
Saved from: cs.uotechnology.edu.iq  

 

 

http://cs.uotechnology.edu.iq/


1 
 

Lecture One 

Software development process 
 1- What is software? 

Any computer system is made up of hardware and software. 

The term hardware is fairly easy to understand, because you can see it. It is all the 

pieces of equipment that make up the system – the processor, monitor, keyboard, 

mouse, printer, scanner and so on. 

Software : it is all the programs, instructions and data that allow the hardware to 

do something useful and interesting. 

 

- Software Development Life Cycle (SDLC) 

The Software Development Life Cycle is a process used by software industry to 

design, develop and test high quality softwares. The SDLC aims to produce high 

quality software that meets or exceeds customer expectations, reaches completion 

within times and cost estimates. 

 

 Is the big picture of creating an information system that handles a major task 

(referred to as an application). The applications usually consist of many programs. 

An example would be the Department of Defense supply system, the customer 

system used at your local bank, the repair parts inventory system used by car 

dealerships. There are thousands of applications that use an information system 

created just to help solve a business problem. Computer professionals that are in 

charge of creating applications often have the job title of System Analyst. The major 

steps in creating an application include the following and start at planning step 

shown in figure (1). 

 



2 
 

 

 

 

 

 

 

 

 

 

 

 

                                       

 

 

                             Figure (1) Software Development Life Cycle 

 

Stage 1: Planning and Requirement Analysis: Requirement analysis is the most 

important and fundamental stage in SDLC. It is performed by the senior members 

of the team with inputs from the customer, the sales department, market surveys 

and domain experts in the industry. This information is then used to plan the basic 

project approach and to conduct product feasibility study in the economical, 

operational, and technical areas.  

Planning for the quality assurance requirements and identification of the risks 

associated with the project is also done in the planning stage. The outcome of the 

technical feasibility study is to define the various technical approaches that can be 

followed to implement the project successfully with minimum risks.  

 

  

 

 

 



3 
 

Stage 2: Defining Requirements: Once the requirement analysis is done the next 

step is to clearly define and document the product requirements and get them 

approved from the customer or the market analysts. This is done through ‘SRS’ – 

Software Requirement Specification document which consists of all the product 

requirements to be designed and developed during the project life cycle.  

Stage 3: Designing the product architecture: SRS( Software Requirement 

Specification )is the reference for product architects to come out with the best 

architecture for the product to be developed. Based on the requirements specified 

in SRS, usually more than one design approach for the product architecture is 

proposed and documented in a DDS - Design Document Specification. This DDS 

is reviewed by all the important stakeholders and based on various parameters as 

risk. 

Assessment, product robustness, design modularity, budget and time constraints, 

the best design approach is selected for the product.  

A design approach clearly defines all the architectural modules of the product 

along with its communication and data flow representation with the external and 

third party modules (if any). The internal design of all the modules of the proposed 

architecture should be clearly defined with the minutest of the details in DDS.  

Stage 4: Building or Developing the Product: In this stage of SDLC the actual 

development starts and the product is built. The programming code is generated as 

per DDS during this stage. If the design is performed in a detailed and organized 

manner, code generation can be accomplished without much hassle.  

Developers have to follow the coding guidelines defined by their organization and 

programming tools like compilers, interpreters, debuggers …  etc are used to 

generate the code. Different high level programming languages such as C, C++, 

Pascal, Java, and PHP are used for coding. The programming language is chosen 

with respect to the type of software being developed.  



4 
 

Stage 5: Testing the Product: This stage is usually a subset of all the stages as in 

the modern SDLC models, the testing activities are mostly involved in all the 

stages of SDLC. However this stage refers to the testing only stage of the product 

where products defects are reported, tracked, fixed and retested, until the product 

reaches the quality standards defined in the SRS.  

Stage 6: Deployment in the Market and Maintenance: Once the product is 

tested and ready to be deployed it is released formally in the appropriate market. 

Sometime product deployment happens in stages as per the organizations’ business 

strategy. The product may first be released in a limited segment and tested in the 

real business environment (UAT- User acceptance testing).  

Then based on the feedback, the product may be released as it is or with suggested 

enhancements in the targeting market segment. After the product is released in the 

market, its maintenance is done for the existing customer base. 

 

• During the Maintenance phase, it goes through a mini planning, analysis, 

design and implementation. The programs that need modification are identified 

and programmers change or repair those programs. 

1- System analyst: Computer professional in charge of creating applications. 

2- Applications: An information system or collection of programs that handles a 

major task. 

3- Life cycle: Systems Development Life Cycle: Planning – Analysis - Design - 

Implementation – Maintenance. 

4- Implementation: The phase of a Systems Development Life Cycle where the 

programmers would be assigned to write specific programs. 

 

 

 



5 
 

3- Modularization  

 1- Concept of Modularization: One of the most important concepts of 

programming is the ability to group some lines of code into a unit that can be 

included in our program. The original wording for this was   a sub-program. Other 

names include: macro, sub-routine, procedure, module and function. Generally 

functions fall into two categories: 

a- Program Control: Functions used to simply sub divide and control the 

program. These functions are unique to the program being written. Other programs 

may use similar functions maybe even functions with the same name, but the 

content of the functions are almost always  very different. 

b- Specific Task: Functions designed to be used with several programs.  These 

functions perform a specific task and thus are use able in many different programs 

because the other programs also need to do the specific task. Specific task 

functions are sometimes referred to as building blocks. 

The main program must establish the existence of functions used in that 

program. Depending on the programming language, there is a formal way 

to: 

1. Define a function (it's definition or the code it will execute). 

2. Call a function. 

3. Declare a function (a prototype is a declaration to a complier). 

 

 

 

 

 



1 
 

Lectured Two 

The Context of Software Development 

 

A computer program, from one perspective, is a sequence of instructions that 

dictate the flow of electrical impulses within a computer system. These 

impulses affect the computer’s memory and interact with the display screen, 

keyboard, mouse, and perhaps even other computers across a network in such a 

way as to produce the “magic” that permits humans to perform useful tasks, solve 

high-level problems, and play games. One program allows a computer to assume 

the role of a financial calculator, while another transforms the machine into a 

worthy chess opponent. Note the two extremes here: 

1- At the lower, more concrete level electrical impulses alter the internal state of 

the computer. 

2- At the higher, more abstract level computer users accomplish real-world work 

or derive actual pleasure. 

So well is the higher-level illusion achieved that most computer users are 

oblivious to the lower-level activity (the machinery under the hood, so to speak). 

Powerful software construction tools hide the lower-level details from 

programmers, allowing them to solve problems in higher-level terms. 

The concepts of computer programming are logical and mathematical in 

nature. Computer programs can be developed without the use of a computer. 

Programmers can discuss the viability of a program and reason about its 

correctness and efficiency by examining abstract symbols that correspond to the 

features of real-world programming languages but appear in no real-world 

programming language. 

1- Software: 



2 
 

A computer program is an example of computer software. Software makes a 

computer a truly universal machine transforming it into the proper tool for the task 

at hand. One can refer to a program as a piece of software as if it were a tangible 

object, but software is actually quite intangible. It is stored on a medium. A hard 

drive, a CD, a DVD, and a USB pen drive are all examples of media upon which 

software can reside. 

The CD is not the software; the software is a pattern on the CD. In order to be 

used, software must be stored in the computer’s memory. Typically computer 

programs are loaded into memory from a medium like the computer’s hard disk.  

2- Development Tools: 

If very few humans can to speak the machine language of the computers’ 

processors and software is expressed in this language, how has so much software 

been developed over the years? 

Software can be represented by printed words and symbols that are easier for 

humans to manage than binary sequences. Tools exist that automatically convert a 

higher-level description of what is to be done into the required lower-level code. 

Higher-level programming languages like C++ allow programmers to express 

solutions to programming problems in terms that are much closer to a natural 

language like English. 

Some examples of the more popular of the hundreds of higher-level programming 

languages that have been devised over the past 60 years include FORTRAN, 

COBOL, C, Java, and C#. Most programmers today, especially those concerned 

with high-level applications, usually do not worry about the details of underlying 

hardware platform and its machine language. 

• Consider the following program fragment written in the C++ programming 

language: 

 



3 
 

subtotal = 25; 

tax = 3; 

total = subtotal + tax; 

These three lines do not make up a complete C++ program; they are merely a piece 

of a program. The statements in this program fragment look similar to expressions 

in algebra. Three words, subtotal, tax, and total, called variables, are used to hold 

information. 

The higher-level language code is called source code. The compiled machine 

language code is called the target code. The compiler translates the source code 

into the target machine language. 

 

• Programmers have a variety of tools available to enhance the software 

development process.  

• The complete set of build tools for mostly languages  includes a: 

 

1- Editors: An editor allows the user to enter the program source code and save it 

to files. Most programming editors increase programmer productivity by using 

colors to highlight language features. 

 The syntax of a language refers to the way pieces of the language are  arranged to 

make well-formed sentences. To illustrate,  

the sentence the  tall boy runs quickly to the door. 

 Uses proper English syntax. By comparison, the sentence Boy the tall runs door 

to quickly the .  Is not correct syntactically.  It uses the same   words as the 

original sentence, but their arrangement does not follow the rules of English. 



4 
 

 

                        Figure (1) Source code to target code sequence 

 

2- Compilers: A compiler translates the source code to target code. The target 

code may be the machine language for a particular platform or embedded device. 

The target code could be another source language; for example, the earliest C++ 

compiler translated C++ into C, another higher-level language. The resulting C 

code was then processed by a C compiler to produce an executable program. C++ 

compilers today translate C++ directly into machine language. 

 

3- Preprocessor: preprocessor adds to or modifies the contents of  the source file  

before the compiler begins processing the code.  



5 
 

  We use the services of the preprocessor mainly to  #include   information about 

library routines our programs use. 

4- Linker: linker combines the compiler-generated machine code with 

precompiled library code or compiled code from other sources to make a complete 

executable program. Most compiled –  C++ code is incapable of running by itself 

and needs some  additional machine code to make a complete executable program. 

The missing machine code has been precompiled and stored in a   repository of 

code called a library. A program called a linker combines the programmer’s 

compiled code and the library code to make a complete program. 

• the preprocessor, compiler, and linker working as three separate programs 

(although they do); the tools we use make it appear as only one process is 

taking place; translating our source code to an executable program. 

 

5- Debuggers: A debugger allows a programmer to more easily trace a     

program’s execution in order to locate and correct errors in the      program’s 

implementation. With a debugger, a developer can simultaneously run a program 

and see which line in the source code is responsible for the program’s current 

actions. The programmer can      watch the values of variables and other program 

elements to see     if their values change as expected. Debuggers are valuable for 

locating errors (also called bugs) and repairing programs that contain errors.  

 

6- Profilers: A profiler collects statistics about a program’s execution allowing 

developers to tune appropriate parts of the program to improve its overall 

performance. A profiler indicates how many times a portion of a program is 

executed during a particular run, and how long that portion takes to execute. 

Profilers also can be used for testing purposes to ensure all the code in a program is 

actually being used     somewhere during testing. This is known as coverage. It is 



6 
 

common for software to fail after its release because users exercise some part of 

the program that was not executed anytime during testing. The main purpose of 

profiling is to find the parts of a program that can be improved to make the 

program run faster. 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

Lectured Three 

Program Planning and Design 

Program Design consists of the steps a programmer should do before they start 

coding the program in a specific language. These steps when properly documented 

will make the completed program easier for other programmers to maintain in the 

future. 

•  There are three broad areas of activity: 

1- Understanding the Program. 

2- Using Design Tools to Create a Model. 

3- Develop Test Data. 

1- Understanding the Program: 

    If you are working on a project as a one of many programmers, the system 

analyst may have created a variety of documentation items that will help you 

understand what the program is to do. These could include screen layouts, 

narrative descriptions, documentation showing the processing steps, etc. 

•  Inputs 

•  Processing 

• Outputs 

This IPO approach works very well for beginning programmers. Sometimes, it 

might help to visualize the programming running on the computer. You can 

imagine what the monitor will look like, what the user must enter on the 

keyboard and what processing or manipulations will be done. 

2- Using Design Tools to Create a Model: 

       At first you will not need a hierarchy chart because your first programs will 

not be complex. But as they grow and become more  complex, you will divide your 

program into several modules (or functions). 



2 
 

The first modeling tool you will usually learn is pseudocode. You will 

document the logic or algorithm of each function in your program. At first, you 

will have only one function, and thus your pseudocode will follow closely the 

IPO approach above. 

• There are several methods or tools for planning the logic of a program. 

They include: flowcharting, hierarchy or structure charts, pseudocode, 

etc. Programmers are expected to be able to understand and do fowcharting 

and pseudocode. 

3- Develop Test Data: 

Test data consists of the user providing some input values and predicting the 

outputs. This can be quite easy for a simple program and the test data can be 

used to check the model to see if it produces the correct results. 

 

Pseudocode:  

    Pseudocode is one method of designing or planning a program. Pseudo 

means false, thus pseudocode means false code. A better translation would be 

the word fake or imitation. Pseudocode is fake (not the real thing). It looks like 

(imitates) real code but it is NOT real code. It uses English statements to 

describe what a program is to accomplish. It is fake because no complier exists 

that will translate the pseudocode to any machine language. Pseudocode is used 

for documenting the program or module design (also known as the algorithm). 

 

Example Pseudocode: 

    Input 

display a message asking the user to enter the first age 

get the first age from the keyboard 

display a message asking the user to enter the second age 



3 
 

get the second age from the keyboard 

Processing 

calculate the answer by adding the two ages together and dividing by two 

Output 

display the answer on the screen 

pause so the user can see the answer 

Definition pseudo: Means false and includes the concepts of fake or imitation. 

 

Test Data: 

    Test data consists of the user providing some input values and predicting the 

outputs. This can be quite easy for a simple program and the test data can be used 

twice.  

1. To check the model to see if it produces the correct results (model checking). 

2. To check the coded program to see if it produces the correct results (code 

checking). 

Test data is developed by using the algorithm of the program. This algorithm is 

usually documented during the program design with either flowcharting or 

pseudocode. 

 

Example: Pseudocode using an IPO Outline for Painting a Rectangular 

Building 

Input 

display a message asking user for the length of the building 

get the length from the keyboard 

display a message asking user for the width of the building 

get the width from the keyboard 

display a message asking user for the height of the building 



4 
 

get the height from the keyboard 

display a message asking user for the price per gallon of paint 

get the price per gallon of paint from the keyboard 

display a message asking user for the sq ft coverage of a gallon of paint 

get the sq ft coverage of a gallon of paint from the keyboard 

Processing 

calculate the total area of the building by: 

multiplying the length by height by 2 

then multiply the width by height by 2 

then add the two results together 

calculate the number of gallons of paint needed by: 

dividing the total area by the coverage per gallon 

then round up to the next whole gallon 

calculate the total cost of the paint by: 

multiplying the total gallons needed by the price of one gallon of paint 

Output 

display the number of gallons needed on the monitor 

display the total cost of the paint on the monitor 

pause so the user can see the answer 

 

 

 

 

 

 



1 
 

Lectured Four 

Top down design 

Top-down design is basically a decomposition process which focuses on the flow 

of control or on the control structure of the program; at later stages it concerns 

itself with code production. The first step is to study the overall aspects of the task 

at hand and break it into a number(perhaps 3 to 1 of independent constituent 

functions or modules. this is the first step in the decomposition. the second step is 

to break each one of these modules further into independent sub modules. the 

process is repeat 5ed until one obtains modules which are small enough to grasp 

mentally and to code at one sitting in a straightforward uncomplicated manner. 

clearly, one module of the structure may extend to a lower4 level than the next. 

One important feature of top down design is that at each level the details of the 

design at lower levels are hidden. One the necessary data and control which must 

be passed back and forth over the interfaces are defined .furthermore, if a data 

structure is contained wholly within a lower level module, it need not be specified 

until that level is reached in design process.  

However, if data must be shared by several modules at some level, then the data 

structure must be chosen before processing to a lower level. The design will 

include both the data structure and the means of data access for each involved 

module. 

One strong point of the top down method is that postpones details of decisions 

until the last stages of the design. This allows one to accommodate easily small 

design changes or improvements of technology partway through the design. There 



2 
 

is also a concomitant danger that the specifications will be incompatible or 

unrealizable and that this will not be discovered until late in the design process. 

 

Example:- 

A simple example which illustrates top-down is given in figure 1.the program is to 

solve for and classify the roots of the cubic equation 

023 =+++ DCxBxAx   

 

The top down solution does not commit the design to a specific approach at the 

first decomposition level. This will come when we go to the second level of detail. 

 

 

 

 

 

 

 

 

 

 

                     Figure 1: first decomposition level for a top-down design 

Roots of cubic equation 

Input 

coefficient

s A,B,C,D 

Test for 

singular 

cases 

 

Find 

 Roots 

 

Classify 

Roots 

 

Output  

Roots and 

classification 

 



3 
 

Computer program developments 

You will understand the steps that are used by programmers to develop computer 

programs and to ensure that they function properly. 

You will see how the programmer uses the flowcharts, input design, output design, 

and file design results of the design phase activities to develop a computer 

program. 

Algorithm a set of rules or instructions used to accomplish a task. 

Coding is the process of writing instructions in a programming language, such as 

C++. 

Debugging is the process of testing a computer program for errors and correcting 

any errors found. 

 

Steps in Computer Program Development 

The steps in the development of each of the computer programs that make up the 

computer program component of a system are  

 (1) Define the function of the program 

 (2) Plan the logic of the program 

 (3) Code the program 

 (4) Test and debug the program 

 (5) Complete the documentation. 

Although the programmer is responsible for writing the computer program, the 

systems analyst must communicate the computer program requirements to the 



4 
 

programmer. The function of each program was defined for the programmer when 

functions were allocated during system design.  

Detailed data Flow Diagrams are prepared for each program from the decomposed 

DFDs created during the design phase. These DFDs define the function of each 

program. 

In program planning, the logic to be used to solve the problem is developed. 

Algorithms, computer program logic flowcharts, and structure charts are useful 

tools for program planning. Algorithms are sets of rules or instructions used to 

accomplish tasks. They may be stated as formulas, decision tables, or narratives. 

The program logic flowchart, pseudo code, structure chart, and algorithms that 

result from program planning are retained and become part of the project 

documentation. 

The next step, writing, or coding, a program, is the actual writing of computer 

instructions. These instructions will be translated to machine code and followed by 

the computer; they should follow the steps of the program logic plan. 

Several programming languages, particularly c++ and visual studio, are commonly 

used to solve business problems. In addition to these traditional languages, 

organizations using data base management systems may choose to generate 

programs using the query language of the data base management systems. These 

query languages are a part of a package of programming tools known as fourth-

generation languages. Each language has its advantages and disadvantages.  

 

Testing and debugging a program involve: 

   (a) Translating the coded program into machine language, a process called 

compilation 



5 
 

   (b) Testing the translated program with sample data and checking the result. If 

the results of testing are not correct, the program is said to have “bugs.” Debugging 

is the process of correcting computer programs to obtain correct results. 

Testing must be planned and structured to reduce the chance that errors will be 

overlooked. 

The last step is to complete the documentation for the program. The documentation 

must include a statement of the purpose of the program (from step 1), a description 

of the solution logic (step 2), a listing of the program instructions (step 3), and 

sample outputs from the completed programs (step 4). Information provided to the 

programmer by the analyst, such as descriptions of program inputs, outputs, and 

files, should be included. Instructions to operators explaining how the program is 

to be used must be written before the program documentation is complete. 

Recursion 

Recursion, which is facilitated by automatic storage, is an important feature that 

allows the user to handle a broad range of problems. Many of the routines we must 

write are Recursive. 

Many algorithms are much more convenient to describe and program in a recursive 

manner. For example, the standard mathematical definition of factorial is as 

follows: 

 

n!=  

1

)!1(*{ −nn                           if n≠0 

 

A straightforward implementation of this function is shown in figure 2:  

 

if n=0    



6 
 

N_Factorial: procedure (n) recursive; 

If N=0 then return (1) 

Else  

Return (N*N_Factorial (N-1)); 

End; 

                      Figure 2: Example of recursive procedure 

 

 

Demonstrate the key issues in recursive procedures. The algorithm simply notes 

N!=N*(N-l)!Thus, 

3! =3*2! =3*2*l!=3*2*1*0!=3*2*I*1. 

Thus, we may subtract one from N and call factorial again. If N = 0, then return. 

The procedure of Figure 3 computes 3 factorial and leaves the results in F. Storage 

is assigned TMP at the end of the program. Figure 3 depicts the values of these 

variables during the calls.  

 Each call sets I = 1+1, thereby asserting a new TMP with each call. A return sets I 

I-I, thus re-establishing the TMP associated with the previous call. 

 

 

 

 

 

 

 



7 
 

TMP(1) 

 

TMP(2) 

 

TMP(3) 

 

. 

. 

. 

TMP(i) 

 

 

 

This scheme of storing variables is loosely called a stack, where setting I= I+1 

(creating a new, TMP) corresponds to push down, and returning (I = I-1) 

corresponds to pop. 

fact:   procedure; 

              declare n fixed bin static intial(3); 

              declare (f,tmp) fixed bin static 

               if  n=0      then   f= 1; 

           else do; 

             tmp= n; 

              n =n-1; 

       call fact;  

         f=f*tmp    end; 

First call 

Second call 

Third call 

ith call 



8 
 

return; end; 

  

                                                N=3 

                                               Tmp=?  

                                                 F=? 

                                               N=2 

                                               Tmp=?  

                                                 F=? 

 

 N=1 

                                               Tmp=?  

                                                 F=? 

 N=0 

                                               Tmp=?  

                                                 F=? 

 

                                Figure 3: computation of N! 

 

 

 

 

Fact 

Fact 

Fact 

Fact 



1 
 

Lecture Five 

Structured Programming versus Object-Oriented Programming 

 

The structured programming approach to program design was based on the 

following method: 

◼ To solve a large problem, break the problem into several pieces and work on 

each piece separately; 

◼ to solve each piece, treat it as a new problem that can itself be broken down into 

smaller problems; 

◼ repeat the process with each new piece until each can be solved directly, 

without further decomposition. 

 

This approach is also called top-down program design. 

 

The following is a simple example of the structured programming approach to 

problem solving. 

 

Write a program for a computer to execute to display the average of two numbers 

entered through a keyboard connected to the computer. The average is to be 

displayed on a VDU that is also connected to this computer. 

 

The top-down solution is arrived at as follows: 

 

Top level: 0. Display average of two numbers entered through keyboard 

 

Next level: 0.1. Get two numbers through keyboard 

  0.2. Calculate average of these two numbers 



2 
 

  0.3. Display average on VDU 

 

The three steps in next level can now be coded in a programming language such as 

c++. 

Top-down program design is a useful and often-used approach to problem solving. 

However, it has limitations:  

 

◼ It focuses almost entirely on producing the instructions necessary to solve a 

problem. The design of the data structures is an activity that is just as 

important but is largely outside of the scope of top-down design. 

◼ It is difficult to reuse work done for other projects. By starting with a particular 

problem and subdividing it into convenient pieces, top-down program design 

tends to produce a design that is unique to that problem. Adapting a piece of 

programming from another project usually involves a lot of effort and time. 

◼ Some problems by their very nature do not fit the model that top-down program 

design is based upon. Their solution cannot be expressed easily in a particular 

sequence of instructions. When the order in which instructions are to be 

executed cannot be determined in advance, easily, a different approach is 

required. 

 

Top-down design was therefore combined with bottom-up design.  

 

In bottom-up design, the approach is to start “at the bottom”, with problems that 

have already been solved and for which a reusable software component might 

exist. From this position, the software engineer works upwards towards a solution 

to the overall problem. 



3 
 

It is important in this approach that the reusable components are as “modular” as 

possible.  

 

A module is a component of a larger system that interacts with the rest of the 

system in a simple and well-defined manner. 

 

The idea is that a module can be “plugged into” a system. The details of what goes 

on inside a module are not important to the system as a whole, only that the 

module fulfils its function correctly. For example, a module might contain 

procedures to print a list of students, to add a new student, edit a student’s details 

and to return a list of specified students. How the module stores the master records 

of student details is hidden from applications/systems that use this module. 

Similarly, the detail of how the various procedures are coded is also hidden. This is 

called information hiding. Applications only require knowledge of what 

procedures are available from the module and the data that can be accessed. This 

information is published. It is often called the module’s interface or interfaces. 

A common format for a software module is a module containing some data, along 

with some subroutines (subprograms/procedures/functions) for manipulating that 

data. The data itself is often hidden from view inside the module forcing a program 

using the module to manipulate the data indirectly, by calling the subroutines 

provided by the module for this purpose. The advantages of this approach are as 

follows: 

 

◼ the data is protected, since it can be manipulated only in known, well-defined 

ways; 



4 
 

◼ it is easier to write programs to use a module because the details of how the 

data is represented and stored need not be known; 

◼ the storage structure of the data and the code for the subroutines in a module 

may be altered without affecting programs that make use of the module as long 

as the published interfaces and the module’s functionality remain the same. 

 

The Object-Oriented Approach 

The fundamental idea behind object-oriented languages is to combine into a single 

unit both data and the functions that operate on that data. Such a unit is called an 

object. An object’s functions, called member functions in C++, typically provide 

the only way to access its data. If you want to read a data item in an object, you 

call a member function in the object. It will access the data and return the value to 

you. You can’t access the data directly. The data is hidden, so it is safe from 

accidental alteration. Data and its functions are said to be encapsulated into a 

single entity. Data encapsulation and data hiding are key terms in the 

description of object-oriented languages. If you want to modify the data in an 

object, you know exactly what functions interact with it: the member functions in 

the object. No other functions can access the data. This simplifies writing, 

debugging, and maintaining the program. A C++ program typically consists of a 

number of objects, which communicate with each other by calling one another’s 

member functions.  

 

 

 

 



5 
 

 

 

 

 

The organization of an OOP C++ program 

 

 

OOP: An Approach to Organization 

Object-oriented programming is not primarily concerned with the details of 

program operation. Instead, it deals with the overall organization of the program. 

Most individual program statements in C++ are similar to statements in procedural 

languages, and many are identical to statements in C. Indeed, an entire member 

function in a C++ program may be very similar to a procedural function in C. It is 

only when you look at the larger context that you can determine whether a 

statement or a function is part of a procedural C program or an object-oriented C++ 

program. 

Characteristics of Object-Oriented Languages 

• Objects 

• Classes 

• Inheritance 

• Reusability 

• Creating New Data Types 

• Polymorphism and Overloading  

 



6 
 

Objects 

When you approach a programming problem in an object-oriented language, you 

no longer ask how the problem will be divided into functions, but how it will be 

divided into objects. Thinking in terms of objects, rather than functions, has a 

surprisingly helpful effect on how easily programs can be designed. This results 

from the close match between objects in the programming sense and objects in the 

real world.  

Classes 

In OOP we say that objects are members of classes. What does this mean?  Almost 

all computer languages have built-in data types. For instance, a data type int, 

meaning integer, is predefined in C++ . You can declare as many variables of type 

int as you need in your program: 

int day; 

int count; 

int divisor; 

int answer; 

In a similar way, you can define many objects of the same class. It specifies what 

data and what functions will be included in objects of that class. Defining the class 

doesn’t create any objects, just as the mere existence of data type int doesn’t create 

any variables. A class is thus a description of a number of an object is often called 

an “instance” of a class.  

Inheritance 

The idea of classes leads to the idea of inheritance. In our daily lives, we use the 

concept of classes divided into subclasses. We know that the animal class is 



7 
 

divided into mammals, amphibians, insects, birds, and so on. The vehicle class is 

divided into cars, trucks, buses, motorcycles, and so on. 

In C++ the original class is called the base class; other classes can be defined that 

share its characteristics, but add their own as well. These are called derived classes. 

Don’t confuse the relation of objects to classes, on the one hand, with the relation 

of a base class to derived classes, on the other. Objects, which exist in the 

computer’s memory, each embody the exact characteristics of their class, which 

serves as a template. Derived classes inherit some characteristics from their base 

class, but add new ones of their own. 

  

                           

 

 

 

 

 

Reusability 

Once a class has been written, created, and debugged, it can be distributed to other 

programmers for use in their own programs. This is called reusability. It is similar 

to the way a library of functions in a procedural language can be incorporated into 

different programs.  

 

 



8 
 

Creating New Data Types 

One of the benefits of objects is that they give the programmer a convenient way to 

construct new data types. Suppose you work with two-dimensional positions (such 

as x and y coordinates, or latitude and longitude) in your program. You would like 

to express operations on these positional values with normal arithmetic operations, 

such as: 

position1 = position2 + origin 

where the variables position1, position2, and origin each represent a pair of 

independent numerical quantities. By creating a class that incorporates these two 

values, and declaring position1, position2, and origin to be objects of this class, we 

can, in effect, create a new data type. Many features of C++ are intended to 

facilitate the creation of new data types in this manner.  

 

Polymorphism and Overloading 

Note that the = (equal) and + (plus) operators, used in the position arithmetic 

shown above, don’t act the same way they do in operations on built-in types such 

as int. The objects position1 and so on are not predefined in C++, but are 

programmer-defined objects of class Position. How do the = and + operators know 

how to operate on objects? The answer is that we can define new behaviors for 

these operators. These operations will be member functions of the Position class. 

Using operators or functions in different ways, depending on what they are 

operating on, is called polymorphism (one thing with several distinct forms). When 

an existing operator, such as + or =, is given the capability to operate on a new data 



9 
 

type, it is said to be overloaded. Overloading is a kind of polymorphism; it is also 

an important feature of OOP. 

A Simple Class 

#include <iostream> 

using namespace std;  

class smallobj    //define a class 

{  

private: 

int somedata; //class data 

public: 

void setdata(int d)     //member function to set data 

{ somedata = d; } 

void showdata()         //member function to display data 

{ cout << “Data is “ << somedata << endl; } 

}; 

int main() 

{  

smallobj s1, s2;           //define two objects of class smallobj  

s1.setdata(1066);     //call member function to set data 

s2.setdata(1776); 

s1.showdata();         //call member function to display data 

s2.showdata(); 

return 0; 

} 

 

 



10 
 

Classes and Objects 

An object has the same relationship to a class that a variable has to a data type. An 

object is said to be an instance of a class. In SMALLOBJ, the class—whose name 

is smallobj—is defined in the first part of the program. Later, in main(), we define 

two objects—s1 and s2—that are instances of that class. 

Each of the two objects is given a value, and each displays its value. Here’s the 

output of the program: 

— Data is 1066             object s1 displayed this 

— Data is 1776             object s2 displayed this  

Defining the Class 

Here’s the definition (sometimes called a specifier) for the class smallobj, copied 

from the SMALLOBJ listing: 

class smallobj //define a class 

{  

private: 

int somedata; //class data 

public: 

void setdata(int d) //member function to set data 

{ somedata = d; } 

void showdata() //member function to display data 

{ cout << “\nData is “ << somedata; } 

}; 

 



11 
 

The definition starts with the keyword class, followed by the class name—smallobj 

in this example. Like a structure, the body of the class is delimited by braces and 

terminated by a semicolon. 

 

Private and Public 

The body of the class contains two unfamiliar keywords: private and public. What 

is their purpose? 

A key feature of object-oriented programming is data hiding. This term does not 

refer to the activities of particularly paranoid programmers; rather it means that 

data is concealed within a class so that it cannot be accessed mistakenly by 

functions outside the class. The primary mechanism for hiding data is to put it in a 

class and make it private. Private data or functions can only be accessed from 

within the class. Public data or functions, on the other hand, are accessible from 

outside the class.  

Class Data 

The smallobj class contains one data item: somedata, which is of type int. The data 

items within a class are called data members (or sometimes member data). There 

can be any number of data members in a class, just as there can be any number of 

data items in a structure. The data member somedata follows the keyword private, 

so it can be accessed from within the class, but not from outside.  

Member Functions 

Member functions are functions that are included within a class. There are two 

member functions in smallobj: setdata() and showdata(). 

void setdata(int d) 



12 
 

{  

somedata = d; 

}  

— And 

void showdata() 

{  

cout << “\nData is “ << somedata; 

} 

Because setdata() and showdata() follow the keyword public, they can be accessed 

from outside the class.  

 

Defining Objects 

 

The first statement in main() 

—  

— smallobj s1, s2; 

 

defines two objects, s1 and s2, of class smallobj. Remember that the definition of 

the class smallobj does not create any objects. It only describes how they will look 

when they are created, just as a structure definition describes how a structure will 

look but doesn’t create any structure variables. It is objects that participate in 

program operations. Defining an object is similar to defining a variable of any data 

type: Space is set aside for it in memory. Defining objects in this way means 

creating them. This is also called instantiating them. The term instantiating arises 

because an instance of the class is created. An object is an instance (that is, a 

specific example) of a class. Objects are sometimes called instance variables.  

 



13 
 

Calling Member Functions 

 

The next two statements in main() call the member function setdata(): 

s1.setdata(1066); 

s2.setdata(1776); 

These statements don’t look like normal function calls. Why are the object names 

s1 and s2 connected to the function names with a period? This strange syntax is 

used to call a member function that is associated with a specific object. Because 

setdata() is a member function of the smallobj class, it must always be called in 

connection with an object of this class. It doesn’t make sense to say setdata(1066); 

Some object-oriented languages refer to calls to member functions as messages.  

 

Example2 

#include "stdafx.h" 

#include <iostream.h> 

class Point { 

int xVal, yVal; 

public: 

void SetPt (int, int); 

void OffsetPt (int, int); 

}; 

void Point::SetPt (int x, int y) 

{ 

xVal = x; 

yVal = y; 

cout<< "x="<<x <<"  "<< "y="<<y<<endl; 



14 
 

} 

void Point::OffsetPt (int x, int y) 

{ 

xVal += x; 

yVal += y; 

cout<< "x="<<xVal <<"  "<< "y="<<yVal<<endl;; 

} 

int main(int argc, char* argv[]) 

{ 

Point pt; // pt is an object of class Point 

pt.SetPt(10,20); // pt is set to (10,20) 

pt.OffsetPt(2,2); // pt becomes (12,22) 

 return 0; 

} 

 

 

 

 

 

 

 

 

 

 

 



1 
 

Lecture Six 

 

Web Applications, Web Site and Desktop Application 

 
6.1- What is a Web Application? 

Many terms are bantered about in the online world; website, web application, web 

2.0, etc. But what is truly the difference between a website and a web application 

(web app)? You can think of the difference as being one of interactivity and data 

manipulation. 

6.2- What's the major difference? 

A standard website is generally content-centric. That means it focuses on 

providing the web user with information, generally in a static layout with static 

links to other pages filled with static content. In a nutshell, there's not much to do 

aside from read each page. A web application means there is more to be done. It 

means some task can be accomplished, a goal can be attained or some expectation 

can be met. That is all rather esoteric so let's delve further into it with some sort of 

an example. 

This article, which you are undoubtedly reading on a website, is a classic example 

of a content-centric page. It contains words and perhaps images, but it only allows 

you to read or view the content, there is no manipulation or interaction except 

perhaps some form of commenting, rating system or ability to share it with others 

through various social networking sites. There is very little interaction. 

6.3- What Makes Something A Web Application 

A web application on the other hand might be something like Gmail where you 

have a specific instance of the application that you alone see. Your email and your 



2 
 

interaction with the site is completely separate from that of others. You see the 

page differently than others do and are able to affect changes to it for yourself and 

no others. It is interactive in that you can send and receive information in the form 

of emails, attachments etc. 

6.4- The main differences of a web application are basically that: 

Each user has a session-based relationship. That means the application is somehow 

aware of who you are and loads a specific set of variables for your interface. 

Each user can change the interface for their own session. This generally manifests 

itself in things like themes, colors, organization of elements, etc. 

 Users can permanently create, store and change data. This can be as simple as an 

email message or as complex as a multi-page spreadsheet in a web application like 

Google Docs or even an image in Pixlr or a video at Animoto  

6.5- Content and Interaction 

  What if a site has both content and interactivity? Take Amazon.com for 

example. There are numerous pages where you read product descriptions, see 

photos, read user reviews and comments. However, you can login and Amazon 

knows who you are (figuratively) and changes your environment based on your 

identity. You can also create and edit wish lists (data). That means it fulfills all of 

the requirements for it to be a web application and therefore should be classified as 

one. 

Web applications need not be extremely interactive or offer a multitude of things to 

do and ways to interact to be considered an application. They need only meet 

specific requirements that have been outlined above. Therefore an application may 

be as simple as an email program or as complex as a complete Enterprise Resource 



3 
 

Planning package which allows you to interact with all facets and departments in a 

multinational corporation. 

6.6- Understanding Desktop Application 

 A desktop application means any software that can be installed on a single 

computer (laptop or a desktop) and used to perform specific tasks. Some desktop 

applications can also be used by multiple users in a networked environment. Web 

application development, however, soon started replacing desktop applications for 

reasons of portability and better functions from usability point of view. Web 

application development is usually made on client-server architecture and use a 

web-browser as the client interface. This is one of the reasons why web 

applications are so widely getting popular. Though web applications offer a slight 

advantage over desktop applications, there is a very narrow chance of desktop 

applications becoming outdated. The primary reason for this could be the security 

issues and legalities associated with web based applications. 

Following is a basic comparison on desktop and web based applications based 

on certain parameters: 

Maintenance - web based applications need to be installed only once where as 

desktop applications are to be installed separately on each computer. Also updating 

the applications is cumbersome with desktop applications as it needs to be done on 

every single computer which is not the case with web applications. 

Ease of use - desktop applications are confined to a physical location and hence 

have usability constraint. Web applications development on the other hand makes 

it convenient for the users to access the application from any location using the 

Internet. 



4 
 

Security - web applications are exposed to more security risks than desktop 

applications. You can have a total control over the standalone applications and 

protect it from various vulnerabilities. This may not be the case with web 

applications as they are open to a large number of users in the Internet community 

thus widening the threat. 

Connectivity - web application development relies significantly on Internet 

connectivity and speed. Absence of Internet or its poor connectivity can cause 

performance issues with web applications. Desktop applications are standalone in 

nature and hence do not face any hindrances resulting from Internet connectivity. 

Connectivity also significantly affects the speed at which desktop and web 

applications operate. 

Cost factor - web application development and its maintenance involve higher 

costs and mostly recurring in nature. Desktop applications are purchased one time 

and there are not continually occurring charges. However, in certain cases,  

 

Therefore the difference between Desktop Application and Web Applicatio, the 

desktop applications truly know who you are? The answer is generally no and that 

is one major defining factor between them and web applications. When you go to a 

shared computer at a web cafe and load Photoshop, it does not differentiate you 

from any other user who logs into that computer and will load the same interface 

for each user. 

When you log into a web application it does have some set of information about 

you that delineates you from other users of that web application. That means that 

you can have an environment customized to your specific user identity. This can be 

done to some degree in many desktop applications but is not always available. In 



5 
 

web applications it must be in order to be a full-featured and full-fledged web 

application. 

6.7- Development Considerations 

What this all means is that web application development has a differing set of 

factors to take into account and they must include the ability to recognize 

individual users (generally through a username and password) whereas a desktop 

application doesn't necessarily need that functionality in order to still be considered 

a desktop application. Additionally, a web application, as the name suggests, is 

available on the web and can be accessed from any computer generally without the 

installation of any local files. A desktop application must generally have some files 

installed on the computer itself in order to function. 

6.8- Web Application Programming Languages 

         Another major point for a web application is that it is programmed in a 

language that is understandable by a web browser. Since they are applications on 

the web they must be accessed somehow. The standard interface is through a web 

browser. Web browsers understand a finite amount of languages which means that 

web applications must be programmed in one of them to be understood. The 

following is a list of dominant languages that web applications can be programmed 

in: 

HTML, DHTML, XHTML 

XML 

Flash 

Javascript 



6 
 

Java 

PHP 

ASP 

ActiveX 

AJAX (a combination of javascript and XML) 

6.9- Web Application Structure 

Web applications now come in several varieties including 2-tier and 3-tier which 

refer to the number of levels of the applications. The three-tiered approach is most 

common at present and represents presentation, application and storage. The 

presentation layer is the web browser while the application layer resides on the 

server and includes the files in the particular programming languages and/or some 

sort of server technology that helps translate information to the other layers (Ruby 

on Rails, PHP, etc). The storage layer is generally some sort of database which 

stores the information that is passed to the other layers. The application layer is 

basically the brains of the web application and allows the other two layers to 

interact in a more user-friendly way by supplying both with the required 

information. 

With the advent of Web 2.0, web applications have become abundant. Web 2.0 

itself means there is the ability to share information, collaboration across multiple 

computers, operation across multiple operating systems and a user interface that 

can be edited by the user. If you're doing more than just reading content on a site, if 

you're interacting with other users and/or editing the colors, layout and options of 

your web interface, you're most likely using a web application. 



1 
 

Lecture Seven  

Understanding Data Base 

1- Introduction  

         Today, people use computers to perform many tasks formerly done with 

other tools. Computers have replaced typewriters for creating and modifying 

documents. 

They’ve surpassed electromechanical calculators as the best way to do math. 

They’ve also replaced millions of pieces of paper, file folders, and file cabinets as 

the principal storage medium for important information. Compared to those old 

tools, of course, computers do much more, much faster — and with greater 

accuracy. These increased benefits do come at a cost, however. Computer users no 

longer have direct physical access to their data. When computers occasionally fail, 

office workers may wonder whether computerization really improved anything at 

all. In the old days, a manila file folder only “crashed” if you dropped it — then 

you merely knelt down, picked up the papers, and put them back in the folder. 

Barring earthquakes or other major disasters, file cabinets never “went down,” and 

they never gave you an error message.  

A hard drive crash is another matter entirely: You can’t “pick up” lost bits and 

bytes. Mechanical, electrical, and human failures can make your data go away and  

never to return.  

If you are storing important data, you have four main concerns: 

1- Storing data needs to be quick and easy, because you’re likely to do it often. 

2- The storage medium must be reliable. You don’t want to come back later and 

find some (or  all) of your data missing. 



2 
 

3- Data retrieval needs to be quick and easy, regardless of how many items you 

store. 

4- You need an easy way to separate the exact information that you want today 

from the tons of  data that you don’t want right now. 

What is data? 

 Data can be defined in many ways. Information science defines data an 

unprocessed information. 

 

What is information? 

Information is data that have been organized and communicated in a coherent and 

meaningful manner. 

- Data is converted into information, and information is converted into knowledge. 

- Knowledge is information evaluated and organized so that it can be used 

purposefully as shown in figure (1.1) 

 

 

 

 

 

2 - What is a DataBase ? 

A database is an organized collection of data for one or more uses, typically in 

digital form. The data can be textual, like order or inventory data, or it can be 

pictures, programs or anything else that can be stored on a computer in binary 

form. 

 

 

Figure (1) 

Data Informatio

n 

knowledg

e n 

Actio

n 

http://en.wikipedia.org/wiki/Data


3 
 

One way of classifying databases involves the type of their contents, for example: 

bibliographic, document-text, statistical.  

The purpose of a database is to store and retrieve related information, so databases 

are designed to offer an organized mechanism for :  

- Storing 

-  managing  

- and retrieving information. 

3- Files System:  

       The File is a block of arbitrary information, it is a place that application 

programs stores there data in it. These application programs either database 

application or non-database application. Each file has a format. The information 

stored in the file can be organized in a record, which is a collection of fields. 

 

The file system is typically described as various files and a number of different 

application programs are written to read from and add to the appropriate files. 

 

File System Disadvantage: 

• Program dependence:  Each file has a format, the non-database application 

must know exactly the format of the file to deal with it. Any other application 

cannot access the file unless knowing the format of the file. 

• When file format updated, then the application program must be updated, it is 

complicated to update all programs when data format is update. 

• Security problems existed. Any one can write a program to read the data in the 

file. 

http://databases.about.com/cs/administration/g/database.htm


4 
 

• Data redundancy , if there are application A deals with file A and application B 

deals with file B, if application A store an information in file A, and if 

application B need this information , application B can not access file A , so 

application B must record the same information in file B. 

 

Some basic  Definitions: 

Field: one category of information ( one data value), i.e., Name, Address, Semester 

Grade,  Academic topic. 

 

Record: Collection of fields i.e., one student's information, a recipe, a test 

question. 

 

A File: A group or collection of similar records, like student File. 

 

Digital databases are managed using database management systems (DBMS) , 

which store database contents, allowing data creation and maintenance, and search 

and other access to the database. 

 

4  What is DBMS ? 

A Database Management System (DBMS) is a set of computer programs that 

controls the –  

- Creation of the database 

- The storing and organization of the data in the database 

-  Maintenance the database 

-  Searching ,data retrieval and the use of a database. 

http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Organization
http://en.wikipedia.org/wiki/Database


5 
 

The DBMS accepts requests for data from an application program and instructs the 

operating system to transfer the appropriate data as shown in figure  (1.2) 

 

ADVANTAGES OF A DBMS 

 

1- Database Development: It allows organizations to place control of database 

development in the hands of database administrators (DBAs) 

and other specialists. 

 

2-Data independence: Application programs should be as independent as possible 

from details of data representation and storage. The DBMS can 

provide an   abstract view of the data to insulate application code 

from such details. 

 

3-Efficient data access: A DBMS utilizes a variety of sophisticated techniques to 

store and   retrieve data efficiently. It allows different user 

application programs to easily access the same database. 

Instead of having to write computer programs to extract 

information, user can ask simple questions in a query language. 

 

4-Data integrity and security: If data is always accessed through the DBMS, the 

DBMS can enforce : 

• integrity constraints on the data. For example, before 

inserting salary information for an employee, the DBMS 

can check that the department budget is not exceeded.  

http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Database_administrator
http://en.wikipedia.org/wiki/Query_language


6 
 

• Also, the DBMS can enforce access controls that govern 

what data is visible to different classes of users. 

 

5-Crash recovery: the DBMS protects users from the effects of system failures. 

 

6- Data administration and Concurrent access: When several users share the data( 

more than one user access the database at the same time), 

DBMS schedules concurrent accesses to the data in such a 

manner that users can think of the data as being accessed by 

only one user at a time.  

 

 

 

 

 

 

 

5- Data Abstraction 

    The major purpose of a database system is to provide users with an abstract view 

of the data. That is , the system hides certain details of how the data are stored and 

maintained. 

   For the system to be usable, it must retrieve data efficiently. This had led to the 

design of complex data structure to represent the data in the data base. Since many 

 

 

 

 

 

 

Figure  (2)  DBMS     

Data Base DBMS 

Application 1 

End User 
Application 1 

Application 1 



7 
 

database-user are not  computer trained , data base developers hide the complexity 

from users through several levels of abstraction as shown in figure (1.3). 

** Physical level : the lowest level of abstraction, describe how the data are 

actually stored. At the Physical level , complex low level data structure are 

described in detail.  In this level storage locations used to specify where the data 

are and the data been described by words and bytes. 

** Logical level : This level describe what data are stored in the database and what 

relationship exist  among those data. The entire database is describe in terms of 

small number of relatively simple structure. The logical level is used by the 

database administrator, who must decide what information is to be kept in the 

database. 

** View level : The highest level of abstraction describes only part of the entire 

database. Many users of the database system will not be concern with all the 

information. Instead the user need to access only part of the database , so a view 

level of abstraction is defined .  

The system may provide many views for the same database. 

 

 

 

 

 

 



8 
 

 

 

 

 

 

 

 

 

 

6- The Relational model 

 

The Relational Model is a clean and simple model that uses the concept of a 

relation using a table rather than a graph or shapes. The information is put into a 

grid like structure that consists of columns running up and down and rows that run 

from left to right, this is where information can be categorized and sorted. 

 

     The relational model used the basic concept of a relation or table. The columns 

or fields in the table identify the attributes such as name, age, and so. A tuple or 

row contains all the data of a single instance of the table such as a person named 

Doug. In the relational model, every tuple must have a unique identification or key 

based on the data as shown in figure 2.3 , a social security account number (SSAN) 

is the key that uniquely identifies each tuple in the relation. Often, keys are used to 

join data from two or more relations based on matching identification. 

 

 

 

 

 

 

 

                                                              

Figure  (3)   The three level of abstraction 

                             View level 
View 1 View 2 View 3 

Logical level 

Physical level 



9 
 

 

                                           Figure  (4)    Relation (Table) 

 

 

 

 

 

 


	Cover
	Lecture 1
	Lecture 2
	Lecture 3
	Lecture 4
	Lecture 5
	Lecture 6
	Lecture 7

