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Lecture1                            Fundamental  
 

Foundation of Parallel Programming 

     In computers, parallel processing is the processing of 

program  instructions by dividing them among multiple processors with the 

objective of running a program in less time.  

    In the earliest computers, only one program ran at a time. A 

computation-intensive program that took one hour to run and a tape 

copying program that took one hour to run would take a total of two hours 

to run. An early form of parallel processing allowed the interleaved 

execution of both programs together. The computer would start an I/O 

operation, and while it was waiting for the operation to complete, it would 

execute the processor-intensive program. The total execution time for the 

two jobs would be a little over one hour. 

Parallel processing is a method of simultaneously breaking up and 

running program tasks on multiple microprocessors, thereby reducing 

processing time. 

    Parallel processing may be accomplished via a computer with two or 

more processors or via a computer network. Parallel processing is also 

called parallel computing. 

    Parallel processing is particularly useful when running programs that 

perform complex computations, and it provides a viable option to the quest 

for cheaper computing alternatives. 

    Most computers have just one CPU, but some models have several. 

There are even computers with thousands of CPUs. With single-CPU 

computers, it is possible to perform parallel processing by connecting the 

computers in a network. However, this type of parallel processing requires 

very sophisticated software called distributed processing software.  

 

 

https://searchsoftwarequality.techtarget.com/definition/program
https://whatis.techtarget.com/definition/processor
https://www.webopedia.com/TERM/C/computer.html
https://www.webopedia.com/TERM/N/network.html
https://www.webopedia.com/TERM/S/software.html
https://www.webopedia.com/TERM/D/distributed_processing.html
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Motivation Parallelism 

Development of parallel software has traditionally been thought of as time 

and effort intensive. When viewed in the context of the brisk rate of 

development of microprocessors, one is tempted to question the need for 

devoting significant effort towards exploiting parallelism as a means of 

accelerating applications. It takes two years to develop a parallel 

application, during which time the underlying hardware and/or software 

platform has become obsolete, the development effort is clearly wasted. 

However, there are some unmistakable trends in hardware design, which 

indicate that uniprocessor (or implicitly parallel) architectures may not be 

able to sustain the rate of realizable performance increments in the future. 

   

Smaller transistors = faster processors . 

Faster processors = increased power consumption . 

Increased power consumption = increased heat . 

Increased heat = unreliable processors.  

 

 
 

Why we Need to Increasing Performance 

 
       Computing a solution can take anywhere from hours to days. Parallel 

computing techniques can help reduce the time it takes to reach a solution. 

To derive the full benefits of parallelization, it is important to choose an 

approach that is appropriate for the optimization problem. As our 

computational power increases solving problems will be much easier.  

Why we’re Building Parallel Systems    

 

       Much of the tremendous increase in single processor performance has 

been driven by the ever-increasing density of transistors the electronic 

switches on integrated circuits. As the size of transistors decreases, their 
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speed can be increased, and the overall speed of the integrated circuit can 

be increased. As the speed of transistors increases, their power 

consumption also increases. Most of this power is dissipated as heat, and 

when an integrated circuit gets too hot, it becomes unreliable. In the first 

decade of the twenty-first century, air-cooled integrated circuits are 

reaching the limits of their ability to dissipate heat.  

     Therefore, it is becoming impossible to continue to increase the speed 

of integrated circuits.  

   

Q: How can we exploit the continuing increase in transistor density?       

     The answer is parallelism.  

 

    Rather than building ever-faster, more complex, monolithic processors, 

the industry has decided to put multiple, relatively simple, complete 

processors on a single chip. Such integrated circuits are called multicore 

processors, and core has become synonymous with central processing unit, 

or CPU. In this setting a conventional processor with one CPU is often 

called a single-core system. 

 

Q: Why Parallel? 

• Because it’s faster. 
• Because it’s cheaper! 
• Because it’s natural! 

 

Why we Need to Write Parallel Programs 

 

        Most programs that have been written for conventional, single-core 

systems cannot exploit the presence of multiple cores. We can run multiple 

instances of a program on a multicore system, but this is often of little help. 

For example, being able to run multiple instances of our favorite game 

program isn’t really what we want the program to run faster with more 

realistic graphics. In order to do this, we need to either rewrite our serial 

programs so that they’re parallel, so that they can make use of multiple 

cores, or write translation programs, that is, programs that will 

automatically convert serial programs into parallel programs.  )مهم فهم(  

    Parallel computing requires combining an understanding of hardware, 

software, and parallelism to develop an application. It is more than just 
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message passing or threading. Current hardware and software give many 

different options to bring parallelism to your application. Some of these 

options can even be combined to yield even greater efficiency and speedup. 

 
     

    An efficient parallel implementation of a serial program may not be 

obtained by finding efficient parallelizations of each of its steps. Rather, 

the best parallelization may be obtained by stepping back and devising an 

entirely new algorithm.    ) مهم فهم( 

     As an example, suppose that we need to compute n values and add them 

together. We know that this can be done with the following serial code:  

 

sum = 0; 

for (i = 0; i < n; i++) 

 { x = Compute next value(. . .); 

sum += x; } 

 

    Now suppose we also have p cores and p is much smaller than n. Then 

each core can form a partial sum of approximately n=p values: 

 

my sum = 0;   my first i = . . . ;    my last i = . . . ; 

for (my i = my first i; my i < my last i; my i++) { 

my x = Compute next value(. . .); 

my sum += my x;} 

 

    Here the prefix my indicates that each core is using its own, private 

variables, and each core can execute this block of code independently of 

the other cores. After each core completes execution of this code, its 
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variable my sum will store the sum of the values computed by its calls to 

compute next value. For example, if there are eight cores, n = 24, and the 

24 calls to Compute next value return the values: 

 

1, 4, 3 ,   9, 2, 8 ,   5, 1, 1 ,   6, 2, 7 ,   2, 5, 0 ,  4, 1, 8 ,  6, 5 ,1 ,   2, 3, 9 

 

Then the values stored in my sum might be: 

 

Core 

my sum 

 0  1    2   3    4    5     6    7 

 8  19  7  15  7   13   12  14 

 

  Here we’re assuming the cores are identified by nonnegative integers in 

the range0, 1, … ,p-1, where p is the number of cores. When the cores are 

done computing their values of my sum, they can form a global sum by 

sending their results to a designated “master” core, which can add their 

results: 

 

    

In our example, if the master core is core 0, it would add the values 

8+19+7+ 15+7+13+12+14 = 95. But you can probably see a better way to 

do this especially if the number of cores is large. Instead of making the 

master core do all the work of computing the final sum, we can pair the 

cores so that while core 0 adds in the result of core 1, core 2 can add in the 

result of core 3, core 4 can add in the result of core 5 and so on. Then we 

can repeat the process with only the even-ranked cores: 0 adds in the result 

of 2, 4 adds in the result of 6, and so on. Now cores divisible by 4 repeat 

the process, and so on. See Figure 1.1. The circles contain the current value 

of each core’s sum, and the lines with arrows indicate that one core is 
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sending its sum to another core. The plus signs indicate that a core is 

receiving a sum from another core and adding the received sum into its 

own sum. For both “global” sums, the master core (core 0) does more work 

than any other core, and the length of time it takes the program to complete 

the final sum should be the length of time it takes for the master to 

complete. However, with eight cores, the master will carry out seven 

receives and adds using the first method, while with the second method it 

will only carry out three.  

 

 
Figure (1.1) Multiple cores forming a global sum. 

 

H.W: Does Parallelism considered useful all the time?  مهم 

 

1.5 How do we Write Parallel Programs?    

 

      There are a number of possible answers to this question, but most of 

them depend on the basic idea of partitioning the work to be done among 

the cores. There are two widely used approaches: task-parallelism and 

data-parallelism. In task-parallelism, we partition the various tasks 

carried out in solving the problem among the cores. In data-parallelism, we 

partition the data used in solving the problem among the cores, and each 

core carries out more or less similar operations on its part of the data.  

 

• Data Parallelism 

     Data Parallelism means concurrent execution of the same task on each 

multiple computing core. Let’s take an example, summing the contents of 

an array of size N. For a single-core system, one thread would simply sum 

the elements [0] . . . [N − 1]. For a dual-core system, however, thread A, 
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running on core 0, could sum the elements [0] . . . [N/2 − 1] and while 

thread B, running on core 1, could sum the elements [N/2] . . . [N − 1]. So 

the Two threads would be running in parallel on separate computing cores. 

• Task Parallelism 

     Task Parallelism means concurrent execution of the different task on 

multiple computing cores. Consider again our example above, an example 

of task parallelism might involve two threads, each performing a unique 

statistical operation on the array of elements. Again The threads are 

operating in parallel on separate computing cores, but each is performing 

a unique operation. 

The key differences between Data Parallelisms and Task Parallelisms are  

 

 

1.6 Concurrent, Parallel, Distributed 

 

       In concurrent computing, a program is one in which multiple tasks can 

be in progress at any instant. In parallel computing, a program is one in 

which multiple tasks cooperate closely to solve a problem. In distributed 

computing, a program may need to cooperate with other programs to solve 

a problem. So parallel and distributed programs are concurrent, but a 

program such as a multitasking operating system is also concurrent, even 

when it is run on a machine with only one core, since multiple tasks can be 
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in progress at any instant. There isn’t a clear-cut distinction between 

parallel and distributed programs, but a parallel program usually runs 

multiple tasks simultaneously on cores that are physically close to each 

other and that either share the same memory or are connected by a very 

high-speed network. On the other hand, distributed programs tend to be 

more “loosely coupled.” 

     The tasks may be executed by multiple computers that are separated by 

large distances, and the tasks themselves are often executed by programs 

that were created independently.    
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Lecture2                                                                       Background 
2.1 Introduction and Some Background 

 

       Parallel hardware and software have grown out of conventional serial 

hardware and software: hardware and software that runs (more or less) a 

single job at a time. A serial systems The von Neumann architecture The 

“classical” von Neumann architecture consists of : 

 

• Central Processing Unit (CPU ( 

The Central Processing Unit (CPU) is the electronic circuit 

responsible for executing the instructions of a computer program. It 

is sometimes referred to as the microprocessor or processor  .The 

CPU contains the ALU, CU and a variety of registers. 

- Arithmetic and Logic Unit (ALU) 

The ALU allows arithmetic (add, subtract etc) and logic (AND,OR, 

NOT etc) operations to be carried out . 

- Control Unit (CU) 

The control unit controls the operation of the computer’s ALU, 

memory and input/output devices, telling them how to respond to 

the program instructions it has just read and interpreted from the 

memory unit. The control unit also provides the timing and control 

signals required by other computer components. The control unit is 

responsible for deciding which instructions in a program should be 

executed. The control unit has a special register called the program 

counter. It stores the address of the next instruction to be executed. 

- Registers 

Data in the CPU and information about the state of an executing 

program are stored in special, very fast storage called registers.  

 

• Memory Unit 

    The memory unit consists of RAM, sometimes referred to as 

primary or main memory.  Unlike a hard drive (secondary memory), 

this memory is fast and also directly accessible by the CPU . 

RAM is split into partitions.  Each partition consists of an address 

and its contents (both in binary for.)The address will uniquely 
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identify every location in the memory. Loading data from permanent 

memory (hard drive), into the faster and directly accessible 

temporary memory (RAM), allows the CPU to operate much 

quicker. 

• Buses 

   Buses are the means by which data is transmitted from one part of 

a computer to another, connecting all major internal components to 

the CPU and memory. 

 

    A von Neumann machine executes a single instruction at a time, and 

each instruction operates on only a few pieces of data. See Figure 2.1. 

When data or instructions are transferred from memory to the CPU, we 

sometimes say the data or instructions are fetched or read from memory. 

When data are transferred from the CPU to memory, we sometimes say the 

data are written to memory or stored.  

    The separation of memory and CPU is often called the von Neumann 

Bottleneck , since the interconnect determines the rate at which 

instructions and data can be accessed. The potentially vast quantity of data 

and instructions needed to run a program is effectively isolated from the 

CPU. In 2010 CPUs are capable of executing instructions more than one 

hundred times faster than they can fetch items from main memory. 

H.W : What is von Neumann main problem? 

 

 

Figure(2.1) The von Neumann architecture. 
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Processes, Multitasking, and Threads 
 

     Operating system, or OS, is a major piece of software whose purpose 

is to manage hardware and software resources on a computer. It determines 

which programs can run and when they can run. It also controls the 

allocation of memory to running programs and access to peripheral devices 

such as hard disks and network interface cards. 

    

     When a user runs a program, the operating system creates a process an 

instance of a computer program that is being executed. A process consists 

of several entities. 

• The executable machine language program.  

• A block of memory, which will include the executable code, a call 

stack that keeps track of active functions, a heap, and some other 

memory locations.  

• Descriptors of resources that the operating system has allocated to 

the process for example, file descriptors. 

• Security information for example, information specifying which 

hardware and software resources the process can access. 

• Information about the state of the process, such as whether the 

process is ready to run or is waiting on some resource, the content 

of the registers, and information about the process’ memory. 

  

A process : is an instance of a program running in a computer. It is close 

in meaning to task , a term used in some operating systems. In some 

operating systems, a process is started when a program is initiated (either 

by a user entering a shell command or by another program). Like a task, 

a process is a running program with which a particular set of data is 

associated so that the process can be kept track of. An application that is 

being shared by multiple users will generally have one process at some 

stage of execution for each user. 

Multitasking: Multitasking is when a CPU is provided to execute 

multiple tasks at a time. Multitasking involves often CPU switching 

between the tasks, so that users can collaborate with each program 

together. Unlike multithreading, In multitasking, the processes share 

separate memory and resources. As multitasking involves CPU 

switching between the tasks rapidly, So the little time is needed in order 

to switch from the one user to next.  

https://www.techtarget.com/whatis/definition/task
https://www.techtarget.com/searchdatacenter/definition/shell
https://www.techtarget.com/searchsoftwarequality/definition/application
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Multithreading: Multithreading is a system in which many threads are 

created from a process through which the computer power is increased. 

In multithreading, CPU is provided in order to execute many threads 

from a process at a time, and in multithreading, process creation is 

performed according to cost. Unlike multitasking, multithreading 

provides the same memory and resources to the processes for execution. 

 

 

 Most modern operating systems are multitasking. This means that (  مهم  )   

the operating system provides support for the apparent simultaneous 

execution of multiple programs. This is possible even on a system with a 

single core, since each process runs for a small interval of time (typically 

a few milliseconds), often called a time slice. After one running program 

has executed for a time slice, the operating system can run a different 

program. A multitasking OS may change the running process many times 

a minute, even though changing the running process can take a long time. 

In a multitasking OS if a process needs to wait for a resource for example, 

it needs to read data from external storage it will block. This means that it 

will stop executing and the operating system can run another process. 

However, many programs can continue to do useful work even though the 

part of the program that is currently executing must wait on a resource. For 

example, an airline reservation system that is blocked waiting for a seat 

map for one user could provide a list of available flights to another user. 

  

   Threading provides a mechanism for programmers to divide their 

programs into more or less independent tasks with the property that when 

one thread is blocked another thread can be run. in most systems it’s 

possible to switch between threads much faster than it’s possible to switch 

between processes . This is because threads are “lighter weight” than 

processes. Threads are contained within processes, so they can use the 

same executable, and they usually share the same memory and the same 

I/O devices.  

We can say that two threads belonging to one process can share most 

of the process’ resources. 

The two most important exceptions are :( مهم) 

• that they’ll need a record of their own program counters  
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• and they’ll need their own call stacks  

So that they can execute independently of each other If a process is the 

“master” thread of execution and threads are started and stopped by the 

process, then we can envision the process and its subsidiary threads as 

lines: when a thread is started, it forks off the process; when a thread 

terminates, it joins the process, See Figure(2.2). 

 

Figure (2.2). A Process and two threads. 

After that, the “join” part begins, in which results of all subtasks are 

recursively joined into a single result, the program simply waits until 

every subtask is executed. 

 
The main difference between process and thread are list in the table : 

Basic for comparison process thread 

Basic Program in execution Light weight process or 

part of it 

Memory sharing Completely isolated and 

do not share memory 

Shares memory with each 

other 

Resource conception More Less 

efficiency Less efficient Enhanced efficiency 

Time required for 

creation 

More Less 

Context switching time  Takes more time Consumes less time 

Uncertain termination Results in loss of process A thread can be reclaimed 

Time required for 

termination  

More Less 

See figure 1 for more detail about the structure outline of the process and 

thread. 
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Figure 1 Process and thread structure. 

 

Instruction-level Parallelism  (ILP) 

 
       Instruction Level Parallelism (ILP) is used to refer to the architecture 

in which multiple operations can be performed parallelly in a particular 

process, with its own set of resources ( address space, registers, identifiers, 

state, program counters). It refers to the compiler design techniques and 

processors designed to execute operations, like memory load and store, 

integer addition, float multiplication, in parallel to improve the 

performance of the processors.  

      Instruction-level parallelism (ILP) is a measure of how many of the 

instructions in a computer program can be executed simultaneously. ILP 

must not be confused with concurrency : 

 

• ILP is the parallel execution of a sequence of instructions belonging 

to a specific thread of execution of a process (a running program 

with its set of resources: address space, a set of registers, its 
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identifiers, its state, program counter (aka instruction pointer), and 

more) . 

• Concurrency involves the assignment of threads of one or different 

processes to a CPU's core in a strict alternation, or in true parallelism 

if there are enough CPU cores, ideally one core for each runnable 

thread . 

There are two approaches to instruction level parallelism: Hardware and 

Software. 

    Hardware level works upon dynamic parallelism.   

    Software level works on static parallelism.  

 

Dynamic parallelism means the processor decides at run time which 

instructions to execute in parallel, whereas static parallelism means the 

compiler decides which instructions to execute in parallel. The Pentium 

processor works on the dynamic sequence of parallel execution, but the 

Itanium processor works on the static level parallelism. 

 

Architecture :  

 

      Instruction Level Parallelism is achieved when multiple operations are 

performed in single cycle, that is done by either executing them 

simultaneously or by utilizing gaps between two successive operations that 

is created due to the latencies . 

     Now, the decision of when to execute an operation depends largely on 

the compiler rather than hardware. However, extent of compiler’s control 

depends on type of ILP architecture where information regarding 

parallelism given by compiler to hardware via program varies. The 

classification of ILP architectures can be done in the following ways : 

 

• Sequential Architecture   :  

program is not expected to explicitly convey any information 

regarding parallelism to hardware, like superscalar architecture. 

• Dependence Architectures   :  

program explicitly mentions information regarding dependencies 

between operations like dataflow architecture . 

• Independence Architecture    :  
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program gives information regarding which operations are 

independent of each other so that they can be executed . 

In order to apply ILP, compiler and hardware must determine data 

dependencies, independent operations, and scheduling of these 

independent operations, assignment of functional unit, and register to store 

data. 

  

 
Figure (2.3) Types of parallelism. 

Task Parallelism : This form of parallelism covers the execution of 

computer programs across multiple processors on same or multiple 

machines. It focuses on executing different operations in parallel to fully 

utilize the available computing resources in form of processors and 

memory . 

    One example of task parallelism would be an application creating 

threads for doing parallel processing where each thread is responsible for 

performing a different operation. Here is pseudo code illustrating task 

parallelism : 

FOR each CPU in parallel computing environment 

    Retrieve next task from task queue 

    Create a thread and provide it with the retrieved task 

    Start the created thread 

END FOR 
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    Some of Big Data frameworks that utilize task parallelism are Apache 

Storm and Apache YARN (it supports more of hybrid parallelism 

providing both task and data parallelism). 

Data Parallelism : This form of parallelism focuses on distribution of data 

sets across the multiple computation programs. In this form, same 

operations are performed on different parallel computing processors on the 

distributed data sub set . 

  One example of data parallelism would be to divide the input data into 

sub sets and pass it to the threads performing same task on different CPUs. 

Here is the pseudo example illustrating data parallelism using a data array 

called : 

lower_limit = 0 

upper_limit = 0 

FOR each CPU in parallel computing environment 

    lower_limit = upper_limit + 1 

    upper_limit = upper_limit + round(d.length/ no_of_cpus ) 

    Create a thread and provide it with lower_limit and upper_limit data 

array indexes 

    Start the created thread 

END FOR 
 

Some of Big Data frameworks that utilize data parallelism are Apache 

Spark, Apache MapReduce and Apache YARN (it supports more of hybrid 

parallelism providing both task and data parallelism). 

 

Parallel Hardware 

 
        Multiple issue and pipelining can clearly be considered to be parallel 

hardware, since functional units are replicated. Since this form of 

parallelism isn’t usually visible to the programmer, we’re treating both of 

them as extensions to the basic von Neumann model, and for our purposes, 

parallel hardware will be limited to hardware that’s visible to the 

programmer. In other words we’ll consider the hardware to be parallel if : 

1- We can readily modify source code to exploit it. 

2- We must modify source code to exploit it.  

   Flynn's taxonomy in general, digital computers may be classified into 

four categories, according to the multiplicity of instruction and data 
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streams. This scheme for classifying computer organizations was 

introduced by Michael J. Flynn. The essential computing process is the 

execution of a sequence of instructions on a set of data. The term stream is 

used here to denote a sequence of items (instructions or data) as executed 

or operated upon by a single processor.  

   Instructions or data are defined with respect to a referenced machine. An 

instruction stream is a sequence of instructions as executed by the 

machine; a data stream is a sequence of data including input, partial, or 

temporary results, called for the instruction stream. Computer 

organizations are characterized by the multiplicity of the hardware 

provided to service the instruction and data streams. Listed below are 

Flynn’s four machine organizations: 

• Single instruction stream single data stream (SISD) 

• Single instruction stream multiple data stream (SIMD) 

• Multiple instruction stream single data stream (MISD) 

• Multiple instruction stream multiple data stream (MIMD) 

 

2.4.1 SIMD systems  

 

• In parallel computing, Flynn’s taxonomy is frequently used to 

classify computer architectures.  

• It classifies a system according to the number of instruction streams 

and the number of data streams it can simultaneously manage.  

• A classical von Neumann system is therefore a single instruction 

stream, single data stream, or SISD system, since it executes a 

single instruction at a time and it can fetch or store one item of data 

at a time  

• Single instruction, multiple data, or SIMD, systems are parallel 

systems.  

• As the name suggests, SIMD systems operate on multiple data 

streams by applying the same instruction to multiple data items, so 

an abstract SIMD system can be thought of as having a single control 

unit and multiple ALUs. An instruction is broadcast from the control 

unit to the ALUs, and each ALU either applies the instruction to the 

current data item, or it is idle.  

 

As an example, suppose we want to carry out a “vector addition.” That is, 

suppose we have two arrays x and y, each with n elements, and we want to 

add the elements of y to the elements of x. 
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   Suppose further that our SIMD system has n ALUs.  

1- Then we could load x[i] and y[i] into the ith ALU, have the ith ALU 

add y[i] to x[i], and store the result in x[i].  

2- If the system has m ALUs and m < n, we can simply execute the 

additions in blocks of m elements at a time. For example, if m D 4 

and n D 15, we can first add elements 0 to 3, then elements 4 to 7, 

then elements 8 to 11, and finally elements 12 to 14. Note that in the 

last group of elements in our example elements 12 to 14 we’re only 

operating on three elements of x and y, so one of the four ALUs will 

be idle.  

Note in a “classical” SIMD system, the ALUs must operate 

synchronously, that is, each ALU must wait for the next instruction to 

be broadcast before proceeding.  

• The ALUs have no instruction storage, so an ALU can’t delay 

execution of an instruction by storing it for later execution. 

• The first example shows, SIMD systems are ideal for parallelizing 

simple loops that operate on large arrays of data.  

• Parallelism that’s obtained by dividing data among the processors 

and having the processors all apply (more or less) the same 

instructions to their subsets of the data is called data-parallelism.  

• SIMD parallelism can be very efficient on large data parallel 

problems, but SIMD systems often don’t do very well on other types 

of parallel problems.  

• The late 1990s the only widely produced SIMD systems were vector 

processors.  

• More recently, graphics processing units, or GPUs, and desktop 

CPUs are making use of aspects of SIMD computing. 

 

2.4.2 MIMD systems 

 

• MIMD systems multiple instruction, multiple data, or MIMD, 

systems support multiple simultaneous instruction streams 

operating on multiple data streams.  

• MIMD systems typically consist of a collection of fully 

independent processing units or cores, each of which has its own 

control unit and its own ALU.  
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• Unlike SIMD systems, MIMD systems are usually asynchronous 

the processors can operate at their own pace.  

• In many MIMD systems there is no global clock, and there may be 

no relation between the system times on two different processors. 

There are two principal types of MIMD systems: 

1- Shared-memory systems  

2- Distributed-memory system  

  

Writing and Running Parallel Programs      

 

    In the past, virtually all parallel program development was done using a 

text editor such as vi or Emacs, and the program was either compiled and 

run from the command line or from within the editor. Debuggers were also 

typically started from the command line. Now there are also integrated 

development environments (IDEs) available from Microsoft, the Eclipse 

project, and others. We can use text editors or warped functions. 
Undoubtedly, the first step in developing parallel software is to first 

understand the problem that you wish to solve in parallel. If you are starting 

with a serial program, this necessitates understanding the existing code 

also . Before spending time in an attempt to develop a parallel solution for 

a problem : 

1-  determine whether or not the problem is one that can actually be 

parallelized.  

2- Calculate the potential energy for each of several thousand 

independent conformations of a molecule.  

3- When done, find the minimum energy conformation . 

 

This problem is able to be solved in parallel if : 

1-  Each of the molecular conformations is independently 

determinable.  

2- The calculation of the minimum energy conformation is also a 

parallelizable problem. 
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Lecture 3                         Shared-Memory 

Shared-Memory Programming with Pthreads 

      From a programmer’s point of view a shared-memory system is one in 

which all the cores can access all the memory locations (see Figure 4.1). 

Thus, an obvious approach to the problem of coordinating the work of the 

cores is to specify that certain memory locations are “shared.” we might 

well wonder why all parallel programs don’t use this shared-memory 

approach.  

 
Figure 4.1 shared-memory system. 

 

There are problems in programming shared-memory systems, problems 

that are often different from the problems encountered in distributed-

memory programming. For example, we saw that if different cores attempt 

to update a single shared-memory location, then the contents of the shared 

location can be unpredictable. The code that updates the shared location is 

an example of a critical section.  

In shared-memory programming, an instance of a program running on a 

processor is usually called a thread (unlike MPI, where it’s called a 

process).   مهم()   

 

Processes, Threads, and Pthreads 
        

        In shared-memory programming, a thread is somewhat analogous to 

a process in MPI programming, t’s a “lighter-weight”. A process is an 

instance of a running (or suspended) program. In addition to its executable, 

it consists of the following:  

• A block of memory for the stack.  
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• A block of memory for the heap. 

• Descriptors of resources that the system has allocated for the process 

for example, file descriptors. 

• Security information for example, information about which 

hardware and software resources the process can access. 

• Information about the state of the process, such as whether the 

process is ready to run or is waiting on a resource, the content of the 

registers including the program counter, and so on . 

      In most systems, by default, a process’ memory blocks are private, 

another process can’t directly access the memory of a process unless the 

operating system intervenes. One user’s processes shouldn’t be allowed 

access to the memory of another user’s processes. However, this isn’t what 

we want when we’re running shared-memory programs. At a minimum, 

we’d like certain variables to be available to multiple processes, so shared-

memory “processes” typically allow much easier access to each others’ 

memory. 

      It’s conceivable that they share pretty much everything that’s process 

specific, except their stacks and their program counters this can be 

relatively easily arranged by starting a single process and then having the 

process start these “lighter-weight” processes. For this reason, they’re 

often called light-weight processes. The more commonly used term, 

thread, comes from the concept of “thread of control.” A thread of 

control is just a sequence of statements in a program. The term suggests a 

stream of control in a single process, and in a shared-memory program a 

single process may have multiple threads of control.  

     The expression fork-join in parallelism indicates a way to describe 

parallel performance of an application where the program stream splits 

(forks) into two or more threads capable of being executed simultaneously 

and then assemble (join) together, back into one flow after completing all 

the parallel work.  

 

Why Multithreading? Threads are popular way to improve application 

through parallelism. For example, in a browser, multiple tabs can be 

different threads. MS word uses multiple threads, one thread to format the 

text, other thread to process inputs, etc.  

Threads operate faster than processes due to following reasons:  
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1) Thread creation is much faster.  

2) Context switching between threads is much faster.  

3) Threads can be terminated easily  

4) Communication between threads is faster. 

       

HELLO, WORLD 
       Pthreads program which the main function starts up several threads. 

Each thread prints a message and then quits. 

Execution 
The program is compiled like an ordinary C program, with the possible 

exception that we may need to link in the Pthreads Library. 
A Pthreads “hello, world” program  

#include <pthread.h> 

/* function to be run as a thread always must have the same signature: 

   it has one void* parameter and returns void */ 

void *threadfunction(void *arg) 

{  printf("Hello, World!\n"); } 

int main(void) 

{ 

  pthread_t thread; 

  pthread_create(&thread, NULL, threadfunction, NULL); 

  /*creates a new thread with default attributes and NULL passed as the argument to the start 

routine*/ 

  pthread_join(thread, NULL); /*wait until the created thread terminates*/ 

  return 0; 

    } 

  printf("%s\n", strerror(createerror), stderr); 

  return 1; 
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} 

 

Preliminaries     السابق()وصف البرنامج  
 

  Let’s take a closer look at the source code in Program of hello world 

above .  

• First notice that this is just a C program with a main function and 

one other function.  

•  In Line 1 we include pthread.h, the Pthreads header file, which 

declares the various Pthreads functions, constants, types, and so on. 

•  We define a global variable thread . In Pthreads programs, global 

variables are shared by all the threads.  

• To create thread we use pthread_create(&thread, NULL, 

threadfunction, NULL); 

• To finish thread work we use pthread_join(thread, NULL); 

Local variables and function arguments that is, variables declared in 

functions are (ordinarily) private to the thread executing the  function. 

If several threads are executing the same function, each thread will have 

its own private copies of the local variables and function arguments. 

This makes sense if you recall that each thread has its own stack.  

 

Starting the Threads , Running the threads 
 

           In Pthreads the threads are started by the program executable. This 

introduces a bit of additional complexity, as we need to include code in our 

program to explicitly start the threads, and we need data structures to store 

information on the threads. we allocate storage for one pthread_t object 

for each thread. The pthread_t data structure is used for storing thread-

specific information. It’s declared in pthread.h. The pthread_t objects are 

examples of opaque objects.  
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The actual data that they store is system specific, and their data members 

aren’t directly accessible to user code.  

      We use the pthread create function to start the threads. The syntax of 

pthread_create is: 

pthread_create(&thread name, attr, start function, arg); 

• The first argument is a pointer to the appropriate pthread_t object. 

• We won’t be using the second argument, so we just pass the 

argument NULL in our function call.  

• The third argument is the function that the thread is to run, and the 

last argument is a pointer to the argument that should be passed to 

the function start_routine.  

• The return value for most Pthreads functions indicates if there’s been 

an error in the function call.  

 Recall that the type void* can be cast to any pointer type in C, so args_p 

can point to a list containing one or more values needed by thread_ 

function. Similarly, the return value of thread_function can point to a list 

of one or more values.  

#include <pthread.h> 

pthread_create (thread, attr, start_routine, arg) 

no Parameter Description 

1 thread 

 

An opaque, unique identifier for the new thread 

returned by the subroutine. 

2 attr 

 

An opaque attribute object that may be used to set 

thread attributes. You can specify a thread 

attributes object, or NULL for the default values. 

3 start_routine 

 

The C++ routine that the thread will execute once 

it is created. 

4 arg 

 

A single argument that may be passed to 

start_routine. It must be passed by reference as a 

pointer cast of type void. NULL may be used if no 

argument is to be passed. 
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Start Thread 

#include <stdio.h> 

#include <stdlib.h> 

#include <unistd.h> //Header file for sleep().  

#include <pthread.h> 

// A normal C function that is executed as a thread 

// when its name is specified in pthread_create() 

void *myThreadFun(void *vargp) 

{ 

 printf("Hi friends \n"); 

 return NULL; 

} 

int main() 

{ pthread_t thread_id; 

 printf("Before Thread\n"); 

 pthread_create(&thread_id, NULL, myThreadFun, NULL); 

 pthread_join(thread_id, NULL); 

 printf("After Thread\n"); 

 exit(0); 

} 

 

In main(), we declare a variable called thread_id, which is of type  

Pthread_t, which is an integer used to identify the thread in the system. 

After declaring thread_id, we call pthread_create() function to create a 

thread  .pthread_create() takes 4 arguments . 

The pthread_join() function for threads is the equivalent of wait() for 

processes. A call to pthread_join blocks the calling thread until the thread 

with identifier equal to the first argument terminates. 

 



class  sw rd3                                                                                            ldeen        a eaba walaT 

  
Parallel programming paradigm 27 

 

A C program to show multiple threads with global and static variables  

#include <stdio.h> 

#include <stdlib.h> 

#include <unistd.h> 

#include <pthread.h> 

// Let us create a global variable to change it in threads 

int g = 0; 

// The function to be executed by all threads 

void *myThreadFun(void *vargp) 

{ 

 // Store the value argument passed to this thread 

 int *myid = (int *)vargp; 

 // Let us create a static variable to observe its changes 

 static int s = 0; 

 // Change static and global variables 

 ++s; ++g; 

 // Print the argument, static and global variables 

 printf("Thread ID: %d, Static: %d, Global: %d\n", *myid, ++s, ++g); } 

int main() 

{ int i; 

 pthread_t tid; 

 // Let us create three threads 

 for (i = 0; i < 3; i++) 

  pthread_create(&tid, NULL, myThreadFun, (void *)&tid); 

 pthread_exit(NULL); 

 return 0; 

} 
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Passing arguments to threads 

 

Passing arguments to threads 

#include <stdio.h> 

#include <pthread.h> 

void *thread_func(void *arg) 

{ 

    printf("I am thread #%d\n", *(int *)arg); 

    return NULL; 

} 

int main(int argc, char *argv[]) 

{ 

    pthread_t t1, t2; 

    int i = 1;         int j = 2; 

    pthread_create(&t1, NULL, &thread_func, &i); 

    pthread_create(&t2, NULL, &thread_func, &j); 

    /* This makes the main thread wait on the death of t1 and t2. */ 

    pthread_join(t1, NULL); 

    pthread_join(t2, NULL); 

    printf("In main thread\n"); 

    return 0; } 

 

Stopping the Threads 
 

     We call the function pthread_join once for each thread. A single call 

to pthread_join will wait for the thread associated with the pthread_t 

object to complete.  

pthread_join(thread, NULL); 

/* Create 2 threads t1 and t2 

with default attributes which 

will execute function 

"thread_func()" in their own 

contexts with specified 

arguments. */ 
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The second argument can be used to receive any return value computed by 

the thread. There are following two routines which we can use to join or 

data threads . The default non-detached thread is allocated storage by the 

system that needs to be released on termination. To wait for a non-detached 

thread to terminate and reclaim the allocated storage and get the 

termination status, we use the following function: 

pthread_join (id,status) 

no Parameter Description 

1 id Input that specifies the Thread Id 

2 status Input pointer to a pointer that on successful 

return will contain the termination status of 

the specified thread 

 

Error checking 
 

    In the interest of keeping the program compact and easy to read, we have 

resisted the temptation to include many details that would therefore be 

important in a “real” program. The most likely source of problems in this 

example (and in many programs) is the user input or lack of it. It would 

therefore be a very good idea to check that the program was started with 

command line arguments, and, if it was, to check the actual systems value 

of the number of threads to see if it’s reasonable. It may also be a good idea 

to check the error codes returned by the Pthreads functions.  

 

Other approaches to thread startup 
 

     The main thread then creates all of the “subsidiary” threads. While the 

threads are running, the main thread prints a message, and then waits for 

the other threads to terminate. This approach to threaded programming is 

very similar to our approach to MPI programming, in which the MPI 

system starts a collection of processes and waits for them to complete.  

    There is, however, a very different approach to the design of 

multithreaded programs. In this approach, subsidiary threads are only 

started as the need arises. Our main thread can start all the threads it 

anticipates needing at the beginning of the program . However, when a 
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thread has no work, instead of terminating, it can sit idle until more work 

is available.  

 

Mutex , READ-WRITE Locks 
 

       Thread synchronization is defined as a mechanism which ensures that 

two or more concurrent processes or threads do not simultaneously execute 

some particular program segment known as a critical section. Processes’ 

access to critical section is controlled by using synchronization techniques. 

When one thread starts executing the critical section (a serialized segment 

of the program) the other thread should wait until the first thread finishes. 

If proper synchronization techniques are not applied, it may cause a race 

condition where the values of variables may be unpredictable and vary 

depending on the timings of context switches of the processes or threads. 

Mutex Locks: Theory: 

• A mutex lock variable has 2 values (states) 

o Unlocked 

o Locked 

• A mutex lock is a synchronization object with 2 operations 

• Lock 

o If the mutex lock is in the unlocked state, the lock will 

complete (and the thread continues with the next instruction 

following the lock command). The value (state) of the mutex 

lock is changed to locked 

o If the mutex lock is in the locked state, the thread that 

executes the lock command will block (it stops execution) 

until the value (state) of the mutex lock 

becomes unlocked (When the state of the mutex lock does 
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become unlocked, the lock command will complete and 

change the state of the mutex lock to locked) 

• Unlock 

o If the mutex lock is in the locked state, the state is changed 

to unlocked 

o If the mutex lock is in the unlocked state, this operation has 

no effect. 

The mutex lock can ONLY be unlocked by the thread had previously 

locked the mutex. 

 

pthread_mutex_t x; 

 

Initializing a mutex variable : 

After defining the mutex lock variable, you must initialized it using the 

following function : 

 

int pthread_mutex_init(pthread_mutex_t    *mutex, pthread_mutexattr_t 

*attr (    

 

mutex: is the mutex lock that you want to initialize (pass the address  ) attr: 

is the set of initial property of the mutex lock . 

The most common mutex lock is one where the lock is initially in the 

unlock. This kind of mutex lock is created using the (default) attribute null  

Example: initialize a mutex variable: 

 

pthread_mutex_t x;     /* Define a mutex lock "x /* " 

pthread_mutex_init(&x, NULL);  /* Initialize "x" */ 
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With locks 

pthread_mutex_lock(&x); 

 

Unlock 

pthread_mutex_unlock(&x); 

 

Mutex lock for Thread Synchronization  

 

      Thread synchronization is defined as a mechanism which ensures 

that two or more concurrent processes or threads do not simultaneously 

execute some particular program segment known as a critical section. 

Processes’ access to critical section is controlled by using synchronization 

techniques. When one thread starts executing the critical section (a 

serialized segment of the program) the other thread should wait until the 

first thread finishes. If proper synchronization techniques are not applied, 

it may cause a race condition where the values of variables may be 

unpredictable and vary depending on the timings of context switches of the 

processes or threads. 

 
Thread Synchronization Problems 

An example code to study synchronization problems : 

Thread Synchronization Problems 

#include <pthread.h> 

#include <stdio.h> 

#include <stdlib.h> 

https://www.geeksforgeeks.org/g-fact-70/
https://practice.geeksforgeeks.org/problems/what-is-race-condition
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#include <string.h> 

#include <unistd.h> 

  pthread_t tid[2]; 

int counter; 

void* trythis(void* arg) 

{ 

    unsigned long i = 0; 

    counter += 1; 

    printf("\n Job %d has started\n", counter)  ; 

    for (i = 0; i < (0xFFFFFFFF); i++)       ; 

    printf("\n Job %d has finished\n", counter); 

    return NULL; 

} 

 int main(void) 

{ 

    int i = 0; 

    int error; 

      while (i < 2) { 

        error = pthread_create(&(tid[i]), NULL, &trythis, NULL); 

        if (error != 0) 

            printf("\nThread can't be created : [%s]", strerror(error)); 

        i++; 

    } 

      pthread_join(tid[0], NULL); 

    pthread_join(tid[1], NULL); 

      return 0;} 
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How to compile above program? 

 

In this example, two threads(jobs) are created and in the start function of 

these threads, a counter is maintained to get the logs about job number 

which is started and when it is completed. 

Output : 

Job 1 has started 

Job 2 has started 

Job 2 has finished 

Job 2 has finished 

Problem: From the last two logs, one can see that the log ‘Job 2 has 

finished’ is repeated twice while no log for ‘Job 1 has finished’ is seen. 

 

Why it has occurred ? 

On observing closely and visualizing the execution of the code, we can 

see that : 

• The log ‘Job 2 has started’ is printed just after ‘Job 1 has Started’ so it 

can easily  

• be concluded that while thread 1 was processing the scheduler 

scheduled the thread 2. 

• If we take the above assumption true then the value of the ‘counter’ 

variable got incremented again before job 1 got finished. 

• So, when Job 1 actually got finished, then the wrong value of counter 

produced the log ‘Job 2 has finished’ followed by the ‘Job 2 has 

finished’ for the actual job 2 or vice versa as it is dependent on 

scheduler. 

• So we see that its not the repetitive log but the wrong value of the 

‘counter’ variable that is the problem. 

• The actual problem was the usage of the variable ‘counter’ by a second 

thread when the first thread was using or about to use it. 
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• In other words, we can say that lack of synchronization between the 

threads while using the shared resource ‘counter’ caused the problems 

or in one word we can say that this problem happened due to 

‘Synchronization problem’ between two threads. 

 

How to solve it ? 

The most popular way of achieving thread synchronization is by 

using Mutexes. 

 

Mutex 

• A Mutex is a lock that we set before using a shared resource 

and release after using it. 

• When the lock is set, no other thread can access the locked 

region of code. 

• So we see that even if thread 2 is scheduled while thread 1 

was not done accessing the shared resource and the code is 

locked by thread 1 using mutexes then thread 2 cannot even 

access that region of code. 

• So this ensures synchronized access of shared resources in the 

code. 

 

Working of a mutex 

1- Suppose one thread has locked a region of code using 

mutex and is executing that piece of code . 

2- Now if scheduler decides to do a context switch, then 

all the other threads which are ready to execute the 

same region are unblocked 



class  sw rd3                                                                                            ldeen        a eaba walaT 

  
Parallel programming paradigm 36 

 

3- Only one of all the threads would make it to the 

execution but if this thread tries to execute the same 

region of code that is already locked then it will again 

go to sleep . 

4- Context switch will take place again and again but no 

thread would be able to execute the locked region of 

code until the mutex lock over it is released. 

5- Mutex lock will only be released by the thread who 

locked it 

6- So this ensures that once a thread has locked a piece of 

code then no other thread can execute the same region 

until it is unlocked by the thread who locked it. 

Hence, this system ensures synchronization among the threads while 

working on shared resources. 

A mutex is initialized and then a lock is achieved by calling the 

following two functions : The first function initializes a mutex and 

through second function any critical region in the code can be locked. 

1. int pthread_mutex_init(pthread_mutex_t *restrict mutex, 

const pthread_mutexattr_t *restrict attr) : Creates a mutex, 

referenced by mutex, with attributes specified by attr. If attr is 

NULL, the default mutex attribute (NONRECURSIVE) is used. 

Returned value 

If successful, pthread_mutex_init() returns 0, and the state of 

the mutex becomes initialized and unlocked. 

If unsuccessful, pthread_mutex_init() returns -1. 

2. int pthread_mutex_lock(pthread_mutex_t *mutex) : Locks 

a mutex object, which identifies a mutex. If the mutex is already 

locked by another thread, the thread waits for the mutex to 
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become available. The thread that has locked a mutex becomes 

its current owner and remains the owner until the same thread 

has unlocked it. When the mutex has the attribute of recursive, 

the use of the lock may be different. When this kind of mutex is 

locked multiple times by the same thread, then a count is 

incremented and no waiting thread is posted. The owning thread 

must call pthread_mutex_unlock() the same number of times to 

decrement the count to zero. 

Returned value 

If successful, pthread_mutex_lock() returns 0. 

If unsuccessful, pthread_mutex_lock() returns -1. 

 

The mutex can be unlocked and destroyed by calling following two 

functions :The first function releases the lock and the second function 

destroys the lock so that it cannot be used anywhere in future. 

1. int pthread_mutex_unlock(pthread_mutex_t *mutex) 

: Releases a mutex object. If one or more threads are waiting to 

lock the mutex, pthread_mutex_unlock() causes one of those 

threads to return from pthread_mutex_lock() with the mutex 

object acquired. If no threads are waiting for the mutex, the 

mutex unlocks with no current owner. When the mutex has the 

attribute of recursive the use of the lock may be different. When 

this kind of mutex is locked multiple times by the same thread, 

then unlock will decrement the count and no waiting thread is 

posted to continue running with the lock. If the count is 

decremented to zero, then the mutex is released and if any thread 

is waiting for it is posted. 
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Returned value 

If successful, pthread_mutex_unlock() returns 0. 

If unsuccessful, pthread_mutex_unlock() returns -1 

2. int pthread_mutex_destroy(pthread_mutex_t *mutex) 

: Deletes a mutex object, which identifies a mutex. Mutexes are 

used to protect shared resources. mutex is set to an invalid value, 

but can be reinitialized using pthread_mutex_init(). 

Returned value 

If successful, pthread_mutex_destroy() returns 0. 

If unsuccessful, pthread_mutex_destroy() returns -1. 

 

#include <pthread.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <unistd.h> 

pthread_t tid[2]; 

int counter; 

pthread_mutex_t lock; 

void* trythis(void* arg) 

{ 

 pthread_mutex_lock(&lock); 

 unsigned long i = 0; 

 counter += 1; 
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 printf("\n Job %d has started\n", counter); 

 for (i = 0; i < (0xFFFFFFFF); i++) ; 

 printf("\n Job %d has finished\n", counter); 

 pthread_mutex_unlock(&lock); 

 return NULL; } 

int main(void) 

{ 

 int i = 0; int error; 

 if (pthread_mutex_init(&lock, NULL) != 0) { 

  printf("\n mutex init has failed\n"); 

  return 1; } 

 while (i < 2) { 

  error = pthread_create(&(tid[i]), 

  NULL, 

  &trythis, NULL); 

  if (error != 0) 

 printf("\nThread can't be created :[%s]", 

 strerror(error));   i++;  } 

 pthread_join(tid[0], NULL); 

 pthread_join(tid[1], NULL); 

 pthread_mutex_destroy(&lock); 

 return 0;   } 
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In the above code : 

• A mutex is initialized in the beginning of the main function . 

• The same mutex is locked in the ‘trythis()’ function while using the 

shared resource ‘counter .’ 

• At the end of the function ‘trythis()’ the same mutex is unlocked. 

• At the end of the main function when both the threads are done, the 

mutex is destroyed. 

Output   

Job 1 started 

Job 1 finished 

Job 2 started 

Job 2 finished 

So this time the start and finish logs of both the jobs are present. So thread 

synchronization took place by the use of Mutex. 

 

General notes 

• A thread holds a mutex if it has successfully locked that mutex. 

• Only one thread at any one time can hold a mutex. 

• Mutexes are used to protect critical sections. 

• Critical Sections are where threads are updating shared data. 

• The updating thread should be forced to hold a mutex before 

updating. 

• releasing (unlocking) the mutex when done. 

• The mutex should have been locked by the thread unlocking it. 

• If this is not the case, behaviour depends on what sort of mutex it is. 

Linux is non-standard here! 
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• Read man pthread_mutex_unlock for gory details, here. 

• In the case of error checking this will result in an error. 

• If other threads are waiting to lock this mutex, then one of them will 

subsequently succeed. 

• Which one is entirely non-deterministic. 

  

Mutex eaxample 

#include <pthread.h> 

#include <unistd.h> 

#include <stdio.h> 

#include <stdlib.h> 

#define THREADS 5 

static int sum = 1; 

void *updater(void *ptr){ 

    sum = sum + 1;  

    pthread_exit(NULL); 

} 

int main(void){ 

  int i; 

  pthread_t threads[THREADS]; 

  for(i = 0; i < THREADS ; i++) 

    pthread_create(&threads[i],NULL,updater,NULL); 

  for(i = 0; i < THREADS ; i++) 

    pthread_join(threads[i],NULL); 

  fprintf(stderr, "sum = %d\n", sum); 

  exit(EXIT_SUCCESS); 
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} 

Notes  

• Presumably it is designed so that after execution sum should be incremented 

THREADS times. 

• Thus it should print out: sum = 1 + THREADS 

• In reality this does seem to work almost all the time. 

• However it is at the mercy of the scheduler. 

• In a unfortunate world the answer could be any number greater than 1 and 

no bigger than 1 + THREADS. 

• Pretty dangerous. 

 

 

Another example 

 

#include <pthread.h> 

#include <unistd.h> 

#define BUFSIZE 8 

static int buffer[BUFSIZE]; 

static int bufin = 0; 

static int bufout = 0; 

static pthread_mutex_t 

   buffer_lock = PTHREAD_MUTEX_INITIALIZER; 

int get_buffersize(){ 

  return BUFSIZE; 

} 

 

void get_item(int *itemp){ 

   pthread_mutex_lock(&buffer_lock); 

   *itemp = buffer[bufout]; 
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   bufout = (bufout + 1) % BUFSIZE; 

   pthread_mutex_unlock(&buffer_lock); 

   return; 

} 

void put_item(int item){ 

   pthread_mutex_lock(&buffer_lock); 

   buffer[bufin] = item; 

   bufin = (bufin + 1) % BUFSIZE; 

   pthread_mutex_unlock(&buffer_lock); 

   return; 

} 
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Time performance 

#include <stdio.h> 

#include <stdlib.h> 

#include <pthread.h> 

 

void *entry_point(void *value) 

{ 

\\ Time for Thread Execution  Begin \\ 

    printf("hello from the second thread \n"); 

    int *num = (int *) value  ; 

    printf("the value of value is %d", *num"); 

    return NULL;  

\\ Time for Thread Execution End \\ 

} 

int main(int argc, char **argv) 

 { 

\\ Overall Time أضافة دالة الوقت من هنا ولغاية نهاية البرنامج يعطينا   \ \    

    pthread_t thread ;  \\ Thread Starts\\ 

    printf("hello from the first thread \n"); 

    int num = 123; \\ Value to pass through the function \\ 

\\ Time here is the time for Thread creation to it Ends \\ 

    pthread_create(&thread, NULL, entry_point  , &num);   \\ Thread Create here \\ 

    pthread_join(thread, NULL);  \\ Thread Ends here or dead or finish it job \\ 

\\ Time here is the time for Thread creation to it Ends \\ 

    return EXIT_SUCCESS;   

 \\ Time End here Over all Time \\  

 } 

 التعاريف الخاصة بلهيدرات 

 Threadالدالة التي تنفذ ال

يتم   الدالة  تنفيذ  وقت  ان  نلاحظ 

بحساب وقت التنفيذ بين اقواس الدالة  

نفسها, بينما حساب وقت انهاء عمل  

بين    Threadال الوقت  بوضع  هو 

 .   Create & Joinالانشاء والانهاء  

بوضع  الكلي  الوقت  نستطيع حساب 

قوس   ضمن  الوقت  البداية  داله 

 . Mainوالنهاية لدالة ال

أما وقت التنفيذ الخاص بالبرنامج من 

قوس   ولغاية  الهيدرات  قراءة  اول 

نحصل     Execution Timeالنهاية  

الخاصة   التنفيذ  شاشة  من  عليه 

 بالبرنامج. 
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Notes 

 

 pthread_create(&Thread Name, Attribute , Thread Function  , &Argument pass to Function);   

\\ Thread Create here يتم انشاء الخيط هنا ضمن هذه الجملة \\ 

 

 pthread_join(Thread Name , Argument to pass from another thread );   

\\ Thread Ends here or dead or finish it job   يتم انهاء عمل الخيط هنا باستخدم هذه الجملة \\ 

 

ملاحظة :  في حال تم طلب عمل خيطين بالبرنامج ومن ثم اخذ مخرجات الخيط الاول و تمريرها للخيط الثاني نستعمل 

 دالة الجوين لعمل تمرير. 

 

Linked list functions 
 

 The list itself is composed of a collection of list nodes, each of which is a 

struct with two members: an int and a pointer to the next node.  

  

   A typical list is shown in Figure 4.4. A pointer, head_p, with type struct 

list_node_s* refers to the first node in the list. The next member of the last 

node is NULL (which is indicated by a slash (/) in the next member). 

 

Figure 4.4 A linked list. 

   The Member function uses a pointer to traverse the list until it either finds 

the desired value or determines that the desired value cannot be in the list. 

Since the list is sorted, the latter condition occurs when the curr_p pointer 

is NULL or when the data member of the current node is larger than the 

desired value. 

   The Insert function begins by searching for the correct position in which 

to insert the new node. Since the list is sorted, it must search until it finds 

a node whose data member is greater than the value to be inserted. When 
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it finds this node, it needs to insert the new node in the position preceding 

the node that’s been found. Since the list is singly-linked, we can’t “back 

up” to this position without traversing the list a second time. There are 

several approaches to dealing with this, the approach we use is to define a 

second pointer pred_p, which, in general, refers to the predecessor of the 

current node.  

     When we exit the loop that searches for the position to insert, the next 

member of the node referred to by pred_p can be updated so that it refers 

to the new node. See Figure 4.5. 

 
Figure 4.5 Inserting a new node into a. 

 

   The Delete function is similar to the Insert function in that it also needs 

to keep track of the predecessor of the current node while it’s searching for 

the node to be deleted. The predecessor node’s next member can then be 

updated after the search is completed. See Figure 4.6. 

 

 
Figure 4.6 Deleting a node from the list. 
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A Multithreaded Linked List 

 

   Now let’s try to use these functions in a Pthreads program. In order to 

share access to the list, we can define head-p to be a global variable. This 

will simplify the function headers for Member, Insert, and Delete, since 

we won’t need to pass in either head_p or a pointer to head_p, we’ll only 

need to pass in the value of interested . 

Q: What now are the consequences of having multiple threads 

simultaneously execute the three functions? 

   Since multiple threads can simultaneously read a memory location 

without conflict, it should be clear that multiple threads can simultaneously 

execute Member. On the other hand, Delete and Insert also write to 

memory locations, so there may be problems if we try to execute either of 

these operations at the same time as another operation. As an example, 

suppose that thread 0 is executing Member (5) at the same time that thread 

1 is executing Delete (5). The current state of the list is shown in Figure 

4.7. An obvious problem is that if thread 0 is executing Member (5), it is 

going to report that 5 is in the list, when, in fact, it may be deleted even 

before thread 0 returns. 

 

 
Figure 4.7 Simultaneous access by two threads. 

 

   A second obvious problem is if thread 0 is executing Member (8), thread 

1may free the memory used for the node storing 5 before thread 0 can 

advance to the node storing 8. Although typical implementations of free 

don’t overwrite the freed memory, if the memory is reallocated before 

thread 0 advances, there can be serious problems. For example, if the 

memory is reallocated for use in something other than a list node, what 

thread 0 “thinks” is the next member may be set to utter garbage, 

and after it executes.  
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   Dereferencing curr_p may result in a segmentation violation. More 

generally, we can run into problems if we try to simultaneously execute 

another operation while we’re executing an Insert or a Delete. It’s OK for 

multiple threads to simultaneously execute Member that is, read the list 

nodes but it’s unsafe for multiple threads to access the list if at least one of 

the threads is executing an Insert or a Delete that is, is writing to the list 

nodes. How can we deal with this problem? An obvious solution is to 

simply lock the list any time that a thread attempts to access it. For 

example, a call to each of the three functions can be protected by a mutex, 

so we might execute.  

   Instead of simply calling Member(value). An equally obvious problem 

with this solution is that we are serializing access to the list, and if the vast 

majority of our operations are calls to Member, we’ll fail to exploit this 

opportunity for parallelism. On the other hand, if most of our operations 

are calls to Insert and Delete, then this may be the best solution, since we’ll 

need to serialize access to the list for most of the operations, and this 

solution will certainly be easy to implement. 

    An alternative to this approach involves “finer-grained” locking. Instead 

of locking the entire list, we could try to lock individual nodes. We would 

add, for example, a mutex to the list node struct. 

 

   Now each time we try to access a node we must first lock the mutex 

associated with the node. Note that this will also require that we have a 

mutex associated with the head p pointer. So, for example, we might 

implement Member as shown in Program below. Admittedly this 

implementation is much more complex than the original Member function. 

It is also much slower, since, in general, each time a node is accessed, a 

mutex must be locked and unlocked. At a minimum it will add two function 

calls to the node access, but it can also add a substantial delay if a thread 

has. 

 

   To wait for a lock. A further problem is that the addition of a mutex field 

to each node will substantially increase the amount of storage needed for 

the list. On the other hand, the finer-grained locking might be a closer 

approximation to what we want. Since we’re only locking the nodes of 

current interest, multiple threads can simultaneously access different parts 

of the list, regardless of which operations they’re executing. 
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Pthreads read-write locks 
 

    Neither of our multithreaded linked lists exploits the potential for 

simultaneous access to any node by threads that are executing Member. 

The first solution only allows one thread to access the entire list at any 

instant, and the second only allows one thread to access any given node at 

any instant. An alternative is provided by Pthreads’ read-write locks. A 

read-write lock is somewhat like a mutex except that it provides two 

lock functions. The first lock function locks the read-write lock for 

reading, while the second locks it for writing. Multiple threads can thereby 

simultaneously obtain the lock by calling the read-lock function, while 

only one thread can obtain the lock by calling the write-lock function. 

Thus, if any threads own the lock for reading, any threads that want to 

obtain the lock for writing will block in the call to the write-lock function. 

Furthermore, if any thread owns the lock for writing, any threads that want 

to obtain the lock for reading or writing will block in their respective 

locking functions.  

 

Performance of the Various Implementations 
 

   We really want to know which of the three implementations is “best,” so 

we included our implementations in a small program in which the main 

thread first inserts a user-specified number of randomly generated keys into 

an empty list. After being started by the main thread, each thread carries 

out a user-specified number of operations on the list. The user also specifies 

the percentages of each type of operation (Member, Insert, Delete).  

Implementing read-write locks 

 

   The original Pthreads specification didn’t include read-write locks, so 

some of the early texts describing Pthreads include implementations of 

read-write locks. A typical implementation6 defines a data structure that 

uses two condition variables one for “readers” and one for “writers” and a 

mutex. The structure also contains members that indicate: 

 1. how many readers own the lock, that is, are currently reading, 

 2. how many readers are waiting to obtain the lock, 

 3. whether a writer owns the lock, and 
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 4. how many writers are waiting to obtain the lock. 

   The mutex protects the read-write lock data structure, whenever a thread 

calls one of the functions (read-lock, write-lock, unlock), it first locks the 

mutex, and whenever a thread completes one of these calls, it unlocks the 

mutex. After acquiring the mutex, the thread checks the appropriate data 

members to determine how to proceed. As an example, if it wants read-

access, it can check to see if there’s a writer that currently owns the lock. 

If not, it increments the number of active readers and proceeds.  
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Lecture 4                               Distributed-Memory 

Distributed-Memory Programming with MPI 

      The world of parallel multiple instruction, multiple data, or MIMD, 

computers is, for the most part, divided into distributed-memory and 

shared-memory systems. From a programmer’s point of view, a 

distributed-memory system consists of a collection of core-memory pairs 

connected by a network, and the memory associated with a core is directly 

accessible only to that core. See Figure 3.1.  

    On the other hand, from a programmer’s point of view, a shared-memory 

system consists of a collection of cores connected to a globally accessible 

memory, in which each core can have access to any memory location. See 

Figure 3.2. Distributed-memory systems using message-passing , in 

message-passing programs, a program running on one core-memory pair is 

usually called a process, and two processes can communicate by calling 

functions, one process calls a send function and the other calls a receive 

function.  

The implementation of message-passing that we’ll be using is called 

MPI, which is an abbreviation of Message-Passing Interface.  

   

 

Figure(3.1) distributed-memory system. 
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Getting Started 

        Perhaps the first program that many of us saw was some variant of the 

“hello, world” program: 

Hello Program 

#include <stdio.h> 

int main(void)  

{ printf("hello, world "); 

return 0; } 

 

In parallel programming, its common (one might say standard) for the 

processes to be identified by nonnegative integer ranks. So if there are p 

processes, the processes will have ranks 0, 1, 2, p-1. For our parallel “hello, 

world,” let’s make process 0 the designated process and the other processes 

will send it messages. 
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Compilation and Execution 

 

      Some times we use a wrapper for the C compiler. A wrapper 

function is a subroutine in a software library or a computer 

program whose main purpose is to call a second subroutine or a system 

call with little or no additional computation. Wrapper functions are used to 

make writing computer programs easier by abstracting away the details of 

a subroutine's underlying implementation. 

     A wrapper script is a script whose main purpose is to run some 

program. However, the wrapper simplifies the running of the compiler by 

telling it where to find the necessary header files and which libraries to link 

with the object file. 

MPI program that prints greetings from the processes 

1 #include <stdio.h> 

2 #include <string.h> /∗ For strlen ∗/ 

3 #include <mpi.h> /∗ For MPI functions, etc ∗/ 

5  const int MAX_STRING = 100; 

7  int main(void) { 

8  char greeting[MAX_STRING]; 

9  int comm_sz; /∗ Number of processes ∗/ 

10 int my_rank; /∗ My process rank ∗/ 

12 MPI_Init(NULL, NULL); 

13 MPI_Comm_size(MPI_COMM_WORLD, &comm_sz); 

14 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); 

16 if (my_rank != 0) { 

17 sprintf(greeting, "Greetings from process %d of %d!", my_rank, comm_sz);         

https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/System_call
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19 MPI_Send(greeting, strlen(greeting)+1, MPI_CHAR, 0, 0, 

MPI_COMM_WORLD); }                   

21  else { 

22 printf("Greetings from process %d  of  %d !\n", my_rank, comm_sz); 

23   for (int q = 1; q < comm_sz; q++) { 

24   MPI_Recv(greeting, MAX_STRING, MPI_CHAR, q, 0, 

MPI_COMM_WORLD,    MPI_STATUS_IGNORE);                 

26     printf("%s\n", greeting);  }   } 

30  MPI_Finalize(); 

31  return 0;    } /∗ main ∗/ 

 

MPI Programs 

• The first thing to observe is that this is a C program. For example, 

it includes the standard C header files stdio.h and string.h. 

•  It has a main function just like any other C program.  

• There are many parts of the program which are new. Line 3 

includes the mpi.h header file. This contains prototypes of MPI 

functions, macro definitions, type definitions, and so on; it 

contains all the definitions and declarations needed for compiling 

an MPI program. 

• All of the identifiers defined by MPI start with the string MPI the 

first letter following the underscore is capitalized for function 

names and MPI-defined types.  

• All of the letters in MPI-defined macros and constants are 

capitalized, so there’s no question about what is defined by MPI 

and what’s defined by the user program. 
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MPI Init and MPI Finalize 

 

 The call to MPI Init tells the MPI system to do all of the necessary setup. 

• It allocate storage for message buffers 

• it might decide which process gets which rank. 

• It define global communicators.  

As a rule of thumb, no other MPI functions should be called before the 

program calls MPI_Init. Its syntax is : 

MPI Initial code 

 

•  The arguments, argc_p and argv_p, are pointers to the arguments 

to main, argc, and argv. When our program doesn’t use these 

arguments, we can just pass NULL for both.  

• Like most MPI functions, MPI_Init returns an int error code, and 

in most cases we’ll ignore these error codes. 

The call to MPI Finalize tells the MPI system that we’re done using MPI, 

and that any resources allocated for MPI can be freed. The syntax is quite 

simple: 

MPI Finalize 

int MPI_Finalize(void); 

 

In general, no MPI functions should be called after the call to MPI Finalize. 

A typical MPI program has the following basic outline: 
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MPI program basic outline 

 

   

 It's not necessary to pass pointers to argc and argv to MPI_Init. It’s also 

not necessary that the calls to MPI Init and MPI Finalize be in main. 

  

Communicators, MPI_Comm_size and MPI _Comm_rank 

        

        In MPI a communicator is a collection of processes that can send 

messages to each other. One of the purposes of MPI_Init is to define a 

communicator that consists of all of the processes started by the user when 

it started the program. This communicator is called 

MPI_COMM_WORLD, their syntax is: 

MPI_COMM_WORLD 
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   For both functions, the first argument is a communicator and has the 

special type defined by MPI for communicators,  

• MPI_Comm_size returns in its second argument the number of 

processes in the communicator, and MPI_Comm_rank returns in its 

second argument the calling process’ rank in the communicator.  

• We’ll often use the variable comm_sz for the number of processes 

in MPI_COMM_WORLD, and the variable my_rank for the 

process rank. 

Notice that we compiled a single program we didn’t compile a different 

program for each process and we did this in spite of the fact that process 0 

is doing something fundamentally different from the other processes:  

• it’s receiving a series of messages and printing them, while each of 

the other processes is creating and sending a message.  

• This is quite common in parallel programming. In fact, most MPI 

programs are written in this way.  

• That is, a single program is written so that different processes carry 

out different actions, and this is achieved by simply having the 

processes branch on the basis of their process rank.  

• Recall that this approach to parallel programming is called single 

program, multiple data, or SPMD.  

• The if_else statement in Lines 16 through 28 makes our program 

SPMD. 

Communication 

     In Lines 17 and 18, each process, other than process 0, creates a message 

it will send to process 0. (The function sprintf is very similar to printf, 

except that instead of writing to stdout, it writes to a string.) Lines 19–20 

actually send the message to process 0. Process 0, on the other hand, simply 

prints its message using printf, and then uses a for loop to receive and print 
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the messages sent by processes 1, 2, … ,comm_sz_1. Lines 24–25 receive 

the message sent by process q, for q = 1, 2, … ,comm_sz_1. 

MPI Send 

Each of the sends is carried out by a call to MPI_Send, whose syntax is: 

MPI_Send(msg_buf_p, msg_size, msg_type, dest, tag, communicator); 

 

MPI Send 

 

 

• The first three arguments, msg_buf_p, msg_size, and msg_type, 

determine the contents of the message.  

• The remaining arguments, dest, tag, and communicator, determine 

the destination of the message. 

• The first argument, msg_buf_p, is a pointer to the block of memory 

containing the contents of the message. In our program, this is just 

the string containing the message, greeting. (Remember that in C an 

array, such as a string, is a pointer).  

• The second and third arguments, msg_size and msg_type, 

determine the amount of data to be sent.  

• In our program, the msg_size argument is the number of characters 

in the message plus one character for the ‘\0’ character that 

terminates C strings. The msg_type argument is MPI_CHAR. 

These two arguments together tell the system that the message 

contains strlen(greeting)+1 chars. Since C types (int, char, and so 

on.) can’t be passed as arguments to functions, MPI defines a special 
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type, MPI_Datatype, that is used for the msg_type argument. MPI 

also defines a number of constant values for this type.  

• Notice that the size of the string greeting is not the same as the size 

of the message specified by the arguments msg_size and msg_type. 

• For example, when we run the program with four processes, the 

length of each of the messages is 31 characters, while we’ve 

allocated storage for 100 characters in greetings. 

Of course, the size of the message sent should be less than or equal to the 

amount of storage in the buffer in our case the string greeting. The fourth 

argument, dest, specifies the rank of the process that should receive the 

message. The fifth argument, tag, is a nonnegative int. It can be used to 

distinguish messages that are otherwise identical. For example, suppose 

process 1 is sending floats to process 0. Some of the floats should be 

printed, while others should be used in a computation. Then the first four 

arguments to MPI_Send provide no information regarding which floats 

should be printed and which should be used in a computation. So process 

1 can use, say, a tag of 0 for the messages that should be printed and a tag 

of 1 for the messages that should be used in a computation. The final 

argument to MPI_Send is a communicator. All MPI functions that involve 

communication have a communicator argument. One of the most important 

purposes of communicators is to specify communication universes; recall 

that a communicator is a collection of processes that can send messages to 

each other. Conversely, a message sent by a process using one 

communicator cannot be received by a process that’s using a different 

communicator. Since MPI provides functions for creating new 

communicators, this feature can be used in complex programs to insure that 

messages aren’t “accidentally received” in the wrong place.  
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MPI Recv 

    The first six arguments to MPI_Recv correspond to the first six 

arguments of MPI_Send: 

MPI_Recv(msg_buf_p, buf_size, buf_type, source, tag, communicator, status_p); 

 

MPI Receive  

 

 

• The first three arguments specify the memory available for 

receiving the message: msg_buf_p points to the block of memory, 

buf_size determines the number of objects that can be stored in the 

block, and buf_type indicates the type of the objects.  

• The next three arguments identify the message.  

• The source argument specifies the process from which the message 

should be received.  

• The tag argument should match the tag argument of the message 

being sent, and the communicator argument must match the 

communicator used by the sending process.  

• We’ll talk about the status p argument shortly.  

• In many cases it won’t be used by the calling function, and, as in 

our “greetings” program, the special MPI constant 

MPI_STATUS_IGNORE can be passed. 
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Message Matching 

Suppose process q calls MPI_Send with  

 

Message Matching 

 

Also suppose that process r calls MPI_Recv with: 

Message Matching 

 

 

Then the message sent by q with the above call to MPI_Send can be 

received by r with the call to MPI_Recv if: 

• Recv_comm = send_comm,  

• Recv_tag = send_tag, 

• dest = r 

• src = q. 

Q: Write an MPI program that prints hello world from processor rank of 

size . 

MPI Hello world 

#include <mpi.h> 

#include <stdio.h> 

int main(int argc, char** argv) {    // Initialize the MPI environment 

    MPI_Init(NULL, NULL);         // Get the number of processes 

    int world_size; 
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    MPI_Comm_size(MPI_COMM_WORLD, &world_size); 

    // Get the rank of the process 

    int world_rank; 

    MPI_Comm_rank(MPI_COMM_WORLD, &world_rank); 

    // Get the name of the processor 

    char processor_name[MPI_MAX_PROCESSOR_NAME]; 

    int name_len; 

    MPI_Get_processor_name(processor_name, &name_len); 

    // Print off a hello world message 

    printf("Hello world from processor %s, rank %d out of %d processors\n", 

    processor_name, world_rank, world_size); 

    // Finalize the MPI environment. 

    MPI_Finalize( ); } 

 

 Performance Evaluation of MPI Programs    

        For the most part we write parallel programs because we expect that 

they’ll be faster than a serial program that solves the same problem.  

 

Taking timings  

    We’re usually not interested in the time taken from the start of program 

execution to the end of program execution. For example, in the matrix-

vector multiplication, we’re not interested in the time it takes to type in the 

matrix or print out the product We’re only interested in the time it takes to 

do the actual multiplication, so we need to modify our source code by 

adding in calls to a function that will tell us the amount of time that 
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elapses from the beginning to the end of the actual matrix-vector 

multiplication. MPI provides a function, MPI_Wtime, that returns the 

number of seconds that have elapsed since some time in the past: 

double MPI Wtime(void);  

 Thus, we can time a block of MPI code as follows: 

MPI Time  

double start, finish; 

.. .  

start = MPI_Wtime( ); 

/* Code to be timed */ 

. . . 

finish = MPI_Wtime( ); 

printf("Proc %d > Elapsed time = %e seconds\n" my_rank, finish-start); 

When we run a program several times, we’re likely to see a substantial 

variation in the times. This will be true even if for each run we use the same 

input, the same number of processes, and the same system. This is because 

the interaction of the program with the rest of the system, especially the 

operating system, is unpredictable. Since this interaction will almost 

certainly not make the program run faster than it would run on a “quiet” 

system, we usually report the minimum run-time rather than the mean or 

median.      

When we run an MPI program on a hybrid system in which the nodes are 

multicore processors, we’ll only run one MPI process on each node. 

This may reduce contention for the interconnect and result in somewhat 

better run-times, It may also reduce variability in run-times. 
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Results 

 The parallel program will divide the work of the serial program among the 

processes, and add in some overhead time, in MPI programs, the parallel 

overhead typically comes from communication, and it can depend on both 

the problem size and the number of p  

 

 Speedup and efficiency 

        The goal is to equally distribute the workload among all the 

processors, whereas resulting in no extra load on the cores. If this goal is 

reached, and the program runs with a P number of cores, one thread or 

process on each core, then the parallel application will be executed P times 

faster than the sequential application. If sequential execution time is named 

Tserial and the parallel execution time called Tparallel, then the ultimate case 

of the resulting parallel time is calculated from:  

Tparallel = Tserial / P  ……. (2.1) 

   If this happens, then this parallel program has linear speedup. 

Practically, this case is unlikely to happen because the exploitation of a 

number of processes or threads usually introduces some inevitable 

overhead. 

   Recall that the most widely used measure of the relation between the 

serial and the parallel run-times is the speedup. It’s just the ratio of the 

serial run-time to the parallel run-time: 

 

   The ideal value for S(n,p) is p. If S(n,p) = p, then our parallel program 

with comm_sz = p processes is running p times faster than the serial 
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program. This speedup, sometimes called linear speedup, is rarely 

achieved. For small p and large n, our program obtained nearly linear 

speedup ,on the other hand, for large p and small n, the speedup was 

considerably less than p. The worst case was n = 1024 and p = 16, when 

we only managed a speedup of 2.4. 

 

E= S/P = (Tserial / Tparallel)/P = Tserial / (Tparallel *P) 

 

  We also recall that another widely used measure of parallel performance 

is parallel efficiency. This is “per process” speedup: 

. 

Linear speedup corresponds to a parallel efficiency of p/p = 1.0, and, in 

general, we expect that our efficiencies will be less than 1. 

Amdahl’s Law calculates the speedup of parallel code based on three 

variables: 

■ Duration of running the application on a single-core machine 

■ The percentage of the application that is parallel 

■ The number of processor cores 

Here is the formula, which returns the ratio of single-core versus multicore 

performance. 

 

As an example scenario, suppose you have an application that is 

75 percent parallel and runs on a machine with three processor 

cores. The first iteration to calculate Amdahl’s Law is shown 
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below. In the formula, P is .75 (the parallel portion) and N is 3 

(the number of cores). 

 

Scalability 

   Our parallel program doesn’t come close to obtaining linear speedup for 

small n and large p. Does this mean that it’s not a good program? Many 

computer scientists answer this question by looking at the “scalability” of 

the program.  

    A program is scalable if the problem size can be increased at a rate so 

that the efficiency doesn’t decrease as the number of processes increase.  

Programs that can maintain a constant efficiency without increasing the 

problem size are sometimes said to be strongly scalable. Programs that 

can maintain a constant efficiency if the problem size increases at the same 

rate as the number of processes are sometimes said to be weakly scalable.  

   The term scalability is often used to refer to whether more parallelism 

can be added in either the hardware or software and whether there is an 

overall limit to how much improvement can occur. While the traditional 

focus has been on the run-time scaling, we will make the argument that 

memory scaling is often more important. 
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Lecture 5                         Development 

Parallel Program Development 
 

      In parallel programming there are problems that we need to solve for 

which there is no serial analog. We’ll see that there are instances in which, 

as parallel programmers, we’ll have to start “from scratch. 

 

Tree Search 
 

       Many problems can be solved using a tree search. As a simple 

example, consider the traveling salesperson problem, or TSP. In TSP, a 

salesperson is given a list of cities she needs to visit and a cost for traveling 

between each pair of cities. Her problem is to visit each city once, returning 

to her hometown, and she must do this with the least possible cost. A route 

that starts in her hometown, visits each city once and returns to her 

hometown is called a tour; thus, the TSP is to find a minimum-cost tour.       

Unfortunately, TSP is what’s known as an NP-complete problem. From a 

practical standpoint, this means that there is no algorithm known for 

solving it that, in all cases, is significantly better than exhaustive search. 

Exhaustive search means examining all possible solutions to the problem 

and choosing the best. The number of possible solutions to TSP grows 

exponentially as the number of cities is increased. 

Program : Create Binary search tree using Thread programming 
 وصف البرنامج : 

  treeلاضافة ابن  , يهدف البرنامج للاطلاع على عمل   insertواستدعاء دالة  mainانشاء شجرة ضمن برنامج ال 

 من خلال استعمال البرمجة المتوازية. 

 واجب المختبر : 
 الدوال تنفيذ البرنامج والاطلاع على كيفية عمل 

// Insertion in Threaded Binary Search Tree. 

#include<bits/stdc++.h> 

using namespace std; 

 

struct Node 

{ 
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 struct Node *left, *right; 

 int info; 

 

 // True if left pointer points to predecessor 

 // in Inorder Traversal 

 bool lthread; 

 

 // True if right pointer points to successor 

 // in Inorder Traversal 

 bool rthread; 

}; 

 

// Insert a Node in Binary Threaded Tree 

struct Node *insert(struct Node *root, int ikey) 

{ 

 // Searching for a Node with given value 

 Node *ptr = root; 

 Node *par = NULL; // Parent of key to be inserted 

 while (ptr != NULL) 

 { 

  // If key already exists, return 

  if (ikey == (ptr->info)) 

  { 

   printf("Duplicate Key !\n"); 

   return root; 

  } 

 

  par = ptr; // Update parent pointer 

 

  // Moving on left subtree. 

  if (ikey < ptr->info) 

  { 

   if (ptr -> lthread == false) 

    ptr = ptr -> left; 

   else 

    break; 

  } 

 

  // Moving on right subtree. 

  else 

  { 

   if (ptr->rthread == false) 

    ptr = ptr -> right; 

   else 

    break; 

  } 

 } 

 

 // Create a new node 

 Node *tmp = new Node; 

 tmp -> info = ikey; 

 tmp -> lthread = true; 

 tmp -> rthread = true; 
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 if (par == NULL) 

 { 

  root = tmp; 

  tmp -> left = NULL; 

  tmp -> right = NULL; 

 } 

 else if (ikey < (par -> info)) 

 { 

  tmp -> left = par -> left; 

  tmp -> right = par; 

  par -> lthread = false; 

  par -> left = tmp; 

 } 

 else 

 { 

  tmp -> left = par; 

  tmp -> right = par -> right; 

  par -> rthread = false; 

  par -> right = tmp; 

 } 

 

 return root; 

} 

 

// Returns inorder successor using rthread 

struct Node *inorderSuccessor(struct Node *ptr) 

{ 

 // If rthread is set, we can quickly find 

 if (ptr -> rthread == true) 

  return ptr->right; 

 

 // Else return leftmost child of right subtree 

 ptr = ptr -> right; 

 while (ptr -> lthread == false) 

  ptr = ptr -> left; 

 return ptr; 

} 

 

// Printing the threaded tree 

void inorder(struct Node *root) 

{ 

 if (root == NULL) 

  printf("Tree is empty"); 

 

 // Reach leftmost node 

 struct Node *ptr = root; 

 while (ptr -> lthread == false) 

  ptr = ptr -> left; 

 

 // One by one print successors 

 while (ptr != NULL) 

 { 

  printf("%d ",ptr -> info); 

  ptr = inorderSuccessor(ptr); 
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 } 

} 

 

// Driver Program 

int main() 

{ 

 struct Node *root = NULL; 

 

\\ create Tree  

 root = insert(root, 20); 

 root = insert(root, 10); 

 root = insert(root, 30); 

 root = insert(root, 5); 

 root = insert(root, 16); 

 root = insert(root, 14); 

 root = insert(root, 17); 

 root = insert(root, 13); 

 

 inorder(root); 

 

 return 0; 

} 

 

Performance of the serial implementations 

 

   The run-times of the three serial implementations are the input digraph 

contained 15 vertices (including the hometown), and all three algorithms 

visited approximately 95,000,000 tree nodes. The first iterative version is 

less than 5% faster than the recursive version, and the second iterative 

version is about 8% slower than the recursive version.      As expected, the 

first iterative solution eliminates some of the overhead due to repeated 

function calls, while the second iterative solution is slower because of the 

repeated copying of tour data structures. However, as we’ll see, the second 

iterative solution is relatively easy to parallelize, so we’ll be using it as the 

basis for the parallel versions of tree search. 

Table 5.1 
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Parallelizing Tree Search 

 

      The tree structure suggests that we identify tasks with tree nodes. If we 

do this, the tasks will communicate down the tree edges: a parent will 

communicate a new partial tour to a child, but a child, except for 

terminating, doesn’t communicate directly with a parent. We also need to 

take into consideration the updating and use of the best tour. Each task 

examines the best tour to determine whether the current partial tour is 

feasible or the current complete tour has lower cost. If a leaf task 

determines its tour is a better tour, then it will also update the best tour. 

Although all of the actual computation can be considered to be carried out 

by the tree node tasks, we need to keep in mind that the best tour data 

structure requires additional communication that is not explicit in the tree 

edges. Thus, it’s convenient to add an additional task that corresponds to 

the best tour. It “sends” data to every tree node task, and receives data from 

some of the leaves. This latter view is convenient for shared-memory, but 

not so convenient for distributed-memory. A natural way to agglomerate 

and map the tasks is to assign a subtree to each thread or process, and have 

each thread/process carry out all the tasks in its subtree. For example, if we 

have three threads or processes, as shown earlier in Figure 5.1, we might 

map the subtree rooted at 0→1 to thread/process 0, the subtree rooted at 

0→2 to thread/process 1, and the subtree rooted at 0→3 to thread/process 

2. 
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OpenMP - Open Multi-Processing 
▪ An API for developing multi-threaded (MT) applications  

▪  Consists of a set of compiler directives and library routines for 

parallel application programmers  

▪  Simplifies writing MT programs in Fortran, C and C++  

▪  Augments vectorization and standardizes programming of various 

platforms  

▪  Embedded systems, accelerator devices (GPU), multi-core 

systems (CPU) 

▪  Name and specification maintained by OpenMP Architecture 

Review Board 

OpenMP Programming Model 

Fork-Join Parallelism:  

◆ Master thread spawns a team of threads as needed.  

◆ Parallelism added incrementally until performance goals are met.  

◆ Threads within a parallel region can spawn more threads – nested 

parallelism 
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What is SPMD?  

• SPMD – Single Program Multiple Data  

• Part of the MIMD category in Flynn’s taxonomy  

• Multiple Processing Elements (PE) that run a copy of the same program 

and operate on different data elements 
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Hello world openmp 

// OpenMP program to print Hello World 

// using C language 

// OpenMP header 

#include <omp.h> 

#include <stdio.h> 

#include <stdlib.h> 

int main(int argc, char* argv[]) 

{ // Beginning of parallel region 

 #pragma omp parallel 

 {  printf("Hello World... from thread = %d\n", 

   omp_get_thread_num()); 

 } // Ending of parallel region 

} 
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Appendix A 

MPI  

  mpi.h header file. This contains prototypes of MPI functions, macro 

definitions, type definitions, and so on; it contains all the definitions and 

declarations needed for compiling an MPI program. 

  MPI Init and MPI Finalize 

• The call to MPI Init tells the MPI system to do all of the necessary 

setup.   مهم 
- allocate storage for message buffers. 

- decide which process gets which rank. 

- define a global communicator .  

• No other MPI functions should be called before the program calls 

MPI_Init. 
Int MPI Init(int∗ argc_p , char∗∗∗ argv_p);     \*in\out*\ 

• The arguments, argc_p and argv_p, are pointers to the arguments 

to main, argc, and argv.  

• When our program doesn’t use these arguments, we can just pass 

NULL for both.  

• MPI functions, MPI_Init returns an int error code, and in most cases 

we’ll ignore these error codes.    مهم 

• The call to MPI Finalize tells the MPI system that we’re done using 

MPI, and that any resources allocated for MPI can be freed.  مهم 

The syntax is quite simple: 

Int MPI_Finalize(void); 

 

Out line of mpi program 

#include <mpi.h> 

. . . 

int main(int argc, char∗ argv[])  

{ 

. . . 

/∗ No MPI calls before this ∗/ 

MPI_Init(&argc, &argv); 

. . . 

MPI_Finalize(); 
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/∗ No MPI calls after this ∗/ 

. . . 

return 0; 

} 

It’s also not necessary that the calls to MPI Init and MPI Finalize be in 

main. 

• Communicators, MPI_Comm_size and MPI _Comm_rank 

 

• In MPI a communicator is a collection of processes that can send 

messages to each other.  

 

• One of the purposes of MPI_Init is to define a communicator that 

consists of all of the processes started by the user when it started the 

program.  

 

• This communicator is called MPI_COMM_WORLD, their syntax 

is: 

 

• MPI_Comm_size returns the number of processes in the 

communicator, MPI_Comm_rank returns the calling process’ rank 

in the communicator. The variable comm_sz for the number of 

processes in MPI_COMM_WORLD, and the variable my_rank 

for the process rank. 

Ex : Comm(commsize,commrank) 

 يرجع كالنك بل بروسسر المستدعاة اي الرانك مالتهة   -  MPI_Comm_rankملاحظة 

MPI_Comm_size  -              يرجع عدد البروسس بل كوميونيكايتر ونستعملة لمعرفة عدد

 comm_worldالبروسس بل 

   

MPI Send 
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• The first three arguments, msg_buf_p, msg_size, and msg_type, 

determine the contents of the message. 

• The remaining arguments, dest, tag, and communicator, 

determine the destination of the message. 

• msg_buf_p, is a pointer to the block of memory containing the 

contents of the message. In our program, this is just the string 

containing the message, greeting. 

• The second and third arguments, msg_size and msg_type, 

determine the amount of data to be sent. In our program, the 

msg_size argument is the number of characters in the message plus 

one character for the ‘\0’ character that terminates C strings. 

• The msg_type argument is MPI_CHAR. These two arguments 

together tell the system that the message contains 

strlen(greeting)+1 chars. Since C types (int, char, and so on.) can’t 

be passed as arguments to functions, MPI defines a special type, 

MPI_Datatype, that is used for the msg_type argument. MPI also 

defines a number of constant values for this type.  
The program send function 

• MPI_Send(greeting, strlen(greeting)+1, MPI_CHAR, 0, 0, 

MPI_COMM_WORLD); 
• MPI_Send(msg_buf_p, msg_size, msg_type, dest, tag, 

communicator); 
 ملاحظة اول 3 اللي بالاصفر هي محتويات الرسالة اللي بالاحمر هي وجهة الرسالة. 

(   tag( هو يحدد رانك البروسس اللي يستلم الرسالة بينما ال)  Destملاحظة: نلاحظ ان )   

    هو رقم موجب يميز تطابق الرسالة.

• One of the most important purposes of communicators is to specify 

communication universes; recall that a communicator is a collection 

of processes that can send messages to each other. Conversely, a 
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message sent by a process using one communicator cannot be 

received by a process that’s using a different communicator. 

• MPI Recv 

 

MPI_Recv(greeting, MAX_STRING, MPI_CHAR, q, 0, 

MPI_COMM_WORLD, MPI_STATUS_IGNORE); 

MPI_Recv(msg_buf_p, buf_size, buf_type, source, tag, 

communicator, status_p); 

• The first three arguments specify the memory available for receiving 

the message msg_buf_p points to the block of memory. 
•  buf_size determines the number of objects that can be stored in the 

block. 
•  buf_type indicates the type of the objects 
• The next three arguments identify the message. The source 

argument specifies the process from which the message should be 

received.  
• The tag argument should match the tag argument of the message 

being sent. 
• The communicator argument must match the communicator used 

by the sending process. 
• The status p argument in many cases it won’t be used by the calling 

function, and, as in our “greetings” program, the special MPI 

constant MPI_STATUS_IGNORE can be passed. 

 

Performance 

• Taking timings  
• We’re usually not interested in the time taken from the start of 

program execution to the end of program execution. We’re only 

interested in the time it takes to do the actual processing, a function 

that will tell us the amount of time that elapses from the 

beginning to the end of the actual processing. MPI provides a 

function, MPI_Wtime, )فائدة مهم(that returns the number of  seconds 

that have elapsed since some time in the past: 
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double MPI Wtime(void);  

  

Thus, we can time a block of MPI code as follows: 

MPI Time  

double start, finish; 

.. .  

start = MPI_Wtime( ); 

/* Code to be timed */ 

. . . 

finish = MPI_Wtime( ); 

printf("Proc %d > Elapsed time = %e seconds\n" my_rank, finish-start); 

 

• When we run a program several times, we’re likely to see a 

substantial variation in the times.(depend on the HW&SW)  

• This will be true even if for each run we use the same input, the same 

number of processes, and the same system. This is because the 

interaction of the program with the rest of the system, especially the 

operating system, is unpredictable. Since this interaction will almost 

certainly not make the program run faster than it would run on a 

“quiet” system, we usually report the minimum run-time rather than 

the mean or median.      

When we run an MPI program on a hybrid system in which the 

nodes are multicore processors, we’ll only run one MPI process on 

each node. This may reduce contention for the interconnect and result in 

somewhat better run-times, It may also reduce variability in run-times. 

   

 
• The parallel program will divide the work of the serial program 

among the processes, and add in some overhead time, in MPI 

programs, the parallel overhead typically comes from 

communication, and it can depend on both the problem size and the 

number of p  
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• Speedup and efficiency 
 

• The goal is to equally distribute the workload among all the 

processors, whereas resulting in no extra load on the cores.  

• If this goal is reached, and the program runs with a P number of 

cores, one thread or process on each core, then the parallel 

application will be executed P times faster than the sequential 

application.  

 

• If sequential execution time is named Tserial and the parallel 

execution time called Tparallel, then the ultimate case of the resulting 

parallel time is calculated from:  

Tparallel = Tserial / P  ……. (2.1) 

• If this happens, then this parallel program has linear speedup. 

Practically, this case is unlikely to happen because the exploitation 

of a number of processes or threads usually introduces some 

inevitable overhead. 

• Recall that the most widely used measure of the relation between 

the serial and the parallel run-times is the speedup. It’s just the 

ratio of the serial run-time to the parallel run-time: 

 
• The ideal value for S(n,p) is p. If S(n,p) = p, then our parallel 

program with comm_sz = p processes is running p times faster than 

the serial program.  

• In practice, this speedup, sometimes called linear speedup, is 

rarely achieved. For small p and large n, our program obtained 

nearly linear speedup ,on the other hand, for large p and small n, 

the speedup was considerably less than p. The worst case was n = 

1024 and p = 16, when we only managed a speedup of 2.4. 

 

E= S/P = (Tserial / Tparallel)/P = Tserial / (Tparallel *P) 
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  We also recall that another widely used measure of parallel performance 

is parallel efficiency. This is “per process” speedup: 

. 

Linear speedup corresponds to a parallel efficiency of p/p = 1.0, and, in 

general, we expect that our efficiencies will be less than 1. 

Amdahl’s Law calculates the speedup of parallel code based on three 

variables: 

■ Duration of running the application on a single-core machine 

■ The percentage of the application that is parallel 

■ The number of processor cores 

Here is the formula, which returns the ratio of single-core versus 

multicore performance. 

 

• Scalability 
•   Our parallel program doesn’t come close to obtaining 

linear speedup for small n and large p. Does this mean that 

it’s not a good program? Many computer scientists answer 

this question by looking at the “scalability” of the program.  

•    A program is scalable if the problem size can be increased 

at a rate so that the efficiency doesn’t decrease as the number 

of processes increase.  

• Programs that can maintain a constant efficiency without 

increasing the problem size are sometimes said to be strongly 

scalable.  

• Programs that can maintain a constant efficiency if the 

problem size increases at the same rate as the number of 

processes are sometimes said to be weakly scalable.  

• Q: What do we mean by a parallel sorting algorithm in a 

distributed-memory environment? What would its 

“input” be and what would its “output” be? The answers 

depend on where the keys are stored. We can start or finish 

with the keys distributed among the processes or assigned to 

a single process. 

 


