

Parallel programming

paradigms

3ed Class, SW branch, Second Semester.

(2025-2024)

By: Teaba Wala aldeen Khairi.

 University of technology, Computer science department.

teaba.w.khairi@uotechnology.edu.iqMail: -E

 الجامعة التكنولوجية

 قسم علوم الحاسوب

mailto:teaba.w.khairi@uotechnology.edu.iq

Requirements for the course

• Google doc

• Google slide & using Google meet

To pass the course the student must do:

1- Home works ..…………

2- Reports..…………………

3- Group project…………………

5- Final exam .………………

6- Mid exam ..………………

2024

Parallel programming paradigm / rd3 course first 2020 -21Class 20

Content of the lectures

CH1 FOUNDATIONS OF PARALLEL PROGRAMMING

• Motivation for parallel programming

• Need to increasing performance

• Building parallel system

• Need to write parallel programs.

• How to write parallel programs.

• Concurrence, parallel , distributed.

CH 2 PARALLEL HARDWARE AND PARALLEL SOFTWARE

• Process, multitasking and threading

• Instruction level parallelism

• SIMD

• MIMD

• Parallel program design

• Writing and running parallel program

CH3 DISTRIBUTED-MEMORY PROGRAMING WITH MPI

• Basic MPI programming

• Compilation and execution

• MPI programs

• MPI_Init and MPI_Finalize

• Communicator , MPI_Comm_size and MPI_Comm_rank

• MPI_Send

• MPI_Recv

• Performance evaluation of MPI programs

• taking trimming

• results

• speedup and efficiency

• scalability

• A parallel sorting algorithm

• Some simple serial sorting algorithm

• Parallel odd-even transposition sort

• Safety in MPI programs

• Final details of parallel odd-even sort

CH4 SHARED MEMORY PROGRAMMING WITH PTHREADS

• Process , thread, and Pthreads

• Hello, world

• Execution

• Preliminaries

• Starting the thread

• Running the thread

• Stopping the thread

2024

• Error checking

• Other approaches to thread start up

• Read-write locks

• Linked list function

• A multi-thread Linked list

• Pthread read-write locks

• performance of the varioce implementation

• implementing read-write locks

CH5 PAR ALLEL PROGRAMMING DEVELOPMENT

• Tree search

• Recursive depth first search

• Non recursive depth first search

• Data structure for the serial implementation

• Performance of the serial implementation

• Parallelizing tree search

• A static Parallelization of tree search using pthread

• A dynamic Parallelization of tree search using pthread

• Evaluation the pthread tree search programs

• Performance of the implementation

• Implementation of tree search and static partitioning

• Implementation of tree search and dynamic partitioning

REFERENCES

[1] Peter S. Pacheco, “An introduction to parallel programming”, Morgan

Kaufmann, 2011.

[2] C Lin, L Snyder. Principles of Parallel Programming. USA: Addison-

Wesley Publishing Company, 2008.

[3] A Grama, A Gupra, G Karypis, V Kumar. Introduction to Parallel

Computing (2nd ed.). Addison Wesley, 2003.

[4] M. J. Quinn, “Parallel programming in C with MPI and OpenMP”,

Tata McGraw Hill, 2003.

[5] T Mattson, B Sanders, B Massingill. Patterns for Parallel

Programming. Addison-Wesley Professional, 2004.

[6] Gergel V.P. (2007) Theory and Practice of Parallel Programming.

Moscow, Intuit. (In Russian).

2024

Requirements

Requirements for the course the student must have acknowledge

of using :

• Google docs

• Google slide

• https://onlinegdb.com

• Code Blocks with threads.

https://onlinegdb.com/

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 1

Lecture1 Fundamental

Foundation of Parallel Programming

 In computers, parallel processing is the processing of

program instructions by dividing them among multiple processors with the

objective of running a program in less time.

 In the earliest computers, only one program ran at a time. A

computation-intensive program that took one hour to run and a tape

copying program that took one hour to run would take a total of two hours

to run. An early form of parallel processing allowed the interleaved

execution of both programs together. The computer would start an I/O

operation, and while it was waiting for the operation to complete, it would

execute the processor-intensive program. The total execution time for the

two jobs would be a little over one hour.

Parallel processing is a method of simultaneously breaking up and

running program tasks on multiple microprocessors, thereby reducing

processing time.

 Parallel processing may be accomplished via a computer with two or

more processors or via a computer network. Parallel processing is also

called parallel computing.

 Parallel processing is particularly useful when running programs that

perform complex computations, and it provides a viable option to the quest

for cheaper computing alternatives.

 Most computers have just one CPU, but some models have several.

There are even computers with thousands of CPUs. With single-CPU

computers, it is possible to perform parallel processing by connecting the

computers in a network. However, this type of parallel processing requires

very sophisticated software called distributed processing software.

https://searchsoftwarequality.techtarget.com/definition/program
https://whatis.techtarget.com/definition/processor
https://www.webopedia.com/TERM/C/computer.html
https://www.webopedia.com/TERM/N/network.html
https://www.webopedia.com/TERM/S/software.html
https://www.webopedia.com/TERM/D/distributed_processing.html

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 2

Motivation Parallelism

Development of parallel software has traditionally been thought of as time

and effort intensive. When viewed in the context of the brisk rate of

development of microprocessors, one is tempted to question the need for

devoting significant effort towards exploiting parallelism as a means of

accelerating applications. It takes two years to develop a parallel

application, during which time the underlying hardware and/or software

platform has become obsolete, the development effort is clearly wasted.

However, there are some unmistakable trends in hardware design, which

indicate that uniprocessor (or implicitly parallel) architectures may not be

able to sustain the rate of realizable performance increments in the future.

Smaller transistors = faster processors .

Faster processors = increased power consumption .

Increased power consumption = increased heat .

Increased heat = unreliable processors.

Why we Need to Increasing Performance

 Computing a solution can take anywhere from hours to days. Parallel

computing techniques can help reduce the time it takes to reach a solution.

To derive the full benefits of parallelization, it is important to choose an

approach that is appropriate for the optimization problem. As our

computational power increases solving problems will be much easier.

Why we’re Building Parallel Systems

 Much of the tremendous increase in single processor performance has

been driven by the ever-increasing density of transistors the electronic

switches on integrated circuits. As the size of transistors decreases, their

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 3

speed can be increased, and the overall speed of the integrated circuit can

be increased. As the speed of transistors increases, their power

consumption also increases. Most of this power is dissipated as heat, and

when an integrated circuit gets too hot, it becomes unreliable. In the first

decade of the twenty-first century, air-cooled integrated circuits are

reaching the limits of their ability to dissipate heat.

 Therefore, it is becoming impossible to continue to increase the speed

of integrated circuits.

Q: How can we exploit the continuing increase in transistor density?

 The answer is parallelism.

 Rather than building ever-faster, more complex, monolithic processors,

the industry has decided to put multiple, relatively simple, complete

processors on a single chip. Such integrated circuits are called multicore

processors, and core has become synonymous with central processing unit,

or CPU. In this setting a conventional processor with one CPU is often

called a single-core system.

Q: Why Parallel?

• Because it’s faster.
• Because it’s cheaper!
• Because it’s natural!

Why we Need to Write Parallel Programs

 Most programs that have been written for conventional, single-core

systems cannot exploit the presence of multiple cores. We can run multiple

instances of a program on a multicore system, but this is often of little help.

For example, being able to run multiple instances of our favorite game

program isn’t really what we want the program to run faster with more

realistic graphics. In order to do this, we need to either rewrite our serial

programs so that they’re parallel, so that they can make use of multiple

cores, or write translation programs, that is, programs that will

automatically convert serial programs into parallel programs.)مهم فهم(

 Parallel computing requires combining an understanding of hardware,

software, and parallelism to develop an application. It is more than just

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 4

message passing or threading. Current hardware and software give many

different options to bring parallelism to your application. Some of these

options can even be combined to yield even greater efficiency and speedup.

 An efficient parallel implementation of a serial program may not be

obtained by finding efficient parallelizations of each of its steps. Rather,

the best parallelization may be obtained by stepping back and devising an

entirely new algorithm.) مهم فهم(

 As an example, suppose that we need to compute n values and add them

together. We know that this can be done with the following serial code:

sum = 0;

for (i = 0; i < n; i++)

 { x = Compute next value(. . .);

sum += x; }

 Now suppose we also have p cores and p is much smaller than n. Then

each core can form a partial sum of approximately n=p values:

my sum = 0; my first i = . . . ; my last i = . . . ;

for (my i = my first i; my i < my last i; my i++) {

my x = Compute next value(. . .);

my sum += my x;}

 Here the prefix my indicates that each core is using its own, private

variables, and each core can execute this block of code independently of

the other cores. After each core completes execution of this code, its

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 5

variable my sum will store the sum of the values computed by its calls to

compute next value. For example, if there are eight cores, n = 24, and the

24 calls to Compute next value return the values:

1, 4, 3 , 9, 2, 8 , 5, 1, 1 , 6, 2, 7 , 2, 5, 0 , 4, 1, 8 , 6, 5 ,1 , 2, 3, 9

Then the values stored in my sum might be:

Core

my sum

 0 1 2 3 4 5 6 7

 8 19 7 15 7 13 12 14

 Here we’re assuming the cores are identified by nonnegative integers in

the range0, 1, … ,p-1, where p is the number of cores. When the cores are

done computing their values of my sum, they can form a global sum by

sending their results to a designated “master” core, which can add their

results:

In our example, if the master core is core 0, it would add the values

8+19+7+ 15+7+13+12+14 = 95. But you can probably see a better way to

do this especially if the number of cores is large. Instead of making the

master core do all the work of computing the final sum, we can pair the

cores so that while core 0 adds in the result of core 1, core 2 can add in the

result of core 3, core 4 can add in the result of core 5 and so on. Then we

can repeat the process with only the even-ranked cores: 0 adds in the result

of 2, 4 adds in the result of 6, and so on. Now cores divisible by 4 repeat

the process, and so on. See Figure 1.1. The circles contain the current value

of each core’s sum, and the lines with arrows indicate that one core is

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 6

sending its sum to another core. The plus signs indicate that a core is

receiving a sum from another core and adding the received sum into its

own sum. For both “global” sums, the master core (core 0) does more work

than any other core, and the length of time it takes the program to complete

the final sum should be the length of time it takes for the master to

complete. However, with eight cores, the master will carry out seven

receives and adds using the first method, while with the second method it

will only carry out three.

Figure (1.1) Multiple cores forming a global sum.

H.W: Does Parallelism considered useful all the time? مهم

1.5 How do we Write Parallel Programs?

 There are a number of possible answers to this question, but most of

them depend on the basic idea of partitioning the work to be done among

the cores. There are two widely used approaches: task-parallelism and

data-parallelism. In task-parallelism, we partition the various tasks

carried out in solving the problem among the cores. In data-parallelism, we

partition the data used in solving the problem among the cores, and each

core carries out more or less similar operations on its part of the data.

• Data Parallelism

 Data Parallelism means concurrent execution of the same task on each

multiple computing core. Let’s take an example, summing the contents of

an array of size N. For a single-core system, one thread would simply sum

the elements [0] . . . [N − 1]. For a dual-core system, however, thread A,

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 7

running on core 0, could sum the elements [0] . . . [N/2 − 1] and while

thread B, running on core 1, could sum the elements [N/2] . . . [N − 1]. So

the Two threads would be running in parallel on separate computing cores.

• Task Parallelism

 Task Parallelism means concurrent execution of the different task on

multiple computing cores. Consider again our example above, an example

of task parallelism might involve two threads, each performing a unique

statistical operation on the array of elements. Again The threads are

operating in parallel on separate computing cores, but each is performing

a unique operation.

The key differences between Data Parallelisms and Task Parallelisms are

1.6 Concurrent, Parallel, Distributed

 In concurrent computing, a program is one in which multiple tasks can

be in progress at any instant. In parallel computing, a program is one in

which multiple tasks cooperate closely to solve a problem. In distributed

computing, a program may need to cooperate with other programs to solve

a problem. So parallel and distributed programs are concurrent, but a

program such as a multitasking operating system is also concurrent, even

when it is run on a machine with only one core, since multiple tasks can be

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 8

in progress at any instant. There isn’t a clear-cut distinction between

parallel and distributed programs, but a parallel program usually runs

multiple tasks simultaneously on cores that are physically close to each

other and that either share the same memory or are connected by a very

high-speed network. On the other hand, distributed programs tend to be

more “loosely coupled.”

 The tasks may be executed by multiple computers that are separated by

large distances, and the tasks themselves are often executed by programs

that were created independently.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 9

Lecture2 Background
2.1 Introduction and Some Background

 Parallel hardware and software have grown out of conventional serial

hardware and software: hardware and software that runs (more or less) a

single job at a time. A serial systems The von Neumann architecture The

“classical” von Neumann architecture consists of :

• Central Processing Unit (CPU (

The Central Processing Unit (CPU) is the electronic circuit

responsible for executing the instructions of a computer program. It

is sometimes referred to as the microprocessor or processor .The

CPU contains the ALU, CU and a variety of registers.

- Arithmetic and Logic Unit (ALU)

The ALU allows arithmetic (add, subtract etc) and logic (AND,OR,

NOT etc) operations to be carried out .

- Control Unit (CU)

The control unit controls the operation of the computer’s ALU,

memory and input/output devices, telling them how to respond to

the program instructions it has just read and interpreted from the

memory unit. The control unit also provides the timing and control

signals required by other computer components. The control unit is

responsible for deciding which instructions in a program should be

executed. The control unit has a special register called the program

counter. It stores the address of the next instruction to be executed.

- Registers

Data in the CPU and information about the state of an executing

program are stored in special, very fast storage called registers.

• Memory Unit

 The memory unit consists of RAM, sometimes referred to as

primary or main memory. Unlike a hard drive (secondary memory),

this memory is fast and also directly accessible by the CPU .

RAM is split into partitions. Each partition consists of an address

and its contents (both in binary for.)The address will uniquely

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 10

identify every location in the memory. Loading data from permanent

memory (hard drive), into the faster and directly accessible

temporary memory (RAM), allows the CPU to operate much

quicker.

• Buses

 Buses are the means by which data is transmitted from one part of

a computer to another, connecting all major internal components to

the CPU and memory.

 A von Neumann machine executes a single instruction at a time, and

each instruction operates on only a few pieces of data. See Figure 2.1.

When data or instructions are transferred from memory to the CPU, we

sometimes say the data or instructions are fetched or read from memory.

When data are transferred from the CPU to memory, we sometimes say the

data are written to memory or stored.

 The separation of memory and CPU is often called the von Neumann

Bottleneck , since the interconnect determines the rate at which

instructions and data can be accessed. The potentially vast quantity of data

and instructions needed to run a program is effectively isolated from the

CPU. In 2010 CPUs are capable of executing instructions more than one

hundred times faster than they can fetch items from main memory.

H.W : What is von Neumann main problem?

Figure(2.1) The von Neumann architecture.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 11

Processes, Multitasking, and Threads

 Operating system, or OS, is a major piece of software whose purpose

is to manage hardware and software resources on a computer. It determines

which programs can run and when they can run. It also controls the

allocation of memory to running programs and access to peripheral devices

such as hard disks and network interface cards.

 When a user runs a program, the operating system creates a process an

instance of a computer program that is being executed. A process consists

of several entities.

• The executable machine language program.

• A block of memory, which will include the executable code, a call

stack that keeps track of active functions, a heap, and some other

memory locations.

• Descriptors of resources that the operating system has allocated to

the process for example, file descriptors.

• Security information for example, information specifying which

hardware and software resources the process can access.

• Information about the state of the process, such as whether the

process is ready to run or is waiting on some resource, the content

of the registers, and information about the process’ memory.

A process : is an instance of a program running in a computer. It is close

in meaning to task , a term used in some operating systems. In some

operating systems, a process is started when a program is initiated (either

by a user entering a shell command or by another program). Like a task,

a process is a running program with which a particular set of data is

associated so that the process can be kept track of. An application that is

being shared by multiple users will generally have one process at some

stage of execution for each user.

Multitasking: Multitasking is when a CPU is provided to execute

multiple tasks at a time. Multitasking involves often CPU switching

between the tasks, so that users can collaborate with each program

together. Unlike multithreading, In multitasking, the processes share

separate memory and resources. As multitasking involves CPU

switching between the tasks rapidly, So the little time is needed in order

to switch from the one user to next.

https://www.techtarget.com/whatis/definition/task
https://www.techtarget.com/searchdatacenter/definition/shell
https://www.techtarget.com/searchsoftwarequality/definition/application

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 12

Multithreading: Multithreading is a system in which many threads are

created from a process through which the computer power is increased.

In multithreading, CPU is provided in order to execute many threads

from a process at a time, and in multithreading, process creation is

performed according to cost. Unlike multitasking, multithreading

provides the same memory and resources to the processes for execution.

 Most modern operating systems are multitasking. This means that (مهم)

the operating system provides support for the apparent simultaneous

execution of multiple programs. This is possible even on a system with a

single core, since each process runs for a small interval of time (typically

a few milliseconds), often called a time slice. After one running program

has executed for a time slice, the operating system can run a different

program. A multitasking OS may change the running process many times

a minute, even though changing the running process can take a long time.

In a multitasking OS if a process needs to wait for a resource for example,

it needs to read data from external storage it will block. This means that it

will stop executing and the operating system can run another process.

However, many programs can continue to do useful work even though the

part of the program that is currently executing must wait on a resource. For

example, an airline reservation system that is blocked waiting for a seat

map for one user could provide a list of available flights to another user.

 Threading provides a mechanism for programmers to divide their

programs into more or less independent tasks with the property that when

one thread is blocked another thread can be run. in most systems it’s

possible to switch between threads much faster than it’s possible to switch

between processes . This is because threads are “lighter weight” than

processes. Threads are contained within processes, so they can use the

same executable, and they usually share the same memory and the same

I/O devices.

We can say that two threads belonging to one process can share most

of the process’ resources.

The two most important exceptions are :(مهم)

• that they’ll need a record of their own program counters

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 13

• and they’ll need their own call stacks

So that they can execute independently of each other If a process is the

“master” thread of execution and threads are started and stopped by the

process, then we can envision the process and its subsidiary threads as

lines: when a thread is started, it forks off the process; when a thread

terminates, it joins the process, See Figure(2.2).

Figure (2.2). A Process and two threads.

After that, the “join” part begins, in which results of all subtasks are

recursively joined into a single result, the program simply waits until

every subtask is executed.

The main difference between process and thread are list in the table :

Basic for comparison process thread

Basic Program in execution Light weight process or

part of it

Memory sharing Completely isolated and

do not share memory

Shares memory with each

other

Resource conception More Less

efficiency Less efficient Enhanced efficiency

Time required for

creation

More Less

Context switching time Takes more time Consumes less time

Uncertain termination Results in loss of process A thread can be reclaimed

Time required for

termination

More Less

See figure 1 for more detail about the structure outline of the process and

thread.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 14

Figure 1 Process and thread structure.

Instruction-level Parallelism (ILP)

 Instruction Level Parallelism (ILP) is used to refer to the architecture

in which multiple operations can be performed parallelly in a particular

process, with its own set of resources (address space, registers, identifiers,

state, program counters). It refers to the compiler design techniques and

processors designed to execute operations, like memory load and store,

integer addition, float multiplication, in parallel to improve the

performance of the processors.

 Instruction-level parallelism (ILP) is a measure of how many of the

instructions in a computer program can be executed simultaneously. ILP

must not be confused with concurrency :

• ILP is the parallel execution of a sequence of instructions belonging

to a specific thread of execution of a process (a running program

with its set of resources: address space, a set of registers, its

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 15

identifiers, its state, program counter (aka instruction pointer), and

more) .

• Concurrency involves the assignment of threads of one or different

processes to a CPU's core in a strict alternation, or in true parallelism

if there are enough CPU cores, ideally one core for each runnable

thread .

There are two approaches to instruction level parallelism: Hardware and

Software.

 Hardware level works upon dynamic parallelism.

 Software level works on static parallelism.

Dynamic parallelism means the processor decides at run time which

instructions to execute in parallel, whereas static parallelism means the

compiler decides which instructions to execute in parallel. The Pentium

processor works on the dynamic sequence of parallel execution, but the

Itanium processor works on the static level parallelism.

Architecture :

 Instruction Level Parallelism is achieved when multiple operations are

performed in single cycle, that is done by either executing them

simultaneously or by utilizing gaps between two successive operations that

is created due to the latencies .

 Now, the decision of when to execute an operation depends largely on

the compiler rather than hardware. However, extent of compiler’s control

depends on type of ILP architecture where information regarding

parallelism given by compiler to hardware via program varies. The

classification of ILP architectures can be done in the following ways :

• Sequential Architecture :

program is not expected to explicitly convey any information

regarding parallelism to hardware, like superscalar architecture.

• Dependence Architectures :

program explicitly mentions information regarding dependencies

between operations like dataflow architecture .

• Independence Architecture :

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 16

program gives information regarding which operations are

independent of each other so that they can be executed .

In order to apply ILP, compiler and hardware must determine data

dependencies, independent operations, and scheduling of these

independent operations, assignment of functional unit, and register to store

data.

Figure (2.3) Types of parallelism.

Task Parallelism : This form of parallelism covers the execution of

computer programs across multiple processors on same or multiple

machines. It focuses on executing different operations in parallel to fully

utilize the available computing resources in form of processors and

memory .

 One example of task parallelism would be an application creating

threads for doing parallel processing where each thread is responsible for

performing a different operation. Here is pseudo code illustrating task

parallelism :

FOR each CPU in parallel computing environment

 Retrieve next task from task queue

 Create a thread and provide it with the retrieved task

 Start the created thread

END FOR

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 17

 Some of Big Data frameworks that utilize task parallelism are Apache

Storm and Apache YARN (it supports more of hybrid parallelism

providing both task and data parallelism).

Data Parallelism : This form of parallelism focuses on distribution of data

sets across the multiple computation programs. In this form, same

operations are performed on different parallel computing processors on the

distributed data sub set .

 One example of data parallelism would be to divide the input data into

sub sets and pass it to the threads performing same task on different CPUs.

Here is the pseudo example illustrating data parallelism using a data array

called :

lower_limit = 0

upper_limit = 0

FOR each CPU in parallel computing environment

 lower_limit = upper_limit + 1

 upper_limit = upper_limit + round(d.length/ no_of_cpus)

 Create a thread and provide it with lower_limit and upper_limit data

array indexes

 Start the created thread

END FOR

Some of Big Data frameworks that utilize data parallelism are Apache

Spark, Apache MapReduce and Apache YARN (it supports more of hybrid

parallelism providing both task and data parallelism).

Parallel Hardware

 Multiple issue and pipelining can clearly be considered to be parallel

hardware, since functional units are replicated. Since this form of

parallelism isn’t usually visible to the programmer, we’re treating both of

them as extensions to the basic von Neumann model, and for our purposes,

parallel hardware will be limited to hardware that’s visible to the

programmer. In other words we’ll consider the hardware to be parallel if :

1- We can readily modify source code to exploit it.

2- We must modify source code to exploit it.

 Flynn's taxonomy in general, digital computers may be classified into

four categories, according to the multiplicity of instruction and data

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 18

streams. This scheme for classifying computer organizations was

introduced by Michael J. Flynn. The essential computing process is the

execution of a sequence of instructions on a set of data. The term stream is

used here to denote a sequence of items (instructions or data) as executed

or operated upon by a single processor.

 Instructions or data are defined with respect to a referenced machine. An

instruction stream is a sequence of instructions as executed by the

machine; a data stream is a sequence of data including input, partial, or

temporary results, called for the instruction stream. Computer

organizations are characterized by the multiplicity of the hardware

provided to service the instruction and data streams. Listed below are

Flynn’s four machine organizations:

• Single instruction stream single data stream (SISD)

• Single instruction stream multiple data stream (SIMD)

• Multiple instruction stream single data stream (MISD)

• Multiple instruction stream multiple data stream (MIMD)

2.4.1 SIMD systems

• In parallel computing, Flynn’s taxonomy is frequently used to

classify computer architectures.

• It classifies a system according to the number of instruction streams

and the number of data streams it can simultaneously manage.

• A classical von Neumann system is therefore a single instruction

stream, single data stream, or SISD system, since it executes a

single instruction at a time and it can fetch or store one item of data

at a time

• Single instruction, multiple data, or SIMD, systems are parallel

systems.

• As the name suggests, SIMD systems operate on multiple data

streams by applying the same instruction to multiple data items, so

an abstract SIMD system can be thought of as having a single control

unit and multiple ALUs. An instruction is broadcast from the control

unit to the ALUs, and each ALU either applies the instruction to the

current data item, or it is idle.

As an example, suppose we want to carry out a “vector addition.” That is,

suppose we have two arrays x and y, each with n elements, and we want to

add the elements of y to the elements of x.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 19

 Suppose further that our SIMD system has n ALUs.

1- Then we could load x[i] and y[i] into the ith ALU, have the ith ALU

add y[i] to x[i], and store the result in x[i].

2- If the system has m ALUs and m < n, we can simply execute the

additions in blocks of m elements at a time. For example, if m D 4

and n D 15, we can first add elements 0 to 3, then elements 4 to 7,

then elements 8 to 11, and finally elements 12 to 14. Note that in the

last group of elements in our example elements 12 to 14 we’re only

operating on three elements of x and y, so one of the four ALUs will

be idle.

Note in a “classical” SIMD system, the ALUs must operate

synchronously, that is, each ALU must wait for the next instruction to

be broadcast before proceeding.

• The ALUs have no instruction storage, so an ALU can’t delay

execution of an instruction by storing it for later execution.

• The first example shows, SIMD systems are ideal for parallelizing

simple loops that operate on large arrays of data.

• Parallelism that’s obtained by dividing data among the processors

and having the processors all apply (more or less) the same

instructions to their subsets of the data is called data-parallelism.

• SIMD parallelism can be very efficient on large data parallel

problems, but SIMD systems often don’t do very well on other types

of parallel problems.

• The late 1990s the only widely produced SIMD systems were vector

processors.

• More recently, graphics processing units, or GPUs, and desktop

CPUs are making use of aspects of SIMD computing.

2.4.2 MIMD systems

• MIMD systems multiple instruction, multiple data, or MIMD,

systems support multiple simultaneous instruction streams

operating on multiple data streams.

• MIMD systems typically consist of a collection of fully

independent processing units or cores, each of which has its own

control unit and its own ALU.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 20

• Unlike SIMD systems, MIMD systems are usually asynchronous

the processors can operate at their own pace.

• In many MIMD systems there is no global clock, and there may be

no relation between the system times on two different processors.

There are two principal types of MIMD systems:

1- Shared-memory systems

2- Distributed-memory system

Writing and Running Parallel Programs

 In the past, virtually all parallel program development was done using a

text editor such as vi or Emacs, and the program was either compiled and

run from the command line or from within the editor. Debuggers were also

typically started from the command line. Now there are also integrated

development environments (IDEs) available from Microsoft, the Eclipse

project, and others. We can use text editors or warped functions.
Undoubtedly, the first step in developing parallel software is to first

understand the problem that you wish to solve in parallel. If you are starting

with a serial program, this necessitates understanding the existing code

also . Before spending time in an attempt to develop a parallel solution for

a problem :

1- determine whether or not the problem is one that can actually be

parallelized.

2- Calculate the potential energy for each of several thousand

independent conformations of a molecule.

3- When done, find the minimum energy conformation .

This problem is able to be solved in parallel if :

1- Each of the molecular conformations is independently

determinable.

2- The calculation of the minimum energy conformation is also a

parallelizable problem.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 21

Lecture 3 Shared-Memory

Shared-Memory Programming with Pthreads

 From a programmer’s point of view a shared-memory system is one in

which all the cores can access all the memory locations (see Figure 4.1).

Thus, an obvious approach to the problem of coordinating the work of the

cores is to specify that certain memory locations are “shared.” we might

well wonder why all parallel programs don’t use this shared-memory

approach.

Figure 4.1 shared-memory system.

There are problems in programming shared-memory systems, problems

that are often different from the problems encountered in distributed-

memory programming. For example, we saw that if different cores attempt

to update a single shared-memory location, then the contents of the shared

location can be unpredictable. The code that updates the shared location is

an example of a critical section.

In shared-memory programming, an instance of a program running on a

processor is usually called a thread (unlike MPI, where it’s called a

process). مهم()

Processes, Threads, and Pthreads

 In shared-memory programming, a thread is somewhat analogous to

a process in MPI programming, t’s a “lighter-weight”. A process is an

instance of a running (or suspended) program. In addition to its executable,

it consists of the following:

• A block of memory for the stack.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 22

• A block of memory for the heap.

• Descriptors of resources that the system has allocated for the process

for example, file descriptors.

• Security information for example, information about which

hardware and software resources the process can access.

• Information about the state of the process, such as whether the

process is ready to run or is waiting on a resource, the content of the

registers including the program counter, and so on .

 In most systems, by default, a process’ memory blocks are private,

another process can’t directly access the memory of a process unless the

operating system intervenes. One user’s processes shouldn’t be allowed

access to the memory of another user’s processes. However, this isn’t what

we want when we’re running shared-memory programs. At a minimum,

we’d like certain variables to be available to multiple processes, so shared-

memory “processes” typically allow much easier access to each others’

memory.

 It’s conceivable that they share pretty much everything that’s process

specific, except their stacks and their program counters this can be

relatively easily arranged by starting a single process and then having the

process start these “lighter-weight” processes. For this reason, they’re

often called light-weight processes. The more commonly used term,

thread, comes from the concept of “thread of control.” A thread of

control is just a sequence of statements in a program. The term suggests a

stream of control in a single process, and in a shared-memory program a

single process may have multiple threads of control.

 The expression fork-join in parallelism indicates a way to describe

parallel performance of an application where the program stream splits

(forks) into two or more threads capable of being executed simultaneously

and then assemble (join) together, back into one flow after completing all

the parallel work.

Why Multithreading? Threads are popular way to improve application

through parallelism. For example, in a browser, multiple tabs can be

different threads. MS word uses multiple threads, one thread to format the

text, other thread to process inputs, etc.

Threads operate faster than processes due to following reasons:

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 23

1) Thread creation is much faster.

2) Context switching between threads is much faster.

3) Threads can be terminated easily

4) Communication between threads is faster.

HELLO, WORLD
 Pthreads program which the main function starts up several threads.

Each thread prints a message and then quits.

Execution
The program is compiled like an ordinary C program, with the possible

exception that we may need to link in the Pthreads Library.
A Pthreads “hello, world” program

#include <pthread.h>

/* function to be run as a thread always must have the same signature:

 it has one void* parameter and returns void */

void *threadfunction(void *arg)

{ printf("Hello, World!\n"); }

int main(void)

{

 pthread_t thread;

 pthread_create(&thread, NULL, threadfunction, NULL);

 /*creates a new thread with default attributes and NULL passed as the argument to the start

routine*/

 pthread_join(thread, NULL); /*wait until the created thread terminates*/

 return 0;

 }

 printf("%s\n", strerror(createerror), stderr);

 return 1;

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 24

}

Preliminaries السابق()وصف البرنامج

 Let’s take a closer look at the source code in Program of hello world

above .

• First notice that this is just a C program with a main function and

one other function.

• In Line 1 we include pthread.h, the Pthreads header file, which

declares the various Pthreads functions, constants, types, and so on.

• We define a global variable thread . In Pthreads programs, global

variables are shared by all the threads.

• To create thread we use pthread_create(&thread, NULL,

threadfunction, NULL);

• To finish thread work we use pthread_join(thread, NULL);

Local variables and function arguments that is, variables declared in

functions are (ordinarily) private to the thread executing the function.

If several threads are executing the same function, each thread will have

its own private copies of the local variables and function arguments.

This makes sense if you recall that each thread has its own stack.

Starting the Threads , Running the threads

 In Pthreads the threads are started by the program executable. This

introduces a bit of additional complexity, as we need to include code in our

program to explicitly start the threads, and we need data structures to store

information on the threads. we allocate storage for one pthread_t object

for each thread. The pthread_t data structure is used for storing thread-

specific information. It’s declared in pthread.h. The pthread_t objects are

examples of opaque objects.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 25

The actual data that they store is system specific, and their data members

aren’t directly accessible to user code.

 We use the pthread create function to start the threads. The syntax of

pthread_create is:

pthread_create(&thread name, attr, start function, arg);

• The first argument is a pointer to the appropriate pthread_t object.

• We won’t be using the second argument, so we just pass the

argument NULL in our function call.

• The third argument is the function that the thread is to run, and the

last argument is a pointer to the argument that should be passed to

the function start_routine.

• The return value for most Pthreads functions indicates if there’s been

an error in the function call.

 Recall that the type void* can be cast to any pointer type in C, so args_p

can point to a list containing one or more values needed by thread_

function. Similarly, the return value of thread_function can point to a list

of one or more values.

#include <pthread.h>

pthread_create (thread, attr, start_routine, arg)

no Parameter Description

1 thread

An opaque, unique identifier for the new thread

returned by the subroutine.

2 attr

An opaque attribute object that may be used to set

thread attributes. You can specify a thread

attributes object, or NULL for the default values.

3 start_routine

The C++ routine that the thread will execute once

it is created.

4 arg

A single argument that may be passed to

start_routine. It must be passed by reference as a

pointer cast of type void. NULL may be used if no

argument is to be passed.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 26

Start Thread

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h> //Header file for sleep().

#include <pthread.h>

// A normal C function that is executed as a thread

// when its name is specified in pthread_create()

void *myThreadFun(void *vargp)

{

 printf("Hi friends \n");

 return NULL;

}

int main()

{ pthread_t thread_id;

 printf("Before Thread\n");

 pthread_create(&thread_id, NULL, myThreadFun, NULL);

 pthread_join(thread_id, NULL);

 printf("After Thread\n");

 exit(0);

}

In main(), we declare a variable called thread_id, which is of type

Pthread_t, which is an integer used to identify the thread in the system.

After declaring thread_id, we call pthread_create() function to create a

thread .pthread_create() takes 4 arguments .

The pthread_join() function for threads is the equivalent of wait() for

processes. A call to pthread_join blocks the calling thread until the thread

with identifier equal to the first argument terminates.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 27

A C program to show multiple threads with global and static variables

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <pthread.h>

// Let us create a global variable to change it in threads

int g = 0;

// The function to be executed by all threads

void *myThreadFun(void *vargp)

{

 // Store the value argument passed to this thread

 int *myid = (int *)vargp;

 // Let us create a static variable to observe its changes

 static int s = 0;

 // Change static and global variables

 ++s; ++g;

 // Print the argument, static and global variables

 printf("Thread ID: %d, Static: %d, Global: %d\n", *myid, ++s, ++g); }

int main()

{ int i;

 pthread_t tid;

 // Let us create three threads

 for (i = 0; i < 3; i++)

 pthread_create(&tid, NULL, myThreadFun, (void *)&tid);

 pthread_exit(NULL);

 return 0;

}

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 28

Passing arguments to threads

Passing arguments to threads

#include <stdio.h>

#include <pthread.h>

void *thread_func(void *arg)

{

 printf("I am thread #%d\n", *(int *)arg);

 return NULL;

}

int main(int argc, char *argv[])

{

 pthread_t t1, t2;

 int i = 1; int j = 2;

 pthread_create(&t1, NULL, &thread_func, &i);

 pthread_create(&t2, NULL, &thread_func, &j);

 /* This makes the main thread wait on the death of t1 and t2. */

 pthread_join(t1, NULL);

 pthread_join(t2, NULL);

 printf("In main thread\n");

 return 0; }

Stopping the Threads

 We call the function pthread_join once for each thread. A single call

to pthread_join will wait for the thread associated with the pthread_t

object to complete.

pthread_join(thread, NULL);

/* Create 2 threads t1 and t2

with default attributes which

will execute function

"thread_func()" in their own

contexts with specified

arguments. */

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 29

The second argument can be used to receive any return value computed by

the thread. There are following two routines which we can use to join or

data threads . The default non-detached thread is allocated storage by the

system that needs to be released on termination. To wait for a non-detached

thread to terminate and reclaim the allocated storage and get the

termination status, we use the following function:

pthread_join (id,status)

no Parameter Description

1 id Input that specifies the Thread Id

2 status Input pointer to a pointer that on successful

return will contain the termination status of

the specified thread

Error checking

 In the interest of keeping the program compact and easy to read, we have

resisted the temptation to include many details that would therefore be

important in a “real” program. The most likely source of problems in this

example (and in many programs) is the user input or lack of it. It would

therefore be a very good idea to check that the program was started with

command line arguments, and, if it was, to check the actual systems value

of the number of threads to see if it’s reasonable. It may also be a good idea

to check the error codes returned by the Pthreads functions.

Other approaches to thread startup

 The main thread then creates all of the “subsidiary” threads. While the

threads are running, the main thread prints a message, and then waits for

the other threads to terminate. This approach to threaded programming is

very similar to our approach to MPI programming, in which the MPI

system starts a collection of processes and waits for them to complete.

 There is, however, a very different approach to the design of

multithreaded programs. In this approach, subsidiary threads are only

started as the need arises. Our main thread can start all the threads it

anticipates needing at the beginning of the program . However, when a

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 30

thread has no work, instead of terminating, it can sit idle until more work

is available.

Mutex , READ-WRITE Locks

 Thread synchronization is defined as a mechanism which ensures that

two or more concurrent processes or threads do not simultaneously execute

some particular program segment known as a critical section. Processes’

access to critical section is controlled by using synchronization techniques.

When one thread starts executing the critical section (a serialized segment

of the program) the other thread should wait until the first thread finishes.

If proper synchronization techniques are not applied, it may cause a race

condition where the values of variables may be unpredictable and vary

depending on the timings of context switches of the processes or threads.

Mutex Locks: Theory:

• A mutex lock variable has 2 values (states)

o Unlocked

o Locked

• A mutex lock is a synchronization object with 2 operations

• Lock

o If the mutex lock is in the unlocked state, the lock will

complete (and the thread continues with the next instruction

following the lock command). The value (state) of the mutex

lock is changed to locked

o If the mutex lock is in the locked state, the thread that

executes the lock command will block (it stops execution)

until the value (state) of the mutex lock

becomes unlocked (When the state of the mutex lock does

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 31

become unlocked, the lock command will complete and

change the state of the mutex lock to locked)

• Unlock

o If the mutex lock is in the locked state, the state is changed

to unlocked

o If the mutex lock is in the unlocked state, this operation has

no effect.

The mutex lock can ONLY be unlocked by the thread had previously

locked the mutex.

pthread_mutex_t x;

Initializing a mutex variable :

After defining the mutex lock variable, you must initialized it using the

following function :

int pthread_mutex_init(pthread_mutex_t *mutex, pthread_mutexattr_t

*attr (

mutex: is the mutex lock that you want to initialize (pass the address) attr:

is the set of initial property of the mutex lock .

The most common mutex lock is one where the lock is initially in the

unlock. This kind of mutex lock is created using the (default) attribute null

Example: initialize a mutex variable:

pthread_mutex_t x; /* Define a mutex lock "x /* "

pthread_mutex_init(&x, NULL); /* Initialize "x" */

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 32

With locks

pthread_mutex_lock(&x);

Unlock

pthread_mutex_unlock(&x);

Mutex lock for Thread Synchronization

 Thread synchronization is defined as a mechanism which ensures

that two or more concurrent processes or threads do not simultaneously

execute some particular program segment known as a critical section.

Processes’ access to critical section is controlled by using synchronization

techniques. When one thread starts executing the critical section (a

serialized segment of the program) the other thread should wait until the

first thread finishes. If proper synchronization techniques are not applied,

it may cause a race condition where the values of variables may be

unpredictable and vary depending on the timings of context switches of the

processes or threads.

Thread Synchronization Problems

An example code to study synchronization problems :

Thread Synchronization Problems

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

https://www.geeksforgeeks.org/g-fact-70/
https://practice.geeksforgeeks.org/problems/what-is-race-condition

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 33

#include <string.h>

#include <unistd.h>

 pthread_t tid[2];

int counter;

void* trythis(void* arg)

{

 unsigned long i = 0;

 counter += 1;

 printf("\n Job %d has started\n", counter) ;

 for (i = 0; i < (0xFFFFFFFF); i++) ;

 printf("\n Job %d has finished\n", counter);

 return NULL;

}

 int main(void)

{

 int i = 0;

 int error;

 while (i < 2) {

 error = pthread_create(&(tid[i]), NULL, &trythis, NULL);

 if (error != 0)

 printf("\nThread can't be created : [%s]", strerror(error));

 i++;

 }

 pthread_join(tid[0], NULL);

 pthread_join(tid[1], NULL);

 return 0;}

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 34

How to compile above program?

In this example, two threads(jobs) are created and in the start function of

these threads, a counter is maintained to get the logs about job number

which is started and when it is completed.

Output :

Job 1 has started

Job 2 has started

Job 2 has finished

Job 2 has finished

Problem: From the last two logs, one can see that the log ‘Job 2 has

finished’ is repeated twice while no log for ‘Job 1 has finished’ is seen.

Why it has occurred ?

On observing closely and visualizing the execution of the code, we can

see that :

• The log ‘Job 2 has started’ is printed just after ‘Job 1 has Started’ so it

can easily

• be concluded that while thread 1 was processing the scheduler

scheduled the thread 2.

• If we take the above assumption true then the value of the ‘counter’

variable got incremented again before job 1 got finished.

• So, when Job 1 actually got finished, then the wrong value of counter

produced the log ‘Job 2 has finished’ followed by the ‘Job 2 has

finished’ for the actual job 2 or vice versa as it is dependent on

scheduler.

• So we see that its not the repetitive log but the wrong value of the

‘counter’ variable that is the problem.

• The actual problem was the usage of the variable ‘counter’ by a second

thread when the first thread was using or about to use it.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 35

• In other words, we can say that lack of synchronization between the

threads while using the shared resource ‘counter’ caused the problems

or in one word we can say that this problem happened due to

‘Synchronization problem’ between two threads.

How to solve it ?

The most popular way of achieving thread synchronization is by

using Mutexes.

Mutex

• A Mutex is a lock that we set before using a shared resource

and release after using it.

• When the lock is set, no other thread can access the locked

region of code.

• So we see that even if thread 2 is scheduled while thread 1

was not done accessing the shared resource and the code is

locked by thread 1 using mutexes then thread 2 cannot even

access that region of code.

• So this ensures synchronized access of shared resources in the

code.

Working of a mutex

1- Suppose one thread has locked a region of code using

mutex and is executing that piece of code .

2- Now if scheduler decides to do a context switch, then

all the other threads which are ready to execute the

same region are unblocked

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 36

3- Only one of all the threads would make it to the

execution but if this thread tries to execute the same

region of code that is already locked then it will again

go to sleep .

4- Context switch will take place again and again but no

thread would be able to execute the locked region of

code until the mutex lock over it is released.

5- Mutex lock will only be released by the thread who

locked it

6- So this ensures that once a thread has locked a piece of

code then no other thread can execute the same region

until it is unlocked by the thread who locked it.

Hence, this system ensures synchronization among the threads while

working on shared resources.

A mutex is initialized and then a lock is achieved by calling the

following two functions : The first function initializes a mutex and

through second function any critical region in the code can be locked.

1. int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t *restrict attr) : Creates a mutex,

referenced by mutex, with attributes specified by attr. If attr is

NULL, the default mutex attribute (NONRECURSIVE) is used.

Returned value

If successful, pthread_mutex_init() returns 0, and the state of

the mutex becomes initialized and unlocked.

If unsuccessful, pthread_mutex_init() returns -1.

2. int pthread_mutex_lock(pthread_mutex_t *mutex) : Locks

a mutex object, which identifies a mutex. If the mutex is already

locked by another thread, the thread waits for the mutex to

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 37

become available. The thread that has locked a mutex becomes

its current owner and remains the owner until the same thread

has unlocked it. When the mutex has the attribute of recursive,

the use of the lock may be different. When this kind of mutex is

locked multiple times by the same thread, then a count is

incremented and no waiting thread is posted. The owning thread

must call pthread_mutex_unlock() the same number of times to

decrement the count to zero.

Returned value

If successful, pthread_mutex_lock() returns 0.

If unsuccessful, pthread_mutex_lock() returns -1.

The mutex can be unlocked and destroyed by calling following two

functions :The first function releases the lock and the second function

destroys the lock so that it cannot be used anywhere in future.

1. int pthread_mutex_unlock(pthread_mutex_t *mutex)

: Releases a mutex object. If one or more threads are waiting to

lock the mutex, pthread_mutex_unlock() causes one of those

threads to return from pthread_mutex_lock() with the mutex

object acquired. If no threads are waiting for the mutex, the

mutex unlocks with no current owner. When the mutex has the

attribute of recursive the use of the lock may be different. When

this kind of mutex is locked multiple times by the same thread,

then unlock will decrement the count and no waiting thread is

posted to continue running with the lock. If the count is

decremented to zero, then the mutex is released and if any thread

is waiting for it is posted.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 38

Returned value

If successful, pthread_mutex_unlock() returns 0.

If unsuccessful, pthread_mutex_unlock() returns -1

2. int pthread_mutex_destroy(pthread_mutex_t *mutex)

: Deletes a mutex object, which identifies a mutex. Mutexes are

used to protect shared resources. mutex is set to an invalid value,

but can be reinitialized using pthread_mutex_init().

Returned value

If successful, pthread_mutex_destroy() returns 0.

If unsuccessful, pthread_mutex_destroy() returns -1.

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

pthread_t tid[2];

int counter;

pthread_mutex_t lock;

void* trythis(void* arg)

{

 pthread_mutex_lock(&lock);

 unsigned long i = 0;

 counter += 1;

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 39

 printf("\n Job %d has started\n", counter);

 for (i = 0; i < (0xFFFFFFFF); i++) ;

 printf("\n Job %d has finished\n", counter);

 pthread_mutex_unlock(&lock);

 return NULL; }

int main(void)

{

 int i = 0; int error;

 if (pthread_mutex_init(&lock, NULL) != 0) {

 printf("\n mutex init has failed\n");

 return 1; }

 while (i < 2) {

 error = pthread_create(&(tid[i]),

 NULL,

 &trythis, NULL);

 if (error != 0)

 printf("\nThread can't be created :[%s]",

 strerror(error)); i++; }

 pthread_join(tid[0], NULL);

 pthread_join(tid[1], NULL);

 pthread_mutex_destroy(&lock);

 return 0; }

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 40

In the above code :

• A mutex is initialized in the beginning of the main function .

• The same mutex is locked in the ‘trythis()’ function while using the

shared resource ‘counter .’

• At the end of the function ‘trythis()’ the same mutex is unlocked.

• At the end of the main function when both the threads are done, the

mutex is destroyed.

Output

Job 1 started

Job 1 finished

Job 2 started

Job 2 finished

So this time the start and finish logs of both the jobs are present. So thread

synchronization took place by the use of Mutex.

General notes

• A thread holds a mutex if it has successfully locked that mutex.

• Only one thread at any one time can hold a mutex.

• Mutexes are used to protect critical sections.

• Critical Sections are where threads are updating shared data.

• The updating thread should be forced to hold a mutex before

updating.

• releasing (unlocking) the mutex when done.

• The mutex should have been locked by the thread unlocking it.

• If this is not the case, behaviour depends on what sort of mutex it is.

Linux is non-standard here!

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 41

• Read man pthread_mutex_unlock for gory details, here.

• In the case of error checking this will result in an error.

• If other threads are waiting to lock this mutex, then one of them will

subsequently succeed.

• Which one is entirely non-deterministic.

Mutex eaxample

#include <pthread.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#define THREADS 5

static int sum = 1;

void *updater(void *ptr){

 sum = sum + 1;

 pthread_exit(NULL);

}

int main(void){

 int i;

 pthread_t threads[THREADS];

 for(i = 0; i < THREADS ; i++)

 pthread_create(&threads[i],NULL,updater,NULL);

 for(i = 0; i < THREADS ; i++)

 pthread_join(threads[i],NULL);

 fprintf(stderr, "sum = %d\n", sum);

 exit(EXIT_SUCCESS);

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 42

}

Notes

• Presumably it is designed so that after execution sum should be incremented

THREADS times.

• Thus it should print out: sum = 1 + THREADS

• In reality this does seem to work almost all the time.

• However it is at the mercy of the scheduler.

• In a unfortunate world the answer could be any number greater than 1 and

no bigger than 1 + THREADS.

• Pretty dangerous.

Another example

#include <pthread.h>

#include <unistd.h>

#define BUFSIZE 8

static int buffer[BUFSIZE];

static int bufin = 0;

static int bufout = 0;

static pthread_mutex_t

 buffer_lock = PTHREAD_MUTEX_INITIALIZER;

int get_buffersize(){

 return BUFSIZE;

}

void get_item(int *itemp){

 pthread_mutex_lock(&buffer_lock);

 *itemp = buffer[bufout];

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 43

 bufout = (bufout + 1) % BUFSIZE;

 pthread_mutex_unlock(&buffer_lock);

 return;

}

void put_item(int item){

 pthread_mutex_lock(&buffer_lock);

 buffer[bufin] = item;

 bufin = (bufin + 1) % BUFSIZE;

 pthread_mutex_unlock(&buffer_lock);

 return;

}

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 44

Time performance

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

void *entry_point(void *value)

{

\\ Time for Thread Execution Begin \\

 printf("hello from the second thread \n");

 int *num = (int *) value ;

 printf("the value of value is %d", *num");

 return NULL;

\\ Time for Thread Execution End \\

}

int main(int argc, char **argv)

 {

\\ Overall Time أضافة دالة الوقت من هنا ولغاية نهاية البرنامج يعطينا \ \

 pthread_t thread ; \\ Thread Starts\\

 printf("hello from the first thread \n");

 int num = 123; \\ Value to pass through the function \\

\\ Time here is the time for Thread creation to it Ends \\

 pthread_create(&thread, NULL, entry_point , &num); \\ Thread Create here \\

 pthread_join(thread, NULL); \\ Thread Ends here or dead or finish it job \\

\\ Time here is the time for Thread creation to it Ends \\

 return EXIT_SUCCESS;

 \\ Time End here Over all Time \\

 }

 التعاريف الخاصة بلهيدرات

 Threadالدالة التي تنفذ ال

يتم الدالة تنفيذ وقت ان نلاحظ

بحساب وقت التنفيذ بين اقواس الدالة

نفسها, بينما حساب وقت انهاء عمل

بين Threadال الوقت بوضع هو

 . Create & Joinالانشاء والانهاء

بوضع الكلي الوقت نستطيع حساب

قوس ضمن الوقت البداية داله

 . Mainوالنهاية لدالة ال

أما وقت التنفيذ الخاص بالبرنامج من

قوس ولغاية الهيدرات قراءة اول

نحصل Execution Timeالنهاية

الخاصة التنفيذ شاشة من عليه

 بالبرنامج.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 45

Notes

 pthread_create(&Thread Name, Attribute , Thread Function , &Argument pass to Function);

\\ Thread Create here يتم انشاء الخيط هنا ضمن هذه الجملة \\

 pthread_join(Thread Name , Argument to pass from another thread);

\\ Thread Ends here or dead or finish it job يتم انهاء عمل الخيط هنا باستخدم هذه الجملة \\

ملاحظة : في حال تم طلب عمل خيطين بالبرنامج ومن ثم اخذ مخرجات الخيط الاول و تمريرها للخيط الثاني نستعمل

 دالة الجوين لعمل تمرير.

Linked list functions

 The list itself is composed of a collection of list nodes, each of which is a

struct with two members: an int and a pointer to the next node.

 A typical list is shown in Figure 4.4. A pointer, head_p, with type struct

list_node_s* refers to the first node in the list. The next member of the last

node is NULL (which is indicated by a slash (/) in the next member).

Figure 4.4 A linked list.

 The Member function uses a pointer to traverse the list until it either finds

the desired value or determines that the desired value cannot be in the list.

Since the list is sorted, the latter condition occurs when the curr_p pointer

is NULL or when the data member of the current node is larger than the

desired value.

 The Insert function begins by searching for the correct position in which

to insert the new node. Since the list is sorted, it must search until it finds

a node whose data member is greater than the value to be inserted. When

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 46

it finds this node, it needs to insert the new node in the position preceding

the node that’s been found. Since the list is singly-linked, we can’t “back

up” to this position without traversing the list a second time. There are

several approaches to dealing with this, the approach we use is to define a

second pointer pred_p, which, in general, refers to the predecessor of the

current node.

 When we exit the loop that searches for the position to insert, the next

member of the node referred to by pred_p can be updated so that it refers

to the new node. See Figure 4.5.

Figure 4.5 Inserting a new node into a.

 The Delete function is similar to the Insert function in that it also needs

to keep track of the predecessor of the current node while it’s searching for

the node to be deleted. The predecessor node’s next member can then be

updated after the search is completed. See Figure 4.6.

Figure 4.6 Deleting a node from the list.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 47

A Multithreaded Linked List

 Now let’s try to use these functions in a Pthreads program. In order to

share access to the list, we can define head-p to be a global variable. This

will simplify the function headers for Member, Insert, and Delete, since

we won’t need to pass in either head_p or a pointer to head_p, we’ll only

need to pass in the value of interested .

Q: What now are the consequences of having multiple threads

simultaneously execute the three functions?

 Since multiple threads can simultaneously read a memory location

without conflict, it should be clear that multiple threads can simultaneously

execute Member. On the other hand, Delete and Insert also write to

memory locations, so there may be problems if we try to execute either of

these operations at the same time as another operation. As an example,

suppose that thread 0 is executing Member (5) at the same time that thread

1 is executing Delete (5). The current state of the list is shown in Figure

4.7. An obvious problem is that if thread 0 is executing Member (5), it is

going to report that 5 is in the list, when, in fact, it may be deleted even

before thread 0 returns.

Figure 4.7 Simultaneous access by two threads.

 A second obvious problem is if thread 0 is executing Member (8), thread

1may free the memory used for the node storing 5 before thread 0 can

advance to the node storing 8. Although typical implementations of free

don’t overwrite the freed memory, if the memory is reallocated before

thread 0 advances, there can be serious problems. For example, if the

memory is reallocated for use in something other than a list node, what

thread 0 “thinks” is the next member may be set to utter garbage,

and after it executes.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 48

 Dereferencing curr_p may result in a segmentation violation. More

generally, we can run into problems if we try to simultaneously execute

another operation while we’re executing an Insert or a Delete. It’s OK for

multiple threads to simultaneously execute Member that is, read the list

nodes but it’s unsafe for multiple threads to access the list if at least one of

the threads is executing an Insert or a Delete that is, is writing to the list

nodes. How can we deal with this problem? An obvious solution is to

simply lock the list any time that a thread attempts to access it. For

example, a call to each of the three functions can be protected by a mutex,

so we might execute.

 Instead of simply calling Member(value). An equally obvious problem

with this solution is that we are serializing access to the list, and if the vast

majority of our operations are calls to Member, we’ll fail to exploit this

opportunity for parallelism. On the other hand, if most of our operations

are calls to Insert and Delete, then this may be the best solution, since we’ll

need to serialize access to the list for most of the operations, and this

solution will certainly be easy to implement.

 An alternative to this approach involves “finer-grained” locking. Instead

of locking the entire list, we could try to lock individual nodes. We would

add, for example, a mutex to the list node struct.

 Now each time we try to access a node we must first lock the mutex

associated with the node. Note that this will also require that we have a

mutex associated with the head p pointer. So, for example, we might

implement Member as shown in Program below. Admittedly this

implementation is much more complex than the original Member function.

It is also much slower, since, in general, each time a node is accessed, a

mutex must be locked and unlocked. At a minimum it will add two function

calls to the node access, but it can also add a substantial delay if a thread

has.

 To wait for a lock. A further problem is that the addition of a mutex field

to each node will substantially increase the amount of storage needed for

the list. On the other hand, the finer-grained locking might be a closer

approximation to what we want. Since we’re only locking the nodes of

current interest, multiple threads can simultaneously access different parts

of the list, regardless of which operations they’re executing.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 49

Pthreads read-write locks

 Neither of our multithreaded linked lists exploits the potential for

simultaneous access to any node by threads that are executing Member.

The first solution only allows one thread to access the entire list at any

instant, and the second only allows one thread to access any given node at

any instant. An alternative is provided by Pthreads’ read-write locks. A

read-write lock is somewhat like a mutex except that it provides two

lock functions. The first lock function locks the read-write lock for

reading, while the second locks it for writing. Multiple threads can thereby

simultaneously obtain the lock by calling the read-lock function, while

only one thread can obtain the lock by calling the write-lock function.

Thus, if any threads own the lock for reading, any threads that want to

obtain the lock for writing will block in the call to the write-lock function.

Furthermore, if any thread owns the lock for writing, any threads that want

to obtain the lock for reading or writing will block in their respective

locking functions.

Performance of the Various Implementations

 We really want to know which of the three implementations is “best,” so

we included our implementations in a small program in which the main

thread first inserts a user-specified number of randomly generated keys into

an empty list. After being started by the main thread, each thread carries

out a user-specified number of operations on the list. The user also specifies

the percentages of each type of operation (Member, Insert, Delete).

Implementing read-write locks

 The original Pthreads specification didn’t include read-write locks, so

some of the early texts describing Pthreads include implementations of

read-write locks. A typical implementation6 defines a data structure that

uses two condition variables one for “readers” and one for “writers” and a

mutex. The structure also contains members that indicate:

 1. how many readers own the lock, that is, are currently reading,

 2. how many readers are waiting to obtain the lock,

 3. whether a writer owns the lock, and

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 50

 4. how many writers are waiting to obtain the lock.

 The mutex protects the read-write lock data structure, whenever a thread

calls one of the functions (read-lock, write-lock, unlock), it first locks the

mutex, and whenever a thread completes one of these calls, it unlocks the

mutex. After acquiring the mutex, the thread checks the appropriate data

members to determine how to proceed. As an example, if it wants read-

access, it can check to see if there’s a writer that currently owns the lock.

If not, it increments the number of active readers and proceeds.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 51

Lecture 4 Distributed-Memory

Distributed-Memory Programming with MPI

 The world of parallel multiple instruction, multiple data, or MIMD,

computers is, for the most part, divided into distributed-memory and

shared-memory systems. From a programmer’s point of view, a

distributed-memory system consists of a collection of core-memory pairs

connected by a network, and the memory associated with a core is directly

accessible only to that core. See Figure 3.1.

 On the other hand, from a programmer’s point of view, a shared-memory

system consists of a collection of cores connected to a globally accessible

memory, in which each core can have access to any memory location. See

Figure 3.2. Distributed-memory systems using message-passing , in

message-passing programs, a program running on one core-memory pair is

usually called a process, and two processes can communicate by calling

functions, one process calls a send function and the other calls a receive

function.

The implementation of message-passing that we’ll be using is called

MPI, which is an abbreviation of Message-Passing Interface.

Figure(3.1) distributed-memory system.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 52

Getting Started

 Perhaps the first program that many of us saw was some variant of the

“hello, world” program:

Hello Program

#include <stdio.h>

int main(void)

{ printf("hello, world ");

return 0; }

In parallel programming, its common (one might say standard) for the

processes to be identified by nonnegative integer ranks. So if there are p

processes, the processes will have ranks 0, 1, 2, p-1. For our parallel “hello,

world,” let’s make process 0 the designated process and the other processes

will send it messages.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 53

Compilation and Execution

 Some times we use a wrapper for the C compiler. A wrapper

function is a subroutine in a software library or a computer

program whose main purpose is to call a second subroutine or a system

call with little or no additional computation. Wrapper functions are used to

make writing computer programs easier by abstracting away the details of

a subroutine's underlying implementation.

 A wrapper script is a script whose main purpose is to run some

program. However, the wrapper simplifies the running of the compiler by

telling it where to find the necessary header files and which libraries to link

with the object file.

MPI program that prints greetings from the processes

1 #include <stdio.h>

2 #include <string.h> /∗ For strlen ∗/

3 #include <mpi.h> /∗ For MPI functions, etc ∗/

5 const int MAX_STRING = 100;

7 int main(void) {

8 char greeting[MAX_STRING];

9 int comm_sz; /∗ Number of processes ∗/

10 int my_rank; /∗ My process rank ∗/

12 MPI_Init(NULL, NULL);

13 MPI_Comm_size(MPI_COMM_WORLD, &comm_sz);

14 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

16 if (my_rank != 0) {

17 sprintf(greeting, "Greetings from process %d of %d!", my_rank, comm_sz);

https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/System_call

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 54

19 MPI_Send(greeting, strlen(greeting)+1, MPI_CHAR, 0, 0,

MPI_COMM_WORLD); }

21 else {

22 printf("Greetings from process %d of %d !\n", my_rank, comm_sz);

23 for (int q = 1; q < comm_sz; q++) {

24 MPI_Recv(greeting, MAX_STRING, MPI_CHAR, q, 0,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);

26 printf("%s\n", greeting); } }

30 MPI_Finalize();

31 return 0; } /∗ main ∗/

MPI Programs

• The first thing to observe is that this is a C program. For example,

it includes the standard C header files stdio.h and string.h.

• It has a main function just like any other C program.

• There are many parts of the program which are new. Line 3

includes the mpi.h header file. This contains prototypes of MPI

functions, macro definitions, type definitions, and so on; it

contains all the definitions and declarations needed for compiling

an MPI program.

• All of the identifiers defined by MPI start with the string MPI the

first letter following the underscore is capitalized for function

names and MPI-defined types.

• All of the letters in MPI-defined macros and constants are

capitalized, so there’s no question about what is defined by MPI

and what’s defined by the user program.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 55

MPI Init and MPI Finalize

 The call to MPI Init tells the MPI system to do all of the necessary setup.

• It allocate storage for message buffers

• it might decide which process gets which rank.

• It define global communicators.

As a rule of thumb, no other MPI functions should be called before the

program calls MPI_Init. Its syntax is :

MPI Initial code

• The arguments, argc_p and argv_p, are pointers to the arguments

to main, argc, and argv. When our program doesn’t use these

arguments, we can just pass NULL for both.

• Like most MPI functions, MPI_Init returns an int error code, and

in most cases we’ll ignore these error codes.

The call to MPI Finalize tells the MPI system that we’re done using MPI,

and that any resources allocated for MPI can be freed. The syntax is quite

simple:

MPI Finalize

int MPI_Finalize(void);

In general, no MPI functions should be called after the call to MPI Finalize.

A typical MPI program has the following basic outline:

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 56

MPI program basic outline

 It's not necessary to pass pointers to argc and argv to MPI_Init. It’s also

not necessary that the calls to MPI Init and MPI Finalize be in main.

Communicators, MPI_Comm_size and MPI _Comm_rank

 In MPI a communicator is a collection of processes that can send

messages to each other. One of the purposes of MPI_Init is to define a

communicator that consists of all of the processes started by the user when

it started the program. This communicator is called

MPI_COMM_WORLD, their syntax is:

MPI_COMM_WORLD

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 57

 For both functions, the first argument is a communicator and has the

special type defined by MPI for communicators,

• MPI_Comm_size returns in its second argument the number of

processes in the communicator, and MPI_Comm_rank returns in its

second argument the calling process’ rank in the communicator.

• We’ll often use the variable comm_sz for the number of processes

in MPI_COMM_WORLD, and the variable my_rank for the

process rank.

Notice that we compiled a single program we didn’t compile a different

program for each process and we did this in spite of the fact that process 0

is doing something fundamentally different from the other processes:

• it’s receiving a series of messages and printing them, while each of

the other processes is creating and sending a message.

• This is quite common in parallel programming. In fact, most MPI

programs are written in this way.

• That is, a single program is written so that different processes carry

out different actions, and this is achieved by simply having the

processes branch on the basis of their process rank.

• Recall that this approach to parallel programming is called single

program, multiple data, or SPMD.

• The if_else statement in Lines 16 through 28 makes our program

SPMD.

Communication

 In Lines 17 and 18, each process, other than process 0, creates a message

it will send to process 0. (The function sprintf is very similar to printf,

except that instead of writing to stdout, it writes to a string.) Lines 19–20

actually send the message to process 0. Process 0, on the other hand, simply

prints its message using printf, and then uses a for loop to receive and print

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 58

the messages sent by processes 1, 2, … ,comm_sz_1. Lines 24–25 receive

the message sent by process q, for q = 1, 2, … ,comm_sz_1.

MPI Send

Each of the sends is carried out by a call to MPI_Send, whose syntax is:

MPI_Send(msg_buf_p, msg_size, msg_type, dest, tag, communicator);

MPI Send

• The first three arguments, msg_buf_p, msg_size, and msg_type,

determine the contents of the message.

• The remaining arguments, dest, tag, and communicator, determine

the destination of the message.

• The first argument, msg_buf_p, is a pointer to the block of memory

containing the contents of the message. In our program, this is just

the string containing the message, greeting. (Remember that in C an

array, such as a string, is a pointer).

• The second and third arguments, msg_size and msg_type,

determine the amount of data to be sent.

• In our program, the msg_size argument is the number of characters

in the message plus one character for the ‘\0’ character that

terminates C strings. The msg_type argument is MPI_CHAR.

These two arguments together tell the system that the message

contains strlen(greeting)+1 chars. Since C types (int, char, and so

on.) can’t be passed as arguments to functions, MPI defines a special

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 59

type, MPI_Datatype, that is used for the msg_type argument. MPI

also defines a number of constant values for this type.

• Notice that the size of the string greeting is not the same as the size

of the message specified by the arguments msg_size and msg_type.

• For example, when we run the program with four processes, the

length of each of the messages is 31 characters, while we’ve

allocated storage for 100 characters in greetings.

Of course, the size of the message sent should be less than or equal to the

amount of storage in the buffer in our case the string greeting. The fourth

argument, dest, specifies the rank of the process that should receive the

message. The fifth argument, tag, is a nonnegative int. It can be used to

distinguish messages that are otherwise identical. For example, suppose

process 1 is sending floats to process 0. Some of the floats should be

printed, while others should be used in a computation. Then the first four

arguments to MPI_Send provide no information regarding which floats

should be printed and which should be used in a computation. So process

1 can use, say, a tag of 0 for the messages that should be printed and a tag

of 1 for the messages that should be used in a computation. The final

argument to MPI_Send is a communicator. All MPI functions that involve

communication have a communicator argument. One of the most important

purposes of communicators is to specify communication universes; recall

that a communicator is a collection of processes that can send messages to

each other. Conversely, a message sent by a process using one

communicator cannot be received by a process that’s using a different

communicator. Since MPI provides functions for creating new

communicators, this feature can be used in complex programs to insure that

messages aren’t “accidentally received” in the wrong place.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 60

MPI Recv

 The first six arguments to MPI_Recv correspond to the first six

arguments of MPI_Send:

MPI_Recv(msg_buf_p, buf_size, buf_type, source, tag, communicator, status_p);

MPI Receive

• The first three arguments specify the memory available for

receiving the message: msg_buf_p points to the block of memory,

buf_size determines the number of objects that can be stored in the

block, and buf_type indicates the type of the objects.

• The next three arguments identify the message.

• The source argument specifies the process from which the message

should be received.

• The tag argument should match the tag argument of the message

being sent, and the communicator argument must match the

communicator used by the sending process.

• We’ll talk about the status p argument shortly.

• In many cases it won’t be used by the calling function, and, as in

our “greetings” program, the special MPI constant

MPI_STATUS_IGNORE can be passed.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 61

Message Matching

Suppose process q calls MPI_Send with

Message Matching

Also suppose that process r calls MPI_Recv with:

Message Matching

Then the message sent by q with the above call to MPI_Send can be

received by r with the call to MPI_Recv if:

• Recv_comm = send_comm,

• Recv_tag = send_tag,

• dest = r

• src = q.

Q: Write an MPI program that prints hello world from processor rank of

size .

MPI Hello world

#include <mpi.h>

#include <stdio.h>

int main(int argc, char** argv) { // Initialize the MPI environment

 MPI_Init(NULL, NULL); // Get the number of processes

 int world_size;

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 62

 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

 // Get the rank of the process

 int world_rank;

 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

 // Get the name of the processor

 char processor_name[MPI_MAX_PROCESSOR_NAME];

 int name_len;

 MPI_Get_processor_name(processor_name, &name_len);

 // Print off a hello world message

 printf("Hello world from processor %s, rank %d out of %d processors\n",

 processor_name, world_rank, world_size);

 // Finalize the MPI environment.

 MPI_Finalize(); }

 Performance Evaluation of MPI Programs

 For the most part we write parallel programs because we expect that

they’ll be faster than a serial program that solves the same problem.

Taking timings

 We’re usually not interested in the time taken from the start of program

execution to the end of program execution. For example, in the matrix-

vector multiplication, we’re not interested in the time it takes to type in the

matrix or print out the product We’re only interested in the time it takes to

do the actual multiplication, so we need to modify our source code by

adding in calls to a function that will tell us the amount of time that

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 63

elapses from the beginning to the end of the actual matrix-vector

multiplication. MPI provides a function, MPI_Wtime, that returns the

number of seconds that have elapsed since some time in the past:

double MPI Wtime(void);

 Thus, we can time a block of MPI code as follows:

MPI Time

double start, finish;

.. .

start = MPI_Wtime();

/* Code to be timed */

. . .

finish = MPI_Wtime();

printf("Proc %d > Elapsed time = %e seconds\n" my_rank, finish-start);

When we run a program several times, we’re likely to see a substantial

variation in the times. This will be true even if for each run we use the same

input, the same number of processes, and the same system. This is because

the interaction of the program with the rest of the system, especially the

operating system, is unpredictable. Since this interaction will almost

certainly not make the program run faster than it would run on a “quiet”

system, we usually report the minimum run-time rather than the mean or

median.

When we run an MPI program on a hybrid system in which the nodes are

multicore processors, we’ll only run one MPI process on each node.

This may reduce contention for the interconnect and result in somewhat

better run-times, It may also reduce variability in run-times.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 64

Results

 The parallel program will divide the work of the serial program among the

processes, and add in some overhead time, in MPI programs, the parallel

overhead typically comes from communication, and it can depend on both

the problem size and the number of p

 Speedup and efficiency

 The goal is to equally distribute the workload among all the

processors, whereas resulting in no extra load on the cores. If this goal is

reached, and the program runs with a P number of cores, one thread or

process on each core, then the parallel application will be executed P times

faster than the sequential application. If sequential execution time is named

Tserial and the parallel execution time called Tparallel, then the ultimate case

of the resulting parallel time is calculated from:

Tparallel = Tserial / P ……. (2.1)

 If this happens, then this parallel program has linear speedup.

Practically, this case is unlikely to happen because the exploitation of a

number of processes or threads usually introduces some inevitable

overhead.

 Recall that the most widely used measure of the relation between the

serial and the parallel run-times is the speedup. It’s just the ratio of the

serial run-time to the parallel run-time:

 The ideal value for S(n,p) is p. If S(n,p) = p, then our parallel program

with comm_sz = p processes is running p times faster than the serial

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 65

program. This speedup, sometimes called linear speedup, is rarely

achieved. For small p and large n, our program obtained nearly linear

speedup ,on the other hand, for large p and small n, the speedup was

considerably less than p. The worst case was n = 1024 and p = 16, when

we only managed a speedup of 2.4.

E= S/P = (Tserial / Tparallel)/P = Tserial / (Tparallel *P)

 We also recall that another widely used measure of parallel performance

is parallel efficiency. This is “per process” speedup:

.

Linear speedup corresponds to a parallel efficiency of p/p = 1.0, and, in

general, we expect that our efficiencies will be less than 1.

Amdahl’s Law calculates the speedup of parallel code based on three

variables:

■ Duration of running the application on a single-core machine

■ The percentage of the application that is parallel

■ The number of processor cores

Here is the formula, which returns the ratio of single-core versus multicore

performance.

As an example scenario, suppose you have an application that is

75 percent parallel and runs on a machine with three processor

cores. The first iteration to calculate Amdahl’s Law is shown

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 66

below. In the formula, P is .75 (the parallel portion) and N is 3

(the number of cores).

Scalability

 Our parallel program doesn’t come close to obtaining linear speedup for

small n and large p. Does this mean that it’s not a good program? Many

computer scientists answer this question by looking at the “scalability” of

the program.

 A program is scalable if the problem size can be increased at a rate so

that the efficiency doesn’t decrease as the number of processes increase.

Programs that can maintain a constant efficiency without increasing the

problem size are sometimes said to be strongly scalable. Programs that

can maintain a constant efficiency if the problem size increases at the same

rate as the number of processes are sometimes said to be weakly scalable.

 The term scalability is often used to refer to whether more parallelism

can be added in either the hardware or software and whether there is an

overall limit to how much improvement can occur. While the traditional

focus has been on the run-time scaling, we will make the argument that

memory scaling is often more important.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 67

Lecture 5 Development

Parallel Program Development

 In parallel programming there are problems that we need to solve for

which there is no serial analog. We’ll see that there are instances in which,

as parallel programmers, we’ll have to start “from scratch.

Tree Search

 Many problems can be solved using a tree search. As a simple

example, consider the traveling salesperson problem, or TSP. In TSP, a

salesperson is given a list of cities she needs to visit and a cost for traveling

between each pair of cities. Her problem is to visit each city once, returning

to her hometown, and she must do this with the least possible cost. A route

that starts in her hometown, visits each city once and returns to her

hometown is called a tour; thus, the TSP is to find a minimum-cost tour.

Unfortunately, TSP is what’s known as an NP-complete problem. From a

practical standpoint, this means that there is no algorithm known for

solving it that, in all cases, is significantly better than exhaustive search.

Exhaustive search means examining all possible solutions to the problem

and choosing the best. The number of possible solutions to TSP grows

exponentially as the number of cities is increased.

Program : Create Binary search tree using Thread programming
 وصف البرنامج :

 treeلاضافة ابن , يهدف البرنامج للاطلاع على عمل insertواستدعاء دالة mainانشاء شجرة ضمن برنامج ال

 من خلال استعمال البرمجة المتوازية.

 واجب المختبر :
 الدوال تنفيذ البرنامج والاطلاع على كيفية عمل

// Insertion in Threaded Binary Search Tree.

#include<bits/stdc++.h>

using namespace std;

struct Node

{

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 68

 struct Node *left, *right;

 int info;

 // True if left pointer points to predecessor

 // in Inorder Traversal

 bool lthread;

 // True if right pointer points to successor

 // in Inorder Traversal

 bool rthread;

};

// Insert a Node in Binary Threaded Tree

struct Node *insert(struct Node *root, int ikey)

{

 // Searching for a Node with given value

 Node *ptr = root;

 Node *par = NULL; // Parent of key to be inserted

 while (ptr != NULL)

 {

 // If key already exists, return

 if (ikey == (ptr->info))

 {

 printf("Duplicate Key !\n");

 return root;

 }

 par = ptr; // Update parent pointer

 // Moving on left subtree.

 if (ikey < ptr->info)

 {

 if (ptr -> lthread == false)

 ptr = ptr -> left;

 else

 break;

 }

 // Moving on right subtree.

 else

 {

 if (ptr->rthread == false)

 ptr = ptr -> right;

 else

 break;

 }

 }

 // Create a new node

 Node *tmp = new Node;

 tmp -> info = ikey;

 tmp -> lthread = true;

 tmp -> rthread = true;

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 69

 if (par == NULL)

 {

 root = tmp;

 tmp -> left = NULL;

 tmp -> right = NULL;

 }

 else if (ikey < (par -> info))

 {

 tmp -> left = par -> left;

 tmp -> right = par;

 par -> lthread = false;

 par -> left = tmp;

 }

 else

 {

 tmp -> left = par;

 tmp -> right = par -> right;

 par -> rthread = false;

 par -> right = tmp;

 }

 return root;

}

// Returns inorder successor using rthread

struct Node *inorderSuccessor(struct Node *ptr)

{

 // If rthread is set, we can quickly find

 if (ptr -> rthread == true)

 return ptr->right;

 // Else return leftmost child of right subtree

 ptr = ptr -> right;

 while (ptr -> lthread == false)

 ptr = ptr -> left;

 return ptr;

}

// Printing the threaded tree

void inorder(struct Node *root)

{

 if (root == NULL)

 printf("Tree is empty");

 // Reach leftmost node

 struct Node *ptr = root;

 while (ptr -> lthread == false)

 ptr = ptr -> left;

 // One by one print successors

 while (ptr != NULL)

 {

 printf("%d ",ptr -> info);

 ptr = inorderSuccessor(ptr);

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 70

 }

}

// Driver Program

int main()

{

 struct Node *root = NULL;

\\ create Tree

 root = insert(root, 20);

 root = insert(root, 10);

 root = insert(root, 30);

 root = insert(root, 5);

 root = insert(root, 16);

 root = insert(root, 14);

 root = insert(root, 17);

 root = insert(root, 13);

 inorder(root);

 return 0;

}

Performance of the serial implementations

 The run-times of the three serial implementations are the input digraph

contained 15 vertices (including the hometown), and all three algorithms

visited approximately 95,000,000 tree nodes. The first iterative version is

less than 5% faster than the recursive version, and the second iterative

version is about 8% slower than the recursive version. As expected, the

first iterative solution eliminates some of the overhead due to repeated

function calls, while the second iterative solution is slower because of the

repeated copying of tour data structures. However, as we’ll see, the second

iterative solution is relatively easy to parallelize, so we’ll be using it as the

basis for the parallel versions of tree search.

Table 5.1

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 71

Parallelizing Tree Search

 The tree structure suggests that we identify tasks with tree nodes. If we

do this, the tasks will communicate down the tree edges: a parent will

communicate a new partial tour to a child, but a child, except for

terminating, doesn’t communicate directly with a parent. We also need to

take into consideration the updating and use of the best tour. Each task

examines the best tour to determine whether the current partial tour is

feasible or the current complete tour has lower cost. If a leaf task

determines its tour is a better tour, then it will also update the best tour.

Although all of the actual computation can be considered to be carried out

by the tree node tasks, we need to keep in mind that the best tour data

structure requires additional communication that is not explicit in the tree

edges. Thus, it’s convenient to add an additional task that corresponds to

the best tour. It “sends” data to every tree node task, and receives data from

some of the leaves. This latter view is convenient for shared-memory, but

not so convenient for distributed-memory. A natural way to agglomerate

and map the tasks is to assign a subtree to each thread or process, and have

each thread/process carry out all the tasks in its subtree. For example, if we

have three threads or processes, as shown earlier in Figure 5.1, we might

map the subtree rooted at 0→1 to thread/process 0, the subtree rooted at

0→2 to thread/process 1, and the subtree rooted at 0→3 to thread/process

2.

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 72

OpenMP - Open Multi-Processing
▪ An API for developing multi-threaded (MT) applications

▪ Consists of a set of compiler directives and library routines for

parallel application programmers

▪ Simplifies writing MT programs in Fortran, C and C++

▪ Augments vectorization and standardizes programming of various

platforms

▪ Embedded systems, accelerator devices (GPU), multi-core

systems (CPU)

▪ Name and specification maintained by OpenMP Architecture

Review Board

OpenMP Programming Model

Fork-Join Parallelism:

◆ Master thread spawns a team of threads as needed.

◆ Parallelism added incrementally until performance goals are met.

◆ Threads within a parallel region can spawn more threads – nested

parallelism

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 73

What is SPMD?

• SPMD – Single Program Multiple Data

• Part of the MIMD category in Flynn’s taxonomy

• Multiple Processing Elements (PE) that run a copy of the same program

and operate on different data elements

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 74

Hello world openmp

// OpenMP program to print Hello World

// using C language

// OpenMP header

#include <omp.h>

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char* argv[])

{ // Beginning of parallel region

 #pragma omp parallel

 { printf("Hello World... from thread = %d\n",

 omp_get_thread_num());

 } // Ending of parallel region

}

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 75

Appendix A

MPI

 mpi.h header file. This contains prototypes of MPI functions, macro

definitions, type definitions, and so on; it contains all the definitions and

declarations needed for compiling an MPI program.

 MPI Init and MPI Finalize

• The call to MPI Init tells the MPI system to do all of the necessary

setup. مهم
- allocate storage for message buffers.

- decide which process gets which rank.

- define a global communicator .

• No other MPI functions should be called before the program calls

MPI_Init.
Int MPI Init(int∗ argc_p , char∗∗∗ argv_p); *in\out*\

• The arguments, argc_p and argv_p, are pointers to the arguments

to main, argc, and argv.

• When our program doesn’t use these arguments, we can just pass

NULL for both.

• MPI functions, MPI_Init returns an int error code, and in most cases

we’ll ignore these error codes. مهم

• The call to MPI Finalize tells the MPI system that we’re done using

MPI, and that any resources allocated for MPI can be freed. مهم

The syntax is quite simple:

Int MPI_Finalize(void);

Out line of mpi program

#include <mpi.h>

. . .

int main(int argc, char∗ argv[])

{

. . .

/∗ No MPI calls before this ∗/

MPI_Init(&argc, &argv);

. . .

MPI_Finalize();

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 76

/∗ No MPI calls after this ∗/

. . .

return 0;

}

It’s also not necessary that the calls to MPI Init and MPI Finalize be in

main.

• Communicators, MPI_Comm_size and MPI _Comm_rank

• In MPI a communicator is a collection of processes that can send

messages to each other.

• One of the purposes of MPI_Init is to define a communicator that

consists of all of the processes started by the user when it started the

program.

• This communicator is called MPI_COMM_WORLD, their syntax

is:

• MPI_Comm_size returns the number of processes in the

communicator, MPI_Comm_rank returns the calling process’ rank

in the communicator. The variable comm_sz for the number of

processes in MPI_COMM_WORLD, and the variable my_rank

for the process rank.

Ex : Comm(commsize,commrank)

 يرجع كالنك بل بروسسر المستدعاة اي الرانك مالتهة - MPI_Comm_rankملاحظة

MPI_Comm_size - يرجع عدد البروسس بل كوميونيكايتر ونستعملة لمعرفة عدد

 comm_worldالبروسس بل

MPI Send

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 77

• The first three arguments, msg_buf_p, msg_size, and msg_type,

determine the contents of the message.

• The remaining arguments, dest, tag, and communicator,

determine the destination of the message.

• msg_buf_p, is a pointer to the block of memory containing the

contents of the message. In our program, this is just the string

containing the message, greeting.

• The second and third arguments, msg_size and msg_type,

determine the amount of data to be sent. In our program, the

msg_size argument is the number of characters in the message plus

one character for the ‘\0’ character that terminates C strings.

• The msg_type argument is MPI_CHAR. These two arguments

together tell the system that the message contains

strlen(greeting)+1 chars. Since C types (int, char, and so on.) can’t

be passed as arguments to functions, MPI defines a special type,

MPI_Datatype, that is used for the msg_type argument. MPI also

defines a number of constant values for this type.
The program send function

• MPI_Send(greeting, strlen(greeting)+1, MPI_CHAR, 0, 0,

MPI_COMM_WORLD);
• MPI_Send(msg_buf_p, msg_size, msg_type, dest, tag,

communicator);
 ملاحظة اول 3 اللي بالاصفر هي محتويات الرسالة اللي بالاحمر هي وجهة الرسالة.

(tag(هو يحدد رانك البروسس اللي يستلم الرسالة بينما ال) Destملاحظة: نلاحظ ان)

 هو رقم موجب يميز تطابق الرسالة.

• One of the most important purposes of communicators is to specify

communication universes; recall that a communicator is a collection

of processes that can send messages to each other. Conversely, a

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 78

message sent by a process using one communicator cannot be

received by a process that’s using a different communicator.

• MPI Recv

MPI_Recv(greeting, MAX_STRING, MPI_CHAR, q, 0,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Recv(msg_buf_p, buf_size, buf_type, source, tag,

communicator, status_p);

• The first three arguments specify the memory available for receiving

the message msg_buf_p points to the block of memory.
• buf_size determines the number of objects that can be stored in the

block.
• buf_type indicates the type of the objects
• The next three arguments identify the message. The source

argument specifies the process from which the message should be

received.
• The tag argument should match the tag argument of the message

being sent.
• The communicator argument must match the communicator used

by the sending process.
• The status p argument in many cases it won’t be used by the calling

function, and, as in our “greetings” program, the special MPI

constant MPI_STATUS_IGNORE can be passed.

Performance

• Taking timings
• We’re usually not interested in the time taken from the start of

program execution to the end of program execution. We’re only

interested in the time it takes to do the actual processing, a function

that will tell us the amount of time that elapses from the

beginning to the end of the actual processing. MPI provides a

function, MPI_Wtime,)فائدة مهم(that returns the number of seconds

that have elapsed since some time in the past:

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 79

double MPI Wtime(void);

Thus, we can time a block of MPI code as follows:

MPI Time

double start, finish;

.. .

start = MPI_Wtime();

/* Code to be timed */

. . .

finish = MPI_Wtime();

printf("Proc %d > Elapsed time = %e seconds\n" my_rank, finish-start);

• When we run a program several times, we’re likely to see a

substantial variation in the times.(depend on the HW&SW)

• This will be true even if for each run we use the same input, the same

number of processes, and the same system. This is because the

interaction of the program with the rest of the system, especially the

operating system, is unpredictable. Since this interaction will almost

certainly not make the program run faster than it would run on a

“quiet” system, we usually report the minimum run-time rather than

the mean or median.

When we run an MPI program on a hybrid system in which the

nodes are multicore processors, we’ll only run one MPI process on

each node. This may reduce contention for the interconnect and result in

somewhat better run-times, It may also reduce variability in run-times.

• The parallel program will divide the work of the serial program

among the processes, and add in some overhead time, in MPI

programs, the parallel overhead typically comes from

communication, and it can depend on both the problem size and the

number of p

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 80

• Speedup and efficiency

• The goal is to equally distribute the workload among all the

processors, whereas resulting in no extra load on the cores.

• If this goal is reached, and the program runs with a P number of

cores, one thread or process on each core, then the parallel

application will be executed P times faster than the sequential

application.

• If sequential execution time is named Tserial and the parallel

execution time called Tparallel, then the ultimate case of the resulting

parallel time is calculated from:

Tparallel = Tserial / P ……. (2.1)

• If this happens, then this parallel program has linear speedup.

Practically, this case is unlikely to happen because the exploitation

of a number of processes or threads usually introduces some

inevitable overhead.

• Recall that the most widely used measure of the relation between

the serial and the parallel run-times is the speedup. It’s just the

ratio of the serial run-time to the parallel run-time:

• The ideal value for S(n,p) is p. If S(n,p) = p, then our parallel

program with comm_sz = p processes is running p times faster than

the serial program.

• In practice, this speedup, sometimes called linear speedup, is

rarely achieved. For small p and large n, our program obtained

nearly linear speedup ,on the other hand, for large p and small n,

the speedup was considerably less than p. The worst case was n =

1024 and p = 16, when we only managed a speedup of 2.4.

E= S/P = (Tserial / Tparallel)/P = Tserial / (Tparallel *P)

class sw rd3 ldeen a eaba walaT

Parallel programming paradigm 81

 We also recall that another widely used measure of parallel performance

is parallel efficiency. This is “per process” speedup:

.

Linear speedup corresponds to a parallel efficiency of p/p = 1.0, and, in

general, we expect that our efficiencies will be less than 1.

Amdahl’s Law calculates the speedup of parallel code based on three

variables:

■ Duration of running the application on a single-core machine

■ The percentage of the application that is parallel

■ The number of processor cores

Here is the formula, which returns the ratio of single-core versus

multicore performance.

• Scalability
• Our parallel program doesn’t come close to obtaining

linear speedup for small n and large p. Does this mean that

it’s not a good program? Many computer scientists answer

this question by looking at the “scalability” of the program.

• A program is scalable if the problem size can be increased

at a rate so that the efficiency doesn’t decrease as the number

of processes increase.

• Programs that can maintain a constant efficiency without

increasing the problem size are sometimes said to be strongly

scalable.

• Programs that can maintain a constant efficiency if the

problem size increases at the same rate as the number of

processes are sometimes said to be weakly scalable.

• Q: What do we mean by a parallel sorting algorithm in a

distributed-memory environment? What would its

“input” be and what would its “output” be? The answers

depend on where the keys are stored. We can start or finish

with the keys distributed among the processes or assigned to

a single process.

