
 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

1 
 

 

 

                                                                                                        

______________________________________________________ 

 

 

الجامعة التكنولوجية 

قسم علوم الحاسوب 

 ذكاء الاصطناعيفرع ال

 ثالثة المرحلة ال

 ولالكورس الأ

  طرق البحث الموجهمادة

2024 - 2025 

  عبداللهحسـنين سـمير. د.أ

 

 

 

 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

2 
 

 

1- Intelligent Search Methods and Strategies  

Search is inherent to the problem and methods of artificial intelligence (AI). 

This is because AI problems are intrinsically complex. Efforts to solve 

problems with computers which human can routinely innate cognitive abilities, 

pattern recognition, perception and experience, invariably must turn to 

considerations of search. All search methods essentially fall into one of two 

categories, exhaustive (blind) methods and heuristic or informed methods.  

 

2 ‐State Space Search  

The  state  space  search  is  a  collection  of  several  states  with appropriate  

connections  (links)  between  them.  Any problem can be represented as such 

space search to be solved by applying some rules with technical strategy 

according to suitable intelligent search algorithm.  

What we have just said, in order to provide a formal description of a problem, 

we must do the following: 

1‐ Define a state space that contains all the possible configurations of the 

relevant objects (and perhaps some impossible ones). It is, of course, possible 

to define this space without explicitly enumerating all of the states it contains.  

2‐ Specify one or more states within that space that describe possible situations 

from which the problem‐solving process may start. These states are called the 

initial states.  

3‐ Specify one or more states that would be acceptable as solutions to the 

problem. These states are called goal states. 

4‐ Specify a set of rules that describe the actions (operators) available. Doing 

this will require giving thought to the following issues:  

• What unstated assumptions are present in the informal problem description?  

• How general should the rules be?  

• How much of the work required to solve the problem should be precomputed 

and represented in the rules?  



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

3 
 

The problem can then be solved by using rules, in combination with  an  

appropriate  control  strategy,  to  move  through  the  problem space until a 

path from an initial state to a goal state is found. Thus the process of search is 

fundamental to the problem‐solving process. The fact that search provides the 

basis for the process of problem solving does not, however, mean that other, 

more direct approaches cannot also be exploited. Whenever possible, they can 

be included as steps in the search by encoding them rules. Of course, for 

complex problems, more sophisticated computations will be needed. Search is 

a general mechanism that can be used when no more direct methods is known. 

At the  same  time,  it  provide  the  framework  into  which  more  direct 

methods for solving subparts of a problem can be embedded. 

To successfully design and implement search algorithms, a programmer must 

be able to analyze and predict their behavior. Questions that need to be 

answered include: 

• Is the problem solver guaranteed to find a solution?  

• Will the problem solver always terminate, or can it become caught in an 

infinite loop? 

• When a solution is found, is it guaranteed to be optimal?  

• What is the complexity of the search process in terms of time usage? Memory 

usage?  

• How can the interpreter most effectively reduce search complexity?  

• How can an interpreter be designed to most effectively utilize a representation 

language?  

To get a suitable answer for these questions search can be structured into three 

parts. A first part presents a set of definitions and concepts that lay the 

foundations for the search procedure into which induction is mapped. The 

second part presents an alternative approaches that have been taken to 

induction as a search procedure and finally the third part present  the  version  

space  as  a  general  methodology  to  implement induction as a search 

procedure. If the search procedure contains the principles of the above three 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

4 
 

requirement parts, then the search algorithm can give a guarantee to get an 

optimal solution for the current problem. 

 

3 ‐General Problem Solving Approaches  

There exist quite a large number of problem solving techniques in AI that rely 

on search. The simplest among them is the generate‐and‐test method. The 

algorithm for the generate‐and‐test method can be fom1ally stated in figure (1).  

It is clear from the above algorithm that the algorithm continues the possibility 

of exploring a new state in each iteration of the repeat‐until loop and exits only 

when the current state is equal to the goal. Most important part in the algorithm 

is to generate a new state. This is not an easy task. 

 

 

Figure (1), Generate and Test Algorithm 

 

If  generation  of  new  states  is  not  feasible,  the  algorithm  should  be 

terminated. In simple algorithm, we, however, did not include this intentionally 

to keep it simplified. But how does one generate the states of a problem? To 

formalize this, we define a four tuple, called state space, denoted by  

{nodes, arc, goal, current },  

where  

Nodes represent the set of existing states in the search space;  



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

5 
 

an  arc  denotes  an  operator  applied  to  an  existing  state  to  cause 

transition  to  another  state;  

Goal denotes the desired state to be identified in the nodes; 

and current represents the state, now generated for  matching  with  the  goal.  

 

The state space for most of the search problems takes the form of a tree or a 

graph. Graph may contain more than  one  path  between  two  distinct  nodes,  

while  for  a  tree  it  has maximum value of one.  

To build a system to solve a particular problem, we need to do four things:  

1.  Define the problem precisely. This definition must include precise 

specifications of what the initial situation(s) will be as well as what final 

situations constitute acceptable solutions to the problem.  

2.  Analyze the problem. A few very important features can have an immense 

impact on the appropriateness of various possible techniques for solving the 

problem.  

3.  Isolate and represent the task knowledge that is necessary to solve the 

problem.  

4.  Choose the best problem‐solving technique(s) and apply it (them) to the 

particular problem.  

Measuring problem‐solving performance is an essential matter in term of any 

problem solving approach. The output of a problem‐solving algorithm is either 

failure or a solution. (Some algorithm might get stuck in an infinite loop and 

never return an output.) We will evaluate an algorithm's performance in four 

ways:  

• Completeness:  Is the algorithm guaranteed to find a solution when there is 

one?  

• Optimality: Does the strategy find the optimal solution?  

• Time complexity: How long does it take to find a solution?  

• Space complexity: How much memory is needed to perform the search? 

 

 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

6 
 

4 ‐ Search Technique  

Having formulated some problems, we now need to solve them. This is done 

by a search through the state space. The root of the search tree is a search node 

corresponding to the initial state. The first step is to test whether this is a goal 

state. Because this is not a goal state, we need to consider some other states. 

This is done by expanding the current state;  that  is,  applying  the  successor  

function  to  the  current  state, thereby generating a new set of states. Now we 

must choose which of these possibilities to consider further. We continue 

choosing, testing and expanding either a solution is found or there are no more 

states to be expanded. The choice of which state to expand is determined by the 

search strategy. It is important to distinguish between the state space and the 

search tree. For the route finding problem, there are only N states in the state 

space, one for each city. But there are an infinite number of nodes.  

There are many ways to represent nodes, but we will assume that a node is a 

data structure with five components:  

• STATE: the state in the state space to which the node corresponds؛ 

• PARENT-NODE: the node in the search tree that generated this node؛ 

• ACTION: the action that was applied to the parent to generate the node؛ 

• PATH‐COST: the cost, traditionally denoted by g(n), of the path from  the  

initial  state  to  the  node,  as  indicated  by  the  parent pointers; and    

• DEPTH: the number of steps along the path from the initial state.  

As usual, we differentiate between two main families of search strategies: 

systematic search and local search. Systematic search visits each state that 

could be a solution, or skips only states that are shown to be dominated by 

others, so it is always able to find an optimal solution.  

 

5. Heuristic Search Algorithms  

In this section, we can saw that many of the problems that fall within the 

purview of artificial intelligence are too complex to be solved by direct 

techniques; rather they must be attacked by appropriate search methods armed 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

7 
 

with whatever direct techniques are available to guide the search. These 

methods are all varieties of heuristic search.  

They can be described independently any particular task or problem domain. 

But when applied to Particular problems, their efficacy is highly dependent on 

the way they exploit domain‐specific knowledge since in and  of  themselves  

they  are  unable  to  overcome  the  combinatorial explosion to which search 

processes are so vulnerable. For this reason, these techniques are often called 

weak methods. Although a realization of  the  limited  effectiveness  of  these  

weak  methods  to  solve  hard problems  by themselves  has  been an important  

result that emerged from  the  last  decades  of  AI  research,  these  techniques  

continue  to provide the framework into which domain‐specific knowledge can 

be placed, either by hand or as a result of automatic learning.  

Hill climbing is a variant of generate‐and‐test in which feedback from the test 

procedure is used to help the generator decide which direction to move in the 

search space. In a pure generate‐and‐test procedure, the test function responds 

with only a yes or no. but if the test function is augmented with a heuristic 

function that provide an estimate of how close a given is to a goal state. This is 

particularly nice because often the computation of the heuristic function can be 

done at almost no cost at the  same  time  that  the  test  for  a  solution  is  

being  performed.  Hill climbing is often used when a good heuristic function is 

available for evaluating states but when no other useful knowledge is available. 

For example, suppose you are in an unfamiliar city without a map and you 

want  to  get  downtown.  You simply aim for the tall buildings.  The heuristic 

function is just distance between the current location and the location of the tall 

buildings and the desirable states are those in which this distance is minimized. 

For each state  f(n) = h(n)  where h(n) is the heuristic function that 

computes the heuristic value for each state n. 

 

 

 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

8 
 

Function Hill Climbing Search 

Begin 

  Open: = [Initial state];                                                      %initialize 

  Closed: = [ ]; 

  CS= initial state; 

  Path= [initial state]; 

  Stop= FALSE; 

  While open <> [ ] do                                                        %states remain 

    Begin 

      If CS=goal then return path 

      Generate all children of CS and put them into open; 

        If open= [ ] then 

        Stop= TRUE 

          Else 

            Begin 

              X= CS; 

              For each state Y in open do 

                Begin 

                  Compute the heuristic value of y (h(Y)); 

                  If Y is better than X then 

                  X=Y 

                End; 

                If X is better than CS then 

                CS=X 

                  Else 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

9 
 

                  Stop= TRUE; 

            End; 

    End; 

    Return (FAIL);                                                             %open is empty 

End. 

 

Consider the following problem state space then: 

 

Find the path from  a  to  m  using Hill Climbing search algorithm. 

Open       Closed 

  [a]           [] 

[b5, c4, d8]          [a] 

[c4, b5, d8]                  [a] 

[f5, g3, b5, d8]         [a, c4] 

[g3, f5, b5, d8]             [a, c4] 

[n8, m7, f5, b5, d8]           [a, c4, g3] 

[m7, n8, f5, b5, d8]          [a, c4, g3] 

Stop the goal ( m ) is found 

 

   a 

  b   c   d 

  e    f   g   h 

   i    j   k   n   m   l   p 

5   4 

8 
6 

  7 5 

8 

3 8 

4  3   6 8   7 4  2 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

10 
 

Now let us discuss a new heuristic method called "Best First Search", 

which is  a  way  of  combining  the  advantages  of  both  depth‐first  and 

breadth‐first search into a single method.  

The actual operation of the algorithm is very simple. It proceeds in steps, 

expanding  one  node  at  each  step,  until  it  generates  a  node  that 

corresponds to a goal state. At each step, it picks the most promising of the  

nodes  that  have  so  far  been  generated  but  not  expanded.  It generates  the  

successors  of  the  chosen  node,  applies  the  heuristic function  to  them,  and  

adds  them  to  the  list  of  open  nodes,  after checking to see if any of them 

have been generated before. By doing this check, we can guarantee that each 

node only appears once in the graph, although many nodes may point to it as a 

successors. Then the next step begins. 

For each state  f(n) = h(n)  where h(n) is the heuristic function that 

computes the heuristic value for each state n. 

 

Function Best-First Search 

Begin 

  Open: = [Initial state];                                                      %initialize 

  Closed: = [ ]; 

  While open <> [ ] do                                                        %states remain 

    Begin 

      Remove leftmost state from open, call it X; 

      If X = goal then return the path from initial to X      

      Else  

      Begin 

        Generate children of X;  

        For each child of X do 

        Case 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

11 
 

          The child is not on open or closed; 

            Begin 

              Assign the child a heuristic value; 

              Add the child to open 

            End; 

          The child is already on open; 

            If the child was reached by a shorter path 

            Then give the state on open the shorter path  

          The child is already on closed; 

            If the child was reached by a shorter path then 

              Begin 

                Remove the state from closed; 

                Add the child to open 

              End;  

        End;                                                                             %case 

        Put X on closed; 

        Re-order states on open by heuristic merit (best leftmost) 

    End; 

Return FAIL                                                                     %open is empty 

End. 

Consider the following problem state space then: 

 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

12 
 

 

Find the path from  a  to  k  using Best first Search algorithm. 
 

Open       Closed 

  [a]           [] 

[z8, y9, x7]          [a] 

[x7, z8, y9]          [a] 

[p8, q7, z8, y9]         [a, x7] 

[q7, p8, z8, y9]         [a, x7] 

[k4, g2, p8, z8, y9]         [a, x7, q7] 

[g2, k4, p8, z8, y9]         [a, x7, q7] 

[k4, p8, z8, y9]         [a, x7, q7, g2] 

The goal ( k ) is found 

 

The first advance approach to the best first search is known as A‐search 

algorithm. A algorithm is simply define as a best first search plus specific 

function. This specific function represent the actual distance (levels) between 

the initial state and the current state and is denoted by g(n). A notice will be 

mentioned here that the same steps that are used in the best first search are used 

in an A algorithm but in addition to the g(n) as follow;  

f(n) = h(n)  +  g(n)  where h(n) is the heuristic function that computes the 

heuristic value for each state n, and g(n) is the generation function that 

computes the actual distance (levels) between initial state to current state n. 

 

   a 

  z   y   x 

 m   n   p   q 

  r   t   v   u   h   k   g 

8   9 

7 
6 

8 7 

7 

6 8 

4 3 6 9   7 4   2 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

13 
 

Example: 

 

Find the path from  a  to k using A-search algorithm 

Open       Closed 

  [a]           [] 

[b4, c3, d5]          [a] 

[b4+1, c3+1, d5+1]         [a] 

 [c4, b5, d6]                    [a] 

[f5, g4, b5, d6]         [a, c4] 

[f5+2, g4+2, b5, d6]         [a, c4] 

[f7, g6, b5, d6]         [a, c4] 

[b5, g6, d6,, f7]         [a, c4] 

[e6, f7, g6, d6, f7]         [a, c4, b5] 

[e6+2, f7+2, g6, d6, f7]        [a, c4, b5] 

[g6, d6, f7, e8, f9]         [a, c4, b5] 

[n1, k2, d6, f7, e8, f9]        [a, c4, b5, g6] 

[n1+3, k2+3, d6, f7, e8, f9]        [a, c4, b5, g6] 

[n4, k5, d6, f7, e8, f9]         [a, c4, b5, g6] 

[k5, d6, f7, e8, f9]         [a, c4, b5, g6, n4] 

Stop the goal ( k ) is found 

 a 

b c d 

e f g h 

m i j n k p l 

4 3 

3 
7 

6 5 

5 

4 3 

5 2 8 1 2 4 3 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

14 
 

 

The  second advance  approach  to  the  best  first  search  is  known  as  

A*‐search algorithm.  A*  algorithm  is  simply  define  as  a  best  first  

search  plus specific  function.  This  specific  function  represent  the  actual  

distance (levels) between the current state and the goal state and is denoted by 

g(n). 

f(n) = h(n)  +  g(n)  where h(n) is the heuristic function that computes the 

heuristic value for each state n, and g(n) is the generation function that 

computes the actual distance (levels) between current state n to goal state. 

 

Function A* Search  Algorithm 

Begin 

  Open: = [Initial state];                                                      %initialize 

  Closed: = [ ]; 

  While open <> [ ] do                                                        %states remain 

    Begin 

      Remove leftmost state from open, call it X; 

      If X = goal then return the path from initial to X      

      Else  

      Begin 

        Generate children of X;  

        For each child of X do 

         Begin 

          Add the distance between current state to goal state to the heuristic 

value for each child                                                                %make the g(n) 

        Case 

          The child is not on open or closed; 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

15 
 

            Begin 

              Assign the child a heuristic value; 

              Add the child to open 

            End; 

          The child is already on open; 

            If the child was reached by a shorter path 

            Then give the state on open the shorter path  

          The child is already on closed; 

            If the child was reached by a shorter path then 

              Begin 

                Remove the state from closed; 

                Add the child to open 

              End;  

        End;                                                                             %case 

        Put X on closed; 

        Re-order states on open by heuristic merit (best leftmost) 

    End; 

Return FAIL                                                                     %open is empty 

End. 

 

 

 

 

 

 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

16 
 

Example: 

 

 

Find the path from  a  to  k  using A*-search algorithm 

 

Open                                                                  Closed             

[a]            [ ] 

[b4, c3, d5]          [a] 

[b4+4, c3+2, d5+2]         [a] 

[c5, d7, b8]          [a] 

[f5, e4, d7, b8]         [a, c5] 

[f5+3, e4+1, d7, b8]         [a, c5] 

[e5, d7, f8, b8]         [a, c5] 

[h2, k2, d7, f8, b8]         [a, c5, e5] 

[h2+2, k2+0, d7, f8, b8]        [a, c5, e5] 

[k2, h4, d7, f8, b8]         [a, c5, e5] 

 

Stop, the goal ( k) is found 

 

 a 

b c d 

i f e g 

m p j h k q r 

4 3 

3 
4 

6 5 

5 

4 3 

5 2 8 2 2 4 3 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

17 
 

Heuristic Search Methods with Heuristic Function 

 

Hill climbing 

For each state  f(n) = h(n)  where h(n) is the heuristic function that computes the 

heuristic value for each state n. 

 

Best First Search 

For each state  f(n) = h(n)  where h(n) is the heuristic function that computes the 

heuristic value for each state n. 

 

A‐search algorithm 

f(n) = h(n)  +  g(n)  where h(n) is the heuristic function that computes the heuristic 

value for each state n, and g(n) is the generation function that computes the actual 

distance (levels) between initial state to current state n. 

 

A*‐search algorithm 

f(n) = h(n)  +  g(n)  where h(n) is the heuristic function that computes the heuristic 

value for each state n, and g(n) is the generation function that computes the actual 

distance (levels) between current state n to goal state. 

 

Problems with Hill Climbing Search Procedure 

1- Fost Hill ( Local Minima ) 

This problem causes stopping search procedure.     

The algorithm not found the goal state although it is existed in the search space, this is 

because of the algorithm search performance and behavior which depends on a 

determined strategy without backing path from dead end state which causes algorithm 

termination, this problem can be solved by using backtracking process in the 

algorithm strategy. 

2- Plateau Problem 

This problem causes stopping search procedure. 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

18 
 

When the search procedure reach to a state has an equivalent heuristic values 

(choices), the algorithm stops searching for the goal and not get the solution path 

although it is existed in the search space, in other words, there is a state has two or 

more children with the same heuristic value (Plateau partial search space), this 

problem can be solved by some kind of search procedures such as continuing search 

with the most left side. 

3- Ridge Problem 

This problem does not cause stopping search procedure. 

The search procedure gets the solution path with some cost measurements which is 

not considered the best, since the best path is existed in dominate partial search 

space; this problem can be solved by applying more than one rule in each search 

procedure stage. 

 

A Comparison between Heuristic Search and Blind Search 

 

 Blind Search Heuristic Search 

1 
In term of complexity: it is less 

complex. 

In term of complexity: it is more 

complex. 

2 

In term of memory capacity: 

usually need more memory 

capacity. 

In term of memory capacity: usually 

need less memory capacity. 

3 

In term of run time consuming: 

usually consumes more run 

time. 

In term of run time consuming: 

usually consumes less run time. 

4 
Guarantee for solution. Guarantee for solution, except Hill 

Climbing (not always). 

5 

Usually does not find the 

optimal solution path. 

Usually finds the optimal solution 

path or nearly the optimal solution 

path. 

6 
It does not have a guider in 

search behavior. 

It has a guider in search behavior 

(Heuristic Function). 

7 
It is not efficient in game 

playing. 

It is efficient in game playing such as 

Minmax or Alpha-Beta procedures. 

 

 

 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

19 
 

Using Heuristic in Games 

The sliding-tile puzzle consists of three black tiles, three white tiles, and 

an empty space in the configuration shown in Figure (1). The puzzle has 

two legal moves with associated costs: 

 A tile may move into an adjacent empty location. This has a cost of 1. 

 A tile can hop over one or two other tiles into the empty' position, 

this has a cost equal to the number of tiles jumped over. 

The goal is to have all the white tiles to the left of all the black tiles. The 

position of the blank is not important. 

a. Analyze the state space with respect to complexity and looping. 

b. Propose a heuristic for solving this problem and analyze it. 

 

 

 

Figure (5), the sliding block puzzle 

 

The 8-puzzle Problem 

We now evaluate the performance of several different heuristics for 

solving the 8-puzzle. Figure (6), shows a start and goal state for the 8-

puzzle, along with the first three states generated in the search. 

The simplest heuristic counts the tiles out of place in each state when it is 

compared with the goal. This is intuitively appealing, because it would 

seem that, all else being equal; the state that had fewest tiles out of place 

is probably closer to the desired goal and would be the best to examine 

next. 

However, this heuristic does not use all of the information available in a 

board configuration, because it does not take into account the distance the 

tiles must be moved. 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

20 
 

A "better" heuristic would sum all the distances by which the tiles are out 

of place, one for each square a tile must be moved to reach its position in 

the goal state. Both of these heuristics can be criticized for failing to 

acknowledge the difficulty of tile reversals. That is, if two tiles are next to 

each other and the goal requires their being in apposite locations, it takes 

(many) more than two moves to put them back in place, as the tiles must 

"go around" each other (Figure 7). 

 

Figure(6), The start state, first moves, and goal state for an example 8-puzzle. 

 

 

Figure (7) An 8-puzzle state with a goal and two reversals: 1 and 2, 5 and 6. 

 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

21 
 

 

Figure (8), the 8-puzzle problem solving with heuristic values 

 

For the 8-puzzle Grid 

There is one center location. 

There are four corners location. 

There are four sides location. 

 

Possible Moves  

 When the space position is in the center of the grid, possible moves = 4. 

 When the space position is in the corner of the grid, possible moves = 2 

 When the space position is in the side of the grid, possible moves = 3. 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

22 
 

 

 

Figure (9), the 8-puzzle problem solved by A-search algorithm 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

23 
 

Another Examples of 8-Puzzle Problem 

 

 

 

 

Consider the following 8-puzzle problem then draw the problem state space to find the 

goal using A-search algorithm (or Best first or Hill climbing) then list the solution path. 

 

  R   I 

 A  O  O 

 P  L  G 

 

  A    I 

 P  R  O 

 L  O  G 

 

I.S           G.S 

 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

24 
 

Consider the following 8-tiles problem then draw the problem state space to 

give the following requirements: 

 

 

 

 

 

Find the goal using Best first search (or A-algorithm or Hill climbing) algorithm 

--------------------------------------------------------------------------------------------------- 

 

The Minmax and Alpha-Beta search Algorithms 

The idea for alpha‐beta search is simple: rather than searching the entire 

space to the ply depth, alpha‐beta search proceeds in a depth‐first fashion.  

Two values, called alpha and beta, are created during the search. The 

alpha value associated with MAX nodes, can never decrease, and the beta 

value associated with MIN nodes, can never increase. Two rules for 

terminating search, based on alpha and beta values, are: 

1. Search can be stopped below any MIN node having a beta value less 

than or equal to the alpha value of any of its MAX ancestors. 

2. Search can be stopped below any MAX node having an alpha value 

greater than or equal to the beta value of any of its MIN node ancestors. 

Alpha‐beta pruning thus expresses a relation between nodes at ply n and 

nodes at ply n + 2 under which en�re sub-trees rooted at level n + 1 can 

be eliminated from consideration. Note that the resulting backed‐up value 

is identical to the minimax result and the search saving over minimax is 

considerable. With fortuitous ordering states in the search space, 

alpha‐beta can effectively double the depth of the search considered with 

a fixed space/time computer commitment. If there is a particular 

A B    

B C A 

C C B 

 

  A   A 

B B  B 

C  C  C 

 

I.S           G.S 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

25 
 

unfortunate ordering, alpha‐beta searches no more of the space than 

normal minimax; however, the search is done in only one pass. 

c(n) = M(n) – O(n) Where M(n) = number of my possible winning lines. 

Now, we will discuss a new type of algorithm, which does not require 

expansion of the entire space exhaustively. This algorithm is referred to 

as alpha‐beta cutoff algorithm. In this algorithm, two extra ply of 

movements are considered to select the current move from alternatives. 

Alpha and beta denote two cutoff levels associated with MAX and MIN 

nodes. As it is mentioned before the alpha value of MAX node cannot 

decrease, whereas the beta value of the MIN nodes cannot increase. But 

how can we compute the alpha and beta values? They are the backed up 

values up to the root like MINIMAX. There are a few interesting points 

that may be explored at this stage. Prior to the process of computing 

MAX / MIN of the backed up values of the children, the alpha‐beta cutoff 

algorithm estimates e(n) at' all fringe nodes n. Now, the values are 

estimated following the MINIMAX algorithm. Now, to prune the 

unnecessary paths below a node, check whether: 

• The beta value of any MIN node below a MAX node is less than or 

equal to its alpha value. If yes. prune that path below the MIN node. 

• The alpha value of any MAX node below a MIN node exceeds the beta 

value of the MIN node. if yes prune the nodes below the MAX node. 

Based on the above discussion, we now present the main steps in the α-β 

search algorithm. 

1. Create a new node, if it is the beginning move, c1seexpand the existing 

tree by depth first manner. To make a decision about the selection of a 

move at depth d, the tree should be expanded at least up to a depth (d+ 2). 

2. Compute e(n) for all leave (fringe) nodes n in the tree. 

3. Computer αmin (for max nodes) and βmax values (for min nodes) at 

the ancestors of the fringe nodes by the following guidelines. Estimate the 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

26 
 

minimum of the values (e or α) possessed by the children of a 

MINIMIZER node N and assign it its βmax value. Similarly, estimate the 

maximum of the values (e or β) possessed by the children of a 

MAXIMIZER node N and assign it its αmin value. 

4. If the MAXIMIZER nodes already possess αmin values, then their 

current αmin value = Max (αmin value, αmin,); on tile other hand, if the 

MANIMIZER nodes already possess βmax values, then their current 

βmax value = MIN (βmax value, βmax). 

5. If the estimated βmax value of a MINIMIZER node N is less than the 

αmin value of its parent MAXIMIZER node N' then there is no need to 

search below the node MINIMIZER node N. Similarly, if the αmin value 

of a MAXIMIZER node N is more than the βmax value of its parent node 

N then there is no need to search below node N. 

 

Figure (10), state space for the minmax game 

 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

27 
 

 

Figure (11), the Tic Tac Toe state space for the Alpha-Beta procedure 

 

 

In heuristic Search, two aims must be achieved to overcome the 

limitations in other search methods which are: 

1- Problem Reduction 

2- Guarantee of Solution 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

28 
 

 

 

Figure (12), first three levels of the tic-rae-toe state space reduced by symmetry 

 

 

 

 

 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

29 
 

 

 

Figure (13), heuristically reduced state space for tic-tao-toe. 

 

 

 

 

 

 

 

 

 

 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

30 
 

Systems Based on Simple Search and Pattern Recognition (1) 

 

Text Recognition System (An AI Program for Psychology Counseling) 

 

Pattern in Sentence 

From human            Machine (Computer) Responds 

 

…..I fell…..    How long have you felt that way? 

….. father …..   Tell me more about your family. 

…..friendly…..   Better friends help you when you need. 

…..hell…..    Please do not use words like that. 

…..yes or no….   Please be more explicit. 

…..high performance…..  This gives you additional respecting. 

…..sadness or anger…..  How are you feeling right now?  

…..complex or fixation….. Too many mind games 

……..father……….  Earlier you mentioned your father. 

……………………..  ……………………………………. 

 

clauses 

helpme :-  

 write("Speak up, what is your problem?"), nl, 

 repeat, 

 getclause(L), 

 makeans(L), 

 fail. 

 

getclause(L) :- 

    readln(S),  

    str_to_list(S,L). 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

31 
 

 

makeans(L) :- 

recognize(L,1), 

write ("How long have you felt that way?"), nl, !. 

makeans(L) :- 

recognize(L,2),  

write ("Tell me more about your family"), nl, !. 

makeans(L) :- 

recognize(L,3), 

write ("better friends help you when you need."), nl, !. 

makeans(L) :- 

recognize(L,4), 

write ("Please do not use words like that."), nl, !. 

makeans(L) :- 

recognize(L,5), 

write ("Please be more explicit."), nl, !. 

makeans(L) :- 

recognize(L,6), 

write ("This gives you additional respecting."), nl, !. 

makeans(L) :- 

recognize(L, 7), 

write ("How are you felling right now?"), nl, !. 

makeans(L) :- 

recognize(L,8), 

write ("Too many mind games."), nl, !. 

makeans(L) :- 

recognize(L,9),  

write ("Earlier you mentioned your father."), nl, !. 

 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

32 
 

 

makeans(L) :- 

recognize(L,10), write ("Tell me more."), nl, !. 

 

recognize(L, 1) :- contains([i, feel], L). 

recognize(L, 2) :- contains([father], L) assert(father). 

recognize(L, 3) :- contains([friendly], L) 

recognize(L, 4) :- contains([hell], L). 

recognize(L, 5) :- L= [yes]; L=[no]. 

recognize(L, 6) :- contains([high, performance], L). 

recognize(L, 7) :- contains([sadness], L); contains([anger], L). 

recognize(L, 8) :- contains([complex], L) ; contains([fixation], L). 

recognize(L, 9) :- father. 

recognize(_, 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

33 
 

Systems Based on Heuristic Search and Pattern Recognition (2) 

 

The Chemical Synthesis System 

 

domains 

rxnlist = reactions*. 

reactions = rxn(symbol, ls, integer, integer). 

ls = symbol*. 

chemicalList= chemicalForm*. 

chemicalForm= chemical(symbol, rxnList, integer, integer). 

Li= integer*. 

 

predicates 

rxn(symbol, ls, integer, integer). 

rawmaterial(symbol, integer, integer). 

chemical(symbol, rxnlist, integer, integer). 

all_chemical(symbol, chemicalList). 

best_chemical(symbol, chemicalForm). 

one_chemical(symbol, chemicalForm). 

append(rxnlist, rxnlist, rxnlist). 

min(chemicalList, chemicalForm). 

run(symbol). 

 

clauses 

rxn(a, [b1, c1], 12, 60). 

rxn(b1, [d1, e1], 5, 45). 

rxn(c1, [f1, g1], 3, 15). 

 

 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

34 
 

rxn(a, [b2, c2], 10, 50). 

rxn(b2, [d2, e2], 2, 20). 

rxn(c2, [f2, g2], 6, 30). 

 

rawmaterial(d1, 2, 0). 

rawmaterial(e1, 0, 0). 

rawmaterial(f1, 2, 0). 

rawmaterial(g1, 0, 0). 

 

rawmaterial(d2, 0, 0). 

rawmaterial(e2, 1, 0). 

rawmaterial(f2, 1, 0). 

rawmaterial(g2, 0, 0). 

 

chemical(Y, [], Cost, Time):- rawmaterial(Y, Cost, Time). 

chemical(Y, L, Ct, T):-  

  rxn(Y, [X1, X2], C, T1), 

chemical(X1, L1, C1, T2),  

chemical(X2, L2, C2, T3), 

  append(L1, L2, Q),  

Ct = C+C1+C2, 

  T = T+T2+T3,  

append([rxn(Y, [X1, X2], C, T1)], Q, L). 

 

best_chemical(Y, M):- all_chemical(Y, X), min(X, M). 

 

all_ chemical(Y, X):- findall(S, one_chemical(Y, S), X). 

 

one_chemical(Y, chemical(Y, L, Ct, T)):- chemical(Y, L, Ct, T). 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

35 
 

 

append([], L, L):-!. 

append([H|T], L, [H|T1]):- append(T, L, T1). 

 

min([chemical(Y, L, Ct, T)], chemical(Y, L, Ct, T)). 

min([chemical(Y, L, Ct, Time)|T], chemical(Y, L, Ct, Time)):- 

min(T, chemical(Y1, L1, C1, Time1)), Ct <= C1. 

min([chemical(Y, L, Ct, Time)|T], chemical(Y, L2, Ct2, Time2)):-  

   min(T, chemical(Y, L2, Ct2, Time2)), Ct2 <= Ct. 

 

run(X):- write(“ chemical synthesis is:”), nl, chemical(X, L, Cost, Time), 

  write(L, “\n with total cost =”, Cost, “ Time =”, Time), nl, fail. 

run(X):- write(“\n Best chemical synthesis:”), nl, best_chemical(X, Y), 

write(Y), nl. 

 

Goal: run(a). 

chemical synthesis: 

[rxn(“a”, [“b1”, “c1”], 12, 60), rxn(“b1”, [“d1”, “e1”], 5, 45), rxn(“c1”, 

[“f1”, “g1”], 3, 15)] 

with total cost = 24 time = 120 

[rxn(“a”, [“b2”, “c2”], 10, 50), rxn(“b2”, [“d2”, “e2”], 2, 20), rxn(“c2”, 

[“f2”, “g2”], 6, 30)] 

with total cost = 20 time = 100 

best chemical synthesis : 

chemical(“a”, [rxn(“a”, [“b2”, “c2”], 10, 50) rxn(“b2”, [“d2”, “e2”], 2, 

20), rxn(“c2”, [“f2”, “g2”], 6, 30)], 20, 100 

 

 

 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

36 
 

Search with Heuristic Embedded in Rules 

 

Student Advisor System 

 

/* Set of Facts */ 

given_now(logic design). 

given_now(Mathematics). 

given_now(prolog language). 

given_now(computation theory). 

given_now(data structure). 

given_now(artificial intelligence). 

given_now(expert systems). 

given_now(computation theory). 

given_now(computer architecture). 

. 

. 

. 

 

required(prolog). 

required(logic design). 

required(artificial intelligence). 

required(expert systems). 

required(machine learning). 

required(data structure). 

required(c++). 

. 

. 

. 

 

elective(computer graphics). 

elective(object oriented programming). 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

37 
 

elective(data security). 

elective(web programming). 

elective(operations researches). 

. 

. 

. 

 

waived(digital signal processing). 

waived(image processing). 

waived(information systems principles). 

waived(software engineering). 

waived(data hiding). 

. 

. 

. 

 

impreq(object oriented programming, c++). 

impreq(prolog language, logic design). 

impreq(artificial intelligence, prolog language). 

impreq(expert systems, artificial intelligence). 

impreq(computer architecture, logic design). 

impreq(data structure, c++). 

. 

. 

. 

 

passed(logic design). 

passed(prolog language). 

passed(artificial intelligence). 

passed(mathematics). 

passed(data structure). 

passed(c++). 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

38 
 

passed(computation theory). 

passed(computer organization). 

. 

. 

. 

 

 

pos_req_course(X) :- 

   required(X), 

   given_now(X), 

   not(done_with(X)), 

   have_preq_for(X). 

 

 

pos_elec_course(X) :- 

   elective(X), 

   given_now(X), 

   not(done_with(X)), 

   have_preq_for(X). 

 

 

done_with(X) :- waived(X). 

done_with(X) :- passed(X). 

 

all_done_with(L) :- findall(X, done_with(X), L). 

 

have_preq_for(X) :- 

   all_preq_for(X, Z), 

   all_done_with(Q), 

   subset(Z, Q). 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

39 
 

 

all_preq_for(X, Z):- 

   findall(Y, preq(X, Y), Z). 

 

preq(X,Y):- impreq(X, Y). 

preq(X, Y):- impreq(X, W), preq(W, Y). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

40 
 

 

Knowledge Engineering, Acquisition and Discovery 

 

1. Domain Expert and Knowledge Engineering 

The primary people involved in building an expert system are the 

knowledge engineer, the domain expert, and the end user. The knowledge 

engineer is the AI language and representation expert. His or her main 

task is to select the software and hardware tools for the project, help the 

domain expert articulate the necessary knowledge, and implement that 

knowledge in a correct and efficient knowledge base. Often, the 

knowledge engineer is initially ignorant of the application domain. The 

domain expert provides the knowledge of the problem area. The domain 

expert is 

generally someone who has worked in the domain area and 

understands its problem solving techniques, such as shortcuts, handling 

imprecise data, evaluating partial solutions, and all the other skills that 

mark a person as an expert problem solver. The domain expert is 

primarily responsible for spelling out these skills to the knowledge 

engineer. Once the knowledge engineer has obtained a general overview 

of the problem domain and gone through several problem-solving 

sessions with the expert, he or she is ready to begin actual design of the 

system: selecting a way to represent the knowledge, such as rules or 

frames, determining the search strategy, forward, backward, depth-first, 

best-first etc., and designing the user interface. After making these design 

commitments, the knowledge engineer builds a prototype. 

This prototype should be able to solve problems in a small area of 

the domain and provide a test bed for preliminary design assumptions. 

Once the prototype has been implemented, the knowledge engineer and 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

41 
 

domain expert test and refine its knowledge by giving it problems to 

solve and correcting its shortcomings. Should the assumptions made in 

designing the prototype prove correct; the prototype can be incrementally 

extended until it becomes a final system? 

 

2. Selecting a Problem and the Knowledge Engineering Process 

Expert systems involve a considerable investment of cost and 

human effort. Attempts to solve a problem that is too complex, too poorly 

understood, or otherwise unsuited to the available technology can lead to 

costly and embarrassing failures. Researchers have developed guidelines 

to determine whether a problem is appropriate for expert system solution: 

1. The need for the solution justifies the cost and effort of building an 

expert system. Many expert systems have been built in domains such as 

mineral exploration, business, defense, and medicine where a large 

potential exists for savings in terms of cost, time, and human life. 

2. Human expertise is not available in all situations where it is needed. 

In geology, for example, there is a need for expertise at remote mining 

and drilling sites. Often, geologists and other engineers find themselves 

traveling large distances to visit sites, with resulting expense and wasted 

time. By placing expert systems at remote sites, many problems may be 

solved without needing a visit. 

3. The problem may be solved using symbolic reasoning. Problem 

solutions should not require physical dexterity or perceptual skill. Robots 

and vision systems currently lack the sophistication and flexibility of 

humans. 

4. The problem domain is well structured and does not require common 

sense reasoning. Highly technical fields have the advantage of being well 

studied and formalized: terms are well defined and domains have clear 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

42 
 

and specific conceptual models. In contrast, common sense reasoning is 

difficult to automate. 

5. The problem may not be solved using traditional computing methods. 

Expert system technology should not be used where unnecessary. If a 

problem can be solved satisfactorily using more traditional techniques, 

then it is not a candidate. 

6. Cooperative and articulate experts exist. The knowledge used by 

expert systems comes from the experience and judgment of humans 

working in the domain. It is important that these experts be both willing 

and able to share knowledge. 

7. The problem is of proper size and scope. For example, a program that 

attempted to capture all of the expertise of a medical doctor would not be 

feasible; a program that advised MDs on the use of a particular piece of 

diagnostic equipment or a particular set of diagnoses would be more 

appropriate. 

 

3. Knowledge Acquisition in Computing Approach 

Knowledge acquisition is a pertinent issue in the process of 

development of expert systems. A good expert system should contain a 

well-organized, complete and consistent knowledge base. An incomplete 

or inconsistent knowledge base may cause instability in reasoning, while 

a less organized system requires quite a significant time for search and 

matching of data. The malfunctioning of the above forms originates in an 

expert system generally due to the imperfections in 

i) the input resources of knowledge 

ii) their encoding in programs. 

The imperfection in the input resources of knowledge can be 

overcome by consulting proved knowledge-rich sources, such as 

textbooks and experts of respective domains. The encoding of knowledge 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

43 
 

could be erroneous due to either incorrect understanding of the pieces of 

knowledge or their semantic misinterpretation in programs. A knowledge 

engineer, generally, is responsible for acquiring knowledge and its 

encoding. 

Understanding knowledge from experts or textbooks, therefore, is 

part of his duties. A clear understanding of the knowledge base, however, 

requires identification of specific knowledge from a long narration of the 

experts. The knowledge engineer, who generally puts objective questions 

to the expert, therefore, should allow the expert to answer them in 

sufficient detail, explaining the points. The semantic knowledge earned 

from the experts could be noted point-wise for subsequent encoding in 

programs. Occasionally, the experts too are not free from bias. One way 

to make the knowledge base bias-free is to consult a number of experts of 

the same problem domain and take the view of the majority of the 

members as the acquired knowledge. 

 

4. Knowledge Discovery 

To formalize the knowledge discovery processes (KDPs) within a 

common framework, we introduce the concept of a process model. The 

model helps organizations to better understand the KDP and provides a 

roadmap to follow while planning and executing the project. This in turn 

results in cost and time savings, better understanding, and acceptance of 

the results of such projects. We need to understand that such processes 

are non trivial and involve multiple steps, reviews of partial results, 

possibly several iterations, and interactions with the data owners. There 

are several reasons to structure a KDP as a standardized process model: 

1. The end product must be useful for the user/owner of the data. A 

blind, unstructured application of DM techniques to input data, called 

data dredging, frequently produces meaningless results/knowledge, i.e., 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

44 
 

knowledge that, while interesting, does not contribute to solving the 

user’s problem. This result ultimately leads to the failure of the project. 

Only through the application of well-defined KDP models will the end 

product be valid, novel, useful, and understandable. 

2. A well-defined KDP model should have a logical, cohesive, well-

thought-out structure and approach that can be presented to decision-

makers who may have difficulty understanding the need, value, and 

mechanics behind a KDP. Humans often fail to grasp the potential 

knowledge available in large amounts of untapped and possibly valuable 

data. They often do not want to devote significant time and resources to 

the pursuit of formal methods of knowledge extraction from the data, but 

rather prefer to rely heavily on the skills and experience of others 

(domain experts) as their source of information. However, because they 

are typically ultimately responsible for the decision(s) based on that 

information, they frequently want to understand the technology applied to 

that solution. A process model that is well structured and logical will do 

much to alleviate any misgivings they may have. 

3. Knowledge discovery projects require a significant project 

management effort that needs to be grounded in a solid framework. 

Most knowledge discovery projects involve teamwork and thus require 

careful planning and scheduling. For most project management 

specialists, KDP and DM are not familiar terms. Therefore, these 

specialists need a definition of what such projects involve and how to 

carry them out in order to develop a sound project schedule. 

4. Knowledge discovery should follow the example of other engineering 

disciplines that already have established models. A good example is the 

software engineering field, which is new and dynamic discipline that 

exhibits many characteristics that are pertinent to knowledge discovery. 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

45 
 

Software engineering has adopted several development models, including 

waterfall and spiral models that become well-known standards. 

5. There is a widely recognized need for standardization of the KDP. 

The challenge for modern data miners is to come up with widely accepted 

standards that will stimulate major industry growth. Standardization of 

the KDP model would enable the development of standardized methods 

and procedures, thereby enabling end users to deploy their projects more 

easily. It would lead directly to project performance that is faster, 

cheaper, more reliable, and more manageable. The standards would 

promote the development and delivery of solutions that use business 

terminology rather than the traditional language of algorithms, matrices, 

criterions, complexities, and the like, resulting in greater exposure and 

acceptability for the knowledge discovery field. 

Below we define the KDP and its relevant terminology. We also provide 

a description of several key KDP models, discuss their applications, and 

make comparisons, the reader will know how to structure, plan, and 

execute a (successful) KD project. 

 

5. What is the Knowledge Discovery Process? 

Because there is some confusion about the terms data mining, knowledge 

discovery, and knowledge discovery in databases, we first define them. 

Note, however, that many researchers and practitioners use DM as a 

synonym for knowledge discovery; DM is also just one step of the KDP. 

Let us just add here that DM is also known under many other names, 

including knowledge extraction, information discovery, information 

harvesting, data archeology, and data pattern processing. 

The knowledge discovery process (KDP), also called knowledge 

discovery in databases, seeks new knowledge in some application 

domain. It is defined as the nontrivial process of identifying valid, novel, 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

46 
 

potentially useful, and ultimately understandable patterns in data. The 

process generalizes to non database sources of data, although it 

emphasizes databases as a primary source of data. It consists of many 

steps (one of them is DM), each attempting to complete a particular 

discovery task and each accomplished by the application of a discovery 

method. Knowledge discovery concerns the entire knowledge extraction 

process, including how data are stored and accessed, how to use efficient 

and scalable algorithms to analyze massive datasets, how to interpret and 

visualize the results, and how to model and support the interaction 

between human and machine. It also concerns support for learning and 

analyzing the application domain. 

This book defines the term knowledge extraction in a narrow sense. 

While the authors acknowledge that extracting knowledge from data can 

be accomplished through a variety of methods — some not even 

requiring the use of a computer — this book uses the term to refer to 

knowledge obtained from a database or from textual data via the 

knowledge discovery process. Uses of the term outside this context will 

be identified as such. 

 

 

Figure (1), sequential structure of the KDP model. 

 

6. Overview of the Knowledge Discovery Process 

The KDP model consists of a set of processing steps to be followed by 

practitioners when executing a knowledge discovery project. The model 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

47 
 

describes procedures that are performed in each of its steps. It is primarily 

used to plan, work through, and reduce the cost of any given project. 

Since the 1990s, several different KDPs have been developed. The initial 

efforts were led by academic research but were quickly followed by 

industry. The first basic structure of the model was proposed by Fayyad 

et al. and later improved/modified by others. The process consists of 

multiple steps, that are executed in a sequence. Each subsequent step is 

initiated upon successful completion of the previous step, and requires the 

result generated by the previous step as its input. Another common 

feature of the proposed models is the range of activities covered, which 

stretches from the task of understanding the project domain and data, 

through data preparation and analysis, to evaluation, understanding, and 

application of the generated results. All the proposed models also 

emphasize the iterative nature of the model, in terms of many feedback 

loops that are triggered by a revision process. A schematic diagram is 

shown in Figure (1). 

The main differences between the models described here lie in the 

number and scope of their specific steps. A common feature of all models 

is the definition of inputs and outputs. Typical inputs include data in 

various formats, such as numerical and nominal data stored in databases 

or flat files; images; video; semi-structured data, such as XML or HTML; 

etc. The output is the generated new knowledge — usually described in 

terms of rules, patterns, classification models, associations, trends, 

statistical analysis, etc. 

 

7. Knowledge Discovery Process Models 

Although the models usually emphasize independence from specific 

applications and tools, they can be broadly divided into those that take 

into account industrial issues and those that do not. 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

48 
 

However, the academic models, which usually are not concerned with 

industrial issues, can be made applicable relatively easily in the industrial 

setting and vice versa. We restrict our discussion to those models that 

have been popularized in the literature and have been used in real 

knowledge discovery projects. 

The Fayyad et al. KDP model consists of nine steps, which are outlined 

as follows: 

1. Developing and understanding the application domain. This step 

includes learning the relevant prior knowledge and the goals of the end 

user of the discovered knowledge. 

2. Creating a target data set. Here the data miner selects a subset of 

variables (attributes) and data points (examples) that will be used to 

perform discovery tasks. This step usually includes querying the existing 

data to select the desired subset. 

3. Data cleaning and preprocessing. This step consists of removing 

outliers, dealing with noise and missing values in the data, and 

accounting for time sequence information and known changes. 

4. Data reduction and projection. This step consists of finding useful 

attributes by applying dimension reduction and transformation methods, 

and finding invariant representation of the data. 

5. Choosing the data mining task. Here the data miner matches the goals 

defined in Step 1 with a particular DM method, such as classification, 

regression, clustering, etc. 

6. Choosing the data mining algorithm. The data miner selects methods 

to search for patterns in the data and decides which models and 

parameters of the methods used may be appropriate. 

7. Data mining. This step generates patterns in a particular 

representational form, such as classification rules, decision trees, 

regression models, trends, etc. 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

49 
 

8. Interpreting mined patterns. Here the analyst performs visualization 

of the extracted patterns and models, and visualization of the data based 

on the extracted models. 

9. Consolidating discovered knowledge. The final step consists of 

incorporating the discovered knowledge into the performance system, and 

documenting and reporting it to the interested parties. This step may also 

include checking and resolving potential conflicts with previously 

believed knowledge. 

 

8. Machine Learning Approach to Knowledge Acquisition 

Manual acquisition of knowledge is difficult for two main reasons. 

First the knowledge engineer has to remain in constant touch with the 

experts for a significant amount of time, which sometimes may be of the 

order of years. Secondly, the experts themselves in many cases cannot 

formally present the knowledge. The above difficulties in acquisition of 

knowledge can, however, be overcome by autonomously encoding 

knowledge through machine learning. The schematic view for elicitation 

of knowledge by the machine learning 

approach is presented in figure (2). 

The database in figure (2) is extracted from experts or other 

reasoning systems. The machine learning unit grabs these data and 

attempts to acquire new knowledge out of it. The acquired knowledge is 

then transferred to the knowledge base for future usage. In some systems, 

the knowledge base need not be extended, but may be refined with 

respect to its internal parameters. For instance, certainty factor of the 

rules in a knowledge base may be refined based on the estimated certainty 

factors of proven case histories. 

 

 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

50 
 

 

 

Figure (2), principles of automated knowledge acquisition. 

 

AI Branch 3rd  Class    1st Course Study Questions 

Q1) What heuristics would you use in solving these problems? 

1. You are looking for a parking space in a moderately crowded 

parking lot. 

2. You think a particular radio show you want to hear is on now, but 

you do not know where it is on the dial, and you have no other 

guidance such as a newspaper listing. 

3. You are in a large office building. You are lost, and you want to 

find the personal office, but you are embarrassed to ask where it is. 

Q2) Write a program as searching with heuristics embedded in rules 

approach to construct optimal restaurant menus that follows the pattern of 

Student Advisor System. 

Q3) The chemical synthesis program currently works with reactions like 

this: 

X + y -- z  ……………..with cost (c) 

 



 
HEURISTIC SEARCH METHODS                                                   PROF. DR. HASANEN S. ABDULLAH 

51 
 

 

1. How would things have to be modified so that reactions like this 

one could be included in the reaction data base that the program 

knows about?  r -- s ..…..with cost (c) 

This is anticipating the type of reaction where you treat a chemical 

in a certain way (heating perhaps) and it turns into something else. 

2. How would things have to be modified so that reactions like this 

one could be included?   q + r + s -- w …….with cost (c) 

3. What modification would be necessary for the program to carry 

along two costs with each synthesis: One might be the reaction cost 

and the other the length of time the reaction took to complete. 

4. What modification would be necessary for the program to include a 

function that carries the best synthesis among many syntheses? 

Q4) Compare between knowledge engineering and knowledge 

acquisition processes in domain expert environment. 

Q5) What are the relations among the Knowledge Discovery, Knowledge 

Acquisition and Knowledge Engineering? 

 

References: 

1. George F. Luger, “Artificial Intelligence Structures and Strategies 

for Complex Problem Solving”, Pearson Education Asia 

(Singapore), Sixth edition. 

2. Stuart J. Russell and Peter Norvig, "Artificial Intelligence A 

Modern Approach", Second Edition, Prentice Hall. 

3. Amit Konar, "Artificial Intelligence and Soft Computing", 

Behavior and Cognitive Modeling of the Human Brian, CRC Press. 

4. Daniel H. .Marcellus,” Expert Systems Programming in Turbo 

Prolog”, prentice Hall (New Jersey). 


