Saved from: www.uotechnology.edu.iq/dep-cs

- :"

@111@11111@00@1@@
1@1@@1@1@1@1 as\i

1% Class

Prolog Language

Jolg) d)

20Y s el S.p.] 2 Bolb) B3kl

http://www.uotechnology.edu.iq/dep-cs

Prolog Language
Lecture one:
Contents:
1. Introduction to prolog language
2. Someo f prolog language characteristic
3. Prolog language uses
4. Prolog language component
4.1 Fact
4.2 Rule
4.3 Questions
5. Variables

1. Introduction to prolog language
Prolog: is a computer programming language that is used for solving
problems involves objects and relationships between objects.
Example:
“John owns the book”
Owns (john,book) relationship(objectl,object2)
The relationship has a specific order, johns own the book, but the book dose

not owns john, and this relationship and its representation above called fact.

+we are using rule to describe relationship between objects.

Example: the rule” two people are sisters if they are both female and have
the same parents”

1. Tell us something about what it means to be sisters.

2. Tell us how to find if two people are sisters, simply: check to see if
they are both female have the same parents.

Component of computer programming in prolog

Computer programming in prolog consist of:

1. Declaring some facts about object and their relationships.

2. Defining some rules about objects and their relationships.

3. Asking questions about objects and their relationships.

if we write our rule about sisters, we could then ask the questions
whether Mary and Jane are sisters.

Prolog would search through what we told it about Mary and Jane, and
come back with the answer Yes or No, depending on what we told it
earlier.

So, we can consider prolog as a store house of facts and rules, and it uses
the facts and rules to answer questions.

¢ prolog is a conversational language. Which means you and the
computer carry out a kind of conversation, typing a letter from keyboard
and displaying it at the screen, prolog work like this manner, prolog will
wait for you to type in facts and rules that certain to the problem you
want to solve? Then if you ask the right kind of questions prolog will
work out the answers and show them.

2. Some of prolog language characteristics:

1. We can solve a particular problem using prolog in less no of line of code.
2. It’s an important tool to develop Al application and ES.

3. Prolog program consist of fact and rule to solve the problem and the
output is all possible answer to the problem.

4. Prolog language is a descriptive language use the inference depend on fact
and rule we submit to get all possible answer while in other language the

programmer must tell the computer on how to reach the solution by gives the
instruction step by step.

3. Prolog language uses:
1. Construct NLI (Natural Language Interface).
2. Translate language.
3. Constructor symbolic manipulation language packages.
4. Implement powerfully database application.
5. Construct expert system programs.

4. Prolog language component

4.1 Facts

Is the mechanism for representing knowledge in the program.
Syntax of fact:

1. The name of all relationship and objects must begin with a lower-case
letter, for example likes (john, mary).

2. The relationship is written first, and the objects are written separated by
commas, and enclosed by a pair of round brackets.

Like (john, mary)

3. The full stop character ‘.” Must come at the end of fact.

Example:

Gold is valuable valuable (gold).

Jane is female female (jane).

John owns gold owns (johns, gold).

Johns is the father of Mary father (john, marry).

The names of objects that are enclosed within the round brackets are

called arguments. And the name of relationship called predicates
Relationship has arbitrary number of argument. If we want to define
predicate called play, were we mention two players and a game they play
with each other, it can be:

Play (john, Mary, football).

In prolog the collection of facts is called database.

4.2 Rules

Rules are used when you want to say that a fact depends on a group of
other facts, and we use the following syntax:

1. One fact represents the head (conclusion).

2. The word if used after the head and represented as “:-.

3. One or more fact represents the requirement (condition).

The syntax of if statement

If (condition) then (conclusion)

[Conclusion: - condition] rule

Example:

| use the umbrella if there is rain
Conclusion condition

Represent both as fact like:

Wheatear (rain).

Use (umbrella)

Use (lam, umberella):-whether (rain).

4.3 Questions
Question used to ask about facts and rules.

Question look like the fact and written under the goal program section
while fact and rule written under clauses section.

Example: for the following fact owns (mary, book).

We can ask: Does mary own the book in the following manner:

Goal:

Owns (mary,book)

When Q is asked in prolog, it will search through the database you typed
before, it look for facts that match the fact in the question.

Two fact matches if their predicates are the same and their corresponding
argument are the same, if prolog finds a fact that matches the question,
prolog will respond with Yes, otherwise the answer is No.

5. Variables

If we want to get more interest information about fact or rule, we can use
variable to get more than Yes/No answer.

*variables dose not name a particular object but stand for object that we
cannot name.

*variable name must begin with capital letter.

*using variable we can get all possible answer about a particular fact or
rule.

*variable can be either bound or not bound.

Variable is bound when there is an object that the variable stands for.
The variable is not bound when what the variable stand for is not yet
known.

Example:

Fact

Like (john, mary).
Like (john, flower).
Like (ali, mary).

Questions:

1. Like (john,X)
X= mary

X = flower

2. like(X, mary)
X=john

3. Like(X, Y)

X=john Y=flower
X=john Y=mary
X=ali Y=mary
5. Type of questing in the goal
There are three type of question in the goal summarized as follow:
1. Asking with constant: prolog matching and return Yes/No answer.
2. Asking with constant and variable: prolog matching and produce result for
the Variable.

3. Asking with variable: prolog produce result.
Example:

Age(a,10).

Age(b,20).

Age(c,30).

Goal:

1.Age(a,X). ans:X=10 Type2

2.age(X,20). Ans:X=b Type2

3.age(X,Y). ans: X=a Y=10, X=b Y=20, X=c Y=30. Type3
4.Age(,X). ans:X=10 , X=20, X=30. * > means don’tcare Type3
5.Age(_,). Ans:Yes Typel

Lecture Two:

1. Data type.
2. Program structure.
3. Read and write functions.
4. Arithmeticand logical operation.

1. data type
Prolog supports the following data type to define program entries.

1. Integer: to define numerical value like 1, 20, 0,-3,-50, ect.

2. Real: to define the decimal value like 2.4, 3.0, 5,-2.67, ect.

3. Char: to define single character, the character can be of type small
letter or capital letter or even of type integer under one condition it
must be surrounded by single quota. For example, ‘a’,”’C’,’123’.

4. string : to define a sequence of character like “good”i.e define word
or statement entries the string must be surrounded by double quota for
example “computer”, “134”, “a”. The string can be of any length and
type.

5. Symbol: anther type of data type to define single character or
sequence of character but it must begin with small letter and don’t

surround with single quota or double quota.

2. program structure

Prolog program structure consists of five segments, not all of them
must appear in each program. The following segment must be included in
each program predicates, clauses, and goal.
1. Domains: define global parameter used in the program.

Domains

I= integer
C=char
S =string
R =real
2. Data base: define internal data base generated by the program
Database
Greater (integer)

3. Predicates: define rule and fact used in the program.
Predicates
Mark(symbol,integer).

4. Clauses: define the body of the program.. Forthe above predicates the

clauses portion may contain Mark (a, 20).

5.Goal: can be internal or external, internal goal written after clauses
portion , external goal supported by the prolog compiler if the program
syntax is correct

This portion contains the rule that drive the program execution.

2. mathematical and logical operation

a .mathematical operation:

addition +

subtraction -

multiplication *
Integer part of division div
Remainder of division mod

B .logical operation

greater >

Less than <

Eq ual =

Not equal <>
Greater or equal >=
Less than or equal <=

3. Other mathematical function

Function name

operation

Cos(X) Return the cosine of its argument

Sine(X) Return the sine of its argument

Tan(X) Return the tranget of its argument

Exp(X) Return e raisedto the value to which X is
bound

Ln(X) Return the natural logarithm of X (base e)

Log(X) Return the base 10 logarithm of log 10*

Sart(X) Return the positive square of X

Round(X) Return the rounded value of X. Rounds X up
or down to the nearestinteger

Trunc(X) Truncates X to the right of the decimal point

Abs(X) Return the absolute value of X

4. Read and write function

Read function:

readint(Var) : read integer variable.
Readchar(Var) : read character variable.
Readreal(Var) : read read (decimal) variable.
ReadIn(Var) : read string.

Write function

Write(Var) : write variable of any type.

Example 1: write prolog program to read integer value and print it.

Domains

10

| = integer
Predicates
print.
Clauses
Print:- write (“please read integer number”), readint(X),
write(“you read”, X).

Goal
Print.

Output:
Please read integer number 4
You read 4

Example2: write prolog program that take two integer input us integer
and print the greater.

Domains
| = integer
Predicates
Greater (1,1)
Clauses
Greater(X,Y):- X>Y,write(“the greater is”,X).
Greater(X,Y):- write (“ the greater is “,Y).
Goal
Greater(4,3).

Output:
The greater is 4

H.W:

1. write prolog program that read any phrase then print it.

2.write prolog program that read an integer number then print it after
multiplying it by any other integer like 5.

11

Lecture Three: More examples

This lecture present several example that intended to display various
way to write prolog program, how to write if —else program ,divide
problem into several parts then combine them in a single rule and how to

write program describe specific problem.

Example 1: write prolog program to check if the given number is positive
or negative.
Basic rule to check the number

If X>=0 then
Xis positive
Else
X Is negative

Domains
I= integer
Predicates
Pos_neg(i)
Clauses
Pos_neg(X):-X>=0, write(“positive number”),nl.
Pos_neg(_):-write(“negative number”),nl.

Goal
Pos_neg(4)

Output:
Positive number

Note: nl mean new line.
Example 2: write prolog program to check if a given number is odd or

even.
Basic rule to check number

12

If X mod 2=0 then
X is even number
Else
X is odd number

Predicates
Odd_even(integer)

Clauses
Odd_even(X):-X mod 2= 0, write (“even number”), NL.
Odd_even(X):- write (“odd number”), nl.

Goal
Odd_even(5)

Output
Odd number

Example 3: write prolog program to combine both rule in example 1 and
example2.

Domains
I= integer

Predicates
Pos_neg(i)
Odd_even(i)
Oe_pn(i)

Clauses
Oe_pn(X):-pos_neg(X),odd_even(X).
Odd_even(X):-X mod 2= 0, write(“ even number”),nl.
Odd_even(X):- write(““odd number”),nl.
Pos_neg(X):-X>=0, write(“positive number”),nl.
Pos_neg(_):-write(‘“‘negative number”),nl.

Goal
Oe_pn(3)
Output:

Odd number
Positive number

13

Note: the rule of same type must be gathering with each other.

Example 4 : write prolog program to describe the behavior of the logical
And gate.

Truth table of And gate
Y

| O[O X
I =ll=)
i E=lk=l=]1Y

Sol 1:

Domains
I= integer
Predicates
And1(l, 1,1)

Clauses
And1(0,0,0).
And1(0,1,0).
And1(1,0,0).
And1(1,1,1).

Goal
And1 (0,1,2)

Output:
Z=0

Sol 2:
From the truth table we can infer the following rule:

If X=Y then
Z=X
Else
Z=0

14

Domains
I= integer
Predicates
Andl (1,1, 1)
Clauses
Andl (X,Y,2):- X=Y, Z=X.
And1(X,Y,2):- X<>Y, Z=0.

Goal
And1(0,0,2)

Output
Z=0

HW

1. Write prolog program that read character and check if it’s a capital
letter, small letter, digit or special character.

2. Modify prolog program in example 3 such that the value of X is read
inside the program.

3. Write prolog program that describe the operation of logical Or gate.

15

Lecture four:
1. Cutand fail function
2. Negation

1. cut
Represented as “1” is a built in function always True , used to stop

backtracking and can be placed any where in the rule, we list the cases

13 '93

where can be mnserted in the rule:

1.R:-f1, £2,!. “fl, 2 will be determmistic to one solution.
2. R-f1,1,£2. “ {1 will be deterministic to one solution while f2 to all .
3. R:- 11,2, “Rwill be deterministic to one solution.

Examplel : program with out use cut.
Domains

I= integer
Predicates

No(1)
Clauses

No (5).

No (7).

No (10).

Goal
No (X).

Output:
X=5
X=7
X=10

Example 2: program using cut.
Domains
I= integer
Predicates
No(1)
Clauses
No (5):-1.
No (7).

16

No (10).
Goal
No (X).

Output:
X=5.

Example3: program with out using cut.

Domains

| =integer

S = symbol
Predicates

a(l)

b(s)

c(ls)
Clauses

a(10).

a(20)

b(a)

b(c)

c (X, Y)- a(X), b (Y).

Goal
c(X)Y).

Output:
X=10 Y=a
X=10 Y=c

X=20 Y=a
X=20 Y=c
Example 4: using cut in the end of the rule.

Domains
| =integer
S = symbol
Predicates
a(l)
b(s)

17

c(l,s)
Clauses
a(10).
a(20)
b(a)
b(c)
c (X, Y)-a(X), b (Y),.

Goal
c(X,Y).

Output:
X=10 Y=a

Example 5: using cut in the middle of the rule.

Domains

| =integer

S = symbol
Predicates

a(l)

b(s)

c(ls)
Clauses

a(10).

a(20)

b(a)

b(c)

c (X, Y)-a(X),!, b(Y).

Goal
c(X,Y).

Output:

X=10 Y=a
Y=c

18

2. Fail

Built in function written as word “fail” used to enforce
backtracking, place always in the end of rule, produce false and can be

used with internal goal to produceall possible solution.

Example 6:

Predicates
Student (symbol, integer)
Printout.
Clauses
Student (aymen,95).
Student(zainab,44).
Student(ahmed, 60).

Printout:-student(N,M),write(N,” “,M),nl, fail.

Goal
Printout.
Output:
aymen 95
zainab 44
ahmed 60
No
Example 7:
Predicates
Student (symbol, integer)
Printout.
Clauses
Student (aymen,95).
Student(zainab,44).

Student(ahmed,60).

19

Printout:-student(N,M),write(N,” *“,M),nl fail.
Printout.

Goal
Printout.

Output:
aymen 95
zainab 44
ahmed 60
Yes

H.w:
1. Trace the following clauses and find the output:
a. clauses
reading:- readchar(Ch),writ(Ch),Ch="#".
Reading.

b.clauses
Go.
Go:-go.
Reading:- go,readchar(Ch),write(Ch),Ch="#,!.

1. Use negation to define the different relation: diff(X,Y) which is true
when X and Y are different numbers.

20

Lecture five:

Repetition and Recursion
1. Repetition

2. Recursion

2.1 Tail recursion

2.2 Non-tail recursion

1. Repetition

In prolog there is a constant formula to generate repetition; this
technique can generate repetition for some operation until the
stopping condition become true.

Example: prolog program read and write a number of characters

continue until the input character equal to ‘#’.

Predicates
Repeat.
Typewriter.

Clauses

Repeat.

Repeat:-repeat.
Typewriter:-repeat,readchar(C),write(C),n,C="#,!.

2.Recursion

In addition to have rules that use other rules as part of their
requirements, we can have rules that use themselves as part of their
requirements.
This kind ofrule called “recursive “because the relation ship in the
conclusion appears again in the body of the rule, where the requirements
are specified.

21

A recursive rule is a way of generating a chain of relationship for a
recursive rule to be effective. However, there must be some place in the
chain of relationship where the recursion stops.

This stopping condition must be answerable in the database like any

other rule.

2.1 Tail Recursion

We place the predicate that cause the recursion in the tail of the rule as
shown below:

Head :- p1,p2,p3, head.

{
Predicates 1

Predicates 2

Y

Predicates 3

Y

Check point

VAN

Output result Setup
variables

22

Example 1: program to print number fromn to 1.

Predicates
A (integer)
Clauses
A(1) :- write (1), nl !,
A(M):- write (M), nl, M1 =M -1, A(M1).

Goal
A4)

Output:

Example 2: program to find factorial.

S =5*4*3*2*1

Predicates
Fact (integer, integer, integer)
Clauses
Fact(1, F, F):-1.
Fact(N,F,R):- F1=F*N, N1=N-1, fact(N1,F1,R).

Goal
Fact (5,1,F).

Output:
F =120.

23

Example 3: program to find power .
34 =3*%3*3*3

Domains

I= integer
Predicates

Power (L1LI, 1).
Clauses

Power (X,Y,P,R):- P1=P*X, Y1 =Y-1, power(X,Y1,P1,R).

Power (_,0,P,P):-.

Goal
Power(3,2,1,P)

Output
P=9

2.2 Non —Tail Recursion (Stack Recursion)

This type of recursion us the stack to hold the value of the

variables till the recursion is complete. The statement is self — repeated as

many times as the number of items in the stack.. Below a simple

comparison between tail and non-tail recursion.

1. Call for rule place in the end
of the rule.

2. Itis not fast as much as stack
recursion.

3. Use more variable than stack
recursion.

. Call for the rule place in the

middle in the rule.

. Stack recursion is fast to

iImplement.

. Few parameters are used.

24

Example 4: factorial program using non-tail recursion.

Predicates
fact(integer, integer).
Clauses
fact(1,1).
fact(N,F):- N>1,N1=N-1,fact(N1,F1),F=N*F1.

Goal
Fact (4,Y)

Output:
Y =24.

Example 5: power program using non-tail recursion.

Predicates

Power (integer, integer, integer)
Clauses

Power (_,0,1):-1.

Power (X,Y,P) :- Y> 0, Y1=Y -1, power (X,Y1,P1),P= X*P1.
Goal

Power (3,2,2)

Output
Z=09.

25

I aa fact(4 Y) 4>1,
_________________________ ! fact(3,Y1),
dﬂ\ ple LY p ghns Y=4*Y1.

3 4..4.:3.1 u-"-’ sleaiuly

““““““““““““““““““ 6 4t gla)
i fact(3, Y) 3>1, !
E_LELLIC;EEI;L"E i fact(2,Y1),
i bJJA_aé\J_MHulﬁ | Y=3*Y1
2Aadipletiah
Cfact(L1). | 2%adgl]
| fact(2,Y):- 2>1, | o vl
‘ fact(1,Y1), | /T
‘g;;s‘;;a';;‘;;;;“ Y=2*Y1 =
1 Ay
A1

H.W

1. Write prolog program to find the sum of 10 integer element using tail
and non tail recursion.

2. Write prolog program to find the maximum value between 10 elements.
3. Write prolog program to find the minimum value between 10 elements.

4. Findthesum S = 1+2+ 3+N

26

Lecture Six:
String standard predicates

1. Isname(string) test if the content of the string is name or not

Isname("abc") yes
Isname('123"). No

2.char_int(char,integer) convert the character to its integer value and the
opposit
Char_int('A",X)
X=65
Char_int(X,65)
X="A

3. Str_char(string,char) convert the string (of one char) to char and the
opposit

Str_char("A",X)

X:IAI

Str_char(X,'A")
X=IIAI "

4. str_real (string,real) convert the string (ofreal) to real and the opposit

Str_real("0.5",X)
X=0.5
Str_real(’X,0.5)
X="0.5"
5.Fronttoken(string,string,string).
Take token of word from the string and return the reminder of the string .
Fronttoken(string,token,rem).
Fronttoken("ab cd ef",X,Y).
X="ab" y="cdef"
Fronttoken("'c def",X,Y)
X="cd" Y="ef"

6. Frontstring(integer,string,string,string)

27

Takea string(str) with length specified by the integer value and
return the reminder
Frontstring(integer,string,str,rem)
Frontstr(3,"ahmed", X,Y)
X="ahm" Y="ed"
Frontstr(2,"abcde", X,Y).
X="ab" Y="cde"
Frontstr(3,S,"ahm","ed").
S="ahmed"

7. Frontchar(string,char,string).
Take one char from a specificstring and return the reminder
Frontchar(string,char,rem).
Frontchar(*ahmed", X,Y)
X="a" Y="hmed"
Frontchar(X,'a’,""hmed")
X="ahmed"

8. Str_len(string,length)
Return the length of specificstring
Str_len(**ahmed",X)
X=5
Str_len("ab™, X)
X=2
Str_len("ab",3) no
Str_len(X,3) X="---"

9. Concat(string,string,string).
Concat twostring together to produce one string
Concat("ab","cd",X)
X="abcd"

10.Upper_lower(string,string)
Convert the string in upper case(in capital letter) to the lower case
(small letter) and the opposite.
Upper _lower(capital letter,small letter)
Upper_lower("ABC",X)
X="abc"

28

Upper_lower("Abc",X)
X="abc"
Upper_lower(,X,"abc")
X="ABC"

Prolog Programs that deal with string

Ex1:Pogram thatread two string and concat them in one string as upper
case.

predicates
start(string)

clauses
start(X):-readIn(S),readIn(S1),concat(S,S1,S2),upper_lower(X,S2).

Goal
Start(X)

Output:

Ahmed

Ali

X=AHMEDALI yes

Ex2:program that read string of one character then return the integer
value of this char.

predicates

start(integer).

clauses
start(X):-readIn(S),str_char(S,X).

goal
start(X)

Output:
a
X=97
yes

29

Ex3: Program that take a string of words and printeach word in a lineas
upper case.

predicates

start(string).

clauses

start(S):-fronttoken(S,S3,S2), upper_lower(S1,S3), write(S1),
nl,start(S2).
start("").

Goal
Start(*"ali isa good boy").

Output:
ALl
IS
A
GOOD
BOY
yes

Ex4: program that take a string and convert each character it contain to
its corresponding integer value.

Predicates
start(string).
clauses

start(S):-frontstr(1,5,51,S2), char_int(S1,1), write(l), nl, start(S2).
start(""").

Goal
Start(*'abc™).

Output:
97
98
99
Yes

30

Ex5: program that return the number of namesin a specific string.

predicates
start(string,INTEGER).
clauses

start(S, X):-fronttoken(S,S1,S2),isname(S1),X1=X+1,start(S2,X1).
start(S, X):-fronttoken(S,_,S2),start(S2,X).

start("",X):-write(*'the number of names is", X).

goal

start(**ali has 2 cars™).

Output:
The no. of namesis3
Yes

Ex6:program thatsplita specific string to small string with length 3 char.
predicates
start(string).
clauses
start(""").
start(S):-str_len(S,1), 1 MOD 3=0, frontstr(3,S,51,S2), write(S1),
nl,start(S2).
start(S):-concat(S," ",S1),start(S1).

Goal
Start("'abcdefg"™).

Output:
abc
def

g
yes

H.W

1- Write a prolog program that do the following: convert the string such as
"abcdef" to 65 66 67 68 69 70.

2-Program tofind the number of tokens and the number of character in a
specific string such as: "ab c def" the output is tokens and 6 character.

31

Lecture Seven:

LIST

1. listin prolog
2. syntax of list
3. head and tail

1. list in prolog

In prolog, a list is an object that contains an arbitrary number of other
objects within it. Lists correspond roughly to array in other languages
but unlike array, a list dose not require you to how big it will be before

use It.

2. syntax of list
List always defined in the domains section of the program as follow:

Domains
list = integer*

“*’ refer to list object which can be of length zero or un defined.
The type of element list can be of any standard defined data

type like integer, char ... ect or user defined data type explamned

later.

List element surrounded with square brackets and separated by

comma as follow: 1=11, 2, 3, 4].

List consistof two parts head and tail , the head represent the

first element in the list and the tail represent the remainder (i.e

head is an element but tail is a list) . for the following list :

L =[1,2,3]
H=1 T=[23]
H=2 T=[3]

H=3 T=[]

[] refer to empty list.

List can be written as [H|T] in the program, if the list is non
empty then this statement decompos the list into Head and tail
otherwise (if the list is empty) this statement add element to
the list.

32

4. list and recursion
As maintained previous list consistof many element, therefore to
manipulate each element in the list we need recursive call to the list until

it become empty.
Example 1: program to print list element in one line.

Domains
L = integer*
Predicates
Print (L)
Clauses
Print ([]):-%.
Print ([H[T]):- write (H) , print (T).

Goal

Print ([1,4,6,8]).
Output:

1468

Example 2: program to find sum of integer list.
Domains

I= integer

L=i*
Predicates

Sum(LL1)
Clauses

Sum ([].S,S):-1.
Sum([H| T],51,S):- S2=S1+H, Sum (T,S2,S).

Goal
Sum ([1,4,6,9],0,S).

Output
S=20

33

Example 3: prolog program to spilt list into to list positive and negative
list.

Domains
L= integer*

Predicates
Spilt (L,L,L)

Clauses

Spitt ([1LLLID:=-"
Spilt ([H| T],[HIT1],L2):- H>= 0,!,spilt (T, T1,L2).
Spilt ([HT],LL,[H[T2]) - spilt (T,L1,T2).

Goal

Spilt ([-1,4,-9,8,0],L1,L2).
L1=1[4,9,0]

L2 =[-1,-9]

H.W

1. Write prolog program to find the union of two lists.

2. Write prolog program to find the intersection between two lists.

3. Write prolog program to find the difference between two lists.

4. Write prolog program that check the equality between two lists.

5. Write prolog program to find the last elementin a list.

6. Write prolog program to find the union of two lists.

7. Write prolog program to find the length of a list.

8. Write prolog program to find the index of specified elementin a list.

9. Write prolog program to get the elementat nth index lists.

10. Write prolog program that replace specified elementin a list withvalue
0.

11. Write prolog program that delete a specified elementin a lists.

12. Write prolog program that take two lists as inputand produce a third

list as output, this listis the sum of the two lists.

13. Write prolog program that multiply eachelementin the list by 5.

14. Write prolog program that sort a list descending.

15. Write prolog program that convert any given decimal numberto its

binary representation and store itina list.

34

Lecture Eight:

Database manipulation in prolog

Examplel:
1- Assert predicate:
e assert(X) or assertz(X) :Adds a new fact to the database. Term
is asserted as the last fact with the same key predicate.

v For example;

domains

s=string.

Is=s*.

database

person(s)

predicates

list_preson(ls)

clauses

list_preson(L):-
assert(person ("Ali"),
assert(person (*"Zaki")),
assert(person ('Suha")),
findall(X,person(X),L).

goal: list_preson(L).
%L=["Ali","Zaki","Suha"]

e asserta(X) :Same as assert, but adds a fact X at the beginning
of the database.

v’ For example;
domains
s=string.
Is=s*,
database
person(s)
predicates
list preson(ls)
clauses

35

list_preson(L):-
asserta(person ("Ali")),
asserta(person ("Zaki")),
asserta(person ("Suha")),
findall(X,person(X),L).

goal: list_preson(L).
%L=["Suha","Zaki","Ali"]

2- Retractpredicate:
e retract(X): Removes a fact X from the database.
v’ For example;

domains

s=string.

Is=s*,

database

person(s)

predicates

list_preson(ls)

clauses

list_preson(L):-
assert(person ("Ali")),
assert(person ("Zaki")),
assert(person ("Suha")),
retract(person ("Zaki")),
findall(X,person(X),L).

goal: list_preson(L).
%L=["Ali","Suha"]
e retractall(X): Removes all facts from the database for which the
head unifies with X.
v’ For example;
domains

36

s=string.

Is=s*,

database

person(s)

predicates

list_preson(ls)

clauses

list_preson(L):-
assert(person ("Ali")),
assert(person ("Zaki")),
assert(person ("Suha")),
retractall(person (_)),% retractall(_),
findall(X,person(X),L).

goal: list_preson(L).
%L=[]

Example 2: Use a database conceptto perform the following goal:
Goal: run(*"He bought 7 oranges their total weight 1.5kg"").
And give the following output:

String= He length= 2

String= bought length= 6

String= oranges length= 7

String= their length= 5

String= total length= 5

String= weight length= 6

String= kg length= 2

Solution:

database
db_string(String,integer)
predicates
split_tokens(string)
run(string)

print_string

37

clauses
run(S):-retractall(_), split_tokens(S), print_string.

split_tokens(S):-
fronttoken(S,W,R), isname(W),!,str_len(W,N), assert(db_string(\W,N)),
split_tokens(R).

split_tokens(S):- fronttoken(S,_ ,R),!,split_tokens(R).

split_tokens("™).

print_string:-
db_string(S,N),write("String= ",S," length=",N),nl,falil.
print_string.

goal

run("He bought 7 oranges their total weight1.5kg").
[*String= He length= 2
String= bought length= 6
String= oranges length= 7
String= their length= 5
String= total length= 5
String= weight length= 6
String= kg length= 2
yes
*/

38

Lecture nine:
File manipulationin prolog

1- Openread (file name, symbolic file name).
openread(file,”d:\\f1.pro”)

2- Openwrite (file name, symbolic filename)
openwrite(file,”d:\\f1.pro”)

3- Readdevice is used to read from file or from the keyboard.
readdevice(file)
readdevice(keyboard)

4- writedevice: is used to write text to a file or on the screen
Writedevice(file)
Writedevice (screen)

5-existfile(symbolic filename): is used to chec if the file is available or
not.
existfile(“d:\\f1.pro”)

6-eof(filename): is used to check the end of the file.
eof(file)

7-file_str(symbolic filename,string): is used to chane the content of the
file to string.
file_str(“d:\\fl.pro”,S)

Examplel: program can saving any string in a file and printing
it.
domains
file=m
s=string
predicates
readfile(s)
writefile(s)
start

39

clauses
start:-
write('Save any string in your file(D:\\test.pro):"),nl,
readIn(X),
writefile(X),
readfile(Y),
write("The string in your file is:")Y),nl.
writefile(X):-
openwrite(m,"D:\\test.pro™),
writedevice(m),
write(X),
closefile(m).
readfile(X):-
openread(m,"D:\\test.pro™),
readdevice(m),
readIn(X),
closefile(m).
goal:start.
%Save anystring in your file(D:\test.pro):
%abcdefg
%The string in your file is:abcdefg

Example2 (a): Given a program to obtain a digit and its item from a
string as shown below:
domains
s=string
I=integer
predicates
digit(s,i,s)
change(s,i)
clauses
digit(S,D,I):-
fronttoken(S,W,R),change(W,D),
fronttoken(R,1,).
digit(S,D,1):-
fronttoken(S, ,R),digit(R,D,I).
change(*'five",5).
change("'ten",10).
Goal:

40

digit("1 have five pens and ten books.", Digit, Item).
%Digit =5, Item=pens
%Digit =10, Item=books

Example2 (b): Preform the above problem using file concept.

domains
file = myfile
s=string
I=integer

predicates
digit(s,i,s)
change(s,i)
writefile
readfile(s)
chk_digit(i,s)

clauses

writefile:-
openwrite(myfile,"d:\\f1.pro™),
write("Enter sentence:"),nl,
readIn(S),
writedevice(myfile),
write(S),
closefile(myfile).

readfile(S):-
openread(myfile,"d:\\f1.pro"),
readdevice(myfile),
readIn(S),
closefile(myfile).

chk_digit(D,I):-
readfile(S),
write(*'Source sentence is:\n",S),nl,
write("The result is:\n"),
digit(S,D,1).

digit(S,D,I):-
fronttoken(S,W,R),change(W,D),

41

fronttoken(R,1,_).
digit(S,D,1):-

fronttoken(S, ,R),digit(R,D,1).

change("five",5).
change("ten",10).
goal
writefile,chk_digit(Digit,Item).
[*Enter sentence:
| have five pens and ten books.
Source sentence is:
| have five pens and ten books.
The result is:
Digit=5, Item=pens
Digit=10, Item=Dbooks
2 Solutions*/

42

APPENDIX A/ SOME PROLOG EXAMPLES ABOUT ITEMS

TRACE
domains
S=SYMBOL

predicates

son (s, s)
father (s, s).
brother(s, s).
cousin (s, s).
grandfather (s, s).
uncle (s, s) .

clauses

son (ali, ahmed) .

son (hamza, ahmed) .
son (ahmed, majed) .
son (hassan,majed) .
son (hussain,hassan) .

father (X, Y) :-son (Y, X) .
brother(X,Y):-father (z,X), father (Z,Y) ,X<>Y.
cousin (X, Y) :-father (Z,X), father (W, Y) ,brother (Z, W) .
grandfather (X,Y) :—-father (X, Z) , father (Z,7Y) .
uncle (X,Y) :—-father(z,Y),brother (X, 2) .

/* Draw the the following shape

* ok Kk O
* ok ok F

domains
i=integer
predicates
star (i).
print (i) .

clauses

star (6) .
star(I):-print(I),I1=I+1,star(I1).
print (0) : —-nl.

print (J) :-write(' ','*'),J1=J-1,print (J1).
goal

star (0).

43

Prolog program to read and print an input item

predicates

print.

clauses

print:-write("please read integer number\n"), readint (X),
WRITE ("YOU READ ",X),nl.

Prolog program to test the input number is odd or even
domains

i=integer

predicates

odd even (i) .

clauses

odd even (X) :-X mod 2=0,write("even \n").

odd even() :-write("odd\n").

Prolog program to test the input number is positive or negative

domains

i=integer

predicates

pos neg(i) .

clauses

pos neg(X) :=X>=0,write ("positive \n").
pos:neg(_):—write("negative\n").

Prolog program to test the input number is prime or not.

domains

i=integer

predicates

prime (i, 1) .

clauses

prime (C,X) : -C1=C+1,X<>Cl,X mod C1l<>0,prime (C1l,X).
prime (C,X) : -C1=C+1,X<>Cl,write ("not prime").
prime(,):-write("prime").

44

Appendix B/ SOME PROLOG EXAMPLES ON LIST

1- /*append two list in one list*/
/*domains
d=integer.
1=d*
predicates
app (L,L, L) .
clauses
app ([],L,L).
app([H|IL1],L2,[|IL3]) :-app (L1,L2,L3).

goal
app([1,2,3]1,14,5,6],L).*%/

2- /* append three list in one list*/
/*domains

i=integer

S=i*

predicates

app(s,s,s,s)

clauses
app ([1,1
app ([HIT

] L
]
app ([],[H

ILI)

,L2,L3, [H|T1]):-app(T,L2,L3,T1), !
|T],L3, [HIT1]):-app([],T,L3,T1), !
goal

app((1,2,31,(4,5,6],17,8,91,L) .%/

3- /* program to find the difference between two list such as
diff([i,2,31,13,4,51,L), I=[1,21. */

/*domains

i=integer
1=1i~*
predicates
diff(1,1,1).
member (i,1) .
clauses
diff ([],
diff ([H]
diff ([|
memberTX,
member (X,
goal
diff([1,2,3],[3,4,5],0L). */

1): .

Y, ITl]) -not (member (H,Y)),diff(T,Y,T1), !
Y

|

|T

[
’ [H
AR —dlff(T,Y,Z).
1)
1)

T]
T,
[X
[_

—member(x T).

45

4- /* program to union two lists of charecter in one list with
discard the iteration charecter such as:
UniOn(['a','b','d'],['C','d','e'],L) , L:[lal,leIICl,ldl,Vel].

or union(['c','d','e'],['f','c"'], L) , L=['d','e','f','c"']
*/

/*domains

j=char

c=3j*

predicates
union(c,c,c).
mem(j,cC) .

S, X) =1

’):_!

1,L,[H|T1]) : =not (mem (H,L)), !, union (T, L, T1l) .
],L,L1) :-union(T,L,L1).

5- /* program to find the Intersection between two lists of
charecter in one list with discard the iteration charecter such
as: intersect (['a', 'b','d'], ['c','d','e'],L) , L=[].

or intersect(['a','c','d','e'],['f',"'c'], L) , L=['a','c']
*/

/*domains

j=char

c=73*

predicates
intersect (c,c,c).
mem(j,cC) .

clauses
intersect (
intersect (
intersect (
(
(

[]

m|_4\

intersect
intersect

i
[
[

E—
H
I
'_l.
o]
=t
0]
]
0
D
Q
&
=
=
=
H

mem (H, [
mem (X, [
goal

intersect(['a','c','d','e'],['a"', "', "'c"],L) .*/

H| '
_|IT]):—mem (X, T) .

46

6- /* program to print list of integer number */
/*domains

i=integer

1=1i~*

predicates

print (1) .

clauses

print ([]).

print ([H|T]):-write (H) ,write("-"),print (T) .

goal
print ([1,2,3]).*/

7- /*program to print list of symbols in reverse order such
as L=[a,b,c,d] Ll=[d,c,b,a]l */

/*domains
l=symbol*
predicates
writelist (1l).

clauses
writelist ([]) .
writelist ([H|T]) :-writelist (T),write (H),nl.
goal
writelist([a,b,c,d]) .*/
8- /* program to print list of character lists such as

list([['a','b','c'],['d",'e',"£']]) the result is:- abcdef x/

/*domains

c=char

s=c¥*

sl=s*

predicates

list(sl)

clauses

list ([[11]).

list ([[H|T]]) :-write (H),1list([T]).

list ([H|T]):-1ist ([H]),list (T).

goal

list([['a','1','c'], ['d",'e", '5"]]).*/
9- /* program to delete item from a list */

47

/*domains

i=integer

1=i~*

predicates

del(i,1,1).

clauses

del(_,[1,[1):=".

del (X, [X|T],T):=!.

del (X, [H|T],[H|T1]) :-del (X, T,T1).

goal
del(3,[1,2,3,4],L).%/

10- /* program to find the value of an item in a list using
its position */
/*domains
i=integer
1=ix*

predicates
find(1l,1i,1i,1).

clauses

find([], ,C,C):-!.

find([H|]1,X,X,H):=!.

find ([|T],X,X1,H):-X2=X1+1,find (T, X,X2,H) .
goal

find([1,2,3,4]1,3,0,H).*/

11- /* Program to delete a specific item from a list
according to its position*/
/*domains
i=integer

s=i*

predicates

ins(i,1i, s, s)

clauses

ins(X,0,Y, [X]|Y]).

ins(X,D, [H|T], [H|T1]) : -D1=D-1,ins(X,D1,T,T1).
goal

ins(X,0,Y,[1,2,3]1).*/

12- /*program return the position of specific item in a list
such as pos([5,8,0,9],8,P0S), POS=2%*/
/*domains
i=integer
s=1i*
predicates

48

pos(s,i,1)

clauses

pOS([Y|_]/Y11) .

pos ([IT],Y,X):-pos(T,Y,X1),X=X1+1.
goal

pos([5,8,0,91,8,P0S) .*/

13- /* Program to reverse the item of list such as
rev([1,2,3,4],REV), REV=[4,3,2,1]. */

/*domains
i=integer
s=i%*
predicates
rev (s, s)
app(s,s,s)
clauses

app ([1,X,X) .
app ([H|IT1],X, [HIT]) : —app (T1,X,T) .

rev ([X], [X]).
rev([H|T],L):-rev(T,L1l),app (L1, [H],L).
goal

rev([1,2,3,4,8,0],REV).*/

14- /* find the summation of items in a list */
/*domains
i=integer
1=i*
predicates
sum(1l,1).
clauses
sum ([],0).
sum([H|T],S):-sum(T,S1),S=S1+H.

goal
sum([1,23,4]1,8).%/

15- /* Program to split list to two lists , the first list
has number of items as specified and the other has the reminder
of orginal list such as

split(3,1[5,8,9,7,5]1,11,L2).
THE FIRST THREE ELEMENT GO TO L1 AND THE REMINDER TO L2 */
/*domains
i=integer
S=1i*
predicates
split (i, s, s,s)
clauses

49

split (0,%, [1,X) .

split(C, [H|T], [H|T1],W):-C1=C-1,split(C1,T,T1,W).
goal

split(3,15,8,9,7,5],L1,L2).%/

l6- /* sort list in descending order using max and delete
rules */

/*domains
i=integer
s=i*

predicates
max (s, 1i,1)
del (i, s, s)

sort (s, s)

clauses

max([],M,M).

max ([H|T],X,M) : -H>X,max (T, H,M),
max ([|T],X,M):-max (T, X,M).

del(,[1,[1).

del (X, [X|T],Y):-del (X,T,Y).

del (X, [H|T],[H|T1]) :-del (X,T,T1),
sort ([1,[]).

sort (Y, [M|T1l]) :-max (Y, 0,M),del (M,Y,U),sort(U,Tl),
goal

sort([5,4,9,7,31,L).*%/

17- /* sort in ascending order using insert rule */
/*domains
i=integer
1=i~*

predicates
insert(i,1,1).
sort (1,1).

clauses
insert (Y
insert (H
sort ([],
sort ([H]

, [H|T], [H|T1]) :=Y>H,!,insert (Y, T, T1) .
ST, [HIT]) .
[1):=1!.
T],L) :-sort (T,Tl),insert (H,T1,L).
goal

sort([11,9,8,0],L).*/

18- /*program to read students marks and find the average
of each student ,then return the max degree and the min degree
and sort the averages in ascending order

50

domains
i=real
state=st (i, 1).
l=state*
li=1i*

predicates

s _avg(l,1i).
start (1,1i).

max (1i).
min(1i).

sort (1i,1i).
insert (i, 1i,11i).
maxx (1,1i).
minn(1l,11i).
run(l) .

clauses

s avg([],[]).
s _avg([st(H,H1) |T], [L1|L]):-L1=(H+H1)/2,s avg(T,L),nl.

start (S,FIN):-s_avg(S,FIN),write (FIN),nl,!,run(S),
write("the sort
list"),sort (FIN,FIN1), !, write(FIN1),nl.

run (Sl):-write (" the max mark is:"),maxx(S1l,L),max(L),nl,
write (" the min mark is:"),minn(S1,L1),min(L1l),nl

find the minimum item in a alist such as

max ([22,15,14]) max=22 /

max ([1):-"!.

max ([H]) :-write (H).

max ([H,Y|T]):=-Y>H,max ([Y|T]).

max ([H,Y|T]):-H>Y,max ([H|T]) .
find the minimum item in a alist such as

Min([22,15,14]) min=14

min([]):-"'.

min([H]) :-write (H).

min ([H,Y|T]):=-Y<H,min ([Y|T])

min ([H,Y|T]):-H<Y,min ([H|T])

sort in ascending order using insert rule

insert (Y, [H|T], [H|T1]) :-Y>H,!,insert (Y, T, T1).
insert(H,T,[HlT])
sort ([],[]):
sort([HlT],L).—sort(T,Tl),insert(H,Tl,L).

find the max number in one state such as
maxx ([st (22, 18),st(45,88),st(ll,19)],L) , L=[22,88,19]
maxx ([]1,[]1):=1!.
maxx ([st (H,H)],[H]):—H>H1.
maxx ([st (H,H1)], [H1]) : -H1>H.

51

maxx ([st (H,Hl),st(T1,T2) |T],[H|IM]) :-H>=H1l,maxx ([st (T1,T2) |T],M).
maxx ([st(H,Hl),st(T1,T2)|T],[H1|M]):-Hl>=H,maxx ([st(T1,T2) |T],M).
find the min number in one state such as

minn([st(22,18),st(45,88),st(11,19)],L) , 1=[18,45,11]
minn ([], []):-"!.

minn ([st (H,H1)], [H]) : -H<HI.

minn ([st(H,H1)], [H1]) :-H1<H.

minn ([st(H,Hl),st(T1,T2) |T],[H|M]) :-H<=H1l,minn ([st(T1,T2) |T],M).
minn([st(H,Hl),st(T1,T2) |T],[H1|M]) :-Hl<=H,minn ([st(T1,T2) |T],M).
goal

start ([st (66,85),st(23,56),st(77,67)]1,AVG) .*/

19- /* program to split the list to two lists , the first has
the odd integer value and the second has the even integer value

*/

/*domains
i=integer
1=1i*,

predicates
plist(i,1,1,1).

clauses

plist (, 01,01, [1):=1.
plist (N, [H|T], [H|T1],L):-N1=N+1,Nl mod 2<>0,!,plist(N1,T,T1,L).
plist (N, [H|T],L2, [H|T2]) :-N1=N+1,plist(N1,T,L2,T2).

goal
plist (0, [1,2,3,4],L,L1).*/

20- /* read a string then find how many integer numbers and
real numbers in the string save the integer number in listl and
the real number in list2 */

/*domains

s=string

l=s*

i=integer

11=1i~*

r=real

12=r*

predicates
split(1,11,12,4i,4i,i,1).
clauses

split (1, 11,01,I,I,R,R).

52

split([H|T],[H1|T1],L2,I1,I,R1,R):~-

fronttoken (H,X,Y),Y="",str int(X,Z2),H1=Z,12=11+1,!,split(T,T1,L2,
12,I,R1,R). N

split ([H|T],L1l, [H2|T2],I1,T1, Rl R):

str real (H,7Z),H2=2Z,R2=R1+1, Spllt(T 1,72,11,1,R2,R).
goal
split(["192","3.3","99","34.4"],11,12,0,I,0,R).*/
21- /* Program find the iterations of integer value in a list
*/

/*domains
i=integer
1=1i*

predicates
match (i,1i,1i).
iteration(i,i,1).

clauses
match (X, X,1).
match (X,Y, 0) : =X<>Y.

iteration (0, , .
iteration (S,X, [Y|Z2]) :-match (Y, X,Q),iteration(S1,X,7Z),S=S1+Q.

goal
iteration(I,2,1[1,2,3,2,3,4,3]1).%/

22- /* delete the first N item from a list such as
del (3,[1,2,3,4,5],L) , L=[4,5]. */
/*domains
i=integer
1=1%*

predicates
del(i,1,1).

clauses
del(,
del (O,
del (N,

H,[])

X,X):=1.

[IT],) -N1=N-1,del (N1,T,L).
goal

del(3,[1,2,3,4,5]1,L).*/

23- /* delete the last N item from a list such as
del(3,(1,2,3,4,5],L) , L=[1,2]. */
/*domains

53

i=integer
1=ix*

predicates
del(i,1,1).
len(l,1).
copy(i,1,1).

clauses
del (N,L,F):-len(L,M),N1=M-N,copy(N1,L,F).

len([],0).

len([|T],LEN):-len(T,LEN1),LEN=LEN1+1.
copy(,[],[]):-1.

copy (N, ,[]):-N=0,

copy (N, [HIT],[HIZ]).—N1=N—l,copy(Nl,T,Z).
goal

del(7,111,2,3,4,5,6,7,8,9]1,L).%/

24- /* program to rotate the items of a list to the left by N
location. such as:- rotate(1,I[1,2,3],L), I=[2,3,1]1. */

/*domains
i=integer
1=i~*

predicates
shift(l,1).
append (i, 1,1).
rotate(i,1,1).

clauses

rotate (, [
rotate(6 X
rotate (N, X,

],[]).—!.
, X) . .
Z) : —Nl—N 1,shift (X,Y),rotate(N1,Y,Z2).

shift ([H|T],Z):-append (H, T, Z) .

append (X, [

1,[X]) -1,
append(X,[HIT],[HITl]):—append(X,T,Tl).
goal

rotate(3,[1,2,3,4,5],L).*/
25-/* program to square the items of a list of integer value*/
/*domains

i=integer
1=ix*

54

predicates
sgr(l,1).

clauses

1) .

sqr([1,1
T], [H1|T1]):-HI1=H*H, sqr (T, T1) .

1,
sqr ([H]
goal
sqr([1,2,3,4],L).*/

26— /* program to find if a list is a subset of another list
such as : subset(I[1,2,3]1,1[15,6,1,9,2,3,4,5])-—--> yes

subset ([1,2,31,15,6,9,2,3,4,5])—-————- > no */
/*domains

i=integer

1=1i~*

predicates
subset (1,1).
append(l,1,1).

clauses
subset (
subset (

[.
[
append (L

) -
]IZ):_
H|L2],2),append(Ll,L2,L3),subset (T,L3).

I, _
HIT
1,10
append ([

1,Y,Y) :=1!.
append ([H|

T1,Y, [H|Z]) : —append (T, Y, Z) .

goal
subset ([1,2,31,[05,6,1,9,2,3,4,5]1).%/

27- Prolog program to convert any decimal number to it binary
DOMAINS

I=INTEGER

L=INTEGER¥*

predicates

sum (I, 1) .

print (1) .

clauses

]):= H= X MOD 2,X1= X DIV 2,sum(X1,T).

T]):-print (T) ,write(H) .

55

	Cover
	الكورس الثاني - لغة برولوك

