECTURE 18 

1.. PoLl/\,ters: 
The pointer is a powerful technique to access the data by indirect 

reference as it holds the address of that variable where it has been stored in 

the memory. 

2. PoLV\,ter Dec Let rcttLoV'v: 
A pointer is a variable which holds the memory address of another 

variable. The pointer has the following advantages: 

1. It allows passing variables, arrays, functions, strings and structures as 

function arguments. 

2. A pointer allows returning structured variables from functions. 

3. It provides functions which can modify their calling arguments. 

4. It supports dynamic allocation and deallocation of memory segments. 

5. With the help of a pointer, variables can be swapped without physically 

moving them. 

6. It allow to establish links between data elements or objects for some 

complex data structures such as linked lists, stacks, queues, binary trees, 

tries and graphs. 

7. A pointer improves the efficiency of certain routines. 

In C++ pointers are distinct such as integer, float, character, etc. A pointer 

variable consists of two parts, namely, (i) the pointer operator and (ii) the 

address operator. 



:PoLV\-ter o:per~tor: 
A pointer operator can be represented by a combination of (*) with a 

variable, for example int *ptr; where ptr is a pointer variable which holds the 

address of an integer data type. 

Data_type *pointer_variable; 

Example: int x, y; int *ptrl, *ptr2; 

Act ct ress o:pere1tor: 
An address operator can be represented by a combination of & with a 

pointer variable. For example, if a pointer variable is an integer type and also 

declared (&) with the pointer variable, then it means that the variable is of 

type "address of". For example m=&ptr;. Note that the pointer operator & is 

an operator that returns the address of the variable following it. 

Note: 
Notice the difference between the reference and dereference operators: 

• & is the reference operator and can be read as "address of' 

• * is the dereference operator and can be read as "value pointed by" 

Thus, they have complementary (or opposite) meanings. A variable 

referenced with & can be dereferences with*. 

Examples: 

(1) Ptrl = &x; The memory address of variable xis assigned to the pointer 
variable ptrl. 

(2) Y=*prtl; The contents of the pointer variable ptrl is assigned to the 
variable y, not 

the memory address. 
(3) Ptrl =&x; The address of the ptrl is assigned to the pointer variable 

ptr2. The contents 
Ptr2=ptrl; of both ptrl and ptr2 will be the same as these two pointer 
variables hold 

the same address. 



Example: 1----------- I 

: andy = 25; 1 

1 ted = &andy; : 
I I 
I I 
l------------

Right after these two statements, all of the following expressions would give 
true as result: 

1------------, 
1 andy == 25 I 
I I 
1 &andy== 1776 1 
I I 
1 ted == 1776 I 

: *ted == 25 : 
1 ___________ I 

Examples of invalid pointer declaration: 
(1) int x; 

int x_pointer; 
x_pointer=&x; 
Error: pointer declaration must have the prefix of*. 

(2) floaty; 
float *y _pointer; 
y_pointer=y; 
Error: While assigning variable to the pointer variable the address 
operator (&) must used along with the variable y. 

(3) int x; 
char *c_pointer; 
c_pointer = &x; 
Error: Mixed data type is not permitted. 



~ This simple example to show how can create and use pointer of 
char. 

#include <iostream.h> 
int main() 

{ 
char c='a'; 
char *p_c = &c; 
cout<< *p_c; 

~ This simple example to show how can create and pointer of 
integer. 

#include <iostream.h> 
main() 

{ 

} 

int myvaI=10; 
int *p_myval; 
p_myval = &myval; 
cout<<*p_myval; 

#include <iostream.h> 
main() 

{ 

} 

int myval = 7; 
int *p_myval = &myval; 
*p_myval = 6; 
cout< < * p _myva I<<"\ n"; 
cout<<myval; 

#include <iostream.h> 
main() 

{ 
int myval=5; 
int myval2 = 7; 
int *p_primate; 
p_primate = &myval; 



} 

*p_primate = 9; 
p_primate = &myvaI2; 
*p_primate = 10; 
cout<<myval<<" "<<myvaI2; 

#include <iostream.h> 
Void main(void) 

{ 
Float value; 
Float *ptr; 
Value= 120.00; 
Ptr = &value; 
Cout<< "Memory address ="<<ptr<<endl; 
Ptr --; 
Cout<<"Memory address after decrementer ="; 
Cout<< ptr<<endl; 
} 

Pointers are very much used in a function declaration. Sometimes only 

with a pointer a complex function can be easily represented and accessed. 

The use of the pointers in a function definition may be classified into two 

groups; they are call by value and call by reference. 

Call by value: 

Whenever a portion of the program invokes a function with formal 

arguments, control will be transferred from the main to the calling function 

and the value of the actual argument is copied to the function. Within the 

function, the actual value copied from the calling portion of the program 

may be altered or changed. When the control is transferred back from the 

function to the calling portion of the program, the altered values are not 



transferred back. This type of passing formal arguments to a function is 

technically known as call by value. 

A program to exchange the contents of two variables using a call 
by value. 

#include <iostream.h> 
Void main(void) 

{ 
Int x,y; 
void swap (int,int); 
x=100; 
y=20; 
cout<<"values before swap"<<endl; 
cout<<"x="<<x<<"and y="<<y<<endl; 
swap(x,y); //call by value 
cout<<"values after swap"<<endl; 
cout<<"x="<<x<<"and y="<<y<<endl; 
} 

int func (int x, int y) 
{ 
int temp; 
temp=x; 
x=y; 
y=temp; 
} 

Call by reference: 

0/P: 
values before swap 
x=100 and y=20 
values after swap 
x=100 and y=20 

When a function is called by a portion of a program, the address of the 

actual arguments is copied onto the formal arguments, though they may be 

referred by different variable names. The content of the variables that are 

altered within the function block are returned to the calling portion of a 

program in the altered form itself, as the formal and the actual arguments are 

referencing the same memory location or address. This is technically known as 

call by reference or call by address or call by location. 



A program to exchange the contents of two variables using a call 
by reference 

#include <iostream.h> 
Void main(void) 

{ 
Int x,y; 
void swap (int *x, int *y); 
x=l00; 
y=20; 
cout<<"values before swap"<<endl; 
cout<<"x="<<x<<"and y="<<y<<endl; 
swap(&x, &y); //call by reference 
cout<<"values after swap"<<endl; 
cout<<"x="<<x<<"and y="<<y<<endl; 
} 

int func (int *x, int *y) 
{ 
int temp; 
temp=*x; 
*x = *y; 
*y=temp; 
} 

0/P: 
values before swap 
x=l00 and y=20 
values after swap 
x=l00 and y=l00 



LECTURE 19 

1.. Potll\,ters ~11\,d ArrClrjS: 
In C++, there is a close correspondence between array data type and 

pointers. An array name in C++ is very much like a pointer but there is a 

difference between them. The pointer is a variable that can appear on the 

left side of an assignment operator. The array name is a constant and cannot 

appear on the left side of an assignment operator. In all other respects, both 

the pointer and the array are the same. 

Valid: 

int value [20]; 

int *ptr; 

ptr=&value[0]; //the address of the zeroth element is assigned to a pointer 

variable ptr. 

ptr++ == value [l]; 

ptr+6 == &value[6]; 

*ptr == &value [0] 

*ptr == &value [] 

*(ptr+6) == value[6] 

ptr++ == &value[l] 

Example: 

int s [200]; 

int *sptr; 

sptr=s; 

a [i] -+ 

-+ sptr = &s[0]; 

*((a) + (i)) -+ *(&(a)[0] + (i)) 



A program to display the content of an array using a pointer 
arithmetic 

#include <iostream.h> 
void main(void) 

{ 
staticinta[4]={11, 12, 13, 14}; 
int i, n, temp; 
n=4; 
cout<<"Contents of the array"<< endl; 
for (i=O; i<= n-1; ++i) { 

Contents of the anay 
Value =11 
Value=12 
Value =13 
Value =14 

temp= *((a)+ (i) ); // or temp= *(&(a)[O] + (i)); 

} 
} 

cout<<"value ="<<temp <<endl; 

2. Arret~s of 'PO~V\,ters: 
The pointers may be arrayed like any other data type. The declaration 

for an integer pointer array of size 10 is int *ptr[l O]; makes ptr[O], ptr[l ], ptr[2], 

... , ptr[l O]; 

Where ptr is an array of pointers that can be used to point the first elements of 

the arrays a, b, c. The following are valid assignment statements in C++: 

Ptr[O] = &a[O]; 

Ptr[lO] = &b[O]; 

Ptr[20] = &c[O]; 

A program to display the content of pointers using an array of 
pointers 

#include <iostream.h> 
void main(void) 

{ 
Char *ptr[3]; 
Ptr[O]="Ahmed"; 
Ptr[1 ]= "Reem"; 
Ptr[2]= "Ali"; 

contents of pointer 1 = Ahmed 
contents of pointer 2 = Reem 
contents of pointer 3 = Ali 

Cout<<"contents of pointer 1 ="<<ptr[O]<<endl; 
Cout<<"contents of pointer 2 ="<<ptr[1]<<endl; 
Cout<<"contents of pointer 3 ="<<ptr[2]<<endl; } 



An array of pointers is the same as pointers to pointers. As an array of 

pointers is easy to index because the indices themselves convey the meaning 

of a class of pointers. However, pointers to pointers can be confusing. The 

pointer to a pointer is a form of multiple of indirections or a class of pointers. In 

the case of a pointer to a pointer, the first pointer contains the address of the 

second pointer, which points to the variable that contain the values desired. 

Multiple indirections can be carried on to whatever extent desired, but there 

are a few cases where more pointer to a pointer is needed or written. 

Int **ptr2; 

Where ptr2 is a pointer which holds the address of the another pointer. 

1---..... 111 variable 
~---~ 

pointer 

~-p-om_· _te_r _ _:--111 pointer ---1111 variable 

A program to declare the pointer to pointer variable and to display 
the contents of thesepointers 

#include <iostream.h> 
void main(void) 

{ 
int value; 
int*ptrl; 
int **ptr2; 
value= 120; 
cout<< "value ="<<value<<endl; 
ptrl =& value; 
ptr2=&ptr1; 

Value= 120 
Pointer 1 = 120 
Pointer 2 = 120 

cout<<"pointer 1 ="<<*ptrl <<endl; 
cout<<"pointer 2="<<**ptr2<<endl; 
} 



WORK SHEET (9) 
Pointer 

Ql: Write a C++ program, to applied the mathematic operation by 
pointer. 

Q2: Find the output: 

#incl ude<iostrea m. h> 

int main () 

{ 

} 

int *x; 

int *p, *q; 

int c= 100 ,a; 

x=&c; 

p=x+2; 

q=x-2; 

a=p-q; 

cout << "The address ofx: "<< x << endl; 

cout << "The address of p after incrementing x by 2 : " << p << endl; 

cout << "The address of q after derementing x by 2 : "<< q << endl; 

cout < < " The no of elements between p and q : " < < a < < endl; 

return(0); 


