
Introduction

Lecture1

Questions

• What is “software”?

• What is “software modeling”?

• What is “software analysis”?

Course material

• MODELING FOUNDATION
• Modeling principles (e.g., decomposition, abstraction, generalization, projection/views, and use of formal

approaches)
• Preconditions, postconditions, invariants, and design by contract
• Introduction to mathematical models and formal notation
•
• TYPE OF MODELS
• information modeling (e.g., entity-relationship modeling and class diagrams)
• Behavioral modeling (e.g., state diagrams, use case analysis, interaction diagrams, failure modes and effects

analysis, and fault tree analysis)
• Architectural modeling (e.g., architectural patterns and component diagrams)
• Domain modeling (e.g., domain engineering approaches)
• Enterprise modeling (e.g., business processes, organizations, goals, and workflow)
• Modeling embedded systems (e.g., real-time schedule analysis, and interface protocols)
•
• ANALYSIS FUNDAMENTAL
• Analyzing form (e.g., completeness, consistency, and robustness)
• Analyzing correctness (e.g., static analysis, simulation, and model checking)
• Analyzing dependability (e.g., failure mode analysis and fault trees)
• Formal analysis (e.g., theorem proving)
•

References

Reference [1]

• You need to read the chapters: 1

What is software?

• Computer programs and associated documentation such as
requirements, design models and user manuals.

• Software products may be developed for a particular
customer or may be developed for a general market.

• Software products may be
– Generic developed to be sold to a range of different customers

e.g. PC software such as Excel or Word.
– Bespoke (custom) developed for a single customer according to

their specification.

• New software can be created by developing new programs,
configuring generic software systems or reusing existing
software.

Software engineering

• The economies of ALL developed nations are
dependent on software.

• More and more systems are software controlled

• Software engineering is concerned with theories,
methods and tools for professional software
development.

• Expenditure on software represents a
significant fraction of GNP (Gross National
Product) in all developed countries.

Software Costs

• Software costs often dominate computer
system costs. The costs of software on a PC
are often greater than the hardware cost.

• Software costs more to maintain than it does
to develop. For systems with a long life,
maintenance costs may be several times
development costs.

Software products

• Generic products
– Stand-alone systems that are marketed and sold to

any customer who wishes to buy them.
– Examples – PC software such as graphics programs,

project management tools; CAD software; software
for specific markets such as appointments systems for
dentists.

• Customized products
– Software that is commissioned by a specific customer

to meet their own needs.
– Examples – embedded control systems, air traffic

control software, traffic monitoring systems.

Product specification

• Generic products

– The specification of what the software should do
is owned by the software developer and decisions
on software change are made by the developer.

• Customized products

– The specification of what the software should do
is owned by the customer for the software and
they make decisions on software changes that are
required.

Importance of software engineering

• More and more, individuals and society rely on
advanced software systems. We need to be able
to produce reliable and trustworthy systems
economically and quickly.

• It is usually cheaper, in the long run, to use
software engineering methods and techniques
for software systems rather than just write the
programs as if it was a personal programming
project. For most types of system, the majority of
costs are the costs of changing the software after
it has gone into use.

Software process activities

• Software specification, where customers and
engineers define the software that is to be
produced and the constraints on its operation.

• Software development, where the software is
designed and programmed.

• Software validation, where the software is
checked to ensure that it is what the customer
requires.

• Software evolution, where the software is
modified to reflect changing customer and
market requirements.

Application types

• Stand-alone applications
– These are application systems that run on a local

computer, such as a PC. They include all necessary
functionality and do not need to be connected to a
network.

• Interactive transaction-based applications
– Applications that execute on a remote computer and are

accessed by users from their own PCs or terminals. These
include web applications such as e-commerce applications.

• Embedded control systems
– These are software control systems that control and

manage hardware devices. Numerically, there are probably
more embedded systems than any other type of system.

Application types

• Batch processing systems
– These are business systems that are designed to process

data in large batches. They process large numbers of
individual inputs to create corresponding outputs.

• Entertainment systems
– These are systems that are primarily for personal use and

which are intended to entertain the user.

• Systems for modeling and simulation
– These are systems that are developed by scientists and

engineers to model physical processes or situations, which
include many, separate, interacting objects.

Application types

• Data collection systems

– These are systems that collect data from their
environment using a set of sensors and send that
data to other systems for processing.

• Systems of systems

– These are systems that are composed of a number
of other software systems.

Software engineering fundamentals

• Some fundamental principles apply to all types of
software system, irrespective of the development
techniques used:
– Systems should be developed using a managed and

understood development process. Of course, different
processes are used for different types of software.

– Dependability and performance are important for all types
of system.

– Understanding and managing the software specification
and requirements (what the software should do) are
important.

– Where appropriate, you should reuse software that has
already been developed rather than write new software.

Software engineering and the web

• The Web is now a platform for running
application and organizations are increasingly
developing web-based systems rather than local
systems.

• Web services allow application functionality to be
accessed over the web.

• Cloud computing is an approach to the provision
of computer services where applications run
remotely on the ‘cloud’.
– Users do not buy software buy pay according to use.

Web software engineering

• Software reuse is the dominant approach for constructing
web-based systems.
– When building these systems, you think about how you can

assemble them from pre-existing software components and
systems.

• Web-based systems should be developed and delivered
incrementally.
– It is now generally recognized that it is impractical to specify all

the requirements for such systems in advance.

• User interfaces are constrained by the capabilities of web
browsers.
– Technologies such as AJAX allow rich interfaces to be created

within a web browser but are still difficult to use. Web forms
with local scripting are more commonly used.

Web-based software engineering

• Web-based systems are complex distributed
systems but the fundamental principles of
software engineering discussed previously are as
applicable to them as they are to any other types
of system.

• The fundamental ideas of software engineering,
discussed in the previous section, apply to web-
based software in the same way that they apply
to other types of software system.

Modeling Principles

Lecture2

System modeling

• System modeling is the process of developing abstract
models of a system, with each model presenting a
different view or perspective of that system.

• System modeling has now come to mean representing
a system using some kind of graphical notation, which
is now almost always based on notations in the Unified
Modeling Language (UML).

• System modelling helps the analyst to understand the
functionality of the system and models are used to
communicate with customers.

Existing and planned system models

• Models of the existing system are used during
requirements engineering. They help clarify what the
existing system does and can be used as a basis for
discussing its strengths and weaknesses. These then lead to
requirements for the new system.

• Models of the new system are used during requirements
engineering to help explain the proposed requirements to
other system stakeholders. Engineers use these models to
discuss design proposals and to document the system for
implementation.

• In a model-driven engineering process, it is possible to
generate a complete or partial system implementation
from the system model.

System perspectives

• An external perspective, where you model the context
or environment of the system.

• An interaction perspective, where you model the
interactions between a system and its environment, or
between the components of a system.

• A structural perspective, where you model the
organization of a system or the structure of the data
that is processed by the system.

• A behavioral perspective, where you model the
dynamic behavior of the system and how it responds to
events.

UML diagram types

• Activity diagrams, which show the activities involved in
a process or in data processing .

• Use case diagrams, which show the interactions
between a system and its environment.

• Sequence diagrams, which show interactions between
actors and the system and between system
components.

• Class diagrams, which show the object classes in the
system and the associations between these classes.

• State diagrams, which show how the system reacts to
internal and external events.

Use of graphical models

• As a means of facilitating discussion about an
existing or proposed system
– Incomplete and incorrect models are OK as their role

is to support discussion.

• As a way of documenting an existing system
– Models should be an accurate representation of the

system but need not be complete.

• As a detailed system description that can be used
to generate a system implementation
– Models have to be both correct and complete.

Context models

• Context models are used to illustrate the
operational context of a system - they show
what lies outside the system boundaries.

• Social and organisational concerns may affect
the decision on where to position system
boundaries.

• Architectural models show the system and its
relationship with other systems.

System boundaries

• System boundaries are established to define what
is inside and what is outside the system.
– They show other systems that are used or depend on

the system being developed.

• The position of the system boundary has a
profound effect on the system requirements.

• Defining a system boundary is a political
judgment
– There may be pressures to develop system boundaries

that increase / decrease the influence or workload of
different parts of an organization.

Generalization

• Generalization is an everyday technique that we
use to manage complexity.

• Rather than learn the detailed characteristics of
every entity that we experience, we place these
entities in more general classes (animals, cars,
houses, etc.) and learn the characteristics of
these classes.

• This allows us to infer that different members of
these classes have some common characteristics
e.g. squirrels and rats are rodents.

Generalization

• In modeling systems, it is often useful to examine the classes
in a system to see if there is scope for generalization. If
changes are proposed, then you do not have to look at all
classes in the system to see if they are affected by the change.

• In object-oriented languages, such as Java, generalization is
implemented using the class inheritance mechanisms built
into the language.

• In a generalization, the attributes and operations associated
with higher-level classes are also associated with the lower-
level classes.

• The lower-level classes are subclasses inherit the attributes
and operations from their superclasses. These lower-level
classes then add more specific attributes and operations.

A generalization hierarchy

A generalization hierarchy with added
detail

Abstraction

• Many levels of abstraction
• At the highest level of abstraction, a solution is stated in

broad terms using the language of the problem
environment.

• at the lowest level of abstraction, the solution is stated in a
manner that can be directly implemented.

• The psychological notion of "abstraction" permits one to
concentrate on a problem at some level of generalization
without regard to irrelevant low level details; use of
abstraction also permits one to work with concepts and
terms that are familiar in the problem environment without
having to transform them to an unfamiliar structure . . .

Component composition

• The process of assembling components to
create a system.

• Composition involves integrating components
with each other and with the component
infrastructure.

• Normally you have to write ‘glue code’ to
integrate components.

Component composition

• Component composition is the process of
‘wiring’ components together to create a
system.

• When composing reusable components, you
normally have to write adaptors to reconcile
different component interfaces.

• When choosing compositions, you have to
consider required functionality, non-functional
requirements and system evolution.

Types of composition

• Sequential composition where the composed
components are executed in sequence. This
involves composing the provides interfaces of
each component.

• Hierarchical composition where one component
calls on the services of another. The provides
interface of one component is composed with the
requires interface of another.

• Additive composition where the interfaces of two
components are put together to create a new
component. Provides and requires interfaces of
integrated component is a combination of
interfaces of constituent components.

Composition trade-offs

• When composing components, you may find conflicts
between functional and non-functional requirements, and
conflicts between the need for rapid delivery and system
evolution.

• You need to make decisions such as:
– What composition of components is effective for delivering the

functional requirements?

– What composition of components allows for future change?

– What will be the emergent properties of the composed system?

Preconditions, Post conditions,
design by contract

Lecture3

Photo Library documentation

“This method adds a photograph to the library and
associates the photograph identifier and catalogue
descriptor with the photograph.”

 “what happens if the photograph identifier is already
associated with a photograph in the library?”

“is the photograph descriptor associated with the
catalogue entry as well as the photograph i.e. if I delete
the photograph, do I also delete the catalogue
information?”

The Object Constraint Language

• The Object Constraint Language (OCL) has
been designed to define constraints that are
associated with UML models.

• It is based around the notion of pre and post
condition specification – common to many
formal methods.

The OCL description of the Photo
Library interface

•-- The context keyword names the component to which the conditions apply

•context addItem

•-- The preconditions specify what must be true before execution of addItem
•pre: PhotoLibrary.libSize() > 0
•PhotoLibrary.retrieve(pid) = null

•-- The postconditions specify what is true after execution
•post:libSize () = libSize()@pre + 1
•PhotoLibrary.retrieve(pid) = p
•PhotoLibrary.catEntry(pid) = photodesc

•context delete

•pre: PhotoLibrary.retrieve(pid) <> null ;

•post: PhotoLibrary.retrieve(pid) = null
•PhotoLibrary.catEntry(pid) = PhotoLibrary.catEntry(pid)@pre
•PhotoLibrary.libSize() = libSize()@pre—1

Photo library conditions

• As specified, the OCL associated with the Photo Library
component states that:
– There must not be a photograph in the library with the same identifier

as the photograph to be entered;

– The library must exist - assume that creating a library adds a single
item to it;

– Each new entry increases the size of the library by 1;

– If you retrieve using the same identifier then you get back the photo
that you added;

– If you look up the catalogue using that identifier, then you get back the
catalogue entry that you made.

Mathematical models and formal
notation

Lecture4

Formal specification

• Formal specification is part of a more general collection of
techniques that are known as ‘formal methods’.

• These are all based on mathematical representation and
analysis of software.

• Formal methods include
– Formal specification;

– Specification analysis and proof;

– Transformational development;

– Program verification.

Use of formal methods

• The principal benefits of formal methods are
in reducing the number of faults in systems.

• Consequently, their main area of applicability
is in critical systems engineering. There have
been several successful projects where formal
methods have been used in this area.

• In this area, the use of formal methods is most
likely to be cost-effective because high system
failure costs must be avoided.

Specification in the software process

• Specification and design are inextricably
intermingled.

• Architectural design is essential to structure a
specification and the specification process.

• Formal specifications are expressed in a
mathematical notation with precisely defined
vocabulary, syntax and semantics.

Formal specification in a plan-based
software process

Benefits of formal specification

• Developing a formal specification requires the system
requirements to be analyzed in detail. This helps to
detect problems, inconsistencies and incompleteness
in the requirements.

• As the specification is expressed in a formal language,
it can be automatically analyzed to discover
inconsistencies and incompleteness.

• If you use a formal method such as the B method, you
can transform the formal specification into a ‘correct’
program.

• Program testing costs may be reduced if the program is
formally verified against its specification.

Acceptance of formal methods

• Formal methods have had limited impact on practical software
development:
– Problem owners cannot understand a formal specification and so cannot

assess if it is an accurate representation of their
requirements.

– It is easy to assess the costs of developing a formal specification but
harder to assess the benefits. Managers may therefore be unwilling to
invest in formal methods.

– Software engineers are unfamiliar with this approach and
are therefore reluctant to propose the use of FM.

– Formal methods are still hard to scale up to large systems.

– Formal specification is not really compatible with agile
development methods.

Information Modeling

Lecture5

Class diagrams

• Class diagrams are used when developing an object-
oriented system model to show the classes in a system
and the associations between these classes.

• An object class can be thought of as a general
definition of one kind of system object.

• An association is a link between classes that indicates
that there is some relationship between these classes.

• When you are developing models during the early
stages of the software engineering process, objects
represent something in the real world, such as a
patient, a prescription, doctor, etc.

UML classes and association

Classes and associations in the MHC-
PMS

The Consultation Class

Behavioral Modeling

Lecture6

Behavioral models

• Behavioral models are models of the dynamic
behavior of a system as it is executing. They show
what happens or what is supposed to happen
when a system responds to a stimulus from its
environment.

• You can think of these stimuli as being of two
types:
– Data Some data arrives that has to be processed by

the system.
– Events Some event happens that triggers system

processing. Events may have associated data,
although this is not always the case.

State diagrams

• State diagrams show how the system reacts to
internal and external events.

State diagrams

States and stimuli for the microwave
oven (a)

• State Description
• Waiting The oven is waiting for input. The display shows the current time.
• Half power The oven power is set to 300 watts. The display shows ‘Half

power’.
• Full power The oven power is set to 600 watts. The display shows ‘Full

power’.
• Set time The cooking time is set to the user’s input value. The display

shows the cooking time selected and is updated as the time is set.
• Disabled Oven operation is disabled for safety. Interior oven light is on.

Display shows ‘Not ready’.
• Enabled Oven operation is enabled. Interior oven light is off. Display shows

‘Ready to cook’.
• Operation Oven in operation. Interior oven light is on. Display shows the

timer countdown. On completion of cooking, the buzzer is sounded for
five seconds. Oven light is on. Display shows ‘Cooking complete’ while
buzzer is sounding.

States and stimuli for the microwave
oven (b)

• Stimulus Description

• Half power The user has pressed the half-power
button.

• Full power The user has pressed the full-power button.

• Timer The user has pressed one of the timer buttons.

• Number The user has pressed a numeric key.

• Door open The oven door switch is not closed.

• Door closed The oven door switch is closed.

• Start The user has pressed the Start button.

• Cancel The user has pressed the Cancel button.

Microwave oven operation

Fault-tree analysis

• A deductive top-down technique.

• Put the risk or hazard at the root of the tree
and identify the system states that could lead
to that hazard.

• Where appropriate, link these with ‘and’ or
‘or’ conditions.

• A goal should be to minimise the number of
single causes of system failure.

An example of a software fault tree

Fault tree analysis

• Three possible conditions that can lead to
delivery of incorrect dose of insulin
– Incorrect measurement of blood sugar level

– Failure of delivery system

– Dose delivered at wrong time

• By analysis of the fault tree, root causes of
these hazards related to software are:
– Algorithm error

– Arithmetic error

Architectural Modeling

Lecture7

Architectural patterns

• Patterns are a means of representing, sharing and
reusing knowledge.

• An architectural pattern is a stylized description
of good design practice, which has been tried and
tested in different environments.

• Patterns should include information about when
they are and when the are not useful.

• Patterns may be represented using tabular and
graphical descriptions.

The Model-View-Controller (MVC)
pattern

• Name MVC (Model-View-Controller)
• Description Separates presentation and interaction from the system data. The

system is structured into three logical components that interact with each other.
The Model component manages the system data and associated operations on
that data. The View component defines and manages how the data is presented to
the user. The Controller component manages user interaction (e.g., key presses,
mouse clicks, etc.) and passes these interactions to the View and the Model. See
Figure 6.3.

• Example Figure 6.4 shows the architecture of a web-based application system
organized using the MVC pattern.

• When used Used when there are multiple ways to view and interact with data.
Also used when the future requirements for interaction and presentation of data
are unknown.

• Advantages Allows the data to change independently of its representation and
vice versa. Supports presentation of the same data in different ways with changes
made in one representation shown in all of them.

• Disadvantages Can involve additional code and code complexity when the data
model and interactions are simple.

The organization of the Model-View-
Controller

Web application architecture using the
MVC pattern

Architectural patterns for embedded
systems

• Characteristic system architectures for embedded
systems
– Observe and React This pattern is used when a set of

sensors are routinely monitored and displayed.

– Environmental Control This pattern is used when a
system includes sensors, which provide information
about the environment and actuators that can change
the environment

– Process Pipeline This pattern is used when data has to
be transformed from one representation to another
before it can be processed.

The Observe and React pattern

Name Observe and React

Description The input values of a set of sensors of the same types are

collected and analyzed. These values are displayed in some way. If

the sensor values indicate that some exceptional condition has

arisen, then actions are initiated to draw the operator’s attention to

that value and, in certain cases, to take actions in response to the

exceptional value.

Stimuli Values from sensors attached to the system.

Responses Outputs to display, alarm triggers, signals to reacting systems.

Processes Observer, Analysis, Display, Alarm, Reactor.

Used in Monitoring systems, alarm systems.

Observe and React process structure

Process structure for a burglar alarm
system

The Environmental Control pattern

Name Environmental Control

Description The system analyzes information from a set of sensors that collect data from

the system’s environment. Further information may also be collected on the

state of the actuators that are connected to the system. Based on the data

from the sensors and actuators, control signals are sent to the actuators that

then cause changes to the system’s environment. Information about the

sensor values and the state of the actuators may be displayed.

Stimuli Values from sensors attached to the system and the state of the system

actuators.

Responses Control signals to actuators, display information.

Processes Monitor, Control, Display, Actuator Driver, Actuator monitor.

Used in Control systems.

Environmental Control process
structure

Control system architecture for an
anti-skid braking system

The Process Pipeline pattern

Name Process Pipeline

Description A pipeline of processes is set up with data moving in

sequence from one end of the pipeline to another. The

processes are often linked by synchronized buffers to

allow the producer and consumer processes to run at

different speeds. The culmination of a pipeline may be

display or data storage or the pipeline may terminate in

an actuator.

Stimuli Input values from the environment or some other process

Responses Output values to the environment or a shared buffer

Processes Producer, Buffer, Consumer

Used in Data acquisition systems, multimedia systems

Process Pipeline process structure

Domain Modeling

Lecture8

domain engineering

domain engineering

• Domain engineering performs the work
required to establish a set of software
components that can be reused by the
software engineer.

• The intent of domain engineering is to dentify,
construct, catalog, and disseminate a set of
software components that have applicability
to existing and future software in a particular
application domain.

domain engineering

• The overall goal is to establish mechanisms
that enable software engineers to share these
components—to reuse them—during work on
new and existing systems.

• Domain engineering includes three major
activities—analysis, construction, and
dissemination.

The Domain Analysis Process

• 1. Define the domain to be investigated.

• 2. Categorize the items extracted from the
domain.

• 3. Collect a representative sample of
applications in the domain.

• 4. Analyze each application in the sample.

• 5. Develop an analysis model for the objects.

Characterization Functions

• 1: not relevant to whether reuse is appropriate
• 2: relevant only under unusual circumstances
• 3: relevant—the component can be modified so

that it can be used, despite differences
• 4: clearly relevant, and if the new software does

not have this characteristic, reuse will be
inefficient but may still be possible

• 5: clearly relevant, and if the new software does
not have this characteristic, reuse will be
ineffective and reuse without the characteristic is
not recommended

Structural Modeling and Structure
Points

• 1. A structure point is an abstraction that should have a limited
number of

• instances. Restating this in object-oriented jargon, the size of the
class hierarchy should be small. In addition, the abstraction should
recur throughout applications in the domain. Otherwise, the cost to
verify, document, and disseminate the structure point cannot be
justified.

• 2. The rules that govern the use of the structure point should be
easily understood.

• In addition, the interface to the structure point should be relatively
• simple.
• 3. The structure point should implement information hiding by

isolating all
• complexity contained within the structure point itself. This reduces

the perceived complexity of the overall system.

Enterprise Modeling

Lecture9

Business process

• A business process is “a set of logically related
tasks performed to achieve a defined business
outcome”

• Within the business process, people, equipment,
material resources, and business procedures are
combined to produce a specified result.

• Examples of business processes include designing
a new product, purchasing services and supplies,
hiring a new employee, and paying suppliers.
Each demands a set of tasks and each draws on
diverse resources within the business.

Business process

• Every business process has a defined
customer—a person or group that receives

the outcome (e.g., an idea, a report, a design, a
product). In addition, business

• processes cross organizational boundaries.
They require that different organizational

groups participate in the “logically related tasks”
that define the process.

Static workflows in the Rational
Unified Process

Workflow Description

Business modelling The business processes are modelled using business

use cases.

Requirements Actors who interact with the system are identified and

use cases are developed to model the system

requirements.

Analysis and design A design model is created and documented using

architectural models, component models, object

models and sequence models.

Implementation The components in the system are implemented and

structured into implementation sub-systems.

Automatic code generation from design models helps

accelerate this process.

4 Chapter 2 Software Processes

Static workflows in the Rational
Unified Process

Workflow Description

Testing Testing is an iterative process that is carried out in conjunction

with implementation. System testing follows the completion of

the implementation.

Deployment A product release is created, distributed to users and installed in

their workplace.

Configuration and

change management

This supporting workflow managed changes to the system .

Project management This supporting workflow manages the system development.

Environment This workflow is concerned with making appropriate software

tools available to the software development team.

5 Chapter 2 Software Processes

RUP good practice

• Develop software iteratively
– Plan increments based on customer priorities and

deliver highest priority increments first.

• Manage requirements
– Explicitly document customer requirements and

keep track of changes to these requirements.

• Use component-based architectures
– Organize the system architecture as a set of

reusable components.

6 Chapter 2 Software Processes

RUP good practice

• Visually model software
– Use graphical UML models to present static and

dynamic views of the software.

• Verify software quality
– Ensure that the software meet’s organizational quality

standards.

• Control changes to software
– Manage software changes using a change

management system and configuration management
tools.

Chapter 2 Software Processes 7

Modeling Embedded Software

Lecture10

Embedded software

• Computers are used to control a wide range of
systems from simple domestic machines, through
games controllers, to entire manufacturing
plants.

• Their software must react to events generated by
the hardware and, often, issue control signals in
response to these events.

• The software in these systems is embedded in
system hardware, often in read-only memory,
and usually responds, in real time, to events from
the system’s environment.

Responsiveness

• Responsiveness in real-time is the critical difference
between embedded systems and other software
systems, such as information systems, web-based
systems or personal software systems.

• For non-real-time systems, correctness can be defined
by specifying how system inputs map to corresponding
outputs that should be produced by the system.

• In a real-time system, the correctness depends both on
the response to an input and the time taken to
generate that response. If the system takes too long to
respond, then the required response may be
ineffective.

Definition

• A real-time system is a software system where the
correct functioning of the system depends on the
results produced by the system and the time at
which these results are produced.

• A soft real-time system is a system whose
operation is degraded if results are not produced
according to the specified timing requirements.

• A hard real-time system is a system whose
operation is incorrect if results are not produced
according to the timing specification.

Embedded system characteristics

• Embedded systems generally run continuously
and do not terminate.

• Interactions with the system’s environment
are uncontrollable and unpredictable.

• There may be physical limitations (e.g. power)
that affect the design of a system.

• Direct hardware interaction may be necessary.

• Issues of safety and reliability may dominate
the system design.

Embedded system design

• The design process for embedded systems is a systems
engineering process that has to consider, in detail, the
design and performance of the system hardware.

• Part of the design process may involve deciding which
system capabilities are to be implemented in software
and which in hardware.

• Low-level decisions on hardware, support software and
system timing must be considered early in the process.

• These may mean that additional software functionality,
such as battery and power management, has to be
included in the system.

Reactive systems

• Given a stimulus, the system must produce a
reaction or response within a specified time.

• Periodic stimuli. Stimuli which occur at
predictable time intervals
– For example, a temperature sensor may be polled 10 times per

second.

• Aperiodic stimuli. Stimuli which occur at
unpredictable times
– For example, a system power failure may trigger an

interrupt which must be processed by the system.

Stimuli and responses for a burglar
alarm system

Stimulus Response

Single sensor positive Initiate alarm; turn on lights around site of positive

sensor.

Two or more sensors positive Initiate alarm; turn on lights around sites of positive

sensors; call police with location of suspected break-in.

Voltage drop of between 10%

and 20%

Switch to battery backup; run power supply test.

Voltage drop of more than 20% Switch to battery backup; initiate alarm; call police; run

power supply test.

Power supply failure Call service technician.

Sensor failure Call service technician.

Console panic button positive Initiate alarm; turn on lights around console; call police.

Clear alarms Switch off all active alarms; switch off all lights that have

been switched on.

A general model of an embedded real-
time system

Architectural considerations

• Because of the need to respond to timing demands made by
different stimuli/responses, the system architecture must
allow for fast switching between stimulus handlers.

• Timing demands of different stimuli are different so a simple
sequential loop is not usually adequate.

• Real-time systems are therefore usually designed as
cooperating processes with a real-time executive controlling
these processes.

Sensor and actuator processes

System elements

• Sensor control processes
– Collect information from sensors. May buffer

information collected in response to a sensor
stimulus.

• Data processor
– Carries out processing of collected information

and computes the system response.

• Actuator control processes
– Generates control signals for the actuators.

Design process activities

• Platform selection

• Stimuli/response identification

• Timing analysis

• Process design

• Algorithm design

• Data design

• Process scheduling

Process coordination

• Processes in a real-time system have to be
coordinated and share information.

• Process coordination mechanisms ensure mutual
exclusion to shared resources.

• When one process is modifying a shared
resource, other processes should not be able to
change that resource.

• When designing the information exchange
between processes, you have to take into account
the fact that these processes may be running at
different speeds.

Producer/consumer processes sharing
a circular buffer

Mutual exclusion

• Producer processes collect data and add it to
the buffer. Consumer processes take data from
the buffer and make elements available.

• Producer and consumer processes must be
mutually excluded from accessing the same
element.

• The buffer must stop producer processes
adding information to a full buffer and
consumer processes trying to take information
from an empty buffer.

Real-time system modelling

• The effect of a stimulus in a real-time system may trigger a
transition from one state to another.

• State models are therefore often used to describe
embedded real-time systems.

• UML state diagrams may be used to show the states
and state transitions in a real-time system.

State machine model of a petrol (gas)
pump

Real-time programming

• Programming languages for real-time systems development
have to include facilities to access system hardware, and it
should be possible to predict the timing of particular
operations in these languages.

• Systems-level languages, such as C, which allow efficient code
to be generated are widely used in preference to languages
such as Java.

• There is a performance overhead in object-oriented systems
because extra code is required to mediate access to attributes
and handle calls to operations. The loss of performance may
make it impossible to meet real-time deadlines.

Analyzing Form

Lecture11

Requirements completeness and
consistency

• In principle, requirements should be both complete and
consistent.

• Complete

– They should include descriptions of all facilities
required.

• Consistent

– There should be no conflicts or contradictions in
the descriptions of the system facilities.

• In practice, it is impossible to produce a complete and
consistent requirements document.

2 Chapter 4 Requirements engineering

Requirements checking

• Validity. Does the system provide the functions which best
support the customer’s needs?

• Consistency. Are there any requirements conflicts?

• Completeness. Are all functions required by the customer
included?

• Realism. Can the requirements be implemented given
available budget and technology

• Verifiability. Can the requirements be checked?

3 Chapter 4 Requirements engineering

Definitions

• Consistency. The use of uniform design and
documentation techniques throughout the
software development project.

• Completeness. The degree to which full
implementation of required function has been
achieved.

Analyzing Correctness

Lecture 12

Validation of critical systems

• The verification and validation costs for critical systems
involves additional validation processes and analysis than for
non-critical systems:
– The costs and consequences of failure are high so it is cheaper to find

and remove faults than to pay for system failure;

– You may have to make a formal case to customers or to a regulator
that the system meets its dependability requirements. This
dependability case may require specific V & V activities to be carried
out.

2
Chapter 15 Dependability and Security

Assurance

Validation costs

• Because of the additional activities involved, the
validation costs for critical systems are usually
significantly higher than for non-critical systems.

• Normally, V & V costs take up more than 50% of
the total system development costs.

• The outcome of the validation process is a
tangible body of evidence that demonstrates the
level of dependability of a software system.

3
Chapter 15 Dependability and Security

Assurance

Static analysis

• Static analysis techniques are system verification
techniques that don’t involve executing a program.

• The work on a source representation of the software –
either a model or the program code itself.

• Inspections and reviews are a form of static analysis

• Techniques covered here:
– Formal verification

– Model checking

– Automated program analysis

4
Chapter 15 Dependability and Security

Assurance

Verification and formal methods

• Formal methods can be used when a mathematical
specification of the system is produced.

• They are the ultimate static verification technique that
may be used at different stages in the development
process:
– A formal specification may be developed and

mathematically analyzed for consistency. This helps
discover specification errors and omissions.

– Formal arguments that a program conforms to its
mathematical specification may be developed. This is
effective in discovering programming and design errors.

5
Chapter 15 Dependability and Security

Assurance

Arguments for formal methods

• Producing a mathematical specification requires a
detailed analysis of the requirements and this is
likely to uncover errors.

• Concurrent systems can be analysed to discover
race conditions that might lead to deadlock.
Testing for such problems is very difficult.

• They can detect implementation errors before
testing when the program is analyzed alongside
the specification.

6
Chapter 15 Dependability and Security

Assurance

Arguments against formal methods

• Require specialised notations that cannot be
understood by domain experts.

• Very expensive to develop a specification and
even more expensive to show that a program
meets that specification.

• Proofs may contain errors.

• It may be possible to reach the same level of
confidence in a program more cheaply using
other V & V techniques.

7
Chapter 15 Dependability and Security

Assurance

Model checking

• Involves creating an extended finite state model of a
system and, using a specialized system (a model
checker), checking that model for errors.

• The model checker explores all possible paths through
the model and checks that a user-specified property is
valid for each path.

• Model checking is particularly valuable for verifying
concurrent systems, which are hard to test.

• Although model checking is computationally very
expensive, it is now practical to use it in the verification
of small to medium sized critical systems.

8
Chapter 15 Dependability and Security

Assurance

Model checking

9
Chapter 15 Dependability and Security

Assurance

Automated static analysis

• Static analysers are software tools for source
text processing.

• They parse the program text and try to
discover potentially erroneous conditions and
bring these to the attention of the V & V team.

• They are very effective as an aid to inspections
- they are a supplement to but not a
replacement for inspections.

10
Chapter 15 Dependability and Security

Assurance

Automated static analysis checks

Fault class Static analysis check

Data faults Variables used before initialization

Variables declared but never used

Variables assigned twice but never used between assignments

Possible array bound violations

Undeclared variables

Control faults Unreachable code

Unconditional branches into loops

Input/output faults Variables output twice with no intervening assignment

Interface faults Parameter-type mismatches

Parameter number mismatches

Non-usage of the results of functions

Uncalled functions and procedures

Storage management faults Unassigned pointers

Pointer arithmetic

Memory leaks

11
Chapter 15 Dependability and Security

Assurance

Levels of static analysis

• Characteristic error checking
– The static analyzer can check for patterns in the code that are

characteristic of errors made by programmers using a particular
language.

• User-defined error checking
– Users of a programming language define error patterns, thus

extending the types of error that can be detected. This allows
specific rules that apply to a program to be checked.

• Assertion checking
– Developers include formal assertions in their program and

relationships that must hold. The static analyzer symbolically
executes the code and highlights potential problems.

12
Chapter 15 Dependability and Security

Assurance

Use of static analysis

• Particularly valuable when a language such as C is
used which has weak typing and hence many
errors are undetected by the compiler.

• Particularly valuable for security checking – the
static analyzer can discover areas of vulnerability
such as buffer overflows or unchecked inputs.

• Static analysis is now routinely used in the
development of many safety and security critical
systems.

13
Chapter 15 Dependability and Security

Assurance

Reliability testing

• Reliability validation involves exercising the program to assess
whether or not it has reached the required level of reliability.

• This cannot normally be included as part of a normal defect
testing process because data for defect testing is (usually)
atypical of actual usage data.

• Reliability measurement therefore requires a specially
designed data set that replicates the pattern of inputs to be
processed by the system.

14
Chapter 15 Dependability and Security

Assurance

Reliability validation activities

• Establish the operational profile for the
system.

• Construct test data reflecting the operational
profile.

• Test the system and observe the number of
failures and the times of these failures.

• Compute the reliability after a statistically
significant number of failures have been
observed.

15
Chapter 15 Dependability and Security

Assurance

Reliability measurement

16
Chapter 15 Dependability and Security

Assurance

Statistical testing

• Testing software for reliability rather than fault detection.

• Measuring the number of errors allows the reliability of the
software to be predicted. Note that, for statistical reasons,
more errors than are allowed for in the reliability specification
must be induced.

• An acceptable level of reliability should be
specified and the software tested and amended until that
level of reliability is reached.

17
Chapter 15 Dependability and Security

Assurance

Reliability measurement problems

• Operational profile uncertainty
– The operational profile may not be an accurate reflection of the real

use of the system.

• High costs of test data generation
– Costs can be very high if the test data for the system cannot be

generated automatically.

• Statistical uncertainty
– You need a statistically significant number of failures to compute the

reliability but highly reliable systems will rarely fail.

• Recognizing failure
– It is not always obvious when a failure has occurred as there may be

conflicting interpretations of a specification.

18
Chapter 15 Dependability and Security

Assurance

Operational profiles

• An operational profile is a set of test data whose frequency
matches the actual frequency of these inputs from ‘normal’
usage of the system. A close match with actual usage is
necessary otherwise the measured reliability will not be
reflected in the actual usage of the system.

• It can be generated from real data collected from an existing
system or (more often) depends on assumptions made about
the pattern of usage of a system.

19
Chapter 15 Dependability and Security

Assurance

An operational profile

20
Chapter 15 Dependability and Security

Assurance

Operational profile generation

• Should be generated automatically whenever
possible.

• Automatic profile generation is difficult for
interactive systems.

• May be straightforward for ‘normal’ inputs but it
is difficult to predict ‘unlikely’ inputs and to
create test data for them.

• Pattern of usage of new systems is unknown.
• Operational profiles are not static but change as

users learn about a new system and change the
way that they use it.

21
Chapter 15 Dependability and Security

Assurance

Analyzing Dependability

Lecture13

Topics covered

• Risk-driven specification

• Safety specification

• Security specification

• Software reliability specification

2
Chapter 12 Dependability and Security

Specification

Dependability requirements

• Functional requirements to define error
checking and recovery facilities and protection
against system failures.

• Non-functional requirements defining the
required reliability and availability of the
system.

• Excluding requirements that define states and
conditions that must not arise.

3
Chapter 12 Dependability and Security

Specification

Risk-driven specification

• Critical systems specification should be risk-
driven.

• This approach has been widely used in safety
and security-critical systems.

• The aim of the specification process should be
to understand the risks (safety, security, etc.)
faced by the system and to define
requirements that reduce these risks.

4
Chapter 12 Dependability and Security

Specification

Stages of risk-based analysis

• Risk identification
– Identify potential risks that may arise.

• Risk analysis and classification
– Assess the seriousness of each risk.

• Risk decomposition
– Decompose risks to discover their potential root causes.

• Risk reduction assessment
– Define how each risk must be taken into eliminated or reduced when

the system is designed.

5
Chapter 12 Dependability and Security

Specification

Risk-driven specification

6
Chapter 12 Dependability and Security

Specification

Phased risk analysis

• Preliminary risk analysis
– Identifies risks from the systems environment. Aim is to

develop an initial set of system security and dependability
requirements.

• Life cycle risk analysis
– Identifies risks that emerge during design and

development e.g. risks that are associated with the
technologies used for system construction. Requirements
are extended to protect against these risks.

• Operational risk analysis
– Risks associated with the system user interface and

operator errors. Further protection requirements may be
added to cope with these.

7
Chapter 12 Dependability and Security

Specification

Safety specification

• Goal is to identify protection requirements
that ensure that system failures do not cause
injury or death or environmental damage.

• Risk identification = Hazard identification

• Risk analysis = Hazard assessment

• Risk decomposition = Hazard analysis

• Risk reduction = safety requirements
specification

8
Chapter 12 Dependability and Security

Specification

Hazard identification

• Identify the hazards that may threaten the
system.

• Hazard identification may be based on
different types of hazard:
– Physical hazards

– Electrical hazards

– Biological hazards

– Service failure hazards

– Etc.

9
Chapter 12 Dependability and Security

Specification

Insulin pump risks

• Insulin overdose (service failure).

• Insulin underdose (service failure).

• Power failure due to exhausted battery (electrical).

• Electrical interference with other medical equipment
(electrical).

• Poor sensor and actuator contact (physical).

• Parts of machine break off in body (physical).

• Infection caused by introduction of machine (biological).

• Allergic reaction to materials or insulin (biological).

10
Chapter 12 Dependability and Security

Specification

Hazard assessment

• The process is concerned with understanding
the likelihood that a risk will arise and the
potential consequences if an accident or
incident should occur.

• Risks may be categorised as:
– Intolerable. Must never arise or result in an accident

– As low as reasonably practical(ALARP). Must minimise the possibility
of risk given cost and schedule constraints

– Acceptable. The consequences of the risk are acceptable and no extra
costs should be incurred to reduce hazard probability

11
Chapter 12 Dependability and Security

Specification

The risk triangle

12
Chapter 12 Dependability and Security

Specification

Social acceptability of risk

• The acceptability of a risk is determined by human, social and
political considerations.

• In most societies, the boundaries between the regions are
pushed upwards with time i.e. society is less willing to accept
risk
– For example, the costs of cleaning up pollution may be less than the

costs of preventing it but this may not be socially acceptable.

• Risk assessment is subjective
– Risks are identified as probable, unlikely, etc. This depends on who is

making the assessment.

13
Chapter 12 Dependability and Security

Specification

Hazard assessment

• Estimate the risk probability and the risk
severity.

• It is not normally possible to do this precisely
so relative values are used such as ‘unlikely’,
‘rare’, ‘very high’, etc.

• The aim must be to exclude risks that are likely
to arise or that have high severity.

14
Chapter 12 Dependability and Security

Specification

Risk classification for the insulin pump

Identified hazard Hazard probability Accident severity Estimated risk Acceptability

1.Insulin overdose

computation

Medium High High Intolerable

2. Insulin underdose

computation

Medium Low Low Acceptable

3. Failure of

hardware monitoring

system

Medium Medium Low ALARP

4. Power failure High Low Low Acceptable

5. Machine

incorrectly fitted

High High High Intolerable

6. Machine breaks in

patient

Low High Medium ALARP

7. Machine causes

infection

Medium Medium Medium ALARP

8. Electrical

interference

Low High Medium ALARP

9. Allergic reaction Low Low Low Acceptable

15
Chapter 12 Dependability and Security

Specification

Hazard analysis

• Concerned with discovering the root causes of
risks in a particular system.

• Techniques have been mostly derived from
safety-critical systems and can be
– Inductive, bottom-up techniques. Start with a

proposed system failure and assess the hazards
that could arise from that failure;

– Deductive, top-down techniques. Start with a
hazard and deduce what the causes of this could
be.

16
Chapter 12 Dependability and Security

Specification

Fault-tree analysis

• A deductive top-down technique.

• Put the risk or hazard at the root of the tree
and identify the system states that could lead
to that hazard.

• Where appropriate, link these with ‘and’ or
‘or’ conditions.

• A goal should be to minimise the number of
single causes of system failure.

17
Chapter 12 Dependability and Security

Specification

An example of a software fault tree

18
Chapter 12 Dependability and Security

Specification

Fault tree analysis

• Three possible conditions that can lead to
delivery of incorrect dose of insulin
– Incorrect measurement of blood sugar level

– Failure of delivery system

– Dose delivered at wrong time

• By analysis of the fault tree, root causes of
these hazards related to software are:
– Algorithm error

– Arithmetic error

19
Chapter 12 Dependability and Security

Specification

Risk reduction

• The aim of this process is to identify
dependability requirements that specify how
the risks should be managed and ensure that
accidents/incidents do not arise.

• Risk reduction strategies

– Risk avoidance;

– Risk detection and removal;

– Damage limitation.

20
Chapter 12 Dependability and Security

Specification

Strategy use

• Normally, in critical systems, a mix of risk
reduction strategies are used.

• In a chemical plant control system, the system
will include sensors to detect and correct
excess pressure in the reactor.

• However, it will also include an independent
protection system that opens a relief valve if
dangerously high pressure is detected.

21
Chapter 12 Dependability and Security

Specification

Insulin pump - software risks

• Arithmetic error

– A computation causes the value of a variable to
overflow or underflow;

– Maybe include an exception handler for each type
of arithmetic error.

• Algorithmic error

– Compare dose to be delivered with previous dose
or safe maximum doses. Reduce dose if too high.

22
Chapter 12 Dependability and Security

Specification

Examples of safety requirements

SR1: The system shall not deliver a single dose of insulin that is greater than a
specified maximum dose for a system user.

SR2: The system shall not deliver a daily cumulative dose of insulin that is greater
than a specified maximum daily dose for a system user.

SR3: The system shall include a hardware diagnostic facility that shall be
executed at least four times per hour.

SR4: The system shall include an exception handler for all of the exceptions that
are identified in Table 3.

SR5: The audible alarm shall be sounded when any hardware or software
anomaly is discovered and a diagnostic message, as defined in Table 4, shall be
displayed.

SR6: In the event of an alarm, insulin delivery shall be suspended until the user
has reset the system and cleared the alarm.

23
Chapter 12 Dependability and Security

Specification

Topics covered

• Risk-driven specification

• Safety specification

• Security specification

• Software reliability specification

24
Chapter 12 Dependability and Security

Specification

Dependability requirements

• Functional requirements to define error
checking and recovery facilities and protection
against system failures.

• Non-functional requirements defining the
required reliability and availability of the
system.

• Excluding requirements that define states and
conditions that must not arise.

25
Chapter 12 Dependability and Security

Specification

Risk-driven specification

• Critical systems specification should be risk-
driven.

• This approach has been widely used in safety
and security-critical systems.

• The aim of the specification process should be
to understand the risks (safety, security, etc.)
faced by the system and to define
requirements that reduce these risks.

26
Chapter 12 Dependability and Security

Specification

Stages of risk-based analysis

• Risk identification
– Identify potential risks that may arise.

• Risk analysis and classification
– Assess the seriousness of each risk.

• Risk decomposition
– Decompose risks to discover their potential root causes.

• Risk reduction assessment
– Define how each risk must be taken into eliminated or reduced when

the system is designed.

27
Chapter 12 Dependability and Security

Specification

Risk-driven specification

28
Chapter 12 Dependability and Security

Specification

Phased risk analysis

• Preliminary risk analysis
– Identifies risks from the systems environment. Aim is to

develop an initial set of system security and dependability
requirements.

• Life cycle risk analysis
– Identifies risks that emerge during design and

development e.g. risks that are associated with the
technologies used for system construction. Requirements
are extended to protect against these risks.

• Operational risk analysis
– Risks associated with the system user interface and

operator errors. Further protection requirements may be
added to cope with these.

29
Chapter 12 Dependability and Security

Specification

Safety specification

• Goal is to identify protection requirements
that ensure that system failures do not cause
injury or death or environmental damage.

• Risk identification = Hazard identification

• Risk analysis = Hazard assessment

• Risk decomposition = Hazard analysis

• Risk reduction = safety requirements
specification

30
Chapter 12 Dependability and Security

Specification

Hazard identification

• Identify the hazards that may threaten the
system.

• Hazard identification may be based on
different types of hazard:
– Physical hazards

– Electrical hazards

– Biological hazards

– Service failure hazards

– Etc.

31
Chapter 12 Dependability and Security

Specification

Insulin pump risks

• Insulin overdose (service failure).

• Insulin underdose (service failure).

• Power failure due to exhausted battery (electrical).

• Electrical interference with other medical equipment
(electrical).

• Poor sensor and actuator contact (physical).

• Parts of machine break off in body (physical).

• Infection caused by introduction of machine (biological).

• Allergic reaction to materials or insulin (biological).

32
Chapter 12 Dependability and Security

Specification

Hazard assessment

• The process is concerned with understanding
the likelihood that a risk will arise and the
potential consequences if an accident or
incident should occur.

• Risks may be categorised as:
– Intolerable. Must never arise or result in an accident

– As low as reasonably practical(ALARP). Must minimise the possibility
of risk given cost and schedule constraints

– Acceptable. The consequences of the risk are acceptable and no extra
costs should be incurred to reduce hazard probability

33
Chapter 12 Dependability and Security

Specification

The risk triangle

34
Chapter 12 Dependability and Security

Specification

Social acceptability of risk

• The acceptability of a risk is determined by human, social and
political considerations.

• In most societies, the boundaries between the regions are
pushed upwards with time i.e. society is less willing to accept
risk
– For example, the costs of cleaning up pollution may be less than the

costs of preventing it but this may not be socially acceptable.

• Risk assessment is subjective
– Risks are identified as probable, unlikely, etc. This depends on who is

making the assessment.

35
Chapter 12 Dependability and Security

Specification

Hazard assessment

• Estimate the risk probability and the risk
severity.

• It is not normally possible to do this precisely
so relative values are used such as ‘unlikely’,
‘rare’, ‘very high’, etc.

• The aim must be to exclude risks that are likely
to arise or that have high severity.

36
Chapter 12 Dependability and Security

Specification

Risk classification for the insulin pump

Identified hazard Hazard probability Accident severity Estimated risk Acceptability

1.Insulin overdose

computation

Medium High High Intolerable

2. Insulin underdose

computation

Medium Low Low Acceptable

3. Failure of

hardware monitoring

system

Medium Medium Low ALARP

4. Power failure High Low Low Acceptable

5. Machine

incorrectly fitted

High High High Intolerable

6. Machine breaks in

patient

Low High Medium ALARP

7. Machine causes

infection

Medium Medium Medium ALARP

8. Electrical

interference

Low High Medium ALARP

9. Allergic reaction Low Low Low Acceptable

37
Chapter 12 Dependability and Security

Specification

Hazard analysis

• Concerned with discovering the root causes of
risks in a particular system.

• Techniques have been mostly derived from
safety-critical systems and can be
– Inductive, bottom-up techniques. Start with a

proposed system failure and assess the hazards
that could arise from that failure;

– Deductive, top-down techniques. Start with a
hazard and deduce what the causes of this could
be.

38
Chapter 12 Dependability and Security

Specification

Fault-tree analysis

• A deductive top-down technique.

• Put the risk or hazard at the root of the tree
and identify the system states that could lead
to that hazard.

• Where appropriate, link these with ‘and’ or
‘or’ conditions.

• A goal should be to minimise the number of
single causes of system failure.

39
Chapter 12 Dependability and Security

Specification

An example of a software fault tree

40
Chapter 12 Dependability and Security

Specification

Fault tree analysis

• Three possible conditions that can lead to
delivery of incorrect dose of insulin
– Incorrect measurement of blood sugar level

– Failure of delivery system

– Dose delivered at wrong time

• By analysis of the fault tree, root causes of
these hazards related to software are:
– Algorithm error

– Arithmetic error

41
Chapter 12 Dependability and Security

Specification

Risk reduction

• The aim of this process is to identify
dependability requirements that specify how
the risks should be managed and ensure that
accidents/incidents do not arise.

• Risk reduction strategies

– Risk avoidance;

– Risk detection and removal;

– Damage limitation.

42
Chapter 12 Dependability and Security

Specification

Strategy use

• Normally, in critical systems, a mix of risk
reduction strategies are used.

• In a chemical plant control system, the system
will include sensors to detect and correct
excess pressure in the reactor.

• However, it will also include an independent
protection system that opens a relief valve if
dangerously high pressure is detected.

43
Chapter 12 Dependability and Security

Specification

Insulin pump - software risks

• Arithmetic error

– A computation causes the value of a variable to
overflow or underflow;

– Maybe include an exception handler for each type
of arithmetic error.

• Algorithmic error

– Compare dose to be delivered with previous dose
or safe maximum doses. Reduce dose if too high.

44
Chapter 12 Dependability and Security

Specification

Examples of safety requirements

SR1: The system shall not deliver a single dose of insulin that is greater than a
specified maximum dose for a system user.

SR2: The system shall not deliver a daily cumulative dose of insulin that is greater
than a specified maximum daily dose for a system user.

SR3: The system shall include a hardware diagnostic facility that shall be
executed at least four times per hour.

SR4: The system shall include an exception handler for all of the exceptions that
are identified in Table 3.

SR5: The audible alarm shall be sounded when any hardware or software
anomaly is discovered and a diagnostic message, as defined in Table 4, shall be
displayed.

SR6: In the event of an alarm, insulin delivery shall be suspended until the user
has reset the system and cleared the alarm.

45
Chapter 12 Dependability and Security

Specification

Formal Methods

Lecture14

Formal specification

• Formal specification is part of a more general collection of
techniques that are known as ‘formal methods’.

• These are all based on mathematical representation and
analysis of software.

• Formal methods include
– Formal specification;

– Specification analysis and proof;

– Transformational development;

– Program verification.

2
Chapter 12 Dependability and Security

Specification

Use of formal methods

• The principal benefits of formal methods are
in reducing the number of faults in systems.

• Consequently, their main area of applicability
is in critical systems engineering. There have
been several successful projects where formal
methods have been used in this area.

• In this area, the use of formal methods is most
likely to be cost-effective because high system
failure costs must be avoided.

3
Chapter 12 Dependability and Security

Specification

Specification in the software process

• Specification and design are inextricably
intermingled.

• Architectural design is essential to structure a
specification and the specification process.

• Formal specifications are expressed in a
mathematical notation with precisely defined
vocabulary, syntax and semantics.

4
Chapter 12 Dependability and Security

Specification

Formal specification in a plan-based
software process

5
Chapter 12 Dependability and Security

Specification

Benefits of formal specification

• Developing a formal specification requires the system requirements
to be analyzed in detail. This helps to detect problems,
inconsistencies and incompleteness in the requirements.

• As the specification is expressed in a formal language, it can be
automatically analyzed to discover inconsistencies and
incompleteness.

• If you use a formal method such as the B method, you can
transform the formal specification into a ‘correct’ program.

• Program testing costs may be reduced if the program is formally
verified against its specification.

6
Chapter 12 Dependability and Security

Specification

Acceptance of formal methods

• Formal methods have had limited impact on practical software
development:
– Problem owners cannot understand a formal specification and so cannot

assess if it is an accurate representation of their
requirements.

– It is easy to assess the costs of developing a formal specification but
harder to assess the benefits. Managers may therefore be unwilling to
invest in formal methods.

– Software engineers are unfamiliar with this approach and
are therefore reluctant to propose the use of FM.

– Formal methods are still hard to scale up to large systems.

– Formal specification is not really compatible with agile
development methods.

7
Chapter 12 Dependability and Security

Specification

Verification and formal methods

• Formal methods can be used when a mathematical
specification of the system is produced.

• They are the ultimate static verification technique that
may be used at different stages in the development
process:
– A formal specification may be developed and

mathematically analyzed for consistency. This helps
discover specification errors and omissions.

– Formal arguments that a program conforms to its
mathematical specification may be developed. This is
effective in discovering programming and design errors.

8
Chapter 15 Dependability and Security

Assurance

Arguments for formal methods

• Producing a mathematical specification requires a
detailed analysis of the requirements and this is likely
to uncover errors.

• Concurrent systems can be analysed to discover race
conditions that might lead to deadlock. Testing for
such problems is very difficult.

• They can detect implementation errors before
testing when the program is analyzed alongside the
specification.

9
Chapter 15 Dependability and Security

Assurance

Arguments against formal methods

• Require specialized notations that cannot be
understood by domain experts.

• Very expensive to develop a specification and
even more expensive to show that a program
meets that specification.

• Proofs may contain errors.

• It may be possible to reach the same level of
confidence in a program more cheaply using
other V & V techniques.

10
Chapter 15 Dependability and Security

Assurance

Discussions

Lecture15

	Lecture1
	Lecture2
	Lecture3
	Lecture4
	Lecture5
	Lecture6
	Lecture7
	Lecture8
	Lecture9
	Lecture10
	Lecture11
	Lecture12
	Lecture13
	Lecture14
	Lecture15

