
1

 الجامعة التكنولوجية

بقسم علوم الحاسو

Software Design

3th class –Software Branch

 د. محمد غني علوان

Second Course 2023-2024

2

Software Design

1. Definition of design Concepts:

There are two facets of the concept of design. Firstly, a design is a plan to

bring about a man-made product. Such a plan must achieve a prescribed

goal and satisfy certain constraints. Secondly, it is a process of the creative

development of such a plan. During this process, the designer must use

related scientific principles, technical information and imagination to

discover constraints and to solve the design problem. Therefore, we can

define engineering design as follows .

Engineering design is the use of scientific principles and technical

information in the creative development of a plan to bring about a man-

made product to achieve a prescribed goal with certain specified

constraints. The consequence of the implementation of the design will

bring changes to the environment, while the environment of the designer

influences the design itself . Software design is a branch of engineering

design where the product to bring about is software.

3

As depicted in Figure , design activities have the following characteristics

 .Design starts with a need and requires intention. It results in a scheme for

implementing an artefact. It involves transformations and the generation of

new ideas is fundamental to all designs. Design is goal directed problem

solving and decision making. It must satisfy the constraints and the

requirements. The design process is also a constraint discovery process.

Design is to achieve optimality in a solution space of diversity. An

engineering design should contain at least five basic elements:

1. The objectives of the design.

2. A description of the designed product.

3. The rationale of the design.

4. A plan of the production.

5. The designated usage of the product.

There are a number of factors that affect design processes and their

outcomes. These factors include:

1. The requirements to be satisfied by the design.

2. The design was made and evaluated.

3. The value of the product.

4. The resource available to the design, manufacture and use

 of the product.

5. The features, or functions, of the product.

6. The process of design.

7. The consequence of design, i.e. the change to be brought about.

8. The people involved in the design process and their working

relationships.

9. The competence of the designer.

10. The service of the designed products. These factors interrelate with

each other.

4

Design is defined as both “the process of defining the architecture,

components, interfaces, and other characteristics of a system or

component” and “the result of [that] process” [1]. Viewed as a process,

software design is the software engineering life cycle activity in which

software requirements are analyzed in order to produce a description of the

software’s internal structure that will serve as the basis for its construction.

Software design plays an important role in developing software: during

software design, software engineers produce various models that form a

kind of blueprint of the solution to be implemented. We can analyze and

evaluate these models to determine whether or not they will allow us to

fulfill the various requirements.

2. A. Fundamental design issues (e.g., persistent data, storage

management, and exceptions)

The concepts, notions, and terminology introduced here form an

underlying basis for understanding the role and scope of software design.

A. General Design Concepts:

Software design is an important part of the software development

process. To understand the role of software design, we must see how

it fits in the software development life cycle. Thus, it is important to

understand the major characteristics of software requirements

analysis, software design, software construction, software testing, and

software maintenance.

B. Context of Software Design:

Software design is an important part of the software development

process. To understand the role of software design, we must see how

it fits in the software development life cycle. Thus, it is important to

understand the major characteristics of software requirements

analysis, software design, software construction, software testing, and

software maintenance.

C. Software Design Process:

Software design is generally considered a two-step process:

5

• Architectural design (also referred to as high-level design and

top-level design) describes how software is organized into

components .

• Detailed design describes the desired behavior of these

components.

The output of these two processes is a set of models and artifacts that

record the major decisions that have been taken, along with an

explanation of the rationale for each nontrivial decision. By recording

the rationale, long-term maintainability of the software product is

enhanced.

D. Software Design Principles:

A principle is "a comprehensive and fundamental law, doctrine, or

assumption". Software design principles are key notions that provide

the basis for many different software design approaches and concepts.

Software design principles include abstraction; coupling and

cohesion; decomposition and modularization;

encapsulation/information hiding; separation of interface and

implementation; sufficiency, completeness, and primitiveness; and

separation of concerns.

• Abstraction is "a view of an object that focuses on the

information relevant to a particular purpose and ignores the

remainder of the information" . In the context of software

design, two key abstraction mechanisms are parameterization

and specification. Abstraction by parameterization abstracts

from the details of data representations by representing the data

as named parameters. Abstraction by specification leads to

three major kinds of abstraction: procedural abstraction, data

abstraction, and control (iteration) abstraction.

• Coupling and Cohesion. Coupling is defined as “a measure of

the interdependence among modules in a computer program,”

whereas cohesion is defined as “a measure of the strength of

association of the elements within a module”.]

6

• Decomposition and modularization. Decomposing and

modularizing means that large software is divided into a

number of smaller named components having well-defined

interfaces that describe component interactions. Usually the

goal is to place different functionalities and responsibilities in

different components.

• Encapsulation and information hiding means grouping and

packaging the internal details of an abstraction and making

those details inaccessible to external entities.

• Separation of interface and implementation. Separating

interface and implementation involves defining a component

by specifying a public interface (known to the clients) that is

separate from the details of how the component is realized.

• Sufficiency, completeness, and primitiveness. Achieving

sufficiency and completeness means ensuring that a software

component captures all the important characteristics of an

abstraction and nothing more. Primitiveness means the design

should be based on patterns that are easy to implement .

• Separation of concerns. A concern is an "area of interest with

respect to a software design". A design concern is an area of

design that is relevant to one or more of its stakeholders. Each

architecture view frames one or more concerns. Separating

concerns by views allows interested stakeholders to focus on a

few things at a time and offers a means of managing

complexity.

2.B.Key Issues in Software Design :

A number of key issues must be dealt with when designing software.

Some are quality concerns that all software must address—for

example, performance, security, reliability, usability, etc. Another

important issue is how to decompose, organize, and package software

components. This is so fundamental that all design approaches

address it in one way or another . A number of these key, crosscutting

issues are discussed in the following .

A. Concurrency :

7

Design for concurrency is concerned with decomposing software into

processes, tasks, and threads and dealing with related issues of

efficiency, atomicity, synchronization, and scheduling .

B. Control and Handling of Events :

This design issue is concerned with how to organize data and control

flow as well as how to handle reactive and temporal events through

various mechanisms such as implicit invocation and call-backs .

C. Data Persistence :

This design issue is concerned with how to handle long-lived data.

D. Distribution of Components :

This design issue is concerned with how to distribute the software

across the hardware (including computer hardware and network

hardware), how the components communicate, and how middleware

can be used to deal with heterogeneous software .

E. Error and Exception Handling and Fault Tolerance :

This design issue is concerned with how to prevent, tolerate, and

process errors and deal with exceptional conditions.

F. Interaction and Presentation :

This design issue is concerned with how to structure and organize

interactions with users as well as the presentation of information (for

example, separation of presentation and business logic using the

Model-View-Controller approach). Note that this topic does not

specify user interface details, which is the task of user interface

design .

G. Security:

Design for security is concerned with how to prevent unauthorized

disclosure, creation, change, deletion, or denial of access to

information and other resources. It is also concerned with how to

8

tolerate security-related attacks or violations by limiting damage,

continuing service, speeding repair and recovery, and failing and

recovering securely. Access control is a fundamental concept of

security, and one should also ensure the proper use of cryptology.

3. Context of design within multiple software development life cycles :

Software design is an important part of the software development

process. To understand the role of software design, we must see how it

fits in the software development life cycle. Thus, it is important to

understand the major characteristics of software requirements analysis,

software design, software construction, software testing, and software

maintenance.

Software Development Life Cycle consists of details steps and

activities which describes how to design, develop, maintain, replace,

alter, enhance, test or even launch a software. The activities can be

broken down into a very detail level but at the same time they can be

grouped into five (5) core categories: Plan, Design, Develop, Test and

Deploy. Below is a graphic representation which displays a typical

Software Development Life Cycle.

4. Design principles (information hiding, cohesion, and coupling):

9

A principle is "a comprehensive and fundamental law, doctrine, or

assumption". Software design principles are key notions that provide the

basis for many different software design approaches and concepts.

Software design principles include abstraction; coupling and cohesion;

decomposition and modularization; encapsulation/information hiding;

separation of interface and implementation; sufficiency, completeness,

and primitiveness; and separation of concerns.

• Abstraction is "a view of an object that focuses on the information

relevant to a particular purpose and ignores the remainder of the

information" . In the context of software design, two key abstraction

mechanisms are parameterization and specification. Abstraction by

parameterization abstracts from the details of data representations by

representing the data as named parameters. Abstraction by

specification leads to three major kinds of abstraction: procedural

abstraction, data abstraction, and control (iteration) abstraction.

• Coupling and Cohesion. Coupling is defined as “a measure of the

interdependence among modules in a computer program,” whereas

cohesion is defined as “a measure of the strength of association of

the elements within a module”].

• Decomposition and modularization. Decomposing and

modularizing means that large software is divided into a number of

smaller named components having well-defined interfaces that

describe component interactions. Usually the goal is to place

different functionalities and responsibilities in different components.

• Encapsulation and information hiding means grouping and

packaging the internal details of an abstraction and making those

details inaccessible to external entities.

10

5. The Design of User Interactions between design and requirements :

User interaction involves issuing commands and providing associated data

to the software. User interaction styles can be classified into the following

primary styles :

• Question-answer. The interaction is essentially restricted to a

single question-answer exchange between the user and the software.

The user issues a question to the software, and the software returns

the answer to the question .

• Direct manipulation. Users interact with objects on the computer

screen. Direct manipulation often includes a pointing device (such

as a mouse, trackball, or a finger on touch screens) that manipulates

an object and invokes actions that specify what is to be done with

that object .

• Menu selection. The user selects a command from a menu list of

commands .

• Form fill-in. The user fills in the fields of a form. Sometimes fields

include menus, in which case the form has action buttons for the

user to initiate action .

• Command language. The user issues a command and provides

related parameters to direct the software what to do .

• Natural language. The user issues a command in natural language.

That is, the natural language is a front end to a command language

and is parsed and translated into software commands.

6. Design for quality attributes (e.g., reliability, usability,

maintainability, performance, testability, security, and fault

tolerance):

11

Software quality attributes (Bass, Clements, and Kazman 2003) refer

to the nonfunctional requirements of software, which can have a

profound effect on the quality of a software product. Many of these

attributes can be addressed and evaluated at the time the software

architecture is developed. Software quality attributes include:

1. Maintainability.

2. Modifiability.

3. Testability.

4. Traceability.

5. Scalability.

6. Reusability.

7. Performance.

8. Availability.

9. Security.

 An introduction to software quality attributes is given in Section 4.6.

This section describes each of these attributes and discusses how they

are supported by the COMET design method .

Some software quality attributes are also system quality attributes

because they need both the hardware and software to achieve high

quality. Examples of these quality attributes are performance,

availability, and security. Other software quality attributes are purely

software in nature because they rely entirely on the quality of the

software. Examples of these quality attributes are maintainability,

modifiability, testability, and traceability.

7. Design trade-off:

• During software development, trade-offs are made on a daily basis

by the people participating in the development project.

• Different roles in the project have to handle different tradeoffs.

Some examples are that managers distribute work to developers

12

and while doing so they have to balance the workload between the

developers and deciding how many people that should be assigned

to a particular task .

• If more people are assigned to a task then the task will be

completed faster, but adding more people past a certain point only

serves to increase the overhead of the group and in turn increases

the time it takes to complete the task.

• Developers in turn make decisions regarding design and

implementation details. An example is when software architects

try to balance the quality attributes of the system. A balance of

functional as well as quality requirements has to be acheived so

that the intended users of the system will find it useful.

• This tradeoff method helps the people that perform the tradeoff to

structure the process of evaluating the alternatives. But in the end

it relies on the people performing the tradeoff to make the final

decision.

Design Strategies

Software Design Strategies:

Software design is a process to conceptualize the software requirements into

software implementation. Software design takes the user requirements as

challenges and tries to find optimum solution. While the software is being

conceptualized, a plan is chalked out to find the best possible design for

implementing the intended solution .

There are multiple variants of software design. Let us study them

briefly :

13

Software design is a process to conceptualize the software requirements into

software implementation. Software design takes the user requirements as

challenges and tries to find optimum solution. While the software is being

conceptualized, a plan is chalked out to find the best possible design for

implementing the intended solution. There are multiple variants of software

design. Let us study them briefly:

Structured Design:

Structured design is a conceptualization of problem into several well-

organized elements of solution. It is basically concerned with the solution

design. Benefit of structured design is, it gives better understanding of how

the problem is being solved. Structured design also makes it simpler for

designer to concentrate on the problem more accurately Structured design is

mostly based on ‘divide and conquer’ strategy where a problem is broken

into several small problems and each small problem is individually solved

until the whole problem is solved .

The small pieces of problem are solved by means of solution modules.

Structured design emphasis that these modules be well organized in order to

achieve precise solution.

These modules are arranged in hierarchy. They communicate with each

other. A good structured design always follows some rules for

communication among multiple modules, namely - Cohesion - grouping

of all functionally related elements. Coupling - communication between

different modules. A good structured design has high cohesion and low

coupling arrangements.

1. Function Oriented Design:

In function-oriented design, the system is comprised of many smaller sub-

systems known as functions. These functions are capable of performing

14

significant task in the system. The system is considered as top view of all

functions.

Function oriented design inherits some properties of structured design where

divide and conquer methodology is used

This design mechanism divides the whole system into smaller functions,

which provides means of abstraction by concealing the information and their

operation. These functional modules can share information among

themselves by means of information passing and using information available

globally.

Another characteristic of functions is that when a program calls a function,

the function changes the state of the program, which sometimes is not

acceptable by other modules. Function oriented design works well where the

system state does not matter and program/functions work on input rather than

on a state.

Design Process:

• The whole system is seen as how data flows in the system by means of

data flow diagram.

• Data-flow diagram (DFD) depicts how functions change the data and

state of entire system.

• The entire system is logically broken down into smaller units known

as functions on the basis of their operation in the system.

• Each function is then described at large.

2. Object Oriented Design:

Object oriented design works around the entities and their characteristics

instead

15

of functions involved in the software system. This design strategy focuses

on entities and its characteristics. The whole concept of software solution

revolves

around the engaged entities.

Let us see the important concepts of Object Oriented Design:

• Objects - All entities involved in the solution design are known as

objects. For example, person, banks, company and customers are

treated as objects. Every entity has some attributes associated to it

and has some methods to perform on the attributes.

• Classes - A class is a generalized description of an object. An object

is an instance of a class. Class defines all the attributes, which an

object can have and methods, which defines the functionality of the

object. In the solution design, attributes are stored as variables and

functionalities are defined by means of methods or procedures.

• Encapsulation - In OOD, the attributes (data variables) and methods

(operation on the data) are bundled together is called encapsulation.

Encapsulation not only bundles important information of an object

together, but also restricts access of the data and methods from the

outside world. This is called information hiding.

• Inheritance - OOD allows similar classes to stack up in hierarchical

manner where the lower or sub-classes can import, implement and

re-use allowed variables and methods from their immediate super

classes. This property of OOD is known as inheritance. This makes

it easier to define specific class and to create generalized classes

from specific ones.

• Polymorphism - OOD languages provide a mechanism where

methods performing similar tasks but vary in arguments, can be

assigned same name. This is called polymorphism, which allows a

single interface performing tasks for different types. Depending

16

upon how the function is invoked, respective portion of the code gets

executed.

Design Process:

Software design process can be perceived as series of well-defined

steps. Though it varies according to design approach (function oriented

or object oriented, yet It may have the following steps involved :

• A solution design is created from requirement or previous used

system and/or system sequence diagram .

• Objects are identified and grouped into classes on behalf of

similarity in attribute characteristics.

• Class hierarchy and relation among them are defined .

• Application framework is defined.

Software Design Approaches:

There are two generic approaches for software designing :

A. Top down Design

We know that a system is composed of more than one sub-systems

and it contains a number of components. Further, these sub-systems

and components may have their one set of sub-system and

components and creates hierarchical structure in the system. Top-

down design takes the whole software system as one entity and then

decomposes it to achieve more than one sub-system or component

based on some characteristics. system or component is then treated

as a system and decomposed further. This process keeps on running

until the lowest level of system in the top-down hierarchy is

achieved. Top-down design starts with a generalized model of

system and keeps on defining the more specific part of it. When all

components are composed the whole system comes into existence .

17

Top-down design is more suitable when the software solution needs

to be designed from scratch and specific details are unknown.

A. Bottom-up Design:

The bottom up design model starts with most specific and basic

components. It proceeds with composing higher level of components

by using basic or lower level components. It keeps creating higher

level components until the desired system is not evolved as one

single component. With each higher level, the amount of abstraction

is increased.

Bottom-up strategy is more suitable when a system needs to be

created from some existing system, where the basic primitives can

be used in the newer system. Both, top-down and bottom-up

approaches are not practical individually. Instead, a good

combination of both is used.

3. Data-structure centered design:

• Structure design:

The aim of structured design is to transform the results of the

structured analysis (i.e. a DFD representation) into a structure chart.

Structured design provides two strategies to guide transformation of

a DFD into a structure chart.

a. Transform analysis.

b. Transaction analysis.

Normally, one starts with the level 1 DFD, transforms it into module

representation using either the transform or the transaction analysis

and then proceeds towards the lower-level DFDs. At each level of

transformation, it is important to first determine whether the

transform or the transaction analysis is applicable to a particular

DFD. These are discussed in the subsequent subsections.

18

• Structure Chart:

represent hierarchical structure of modules. It breaks down the entire

system into lowest functional modules, describe functions and sub-

functions of each module of a system to a greater detail. Structure

Chart partitions the system into black boxes (functionality of the

system is known to the users but inner details are unknown). Inputs

are given to the black boxes and appropriate outputs are generated.

 Modules at top level called modules at low level. Components are

read from top to bottom and left to right. When a module calls

another, it views the called module as black box, passing required

parameters and receiving results.

Symbols used in construction of structured chart:

1. Module:

It represents the process or task of the system. It is of three types:

a. Control Module:

 A control module branches to more than one sub module .

b. Sub Module:

 Sub Module is a module which is the part (Child) of

another module .

c. Library Module:

 Library Module are reusable and invoable from any

module.

19

2. Conditional Call:

It represents that control module can select any of the sub

module on the basis of some condition.

3. Loop (Repetitive call of module):

It represents the repetitive execution of module by the sub

module .

A curved arrow represents loop in the module.

4. Data Flow:

20

It represents the flow of data between the modules. It is

represented by directed arrow with empty circle at the end.

5. Control Flow:

It represents the flow of control between the modules. It is

represented by directed arrow with filled circle at the end.

6. Physical Storage:

Physical Storage is that where all the information are to be

stored.

 Example : Structure chart for an Email server:

Physical Storage

21

• The basic building blocks which are used to design structure

charts are the following:

a. Rectangular boxes: Represents a module.

b. Module invocation arrows: Control is passed from on one

module to another module in the direction of the connecting

arrow.

c. Data flow arrows: Arrows are annotated with data name;

named data passes from one module to another module in the

direction of the arrow.

d. Library modules: Represented by a rectangle with double

edges.

e. Selection: Represented by a diamond symbol.

f. Repetition: Represented by a loop around the control flow

arrow.

• Types of Structure Chart :

A. Transform Centered Structured :

These type of structure chart are designed for the systems that

receives an input which is transformed by a sequence of

operations being carried out by one module.

B. Transaction Centered Structure :

22

These structure describes a system that processes a number of

different types of transaction.

4. Aspect-oriented design:

The focus of aspect-oriented software development is in the investigation

and implementation of new structures for software modularity that provide

support for explicit abstractions to modularize concerns. Aspect-oriented

programming approaches provide explicit abstractions for the modular

implementation of concerns in design, code, documentation, or other

artifacts developed during the software life-cycle. These modularized

concerns are called aspects, and aspect-oriented approaches provide

methods to compose them. . Various approaches provide different

flexibility with respect to composition of aspects.

Detailed Design

1. Design patterns :

What is a Design Pattern ?

• Each pattern Describes a problem which occurs over and over again in

our

 environment ,and then describes the core of the problem.

• Novelists, playwrights and other writers rarely invent new stories.

23

• Often ideas are reused, such as the ―Tragic Hero‖ from Hamlet or

Macbeth .

• Designers reuse solutions also, preferably the ―"good" ones –

Experience is what makes one an "expert".

• Problems are addressed without rediscovering solutions from scratch .

Design Patterns are the best solutions for the re-occurring problems

in the application programming environment .

• Nearly a universal standard .

• Responsible for design pattern analysis in other areas, including

GUIs .

• Mainly used in Object Oriented programming.

Design Pattern Elements:

1. Pattern Name:

- Handle (التعامل) used to describe the design problem .

- Increases vocabulary.

- Eases design discussions .

- Evaluation without implementation details.

2. Problem:

- Describes when to apply a pattern .

- May include conditions for the pattern to be applicable.

- Symptoms of an inflexible design or limitation .

3. Solution:

- Describes elements for the design .

- Includes relationships, responsibilities, and collaborations .

- Does not describe concrete designs or implementations .

- A pattern is more of a template .

24

4. Consequences:

- Results and Trade Offs .

- Critical for design pattern evaluation .

- Often space and time trade offs .

- Language strengths and limitations .

 (Broken into benefits and drawbacks for this discussion) .

▪ Design patterns can be subjective .

One person‘s pattern may be another person‘s primitive

building block. The focus of the selected design patterns

are :

- Object and class communication .

- Customized to solve a general design problem .

- Solution is context specific.

Design patterns :

One possible way of designing software is to attempt to match the problem

to be solved with a preexisting software system that solves the same type of

problem. This approach reduces at least a portion of the software design to

pattern matching. The effectiveness depends upon a set of previously

developed software modules and some way of recognizing different

patterns. Following are some types of patterns that seem to repeatedly occur

in software development. Our patterns are relatively high level, from These

high-level patterns are:

1. A menu-driven system, where the user must pass through several steps in a

hierarchy in order to perform his or her work. The menus may be of the pull-

down type such as is common on personal computers or may be entirely text

based .

25

2. An event-driven system, where the user must select steps in order to perform

his or

 her work. The steps need not be taken in a hierarchical order. This pattern is

most

commonly with control of concurrent processes where actions may be

repeated

 indefinitely.

3. A system in which the actions taken depend on one of a small number of

“states” and a small set of optional actions that can be taken for each state.

The optional action taken depends on both the state and the value of an input

“token.” In this pattern, the tokens are usually presented as a stream. Once a

token is processed, it is removed from the input stream .

4. A system in which a sequence of input tokens (usually in text format) is

processed, one token at a time. This pattern differs from the previous pattern

in that the decision about which action to take may depend on more

information than is available from just the pair consisting of the state and

the input token. In this pattern, the tokens may still remain in the input

stream after being processed.

5. A system in which a large amount of information is searched for one or

more specific pieces of information. The searches may occur once or many

times .

6. A system that can be used in a variety of applications but needs adjustments

to work properly in new settings .

7. System in which everything is primarily guided by an algorithm, rather than

 depending primarily on data.

26

8. A system that is distributed, with many relatively independent

computational actions taking place. Some of the computational actions

may communicate with other computational actions.

We note that these high-level patterns can be further broken into three

groups: creational patterns, structural patterns, and behavioral patterns.

These groups can be broken further into twenty-three patterns as follows:

Creational patterns:

1. Abstract factory—This pattern provides an interface for creating families of

 related objects without specifying their classes.

2. Builder—This pattern separates the construction of a complex object from

its representation.

3. Factory method—This pattern defines an interface for creating a single

object and allows subclasses to decide which class to instantiate.

4. Prototype—This pattern specifies the kinds of objects to create using a

prototypical instance and creates new objects by copying this prototype. In

theory, this can aid in the development of projects that use a rapid

prototyping life cycle.

5. Singleton—This pattern makes sure that a class has only a single

instance.

Structural patterns:

1. Adapter—This pattern converts the interface of a class into another interface

that the clients of the class expect. This function is called bridgeware or

glueware in

other contexts .

2. Bridge—This pattern ensures that an abstraction is separate from details of

its

implementation .

27

3. Composite—This pattern allows objects to be grouped into tree structures

where

both individual objects and compositions of objects can be accessed .

4. Decorator—This pattern attaches additional responsibilities to an object

dynamically while keeping the same interface.

5. Façade—This pattern provides a unified interface to a set of interfaces in a

subsystem .

6. Flyweight—This rare pattern uses a form of sharing to treat large numbers

of

similar objects efficiently .

7. Proxy—This pattern provides a placeholder for another object to control

access to it.

Behavioral patterns:

1. Chain of responsibility—This pattern allows giving more than one object a

chance to handle a request by the request’s sender. This can be highly useful

if there are

alternative responders, including fallback operations .

2. In Command—This rare pattern encapsulates a request as an object, thereby

allowing clients to be given different requests.

3. Interpreter—This large-scale pattern allows designers to use a representation

of a

 language grammar for parsing. This can be helpful for developing code

metrics.

4. Iterator—This pattern provides a way to access the elements of an aggregate

object sequentially without exposing its underlying representation, which

need not be an array.

28

5. Mediator—This pattern defines an object that encapsulates how a set of

objects

interact, preventing explicit references .

6. Memento—This pattern allows objects to capture and externalize an

object’s

internal state, while allowing the object to be restored. This can be very

useful in

creating rollback states in the event of an unforeseen system error.

7. Observer—This useful pattern defines a one-to-many dependency between

objects where a state change in one object results in all dependents being

notified and updated .

8. State—This pattern allows an object to alter its behavior when its internal

state

changes. This can be useful for rollbacks in the event of system errors .

9. Strategy—This pattern defines a family of algorithms, encapsulates each

one, and makes them interchangeable. Strategy lets the algorithm vary

independently from clients that use it. This can be used to improve system

fault tolerance when incorporated into an “N-version programming” or

“multi version” scheme where correctness is evaluated by majority vote on

a set of independently implemented

program versions .

10. Template method—This pattern, which is familiar to those who have taken

a data

structures course, defines the skeleton of an algorithm in an operation,

deferring

some steps to subclasses .

11. Visitor—This pattern is used to represent an operation to be performed on

the

29

elements of an object structure without changing the classes of the elements

on

which it operates.

2. Database Design:

Database design is the organization of data according to a database model.

The designer determines what data must be stored and how the data

elements interrelate. With this information, they can begin to fit the data to

the database model. Database management system manages the data

accordingly .

Database design involves classifying data and identifying

interrelationships. This theoretical representation of the data is called an

ontology. The ontology is the theory behind the database's design.

1. Determining data to be stored:

 In a majority of cases, a person who is doing the design of a database is a

person with expertise in the area of database design, rather than expertise

in the domain from which the data to be stored is drawn e.g. financial

information, biological information etc. Therefore, the data to be stored

in the database must be determined in cooperation with a person who does

have expertise in that domain, and who is aware of what data must be

stored within the system.

 This process is one which is generally considered part of requirements

analysis, and requires skill on the part of the database designer to elicit

the needed information from those with the domain knowledge. This is

because those with the necessary domain knowledge frequently cannot

express clearly what their system requirements for the database are as they

are unaccustomed to thinking in terms of the discrete data elements which

must be stored. Data to be stored can be determined by Requirement

Specification.

30

2. Determining data relationships:

Once a database designer is aware of the data which is to be stored within

the database, they must then determine where dependency is within the

data. Sometimes when data is changed you can be changing other data

that is not visible. For example, in a list of names and addresses, assuming

a situation where multiple people can have the same address, but one

person cannot have more than one address, the address is dependent upon

the name. When provided a name and the list the address can be uniquely

determined; however, the inverse does not hold - when given an address

and the list, a name cannot be uniquely determined because multiple

people can reside at an address. Because an address is determined by a

name, an address is considered dependent on a name.

3. Determining data relationships:

Once a database designer is aware of the data which is to be stored within

the database, they must then determine where dependency is within the

data. Sometimes when data is changed you can be changing other data

that is not visible. For example, in a list of names and addresses, assuming

a situation where multiple people can have the same address, but one

person cannot have more than one address, the address is dependent upon

the name. When provided a name and the list the address can be uniquely

determined; however, the inverse does not hold - when given an address

and the list, a name cannot be uniquely determined because multiple

people can reside at an address. Because an address is determined by a

name, an address is considered dependent on a name.

4. Logically structuring data:

Once the relationships and dependencies amongst the various pieces of

information have been determined, it is possible to arrange the data into a

logical structure which can then be mapped into the storage objects

supported by the database management system. In the case of relational

31

databases the storage objects are tables which store data in rows and

columns. In an Object database the storage objects correspond directly to

the objects used by the Object-oriented programming language used to

write the applications that will manage and access the data. The

relationships may be defined as attributes of the object classes involved

or as methods that operate on the object classes.

5. ER diagram (entity-relationship model):

Database designs also include ER (entity-relationship model) diagrams. An

ER diagram is a diagram that helps to design databases in an efficient

way.Attributes in ER diagrams are usually modeled as an oval with the

name of the attribute, linked to the entity or relationship that contains the

attribute.

6. A design process suggestion for Microsoft Access:

a. Determine the purpose of the database - This helps prepare for the

remaining steps .

b. Find and organize the information required - Gather all of the types of

information to record in the database, such as product name and order

number.

c. Divide the information into tables - Divide information items into major

entities or subjects, such as Products or Orders. Each subject then

becomes a table .

d. Turn information items into columns - Decide what information needs

to be stored in each table. Each item becomes a field, and is displayed

as a column in the table. For example, an Employees table might include

fields such as Last Name and Hire Date .

32

e. Specify primary keys - Choose each table's primary key. The primary

key is a column, or a set of columns, that is used to uniquely identify

each row. An example might be Product ID or Order ID .

f. Set up the table relationships - Look at each table and decide how the

data in one table is related to the data in other tables. Add fields to tables

or create new tables to clarify the relationships, as necessary .

g. Refine the design - Analyze the design for errors. Create tables and add

a few records of sample data. Check if results come from the tables as

expected. Make adjustments to the design, as needed .

h. Apply the normalization rules - Apply the data normalization rules to

see if tables are structured correctly. Make adjustments to the tables, as

needed.

7. Physical design:

The physical design of the database specifies the physical configuration of

the database on the storage media. This includes detailed specification of

data lements, data types, indexing options and other parameters residing in

the DBMS data dictionary. It is the detailed design of a system that includes

modules & the database's hardware & software specifications of the system.

Some aspects that are addressed at the physical layer :

• Security - end-user, as well as administrative security .

• Replication - what pieces of data get copied over into another

database, and how often. Are there multiple-masters, or a single

one ?

• High-availability - whether the configuration is active-passive, or

active-active, the topology, coordination scheme, reliability targets,

etc all have to be defined.

33

• Partitioning - if the database is distributed, then for a single entity,

how is the data distributed amongst all the partitions of the database,

and how is partition failure taken into account .

• Backup and restore schemes .

At the application level, other aspects of the physical design can include

the need to define stored procedures, or materialized query views, OLAP

cubes, et…

3. Design of networked systems:

• Network Design Basics: the basics of network design are:

1. Network Design Overview:

a. Network Requirements

Today, the Internet-based economy often demands around-the-

clock customer service. This means that business networks must

be available nearly 100 percent of the time. They must be smart

enough to automatically protect against unexpected security

incidents. These business networks must also be able to adjust to

changing traffic loads to maintain consistent application response

times. It is no longer practical to construct networks by

connecting many standalone components without careful

planning and design.

b. Building a Good Network

Good networks do not happen by accident. They are the result of

hard work by network designers and technicians, who identify

network requirements and select the best solutions to meet the

needs of a business. The steps required to design a good network

are as follows:

Step 1. Verify the business goals and technical requirements .

34

Step 2. Determine the features and functions required to meet

the needs identified in Step 1 .

Step 3. Perform a network-readiness assessment .

Step 4. Create a solution and site acceptance test plan .

Step 5. Create a project plan.

After the network requirements have been identified, the steps to

designing a good network are followed as the project

implementation moves forward .

Network users generally do not think in terms of the complexity

of the underlying network. They

think of the network as a way to access the applications they need,

when they need them.

c. Network Requirements:

Most businesses actually have only a few requirements for their

network :

1. The network should stay up all the time, even in the event of failed

links, equipment failure, and overloaded conditions .

2. The network should reliably deliver applications and provide

reasonable response times from any host to any host .

3. The network should be secure. It should protect the data that is

transmitted over it and data stored on the devices that connect to it .

4. The network should be easy to modify to adapt to network growth

and general business changes .

5. Because failures occasionally occur, troubleshooting should be easy.

Finding and fixing a problem should not be too time-consuming.

d. Fundamental Design Goals:

When examined carefully, these requirements translate into four

fundamental network design goals :

35

1. Scalability: Scalable network designs can grow to include new user

groups and remote sites and can support new applications without

impacting the level of service delivered to existing users.

2. Availability: A network designed for availability is one that delivers

consistent, reliable performance, 24 hours a day, 7 days a week. In

addition, the failure of a single link or piece of equipment should not

significantly impact network performance .

3. Security: Security is a feature that must be designed into the network,

not added on after the network is complete. Planning the location of

security devices, filters, and firewall features is critical to

safeguarding network resources .

4. Manageability: No matter how good the initial network design is, the

available network staff must be able to manage and support the

network. A network that is too complex or difficult to maintain cannot

function effectively and efficiently.

2. The Benefits of a Hierarchical Network Design:

To meet the four fundamental design goals, a network must be built on

an architecture that allows for both flexibility and growth.

a. Hierarchical Network Design:

In networking, a hierarchical design is used to group devices into multiple

networks. The networks are organized in a layered approach. The

hierarchical design model has three basic layers :

• Core layer: Connects distribution layer devices

• Distribution layer: Interconnects the smaller local networks

• Access layer: Provides connectivity for network hosts and end

devices.

Hierarchical networks have advantages over flat network designs. The

benefit of dividing a flat network into smaller, more manageable

36

hierarchical blocks is that local traffic remains local. Only traffic destined

for other networks is moved to a higher layer.

Layer 2 devices in a flat network provide little opportunity to control

broadcasts or to filter undesirable traffic. As more devices and applications

are added to a flat network, response times degrade until the network

becomes unusable. Figures 1 and 2 show the advantages of a hierarchical

network design versus a flat network design.

b. Modular Design of Cisco Enterprise Architectures:

37

The Cisco Enterprise Architectures (see Figure 3) can be used to further

divide the three-layer hierarchical design into modular areas. The modules

represent areas that have different physical or logical connectivity. They

designate where different functions occur in the network. This modularity

enables flexibility in network design. It facilitates implementation and

troubleshooting. Three areas of focus in modular network design are as

follows :

1. Enterprise campus: This area contains the network elements required

for independent operation within a single campus or branch location.

This is where the building access, building distribution, and campus

core are located.

2. Server farm: A component of the enterprise campus, the data center

server farm protects the server resources and provides redundant,

reliable high-speed connectivity .

3. Enterprise edge: As traffic comes into the campus network, this area

filters traffic from the external resources and routes it into the

enterprise network. It contains all the elements required for efficient

and secure communication between the enterprise campus and

remote locations, remote users, and the Internet.

38

The modular framework of the Cisco Enterprise Architectures as depicted in

Figure 4 has the following design advantages :

1. It creates a deterministic network with clearly defined boundaries

between modules. This provides clear demarcation points so that the

network designer knows exactly where the traffic originates and

where it flows.

2. It eases the design task by making each module independent. The

designer can focus on the needs of each area separately.

3. It provides scalability by allowing enterprises to add modules easily.

As network complexity grows, the designer can add new functional

modules.

4. It enables the designer to add services and solutions without changing

the underlying network design.

39

4. Network Design Methodologies:

Large network design projects are normally divided into three distinct

steps :

Step 1. Identify the network requirements .

Step 2. Characterize the existing network .

Step 3. Design the network topology and solutions

Step 1: Identifying Network Requirements

The network designer works closely with the customer to document the

goals of the project. Figure 5 depicts a meeting between the designer and

the business owner. Goals are usually separated into two categories :

a. Business goals: Focus on how the network can make the business

more successful.

b. Technical requirements: Focus on how the technology is implemented

within the network

Step 2: Characterizing the Existing Network

40

Information about the current network and services is gathered and

analyzed. It is necessary to compare the functionality of the existing

network with the defined goals of the new project. The designer

determines whether any existing equipment, infrastructure, and

protocols can be reused, and what new equipment and protocols are

needed to complete the design .

Step 3: Designing the Network Topology

A common strategy for network design is to take a top-down approach.

In this approach, the network applications and service requirements are

identified, and then the network is designed to support them. When the

design is complete, a prototype or proof-of-concept test is performed.

A common mistake made by network designers is the failure to correctly

determine the scope of the network design project .

Determining the Scope of the Project While gathering requirements, the

designer identifies the issues that affect the entire network and those that affect

only specific portions. By creating a topology similar to Figure 6, the designer

can isolate areas of concern and identify the scope of the project. Failure to

understand the impact of a particular requirement often causes a project scope to

41

expand beyond the original estimate. This oversight can greatly increase the cost

and time required to implement the new design.

Impacting the Entire Network

Network requirements that impact the entire network include the following :

1. Adding new network applications and making major changes to existing.

applications, such as database or Domain Name System (DNS) structure

changes.

42

2. Improving the efficiency of network addressing or routing protocol

changes

3. Integrating new security measures.

4. Adding new network services, such as voice traffic, content networking,

and storage networking.

5. Relocating servers to a data center server farm.

Impacting a Portion of the Network:

Requirements that may only affect a portion of the network include the

following :

1. Improving Internet connectivity and adding bandwidth;

2. Updating access layer LAN cabling.

3. Providing redundancy for key services.

4. Supporting wireless access in defined areas.

5. Upgrading WAN bandwidth.

4.Design notations (e.g., class and object diagrams, UML, state diagrams,

and formal specification):

UML is popular for its diagrammatic notations. We all know that UML is

for visualizing, specifying, constructing and documenting the components

of software and non-software systems. Hence, visualization is the most

important part which needs to be understood and remembered .

UML notations are the most important elements in modeling. Efficient and

appropriate use of notations is very important for making a complete and

meaningful model. The model is useless, unless its purpose is depicted

properly .

Hence, learning notations should be emphasized from the very beginning.

Different notations are available for things and relationships. UML diagrams

are made using the notations of things and relationships. Extensibility is

another important feature which makes UML more powerful and flexible.

43

• Class Notation

UML class is represented by the following figure. The diagram is divided

into four parts.

1. The top section is used to name the class .

2. The second one is used to show the attributes of the class .

3. The third section is used to describe the operations performed by the

class .

4. The fourth section is optional to show any additional components.

Classes are used to represent objects. Objects can be anything having

properties and responsibility.

• Object Notation:

The object is represented in the same way as the class. The only difference

is the name which is underlined as shown in the following figure.

As the object is an actual implementation of a class, which is known as the

instance of a class. Hence, it has the same usage as the class.

44

• Interface Notation:

Interface is represented by a circle as shown in the following figure. It has a

name which is generally written below the circle.

• Collaboration Notation:

Collaboration is represented by a dotted eclipse as shown in the following

figure. It has a name written inside the eclipse:

Collaboration represents responsibilities. Generally, responsibilities are in

a group.

• Actor Notation:

An actor can be defined as some internal or external entity that interacts

with the system.

45

The usage of Initial State Notation is to show the starting point of a

process.

• Final State Notation:

Final state is used to show the end of a process. This notation is also used

in almost all diagrams to describe the end.

The usage of Final State Notation is to show the termination point of a

process

• Active Class Notation:

Active class looks similar to a class with a solid border. Active class is

generally used to describe the concurrent behavior of a system.

Active class is used to represent the concurrency in a system.

• Component Notation:

A component in UML is shown in the following figure with a name inside.

Additional elements can be added wherever required.

46

Component is used to represent any part of a system for which UML

diagrams are made.

• Node Notation:

A node in UML is represented by a square box as shown in the following

figure with a name. A node represents the physical component of the system.

Node is used to represent the physical part of a system such as the server,

network, etc.,

• Interaction Notation:

Interaction is basically a message exchange between two UML components.

The following diagram represents different notations used in an interaction.

47

Interaction is used to represent the communication among the components

of a system.

• State Machine Notation:

State machine describes the different states of a component in its life cycle.

The notations are described in the following diagram.

48

State machine is used to describe different states of a system component.

The state can be active, idle, or any other depending upon the situation.

Design Evaluation

1. Design Attributes (e.g., Coupling, Cohesion, Information Hiding, and

Separation of Concerns) :

A. Cohesion:

In computer programming, cohesion refers to the degree to which the

elements inside a module belong together. sense, it is a measure of the

strength of relationship between the methods and data of a class and some

unifying purpose or concept served by that class. In another sense, it is a

measure of the strength of relationship between the class's method and data

themselves.

So, cohesion focuses on how single module/class is designed. Higher the

cohesiveness of the module/class, better is the OO design.

49

If our module performs one task and nothing else or has a clear purpose,

our module has high cohesion. On the other hand, if our module tries to

encapsulate more than one purpose or has an unclear purpose, our module

has low cohesion.

Modules with high cohesion tend to be preferable, simple because high

cohesion is associated with several desirable traits of software including:

• Robustness.

• Reliability.

• understandability.

Low cohesion is associated with undesirable traits such as being difficult

to maintain, test, reuse, or even understand.

Cohesion is often contrasted with coupling. High cohesion often correlates

with loose coupling, and vice versa.

Single Responsibility Principle aims at creating highly cohesive classes.

Cohesion is increased if:

• The functionalities embedded in a class, accessed through its

methods, have much in common .

• Methods carry out a small number of related activities, by avoiding

coarsely grained or unrelated sets of data.

Advantages of high cohesion:

• Reduced module complexity (they are simpler, having fewer

operations) .

• Increased system maintainability, because logical changes in the

domain affect fewer modules, and because changes in one module

require fewer changes in other modules .

50

• Increased module reusability, because application developers will

find the component they need more easily among the cohesive set of

operations provided by the module.

Types of cohesion: There are some types of cohesion that we need to

know:

• Coincidental cohesion(worst):

Coincidental cohesion is when parts of a module are grouped

arbitrarily; the only relationship between the parts is that they have

been grouped together. For example - Utilities class.

• Logical cohesion:

Logical cohesion is when parts of a module are grouped because they

are logically categorized to do the same thing even though they are

different by nature.For example - grouping all mouse and keyboard

input handling routines.

• Temporal cohesion:

Temporal cohesion is when parts of a module are grouped by when

they are processed - the parts at a particular time in program

execution.

For example - A function which is called after catching an

exception which closes open files, creates an error log, and notifies

the user.

• Procedural cohesion:

Procedural cohesion is when parts of a module are grouped because

they always follow a certain sequence of execution. For example - a

function which checks file permissions and then opens the file .

51

• Communicational / Informal cohesion

Communicational cohesion is when parts of a module are grouped

because they operate on the same data. There are cases where

communicational cohesion is the highest level of cohesion that can

be attained under the circumstances. For example - a module which

operates on the same record of information.

• Sequential cohesion:

Sequential cohesion is when parts of a module are grouped because

the output from one part is the input to another part like an assembly

line .

For example: a function which reads data from a file and processes

the data .

• Functional cohesion (best)

Functional cohesion is when parts of a module are grouped because

they all contribute to a single well-defined task of the module. While

functional cohesion is considered the most desirable type of cohesion

for a software module, it may no be achievable .

• Perfect cohesion (atomic).

B. Coupling:

is the degree of interdependence between software modules; a measure

of how closely connected two routines or modules are; the strength of

the relationships between modules. Coupling is usually contrasted with

cohesion. Low coupling often correlates with high cohesion, and vice

versa. Low coupling is often a sign of a well-structured computer

system and a good design, and when combined with high cohesion,

supports the general goals of high readability and maintainability.

Coupling increases between two classes A and B if:

• A has an attribute that refers to (is of type) B.

52

• A calls on services of an object B .

• A has a method that reference B (via return type or

parameter .)

• A is a subclass of (or implements) class B.

Low coupling refers to a relationship in which one module interacts with

another module through a simple and stable interface and does not need

to be concerned with the other module’s internal implementation.

 Some properties that need to consider in coupling: In Coupling, we

need to consider some properties :

• Degree:

Degree is the number of connections between the module and others.

With coupling, we want to keep the degree small. For instance, if the

module needed to connect to other modules through a few parameters or

narrow interfaces, then the degree would be small, and coupling would

be loose .

• Ease:

Ease is how obvious are the connections between the module and others.

With coupling, we want the connections to be easy to make without

needing to understand the implementations of the other modules.

• Flexibility:

Flexibility is how interchangeable the other modules are for this

module. With coupling, we want the other modules easily replaceable

for something better in the future .

Disadvantages of tightly coupling:

• A change in one module usually forces a ripple effect of changes in

other modules.

53

• Assembly of modules might require more effort or time due to the

increased inter-module dependency .

• A particular module might be harder to reuse or test because

dependent modules must be included .

 Difference between cohesion and coupling:

 Cohesion:

▪ Cohesion is the indication of the relationship within module.

▪ Cohesion shows the module’s relative functional strength;

▪ Cohesion is a degree (quality) to which a component / module

focuses on the single thing.

▪ While designing we should strive for high cohesion. Ex: cohesive

component/module focus on a single task with little interaction with

other modules of the system.

▪ Cohesion is the kind of natural extension of data hiding, for example,

class having all members visible with a package having default

visibility.

▪ Cohesion is Intra – Module Concept.

 Coupling:

▪ Coupling is the indication of the relationships between modules.

▪ Coupling shows the relative independence among the modules.

▪ Coupling is a degree to which a component / module is connected

to the other modules.

▪ While designing we should strive for low coupling. Ex:

dependency between modules should be less.

▪ Making private fields, private methods and non public classes

provides loose coupling.

▪ Coupling is Inter -Module Concept.

C. Information Hiding:

54

• Only the operations of a class are allowed to manipulate its attributes.

- Access attributes only via operations.

• Hide external objects at subsystem boundary.

- Define abstract class interfaces which mediate between the

external world and the system as well as between subsystems.

• Do not apply an operation to the result of another operation.

- Write a new operation that combines the two operations.

D. Separation of concerns:

Separation of concerns is the idea that each module or layer in an

application should only be responsible for one thing and should not

contain code that deals with other things. Separating concerns reduces

code complexity by breaking a large application down into many smaller

units of encapsulated functionality.

Separation of concerns can be expressed as functions, modules, controls,

widgets, layers, tiers, services, and so on. The various units of concern

vary from one app to the next, and each different app may use a different

combination. Functions and modules have already been discussed.

A control is a reusable GUI input that enables user interaction with your

application. For example, combo boxes, calendar inputs, sliders, buttons,

switches, and knobs are all controls.

A widget is a small application which is intended to be embedded in

other applications. For example, WordPress allows developers to offer

embeddable units of functionality to blog owners through its plug-in

ecosystem. There are many widgets to manage calendars, comments,

maps, and all sorts of services from third-party providers.

55

Layers are logical groupings of functionality. For example, a data layer

might encapsulate functionality related to data and state, while a

presentation layer handles display concerns, such as rendering to the

DOM and binding UI behaviors .

Tiers are the runtime environments that layers get deployed to. A

runtime environment usually consists of at least one physical computer,

an operating system, the runtime engine (e.g., Node, Java, or Ruby), and

any configuration needed to express how the application should interact

with its environment .

It’s possible to run multiple layers on the same tier, but tiers should be

kept independent enough that they can easily be deployed to separate

machines or even separate data centers. For large-scale applications, it’s

usually also necessary that tiers can scale horizontally, meaning that as

demand increases, you can add machines to a tier in order to improve its

capacity to meet that demand.

➢ Client-Side Concerns:

There are several client-side concerns that almost every mature

JavaScript application might deal with at some point :

• Module management.

• Events.

• Presentation and DOM manipulation.

• Internationalization.

• Data management and IO (including Ajax)

• Routing (translating URLs to script actions)

• Logging.

• Analytics tracking.

56

• Authentication.

• Feature toggling (decouple code deployment and feature

release).

2. design metrics:

Design metrics fall into two categories:

• Product metrics :

Derived from design representations, these can be used to predict the extent

of a future activity in a software project, as well as assessing the quality of

the design in its own right. Product metrics are to be further divided into

network, stability and information flow metrics.

• Process metrics::

Metrics derived from the various activities that make up the design phase .

They include effort, timescale metrics, fault and change metrics. These are

normally used for error detection, the time spent at each phase of

development, measuring the cost etc. When they are recorded on a unit

basis, they can also be used for unit quality control.

Of the two types, product metrics are the most suitable for evaluating

software design quality, and so these are discussed further.

• Network metrics:

These metrics sometimes referred to as call graph metrics, are based on the

shape of the calling hierarchy within the software system. Their com-

plexity metric as based on measuring how far a design deviates from a tree

structure with neither common calls to modules nor common access to a

database. The theory on which this metric was based is that both common

calls and common database access increase the coupling between the

modules.

• Stability metrics:

 Stability metrics are based on the resistance to change that occurs

57

in a software system during maintenance. The principle behind this

type of metric is that a poor system is one where a change to one

module has a high probability of giving rise to changes in other

modules. This, in turn, has a high probability of giving rise to

further changes in other modules. The work is an expansion of a

metric, which relies on the subjective estimation of the effect that a

change to one module had on another.

 This early work has now been refined . Design stability measures

can now

be obtained at any point in the design process, allowing

examination of the

program early in its life-cycle for possible maintenance problems.

Design

stability measurement requires a more in-depth analysis of the

interfaces of

modules and an account of the ‘ripple effect’ as a consequence of

program

modifications (stability of the program). The potential ‘ripple effect’

is defined as the total number of assumptions made by other

modules, which invoke a module whose stability is being measured,

share global data or files with modules, or are invoked by the

module.

 During program maintenance, if changes are made that affect these

assumptions, a ‘ripple effect’ may occur through the program,

requiring additional costly changes. It is possible to calculate the

‘ripple effect’ consequent on modifying the module .

The design stability of a piece of software will be calculated on the

basis

58

of the total potential ‘ripple effect’ of all its modules. This approach

allows the calculation of design stability measures at any point in the

design process. Areas of the program with poor stability can then be

redesigned to improve the situation.

• Evolution processes:

Software evolution processes vary depending on the type of software

being

maintained, the development processes used in an organization and

the skills of the people involved. In some organizations, evolution

may be an informal process where change requests mostly come

from conversations between the system users and developers. In

other companies, it is a formalized process with structured

documentation produced at each stage in the process .

System change proposals are the driver for system evolution in all

organizations. Change proposals may come from existing

requirements that have not been implemented in the released system,

requests for new requirements, bug reports from system

stakeholders, and new ideas for software improvement from the

system development team. The processes of change identification

and system evolution are cyclic and continue throughout the lifetime

of a system.

Change proposals should be linked to the components of the system

that have to be modified to implement these proposals. This allows

the cost and the impact of the change to be assessed. This is part of

the general process of change management, which also should

ensure that the correct versions of components are included in each

system release.

59

The process includes the fundamental activities of change analysis, release

planning, system implementation, and releasing a system to customers. The

cost

and impact of these changes are assessed to see how much of the system is

affected by the change and how much it might cost to implement the

change. If

the proposed changes are accepted, a new release of the system is planned.

During release planning, all proposed changes (fault repair, adaptation, and

new

functionality) are considered. A decision is then made on which changes to

implement in the next version of the system. The changes are implemented

and

validated, and a new version of the system is released. The process then

iterates

with a new set of changes proposed for the next release. You can think of

change implementation as an iteration of the development process, where

the revisions to the system are designed, implemented, and tested .

However, a critical difference is that the first stage of change

implementation may involve program understanding, especially if the

60

original system developers are not responsible for change implementation.

During this program understanding phase, you have to understand how the

program is structured, how it delivers functionality, and how the proposed

change might affect the program. You need this understanding to make sure

that the implemented change does not cause new problems when it is

introduced into the existing system. Ideally, the change implementation

stage of this process should modify the system specification, design, and

implementation to reflect the changes to the system.

 New requirements that reflect the system changes are proposed, analyzed,

and validated. System components are redesigned and implemented and

the system is retested. If appropriate, prototyping of the proposed changes

may be carried out as part of the change analysis process .

 During the evolution process, the requirements are analyzed in detail and

implications of the changes emerge that were not apparent in the earlier

change analysis process. This means that the proposed changes may be

modified and further customer discussions may be required before they are

implemented .

Change requests sometimes relate to system problems that have to be

tackled urgently. These urgent changes can arise for three reasons:

1. If a serious system fault occurs that has to be repaired to allow normal

peration to continue.

61

2. If changes to the systems operating environment have unexpected effects

that

disrupt normal operation

3. If there are unanticipated changes to the business running the system, such

as the emergence of new competitors or the introduction of new legislation

that affects the system. In these cases, the need to make the change quickly

means that you may not be able to follow the formal change analysis

process.

 Rather than modify the requirements and design, you make an emergency

fix to the program to solve the immediate problem . However, the danger

is that the requirement, the software design, and the code become

inconsistent. Although you may intend to document the change in the

requirements and design, additional emergency fixes to the software may

then be needed. These take priority over documentation. Eventually, the

original change is forgotten and the system documentation and code are

never realigned.

• Program evolution dynamics:

Program evolution dynamics is the study of system change. In the 1970s

and 1980s, Lehman and Belady (1985) carried out several empirical studies

of system

change with a view to understanding more about characteristics of software

62

evolution.

Lehman and Belady claim these laws are likely to be true for all types of

large organizational software systems (what they call E-type systems).

These are systems in which the requirements are changing to reflect

changing business needs. New releases of the system are essential for the

system to provide business

value.

The first law states that system maintenance is an inevitable process. As

the system’s environment changes, new requirements emerge and the

system must be modified. When the modified system is reintroduced to the

environment, this promotes more environmental changes, so the evolution

process starts again .

The second law states that, as a system is changed, its structure is

degraded. The

only way to avoid this happening is to invest in preventative maintenance.

You

spend time improving the software structure without adding to its

functionality .

Obviously, this means additional costs, over and above those of

implementing

required system changes.

63

The third law is, perhaps, the most interesting and the most contentious of

Lehman’s laws. It suggests that large systems have a dynamic of their own

that is established at an early stage in the development process.

This determines the gross trends of the system maintenance process and

limits the number of possible system changes. Lehman and Belady suggest

that this law is a consequence of structural factors that influence and

constrain system change, and organizational factors that affect the

evolution process.

The structural factors that affect the third law come from the complexity of

large systems. As you change and extend a program, its structure tends to

degrade. This

is true of all types of system (not just software) and it occurs because you

are adapting a structure intended for one purpose for a different purpose.

64

This degradation, if unchecked, makes it more and more difficult to make

further

changes to the program.

Making small changes reduces the extent of structural degradation and so

lessens the risks of causing serious system dependability problems. If you

try and make large changes, there is a high probability that these will

introduce new faults.

This law confirms that large software development teams are often

unproductive

because communication overheads dominate the work of the

team .Lehman’s fifth law is concerned with the change increments in each

system release. Adding new functionality to a system inevitably introduces

new system faults. The more functionality added in each release, the more

faults there will be .

Therefore, a large increment in functionality in one system release means

that this

will have to be followed by a further release in which the new system faults

are repaired. Relatively little new functionality should be included in this

release. This law suggests that you should not budget for large functionality

increments

in each release without taking into account the need for fault repair. The

first five laws were in Lehman’s initial proposals; the remaining laws were

added after further work. The sixth and seventh laws are similar and

essentially say that users of software will become increasingly unhappy

with it unless it is maintained and new functionality is added to it. The final

law reflects the most recent work on feedback processes, although it is not

yet clear how this can be applied in ractical software development.

• Software maintenance:

65

Software maintenance is the general process of changing a system after it

has been delivered. The term is usually applied to custom software in which

separate development groups are involved before and after delivery. The

changes made to

the software may be simple changes to correct coding errors, more

extensive changes to correct design errors, or significant enhancements to

correct specification errors or accommodate new requirements. Changes

are implemented by modifying existing system components and, where

necessary, by adding new components to the system. There are three

different types of software maintenance:

a. Fault repairs Coding errors are usually relatively cheap to correct; design

errors are more expensive as they may involve rewriting several program

components. Requirements errors are the most expensive to repair because

of the extensive system redesign which may be necessary .

b. Environmental adaptation This type of maintenance is required when

some

aspect of the system’s environment such as the hardware, the platform

operating

system, or other support software changes. The application system must be

modified to adapt it to cope with these environmental changes.

c. Functionality addition This type of maintenance is necessary when the

system requirements change in response to organizational or business

change. The scale of the changes required to the software is often much

greater than for the other types of maintenance .

In practice, there is not a clear-cut distinction between these types of

maintenance. When you adapt the system to a new environment, you may

add functionality to take advantage of new environmental features.

Software faults are often exposed because users use the system in

66

unanticipated ways. Changing the system to accommodate their way of

working is the best way to fix these faults.

3. Formal design analysis:

• Formal methods:

Formal methods of software design, means using mathematics to

write error-free programs. The mathematics needed is not

complicated; it's just basic logic. The word "formal" means the use

of a formal language, so that the program logic can be machine

checked. Our compilers already tell us if we make a syntax error, or

a type error, and they tell us what and where the error is. Formal

methods take the next step, telling us if we make a logic error, and

they tell us what and where the error is. And they tell us this as we

make the error, not after the program is finished. It is good to get any

program correct while writing it, rather than waiting for bug reports

from users. It is absolutely essential for programs that lives will

depend on.

67

In computer science, specifically software engineering and hardware

engineering, formal methods are a particular kind of mathematically

rigorous techniques for the specification, development and

verification of software and hardware systems. The use of formal

methods for software and hardware design is motivated by the

expectation that, as in other engineering disciplines, performing

appropriate mathematical analysis can contribute to the reliability

and robustness of a design .

Formal methods are best described as the application of a fairly

broad variety of theoretical computer science fundamentals, in

particular logic calculi, formal languages, automata theory, discrete

event dynamic system and program semantics, but also type systems

and algebraic data types to problems in software and hardware

specification and verification.

