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chapter one

Fourier series

Periodic Function

Definition 3.1
The function f(x) satisfy the condition
f(x+T) = f(x)

For all value of x where T is real number then f(x) is called Periodic

function, and if T least positive number satisfies (1), then T is
called periodic number of function. We can find that:-

F(xX) =f(x+T) =f(x2T) = (X+3T) = cereeeeee e,

And

F(x) =f(x-T) = f(x-2T) = (X-3T) = et
This means that

F(x) = (x+nT), where n integer.

Some Properties of Series
1-f(x+T) = f(x) Periodic function
2- n=No of terms positive integer.

1 ifneven(2,4,6...
3-CosnIl =

1 ifnodd(1,3,5...........
4- - Cos 2nII =1,
5-SinnIl =sin2nIl =0,

6- Cos nx = Cos (-nx).

Some Important Integrals:-

211 21
1- j sin nx dx = I cos nx dx = 0, where n integer.
0 0

211 211

2 - f sin mx sin nx dx =% j [cos(m-n)x — cos(m+n)x]dx = 0.

0 0



211 21
3- f sin® nx dx =% j [ - cos2nx]dx = IT, where n integers.
0 0

201 201
4- I Cosnxsinnxdx==% I sin 2nxdx = 0.
0 0

ar 21
5-= j cos” nx dx= j [cos nx cos nx dx = 0.
0 0

Fourier series
Suppose that f(x) is periodic function to x, and 211 is
periodic number of it.
And the function f(x) is defined on the interval (0< x< 21T).
Then we can write f(x) in the form:-

f(x)=ag + ajcosx + a,c082X + .......... + a, cos nx+ b, sinx + b,
SIN2X+....oiinnnn.... F by SINNX. .o (1)
This means that
f(x)=ao+ > (aycosnx+ b, SINNX)......cooooiiiiiiiiii (1)
n=1
= > (apcos X+ by SINNX)..ooeniiii (1),
n=0
Such that

1 211
ao=ﬁg f(x) dx

L 2m
a, = — _[ f(x) cosnxdx, n=1,2,3,....
s
=
b,=— [ f(x)sinnxdx.
5

The series (1) is called Fourier series of the function f(x).
If the function f(x) defined on interval -T1< x< IT, then

1 1T
2= [ f(x) dx
—I1
1 I1
a,=— [ f(x)cosnxdx, n=1,2,3,....
H—H

11
b,=— [ f(x)sinnxdx.
~I1

1
iy



Example 1
Find Fourier series of the function

f(x) =x, fromx =0to x =21T or (0<x<2I1).
Solution

Use the rule to find ay, a, and b, ,

, 2 , o -
a0=ﬁ(j) f(x)dx=ﬁ({ x dx =E£ f(x) dx

1 ) ]2H
A= —X =I1.
O T Jo
2 L 20
a,= — j f(x) cosnxdx = — j X cos nx dx,
IT 1T
0 0
1 sin nx —CcoSnx 21
= g X B 2 ]]0
1 n n
1 sin 2nl1 cos2nll cos0
= = [20 + -]
I1 n n n
1 . 2I[1sin2nIl cos2nll—1.
=— [ + ] =0.
11 n n2
2 2
bn=—j f(x)sinnxdx= b,= — j X sin nx dx
IT IT
0 0
_ 1 [ —xcosnx _sinnx ]2H
II n n2 0
=_2
=

The equation (1) becomes:

f(x)= I -2 i (sinnx )

n

n=1

f(x)= T -2 (sinx + S02x psmdx )

Even and Odd Function

If f(x) = f(-x), is called even function.

If f(-x) = -f(x), is called odd function.
Fourier series of Even and Odd Function

If f(x) is even when { x%, x*, x°... cosx, sin’x,| f(x)|.



If f(x) is odd when { x, x°, X,......, sinx.

(1) Iff(x)is even then

b,=0
(i) Iff(x)is odd then

ap = a, =0.
Example 1
Find Fourier series of the function

f(x) =x, for (-[1< x< IT).
Solution

Since f(-x) = -x = -f(x), .. the function is odd.
ao =a, =0.

X sin nx dx

1
b, -1 I f(x) sinnxdx= b,= I x sinnx dx = =
‘I IT

1
I1
I1
3 [ — XCcosnx —smnx

n

:3[ —Hcoan]
I n

o —

=—£ cosnll
n

-2

n

Then the series becomes:

f(x) = i b, sin nx

n=l1

=23 (" (M)
n=l1

f(x)= 2 ( sinx - Si“jx + Si‘j’x N )
Example 2

Find Fourier series of the function

1 if 0<x<II.
f(x) =

21if TI<x<2II.
Solution

, 2 L 0 , 2
a0=ﬁ(j) f(X)dX__HZ'; f(x)dx +Ef_fl f(x) dx



=L

, o
dx +—IZdX
211

o —

2I1
T oo ]o = 2HH dx
30—3/2
, 20 o 20
=0 _[ f(x) cos nx dx :ﬁj f(x) cos nx dx JrE j f(x) cos nx dx
0 0 I
N T p 20
=— | cosnxdx+— j 2 cosnx dx ,
s g
1 Im, 1 5si 2
:E sin nx ]0 +_2SII'1]’ZX ]HH
, 2
— I X cos nx dx,
Iy
| . sinnx —coSsnx_ 21
= —[x - ] =0.
il n n’ ]0
a,=0.
. o 2
n=—f sinnx dx + — I 2 sin nx dx
I1 I1
0 1
| —COSHX .;y 1 . —COSHX .o
=_ —] + - 22— ,
I n O " i
i coan—l]: -D" -
I n nll
~1)" —
b= CD L
nll
-2 -2
30:3/2,3.n Obo——b1—0b3——
I1 311
2 i sin 5x
CfX)=3/2- S[sinx + M3 4 b 1.
I1 3 5

Half-Range Series
If we want find Fourier series on interval (0< x<IT), does not on all
interval (-I1< x< IT), then we can find the Fourier series by :-

1- Fourier Cosine series or f(x) an even function as:-



f(x)=ag + ajcosx + a,c082X + .......... + a, cos nx.
2- Fourier Sine series or f(x) an odd function as:-
f(x)= by sinx + b, sin2x+................. + b, sin nx

Such that

f(x) sin nx dx.

Example 3
Find cosine Half-range series for the function defined as

f(x) =x, for 0<x<II.

Solution
Use the rule to find ay and a,

11 11 11
ay = — fx)dx=— | xdx =— f(x) dx
TR i
= L2 = 1
O o 0 R
I1 21'1
an=—j f(x) cos nx dx = —j X cos nx dx,
0 IT o
2 sinnx — COSHX_ [
= _[X - 2 ]]O
I n n
2(cosnll—1)
[1n?
0 1ifneven.
a, =

3 1fn odd

I1n



IT 4 cos3x COSSx
~f(x)=— - —[cosx + +
2 II 3
Example 4

Find sine Half-range series for the function defined as

f(x) =x, for 0<x<TII.

Solution
Use the rule to find b,
21 210 I
b,= —j f(x)sinnxdx= b,= —f X sinnx dx = —I X sin nx dx
IT o IT5 11 0
_ 3 [ — XCOSHxX —smnx ]
I1 n
_ i [ —Hcoan]
I n
=—£ cosnll
n
2 n
-2 (1)
n
Then the series becomes:
f(x)= > b,sinnx
n=I
=2 Y (D" ()
n=l1 n
; ; sin4x
f(x)=2 ( sinx - sin 2x n sin3x ).
2 3 4
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chapter two

Partial Differential Equations (P. D.E)
Partial Differential Equations are Differential Equations in which the
unknown function of more than one independent variable.
Types of (P. D.E)
The following some type of (P. D.E):-
1-Order of (P. D.E)
The order of (P. D.E) is the highest derivative of equation for example:-
U, =U, First-order (p. d. e).
2 2

ou = 48_u Second -order (p. d. e).

ot’ ox’
2-The Number of Variables
For example:-
Uy = Uy (two variables x and t).

1
U, =U+ ‘v +—U
r ]/'2

(Three variables t, r and [1).

66

3-Linearity

The (P. D.E) is linear or non-linear, is linear (P. D.E) if u and whose
derivative appear in linear form (non- linear if product two dependent
variable or power of this variable greater than one).

For example {the general second L. P. D.E in two variable}

Au+ Buyy+ Cuyy+ Dug+ Eug+ Fu+ G=0..................... (*)
Where A, B, C, D, E, F and G are constant or function of x and y for
example

Ut € Uy, =sint (Linear)
Uy = YUyy (Linear)
u u,+u,=0 (Non-Linear)
XUt yuy + u’=0 (Non-Linear).
4-Homogeneity
If each term of (P. D.E) contain the unknown function and which
derivative is called (H. P. D.E) otherwise is called (non-H. P. D.E), in
special case in (*) is homogeneous if [ G=0]. Otherwise non-
homogeneous.
Auy+ Buyy + Cuyy+ Duy+ Euy+ Fu =0 (H. P. D.E)
Where A, B, C, D, E and F are constant or function of x and y.




Examplel

Determine which (L. P. D.E) is, order and dependent or independent
variable in following:-

1_8_u246u
ot ox’

Linear second degree u, dependent variable, x and t are independent
variable.
o'r o'r
2-x 5=y —
oy ox
Linear 3- degree( r, dependent variable, x and y are independent

variable.
3

3—w—=rst
qy
Non-Linear 3- degree( w, dependent variable, r, s and t are
independent variable.

o 0’ o
4 — g+ g+ 9:0
ox° oy Oz
Linear 2- degree( Q, dependent variable, x, y and z are
independent variables, homogeneous.

ou ou
5-(—)+(=—) =0
( Py ) (8x)

Non-Linear 1- degree( u, dependent variable, t and x are independent
variables, homogeneous.
Solution of (P. D.E)
A solution of (P. D.E) mean that the value of dependent variable which
satisfied the (P. D.E) at all points in given region R.
For Physical Problem, we must be given other conditions at boundary,
these are called boundary if these condition are given at t=0 we called
them as initial conditions its order.
For a linear homogeneous equation if
uj, Uy... U, are n solution then the general solution can be written as (n-th
order p. d. e)
u=cCciutCcyurt ...+ ¢, up.
Note i
We can find the solution of (P. D.E) by sequence of integrals as see in the
following examples:-
Example2
Find the solution of the following (P. D.E)
0’z

Ox0y -
Solution




ﬁzz_iaz_

oxdy ox oy By integrate (w. r. to) X gives
E o)
oy 4

Where c(y) is arbitrary parametric of y. Also by integrate (w. r. to) y
gives

z=[ c(y)dy+c(x)

Where c(x) is arbitrary parametric of x.
Example3

Find the solution of the following (P. D.E)
0’z )
Ox0y
Solution
By integrate (w. r. to) x gives

oz x
==2Ei ()
gy 3

By integrate (w. r. to) y gives

3.,2

z= %q () + c(x)

x3 2
z= Ty+F(y)+c(x)
Example4
Find the solution of the following (P. D.E)
2
u
= 12y°
oxdy 6x+12y
With boundary condition, u(1,y)=y*-2y, u(x,2)= 5x-5
Solution
By integrate (w. r. to) x gives
ou
— =3x"+12y"x +c(y)
Oy

By integrate (w. r. to) y gives
u=3x"y+4y’x+|[ c(y)oy + g(x)
sou(x,y)=3x"y +4y’x+ h(y) + g(x)
u(l,y)=3y+4y’ +h(y)+g()=y" -2y
h(y)=y -4y —=5y—g(l)
su(x,y)=3x"y+4y’x+y’ -4y’ =5y —g(1) + g(x)
sou(x,2)=6x"+32x+4-32-10-g() + g(x) =5x-5
g(x)=33-27x-6x"+g(1)

10



su(x,y)=3x"y+4y’x+y’ -4y’ =5y+33-27x—6x’
Formation of (P. D.E)
A (P. D.E) may formed by a eliminating arbitrary constants or
arbitrary function from a given relation and other relation obtained by
differentiating partially the given relation.

Note ii
Suppose the following relation:-
1- % =z =
o x =P
Oz
2 —_—_—= =
oy z, =49
2
3 —8—§ =z =7
ox
2
4- a—j =z, =t
oy -
0’z
- =z =85
oxoy "
Example S
Form a Partial Differential Equations from the following equation:-
Z= (x-2) HY-D) e (1)
Solution
0z 2(x -a)
— =z =2(x-a
ox
Oz
=z =2(y-b)
oy
[ 1Eq(1) become

| TS S
Z—(sz) +(2Zy)
47 =(z,) +(Zy)2
4Z = (p)’ +(q)’

Example 6
Form a Partial Differential Equations from the following equation:-
Z=F( V) e 2)
Solution

Z,=2xf (x> +y?)
Z,=2yf (x*+y)
Eq(2) become

z X

b

z, Y
xZ,yt+yZ, =0
yp -xq =0

11



Example 7
Form a Partial Differential Equations from the following equation:-

Z=ax+by+a’ +b7 ..., (3).
Solution
Z,=a
Z~b
Eq(3) become
7=xZx+y ZyH( Zx)2 +( Zy)2
Z=xp+yq+(p)’ +(q)’
Example 8
Form a Partial Differential Equations from the following equation:-
v= f(x -ct) +g(x+ct)
Solution
v= 1 (x -ct)+g” (x+ct)
vi= -cf” (x -ct)+cg” (x+ct)
V=T (x -ct)+g”" (x+ct)
ve= 7 (x -ct)y+e’g” (x+ct)
vi= ¢ [ (x -ct)y+g”” (xtet)]
Cve= ¢ vy, or
o o
Solution of First Order Linear (P. D. E)
Let the Partial Differential Equation as form:-

One dimensional Wave equation

Where P, Q and R are function of x, y and z.
So the solution of this equation is the same as the solution of
simultaneous

dx dy  dz
P 0 R
Eq (5) are calle LaGrange Auxiliary Equations or (characteristic
equation).
A soluation of Eq(5), can be written as
U(X’ Y, Z) =Cyp,
V(X’ Y, Z) =C

The general solution written as
F (U, V) =0, or F (¢, c;) =0.

Note iii
To solve Eq(5), we note that:-

12



(1) If P or Q or R equal to zero then dx or dy or dz equal to zero
respectivly, For example
If R=0— dz =0— Qdx =Pdy from Eq(5), which can easily to
solve it.
(i))In case sparable the variable in problem, then we can write
characteristic Eq(5), in the following form
dx dy  dz N Adx + udy + pdz
P 0 R AP+ uQ + PR
We slected the value of A, u and B such that gives
AP +uQ + BR =0, — Adx +udy + pdz =0.
Which helpe to find of Solution of (P. D.E).
Example 9
Solve the following Partial Differential Equation
Xzptyzq =Xy
Solution
Suppose the following relation:-
Where
0z 0z

—=z =p,and —=z =¢q
ox oy

P=xz, Q=yz, and R=xy
d_ b &G

Xz vz X v
Lnx=Iny =In ¢,
e I =V e (6)
Y
Q: £—> Q: %—mdy:zdz
yz Xy z X
zdz = c,ydy
2 2
Z_ — Cl y_—|—c
2
Z_®_
2 2

7>-xy =2¢ = c,=V
The general solution
F (¢, ¢3) =0, or

F( X , Z*-xy) =0.
y

Example 10

13



Solve the following Partial Differential Equation

(XFZ)P (X Z)d =Xy et e ettt e e (7)
Solution

P=x+z, Q= -(x+z), and R=x-y

dx dy —  dz N Adx + udy + Pdz
y+z —(x+2) x—y Ay+z2)—ux+z)+ pB(x—-y)
dx +dy+dz
0
Where A =1, u =1, p =1.
~.dx +dy + dz =0.

xt+ty+z=c;=U.
ForA=x, u =y, =z

xdx + ydy — zdz

0

xdx +ydy - zdz = 0.
X +y’- 22 =2¢ = ¢,=V
The general solution
F (¢, ¢3) =0, or
F (x +y + z, x*+y*- 2%) =0.

Example 11
Solve the following :-

xzZy+yzZ, +(x>+y%) =0
Solution
xzZytyzZ, = (X*+Y)

. dx dy
Xz yz
& _dy
x y
& _d_,
x oy
Inx- Iny=Inc,

n? = lInc

From (1) y=x ¢4

14



@_ dz

xz = (2 +¢’x%)
dx _ dz
xz —x'(l+¢])

x(1 + ¢,%) dx=zdz
x(1 + ¢;%) dx+zdz =0
2 2

%(1+Cf)+% =c,
X2+X2012+22 =2¢,,
szrszrz2 = ¢3, Where ¢;= 2c¢,.
The general solution
F (c1, ¢3) =0, or

F( 2 x4y =0
X

Problems
Find the solution of the following Partial Differential Equation:-
1- 2p+3q =1
2- p-xq=z
3- yzp- X°zq =Xy
4- (yt+z)p +(x+z)q =xty
5- ap +bg+cz =0
6- (y° +z°-x)p -2xyq+2xz =0

Theorem1
If u; uy _are solution of equation
0 0
F( —, —....... Ju=0, Then
ox oy
U=c; u;t ¢, upt ... is solution also, where u=c;, ¢, ... .are constants.

Method of Variable Sparable
Let the Partial Differential Equation as

F( g , S Ju=0.
ox oy

Let the general solution of above equation is

Letu (x,t) =XT, oru (x, t) = X(x)T(t) Be solution_of (P. D.E) where X

ifs function of x only, and Y function of y only. As see in the following

problems:-

Examp 12

Solve the following Partial Differential Equation with boundary codition
ou ou

—+3—=0 With boundary condition.
Ox oy

u(0,y) =4e 3¢ (8)
Solution
To solve Eq(8) suppose

15



u (x, t) = XT. Be solution of (8) where X ifs function of x only, and Y
function of y only.

ou . Ou
— =YX, —=

, XY’

Ox oy

x - oy _dr
dx dy

Put in eq (8)
YX +3XY'=0
XY
3X Y
Now let
XY
3X Y
X
3X

Yl
-— =c

Y

X -3CX =0,Y -CY =0,

X=a,e*, Y=a,e®

u (x, t) = XT= 22,6 = Be“™Y), where B= a,a,, are constant.
Now let

w=b e’  and uy=b,e”"" solution of (8) (theorem 1)

u=u+u= b e +b e from boundary condion
u(0,y)=b,e ™ +be " = 4e® 3

b1:4, bz :-3, 01:2, Cy =6

Uk, y) = 4e* 3t

Example 13
Find the solution of following [Heat equation] by using partial

differential equation:-

0 o’
2 ] )
ot ox

With boundary condition.

(1H)u0,t) =0, (2)u(10,t)=0, for all t,
. 311 . :
(3) u(x, 0) = 50sin 7)6 +20sin211x - 10sin4 11X

Solution
Letu (x, t) = XT. Be solution of (9)

16



ou )
— = XT
ot

o’u y
- =TX
ox
Put in(1)

We can write (10)in the form:-
T! B X"
2T X

Let
T! B X"
2T X
Where ¢ be constant
T -2¢T=0, X' - cX=0 there three cases OF C ( C=0,C>0 and c<0)
Casel. If ¢c=0

T'=0, —

T= Ci
and
X" ZO,XZ CHX + C3
U= TX=C1(02X+C3)

U=Ax+B
Where A=c;c,, B=cc;

U(0,t)=B=0
U(x, t)=Ax
U(10,H)= 10A=0 —
A=0
o U=0
Which trivial solution c# 0
Casell. If C>0

Te*™ =¢;—T =c,e™
X=c,e
u (x, t) = XT,

=cie™ (c, e’ +ce’™)
u= ™ (de’ +Be )
A=cy, ¢y and B=c, c;
U(0,t)= ¢ (A + B)=0
e #0— A +B=0-» A=-B

+c,e

17



Ux,H)=B ™" ) (¥ —e V)

U(10,)=B & (e —¢™) =0

If B=0» A= 0 — U= 0 Which trivial solution B # 0
10v¢ _e—lo\/?

Ve _e—loﬁ Je ze—IO\/;,

=0 - e" =0 e"

N e—lo\/?

e
— " =0 > ¢ =1 which impossible since > [11
There is no solution if C >0.
Caselll. If ¢<0, let c=-k* —k?—
K00 -
T +2K°T=0, X' +Kk*X=0 »>T=c; e, X= ¢, coskx + c;sinkx.
U(x,t)=c; e ( ¢, coskx + cssinkx )
U(x,t)= ¢ ( A coskx + B sinkx ).
Where A=c,c, B=cc;
U(0,t)= e (A)=0
— A4=0, because e " %0
U(x,t)= B ¢ ( sinkx ).
U(10,t)= B ¢ ( sin10k.) =0
Since B£0, " £0
— sinl0k =0
© 10k=nTII, wheren=0+ 1 +2+...

ek:ﬂ
10

n*11? n*11?
Ux)=Be @ (sinly )=Be »'(sinLy )=
10 10
n,zl_l

U= bre  ( sin%x )

2
nz“H2

Ux,)= bre ® '( sin ’;z)“x )

U(x,t)= b3 e * ( sin 15 x )

L . nlI T, . n,ll
Ux,t)= bye * ( sin——x )+ bye * ( sin—>—x )
10 10
—”32H2t . I’l3H
+ bye ¥ ( sin2 0 " )

18



. 11 . IT . I1
U(x,0)= by sinZiy  + b, sin2" x  + b; sin2y =
10 10 10

. 311 . .
50 Sme +20sin2 11X - 10sin4 I1x

b1 :50, bz :20,+ b3:-10,

mll 3L =15, 1,=20, ny,=40
10 2

o n3I1

U(x,t)= 50 ¢ 2 sin —x 20 ¢ sin2lx  -10 ¢ ™" sin4Ilx

Example 14
Find the solution of following [Wave equation] by using partial

differential equation:-
2 2
(1) ZT? = 42—2‘ With boundary condition.
X
2)u0,t) =0, B)u(L,t)=0,forallt, L,~00 (4) u(x, 0)=1(x).
ou
5 —= t t=0.
) L=g9.a
Solution
Let u (x, t) = XT. Be solution of (1) where X ifs function of x only, and
Y function of y only.
2
X1 24
ot
2
X 44
ox
Put in(1)
XT" =4TX"”
T” 3 X”
AT X
Let
T” 3 X”
AT X
Where k be constant
T -4k°T=0, X' - k’X=0(there three cases)
Casel. If
k*=0
T =0,
T=at+b

= k2

X" =0,X=cx +d

19



U= TX=(at+b)(cx+d)
U(0,t)= (at+b)( d)=0
at+b#0—->b=0
U(x,t)=(at+b) cx
U(L,t)=(at+b) cL=0
cL=0

Lz0—>c=0
cx +d=0
U(x,t)=0

Casell. If
k=0
T -4k*T=0, X' -k*X=0

T= a eZkt +b e-2kt , X= ¢ ekx +d e-kx
U= e™ +be™ ) ce™ +de™)
U0,H)=(a ™ +be™ )¢ +d)=0
¢ +d=0— d=-c
U(X,t)ZC(a eZkt +b e-Zkt )( ekx _ e-kx)
U(L,ty=c(ae™ +be™ )( & -e)=0
Ifc=0» X=0-> U=0
ekL _ e—kL=O N ekL: e—kL_)
L, k[0
There is no solution if k* (10
Casell. If -k25Kk°00 >
T +4K°T=0, X' +k’X=0 —
T= A cos2kt + Bsin2kt, X= C coskx + Dsinkx.
U(x,t)=( A cos2kt + Bsin2kt)( C coskx + Dsinkx)
U(0,t)=( A cos2kt + Bsin2kt)( C )=0
— c=0, because A cos2kt + Bsin2kt =0
U(x,t)=( A cos2kt + Bsin2kt) Dsinkx
U(L,t)=DsinkL ( A cos2kt + Bsin2kt)=0
Since A cos2kt + Bsin2kt =0 — DsinkL=0
IfD=0 - U=0
— DsinkL=0« kL=nI1, wheren=0+ 1 +2+...

<—>k=ﬂ

L

U(x,t)=Dsin nIlx ( A COSZE t + BsinZE t)
L L

Ux,t)= (A, COSZE t + B, sinZE t) sin nTLx.
L L

2kL . . . .
e” =1, which impossible since

Where A, =AD, B,=BD
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U(x,t)= iUn(xat)

n=1
DU (0= ), (A, cos2™L ¢ 4 B, sin2 L t) sin nIlx.
n=1 n=1 L L
U(x, 0) = f(x).
f(x) = > A,sinnllx.
n=1

Ut (x,O) = g(X)a

g(x)= 1 i B, (n sinnIlx).
L

n=1

Problems
Find the solution of the following Partial Differential Equation:-

ou 0’u
) —+—=0
M ot ox’

With boundary condition.

w(0,t) =0, u(10,t)=0, forall t,
. 311 . :
u(x, 0) = 50sin 7)6 +20sin2T1x - 10sin4I1x.

ou Ou

(2) —+—=0  With boundary condition.
ox Oy
u(0,y) =e”,
ou 0’u
3) 2=
®) ot ox’
With boundary condition.

u(0,t) =0, u(m t)=0, for all t,
u(x, 0) = 2sin3x - 5sin4x.

2 2
4) ZT? = 42—2‘ With boundary condition.
X
() u(0,t) =0, (ii)u(L,t)=0, forallt,L >0
(iii) u(x, 0) = f(x). (iv) %= g(x), at t=0.

2 2
(%) g L; = 42—? With boundary condition.
24 X

(1)u(0,y) =0, (i) u(10,y) =0, for all t,
(i) 2“(x,0)=0, at t=0.
y

(iv) u(x, 0) = 3sin2 T x - 4sin%x
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chapter three

Solution of Non-Linear Equation

1- Newton-Raphson Method for Approximating

We use tangent to approximate the graph of y = f(x), near the point
P (xu, yu), where
yn = f(Xy,), 1s small. Let x,,;; be the value of x where that tangent line
crosses the x-axis.
Let tangent = The slope between (x, y) and (Xy, Yn), 1S
R = 1)

X —X

n

Since the tangent line crosses the x-axis, y =0, and y, = f(x,), put in Eq
(1) which becomes

£ (x) = T )
X —-X,
S
fl(x,)
O fx)
X=Xp-—
fi(x,)
Put x=x,,; 1n Eq (2) gives
f(x,)
Xn-———
f(x,)
Eq (3) called Newton-Raphson Method, can using this method by the

following

1-Give first approximating to root of equation f(x) = 0. A graph of

y = f(x).

2-Use first approximating to get a second. The second to get a third, and
so on. To go from nth approximation x, to the next approximation X,
by using Eq (3), where f "(x) the derivative of f at x,,.

Xn )

Xn+l =
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Example 1

Solve the following using Newton-Raphson Method

1 11 =0, start with x, = -0.5, error % = 0.5 %

X
Where e % = |2n+1 = *n| g o4
Xn+1
Sol

fx)= L +1, xo= -0.5,
X

1
f'(xy)=-—
(x)=-
1 _
f(XO) = +1= _19
£ (x0)=- — = -4, from Eq (3)
(=0.5 )2
S(xy)
X1 =X0-—,
S (xy)
-1
x; =-0.5-——= -0.75.
—4
By use ¢ % = [~#+L " 1| @04 a9
Xn+1
-0.75-(-0.5) |
e %= ®%
-5
e % =33%
By use same of new of x;in Eq (3) as
f(x)) ) |
Xy =Xj-—, , . Xo =-0.937, in same we can find x3 and x4
Sf(x))
which use in the following table
n Xy f(x) f(Xp) Xn+1] e %
0 -0.5 - 1 -4 -0.75 33%
1 -0.75 - 0.333 -1.77 -0.937 19 %
2 -0.937 -0.067 -1.137 -0.997 6 %
3 -0.997 -0.003 - 1.006 - 1.000 0.3 %

To check the answer as:-

1 =a+1=0.
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2-Lagrange Interpolation
Interpolation means to estimate amassing function value by taking a
weighted average of known function value of neighboring point.
Linear Interpolation
Linear Interpolation uses a line segment passes through two distinct
pointes (Xo, Yo)and (X;, y;) is the same as approximating a function f for
which f(x¢) = yo ,and f(x;) = y, by means of first-degree polynomial

interpolation.

The slope between (X, yo) and (X;, y1) 1S

Slope =m= Y1=Y0

X1~ X0
(X1, y1)
I
I
I
P(x)
I
(X0 5 ¥Yo)

The point- slope formula for the line
y =m(x-X9) * ¥o
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y=P(x) =m(x-x0) +yo = L2 (x-x9) +7¥p
X1 — X9

X—X
=Yo Hyi-Yo) 0
X1 — X0
Pix)=yy ——X 4y, 2TXO (4)
X0 — X1 X1 =X

Each term of the right side of (4) involve a linear factor hence the sum is
a polynomial of degree <I.

Lio(X) ==L and Ly ;(x) =0 il (5)
X0 — X1 X1 =X
When x= Xy, L; o(x0)=1 and L, ;(x¢)=0. When x= x;, L o(x;)=0 and

Lia(x)=1.

In terms L, o(x) and L, ;(x) in Eq (5) called Lagrange coefficient of
polynomial hazed on the nodes xpand x;,

Pl(Xo) = Yo zf(Xo) ,and Pl(Xl) =vV1i= f(Xl) .

Using this notation in Eq(4), can be write in summation

Pi(x) =yo Li,o(x)* y1 L1,1(x)

1
Pi(x) =y Ly (x).
k=0

Suppose that the ordinates
yi = f(xp).
If Py(x) is uses to approximante f(x) over intervalle [xq x;].
Example 2
Consider the graph y = f(x) =cos(x) on (xo= 0.0, and x,=1.2), to find the
linear interpolation polynomial.
Sol
Now y,=f(x0) = £(0.0) = cos (0.0)= 1.0000, and
y; =f(x1) = f(1.2) = cos (1.2)=0.3624,

X — X x-12 _ x-1.2

L = = d
10(X) Xo—x; 00-12 12 ° "
L _X—xp _ x—-0.0 X
11(x) x1—xg 12-00 1.2
1
Pi(X) =D yi L1 ().
k=0
Pi(x) = yo Lio(xX)+ y1 Li,1(x)
-1.2 X
P,(x) = -(1.0000) ==+ (0.3624) X
1(x) = ~( ) T ( )1.2

P,(x) = -0.8333( x- 1.2) + 0.3020 x.
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Quadratic Lagrange Interpolation

Interpolation of given pointes (X¢, Yo), (X1, y1) and (X, y») by a second
degree polynomial P,(x), which by Lagrange summation as

Py(x) = yo Li,o(X)+y1 Li,1(X) +y2 Lia(X).
Py(x) :kzoykl‘lk (x)zkz_‘af(xk)le(x)-

_ (x—x)(x—x3)
L1o(x) (x0 = X1)(xg —X3)
Ly (x) = (x—x¢)(x—x3)
’ (x1 —x9)(x1 — x3)
_ (x—xg)(x—x)
L12(x) (x2 —x¢)(x3 —x1)
approximating a function f for which f(x¢) =y, ,and f(x,) = y, by means
of second -degree polynomial interpolation.

Example 3
Using the nodes (x¢=2, x,=2.5 and x, =4), to find the second interpolation

polynomial for f(x) =l.
x

Sol
We must find
_(x-25)(x-4) _
Lio(x) = 2-25)2-4) (x-6.5)x+10,
Lii(x) = (x=2)(x—4) _ (—4x+24)x-32
(25-2)25-4) 3
Li,(x)= (x-2)(x-25)_ (x-45)x+5 |
4-2)4-25) 3

Now f(xo) = f(2) = 0.5, f(x,) = f(2.5) = 0.4, and f(x,) = f(4) = 0.25, and

P,(x) ZZykle (x)ZZf(xk )le (x).
Py(x) = yo Li,o(X)*+ y1 Lii(X) +y2 Lia(X)

= 0.5[x-6.5)x+10]+ 0.4 CIXF2DX =32, o5 (X = 4'35)" 5.
P,(x) =[0.05 x-0.425]x +1.15
1
f3)y=
(3) 3
P,(3) = 0.325.

f(3)= Py(3) = 0.325.
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Cubic Lagrange Interpolation

Interpolation of given pointes (Xo, Yo), (X1, ¥1), (X2, ¥2) and (X3, y;) bya
third degree polynomial P;(x), which by Lagrange summation as

P3(x) = yo Lio(X)*+ y1 Li,i(x) +y» Li2(x) +y3 Li3(%),

3 3
P3(x) =D yrLig ()= D f(xp) L1z (x) .
k=0 k=0

(x=x)(x—x,)(x—x;)

Ll’O(X) ) (xo - X )(xo —X, )(xo - x3) ’
Lii(x) = (x—xy)(x—x,)(x - x;)
(x; = x)(x; — x,)(x; — X3)
Loo(x)= (x—x)(x—x,)(x—x;) ,
(xz — X )(xz - xl)(xZ - xs)
Lis(x)= (x—x)(x—x,)(x—x;)

(xs — X )(xs - xl)(xs - xz)

Approximating a function f for which f(x,) =y, ,and f(x3) = y; by means
of third -degree polynomial interpolation.
Example 4
Consider the graph y = f(x) =cos(x) on (xo= 0.0, x;,= 0.4, x,= 0.8 and x;
= 1.2), to find the cubic interpolation polynomial.
Sol
Now y,=f(x¢) = £(0.0) = cos (0.0)= 1.0000,
y; =f(x1) = 1(0.4) = cos (0.4)=0.9210,
v, =f(x3) = 1(0.8) = cos (0.8)=0.6967, and
y3 =f(x3) = f(1.2) = cos (1.2)=0.3624,
Ly o(x) = (x—x)(x—x)(x—x;)  (x—04)(x—0.8)(x—12)
, (x, —x)(x, — x,)(x, —x;) (0.0-0.4)(0.0—0.8)(0.0-1.2) ’
yo L1o(x) =-2.6042( x- 0.4)( x- 0.8)( x- 1.2),
y1 Li1(x)=7.1958( x- 0.0)( x- 0.8)( x- 1.2),
y2 Lia(x)=-5.4430( x- 0.0)( x- 0.4)( x- 1.2)
y3L1 3(x)= 0.9436( x- 0.0)( x- 0.4)( x- 0.8).
P3(x) =yo Lio(X)*T y1 L1.1(X) +y2 Li2(x) +y;3 Li5(x),

3 3
P3(x) = Dy Lk ()= D f(xp)Lyg (%) .
k=0 k=0
P3(x) =yo LioX)*ty1 Li,i(x) +y2 Li2(x) +y3 L1 5(x),
P;3(x) = -2.6042( x- 0.4)( x- 0.8) ( x- 1.2)+ 7.1958( x- 0.0)( x- 0.8)( x-
1.2)+-5.4430( x- 0.0)( x- 0.4)( x- 1.2)+ 0.9436( x- 0.0)( x- 0.4)( x- 0.8).

, In general case we construct, for each k=0, 1...n, we can write
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=1ifk=1
nk(Xl){

0ifk#1
Where
(X)= (x=—x)(x—x))eee(x—x,_)(X—Xx,,,)eee(x—X,)
(X, — x)(x, = X))o, = X, )X, — X ,p)ene(X, — X,)
or
2 (x- (x-x;)
R ¥ s
l#k
Problems

I-If y(1) =12, y(2) =15, y(5) =25, and y(6) =30. Find the four points
Lagrange interpolation polynomial that takes some value of function (y)
at the given points and estimate the value of y (4) at given points.

2-Fit a cubic through the first four points y(3.2) =22.0, y(2.7) =17.8,
y(1.0) =14.2, y(3.2) =22.0and y(5.6) =51.7, to find the interpolated value
for x= 3.0 function (y) at the given points and estimate the value of y (4)
at given points.

3-If (1.0) =0.7651977, 1(1.3) =0.6200860, f(1.6) = 0.4554022, {(1.9) =
0.2818186 and (2.2) =0.1103623. Use Lagrange polynomial to
approximation to f(1.5).

Numerical Differentiation and Integration

Integration Equal Space

We begin our development of numerical integration by giving
well-known numerical methods. If the function f(x) such a nature

that

b

j f(x)dx cannot be evaluated by method of integration. In such cases, we

a
use method to approximation to value. A geometric interpolation of

b
I f(x)dx is the area of the region bounded by the graph of y = f(x), x =a

x =b, and y=0. We can obtain an estimate of the value of integral by
sketching the boundaries of the region and estimating the area of the
enclosed region.
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3-The Trapezoidal Rule

b
We shall obtain an approximation to j f(x)dx by finding the sum of areas
a
of trapezoids. We begin by dividing [a, b] into n equal subintervals and
constructed a trapezoid.
Let the lengths of the ordinates drawn at the points of subdivision by

fo, f1, ..., fi.1, and f, and the width of each trapezoid by Ax = , We
n
find the sum of the area of the trapezoid is:-
= %[f0+ 1] Ax + %[fﬁfz] Ax +...+ %[fn_ﬁfn] Ax
Or
b
[ feodx= %[fw 2fi+ 26+ 2 ], (6)
Eq (6) called The Trapezoidal Rule.
Example S
1
Find j 1 dx, for n = 6 by Trapezoidal rule
2
o X +1

Sol
f(x)= , Xo= 0, x6=1

x2+1
h= X6 — X0 _ 1-0 — L

h 6 6
X0 = 0 , fo = 21 =1
0 +1

X1 = Xot h
= L f= 1 L —0.9729

6 (g)2 +1
o= 2 f= - L —0.90

6 (g)2 +1
X3 = i, 3= 3 1 =0.8

6 (g)2 +1
xi= L f,= y 1 —0.6923

6 (g)2 +1
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X5 = —,f5: =0.5901
6 (%)2+1
1 1
xe= 1,f5= =-=05
¢ ¢ Mmr+1 2

A= %[ fot+ 2( £ + £, + 3+ 4 + f5)+ £¢]
A=-L[ 1+ 2(0.9729 +0.90 +0.8+0.6923 +0.5901 )+ 0.5

A= L1+ 2(0.9729 +0.90 +0.8+0.6923 +0.5901 }+ 0.5]

A =0.7842.
4-Simpson's Rule

b

We obtain another approximation to j f(x)dx. We dividing the interval
a

from x = a to x =b into an even number of equal subintervals. We can
drive the formula of Simpson by connected any three non-collinear points
in the plane can be fitting with parabola and Simpson's Rule is based on
approximating curves with parabola as shown in the following:-
Let the equation of parabola as

f=Ax*+Bx +C.

The area under it fromx =-htox =h as

b h 3 2 p
[ fxydx = [(ax? + Bx+C)dx = [A%+Bx70x ]
a —h —h

n’ h. 2
=24=+2Ch="_[24h" +6C].

Since the curve passes through the three points (-h, f;), (0, f;) and (h, f3)
fy= Ah>- Bh + C

fl = C

f,= Ah*+Bh + C.

From above equation can see that

C= f1

Ah* - Bh=f,-f,

Ah+Bh=1, - f

Ah? =1, +f, -2f).
b

Now the area_[ f(x)dx in terms of ordinates f;, f; and f,, we have

a

b
j f(x)dx=§[2Ah2 + 6C].=g[ fy +f, - 2f;+6 f,], or
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b
[ Feordx =§ [fo 481 B3] v, 7)

a

Eq (7) called Simpson's Rule of two intervals [the with 2h]. Now in
general to even number of equal subintervals by pass a parabola through
[fo, fiand f,], another through [f;, f;and f4]...and through [f,,, f,.;and f,].
We then find the sum of the areas under the parabolas.

b
[ 0 dx =TUEH4F ] SR A+ ] 54 (a4t )
a

b
[ Feodx =§ [£, +4f,+ 2f, +4fy+ 26, +...+ 2f, 5 4,1+ £,].

b—-
Where h = , and n = even.
n
And the truncation error for Simpson's rule is:-
b— b-
e =0 ) = 0= 4 ),
180n*
Example6
1
Use Simpson's rule to evaluate I dx, forn =6.
0 x2+1
Sol
f(x)= , Xo= 0, x4=1
X +1
h=x6—x0 =1—0:L
h 6 6
X0 = 0 , f() = 21 =1
0°+1
X| = Xgt h
1 .1
X1 = —6, fl 1 =0.9729
2
— 1
(6) +
Xy = Xt h
o Ly l_ 2
6 6 6
f= =090
2
— 1
(6) +
X3= S f= =08
6 (3)2 +1
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1

X=X = = 0.6923
6 (g)2 +1
xs= > fi= — 1 05901
6 (g)2 +1
1 1
xg= 1, = . —
¢ ¢ Mmr+1 2
A= g[fo HAf+ 2f, HAfH 2F, +4fst £, ]
A= L[ 1+4(0.9729) +2(0.90) +4(0.8) +2(0.6923) + 4(0.5901 )+ 0.5 |
A = 0.78593.

S5-Simpson's (3/8) Rule

If f(x) approximated by polynomial of higher degree then an accurate
approximation in computing the area so if the interval divided into n
subinterval that (n is odd number divided by 3) and by calculating the
area of three strips by approximating f(x) by a cubic polynomial as in
Simpson's Rule. And for the n formulas we obtain the three eight rule

b
[ Feodx =%[fa 136+ 36, 4265+ 36,365+ 26, +.. 4 3,0 136,14+ fi].

b—a
Where h = , and n = odd
n
And the truncation error is:-
_ -0
T Teaso @
Example7
1
Use Simpson's %rule to evaluate jx4 dx, for n = 6.
0
Sol
f(x)= x*, xo= 0, x¢ =1
h= b-a =x6—x0 _ 1-0 — L
n h 6 6
x0=0,f=(x)'==(0)=0
X1 = Xot h

S N B
x1= —.fi= (=)' =0.00077

Xy = X1+h
o Ly 1_ 2
6 6 6

b
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f,= (16)4 =0.01234

3 3 4
= — f3= ()" =0.06251
X3 69 3 ( 6)

4 4 4
=4 = (1Y =01975
X4 69 4 ( 6)
Xs = %,fsz (16)4 ~0.482253

xe= 1,f,= () =1.0
6
b 3h
[ £odx =?[fa +3f,+ 36, P25+ 36,435+ £ ].

A= 3R £ e )26 ]

A =0.2002243.
Problems

1
- Approximate I4x3 dx, by the trapezoidal rule and by the Simpson's

0
rule, with n = 6.
2- Approximate each of the integrals in the following problems with n =
4, by
(1) The trapezoidal rule and (i1) The Simpson's rule.
Compare your answers with
(a) The exact value in each case.
(b) Use the error in terms in Trapezoidal rule.
(c) Use the error in terms in Simpson's rule.

2
(D) [x dx
0
2
(2) [x*dx
0
2
(3) [x*dx
0
B
4) I—de
lx

4
(5)[Vx dx
1
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T
(6) [sinxdx.
0

Solutions of Ordinary Differential Equation

Numerical Differentiation
Let f(x, y) be a real valued function of two variable defined for (a< x <b),
and all real value of y.

6-Euler Method

The Step by Step Methods

This starts from

y1 = ¥(¥o), and compute an approximate value y; of the solution at y for

y (x)=f(x, y(x)) at

X1= Xo th, in second step computes the value y, of solutions at

Xo= Xj +h

X2 = Xo +2h,

where h is fixed increment, in each step the computation are done by the

same formula such formula suggested by Taylor series
2 3

y(x +h)= y(x) +hy'(x) +h7y”(x) +h?y“‘(x) T

Y ()= flx. y00). Y 0= 5, y00) + 242y

2 3
S y(x+h)= yx) +hy‘(x)+h7y“(x) +%y“‘(x)+.....

For small h and neglected terms of 4%, n3.....
y(x+h)=y(x) +h f(x, y)

Y1 = Yo th (X0, Yo),

Y2 =y1 th f(x1, y1),

YH+1 = Yn +h f(Xna YH)
Which called Euler's method for first order.

Example 8
Use Euler's method to solve the D. E
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%=x2+4x-%,with, xo= 0 yo= 4, forx= 0tox,= 0.2,h=0.05

work to (4D).
Sol

f(x,y)= %= x* +4x -%

YH+1 = Yn +h f(Xna YH)
n=0,x0=0,y,= 4

y1 = Yo +h f(Xo, yo).
y1 =4 +.05 (0, 4).

y1 =4 +.05[ 0> +4 ®0-%].

Vi = 4-0.1
Vi = 3.9

X1 = Xo +h
x; =0+0.05
X1 = 0.05

y2 = y1 Th {(xy, yy).
v = 3.9 +.05 [(0.05) +4 ®(0.05)-%].

y, =3.81
X, = 0.05+0.05=0.10
X3 = 015, V3 = 3.73
X4 = 020, V4 = 3.67
X5 = 025, Ys = 3.37.
7-Modified Euler Method (Euler Trapezoidal Method)
The Modified Euler Method gives from modified the value of (y,) at
point (x,+1) by gives the new value (y,+) by the following method
X1 = Xo +h
v = yo +h f(xo, yo).

h
vy =vo +7 [ f(x0, o). + f(x1, Y11,

h
Y(2)1 = Yo +7 [ f(X0, o). + f(x1, Y(l)l)]

vy =y, +h7 [ (X0, Yo). + f(x1, y1)], we can go to five iteration.

Example 9
Use Euler's Modified method to solve the D. E

f’_jx’%: X2 +4x, with, y = 4, for x = 0(0.05) 0.20, work to (3D).
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Sol
Step 1
f(x, y) = x* +4x -%

v, =y +h f(xo, yo).
n=0,x0=0,y,= 4

y1 = Yo +h f(Xo, yo).
y1 =4 +.05 (0, 4).

v, =4 +0.05[ 0% +4 ®0-%].
v =39

h
vy =vo +7 [ f(x0, o). + f(x1, Y11,

=4+ 205 -2 4(-0.05) +4(0.05) -2 ©3.9] = 3.906
yV) =3.906.

h
Y(2)1 = Yo +7 [ f(X0, o). *+ f(x1, Y(l)l)]

= 44272 [ +(:0.05)° +4(0.05) - ©3.906] =3.906

vy, =3.906
Step 2
X, = x; +h =0.05 +0.05 = 0.05 +0.1

Y(O)z =y +th f(x;, y1).

n= 1,x;,= 0.05 ,y; = 3.906
Y(O)z =y th f(xy, y1).
= 3.906+0.05[(0.05)* +4(0.05) % ®3.906] = 3.912

vy, =3.912

h
Y(l)z =Yy +7 [ f(x1, y1). + f(x2, Y(O)z)],

0.05

=3.906+——
2

3.868
vy, =3.868.

h
Y(2)2 =Yy +7 [ f(x1, y1). + f(x2, Y(l)z)]

[(0.05)2 +4(0.05) % ®3.906+(0.1)2 +4(0.1) % ®3.91]=

= 3.906+%
3.824

y?, =3.824.

[(0.05)% +4(0.05) % ®3.906+(0.1)2 +4(0.1) % ®3.868] =
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h
vy =y +7 [ f(x1, Y1) + f(x2, y2)]

= 3.906+%
3.825
vy, =3.825.
Step 3

X3 =X, +h =0.1+0.05=10.15

[(0.05)% +4(0.05) % ®3.906+(0.1)2 +4(0.1) % ®3.824] =

n=2,%=0.1,y,= 3.825

Y(0)3 =y, th f(x2, y»).

= 3.825+0.05[(0.1)* +4(0.1) % ®3.825]=3.750
vy =3.750

h
Y(1)3 =Y +7 [ f(x2, y2). + (X3, Y(O)3)],

= 3.825+%
3.756

yy =3.756.
In same way we find
vy =3.756.

Step 4
X4 =X3+h =0.15+0.05=0.2

[(0.1)2 +4(0.1) % ®3.825+(0.15)% +4(0.15) % ®3.750] =

n-= 3, X3 = 0.15 , Y3 = 3.756
v =y +h f(xs, y3).

= 3.756+0.05[(0.15)* +4(0.15) % ®3.756] = 3.693

v, =13.693
h
yWi=vs +7 [ (X3, y3). + f(xa, yV0)],
= 3.756+% [(0.15)2 +4(0.15) % ®3.756+(0.2)% +4(0.2) % ®3.693] =
3.699
vy, =3.699.

h
v =v; +7 [ f(x3, y3). + (x4, )],
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=3, 756+ﬁ [(0.15)2 +4(0.15) -1 ®3 756+(0.2)2 +4(0.2) - X ®3 699] =

3.699

vy, =3.699.

The following table gives the above resulted of x and y.
X y

0 4

0.05 3.906

0.1 3.825

0.15 3.756

0.2 3.699

Problems

Apply Euler's methods to the following initials value problems.
Do 5 steps. Solve the problem exactly. Compute the errors to

see that the method is too inaccurate for Practical purposes
(1)y +o0.1 y=0 with y(0)=2,h=0.1.

Q)y = %«/1— 2 withy(0)=0,h=0.1.

(3)y + 5x* y=0 with y(0)=1,h=0.2.

4) v =(y+x)* withy(0)=1,h=0.1.

Find the exacted solution and the error

(5)y + 2x y*=0 with y(0)=1,h=0.2.

(6)y’ = 2(1+y?), with y(0) =0, h=0.5.

(7) Use Euler's methods to find numerical solution of the
following d. e.

(8) y'=4x +x° % y, with y(0) =4, h = 0.05, find to 3-decimal.

8-Runge Kutta Method
When

L= fx,y)

Va1 = Y +% [k, + 2k, +2k; + ky]

Where
k= h f(Xy, yn)-

k,=h f(xn+h7, yn+’l).

Ks=hf(x,+—, yn+ ).
I<4 =h f(Xn +h9 YH+ k3)
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Where h and (x,, y,) are given.

Example 10
Use Runge Kutta Method to solve the D. E

%z x +y, with xo =0, yo = 1, with h = 0.1 work to (4D).
Sol
f(x, y) = dx =xty

Y1 = Yo +% [k1+ 21(2 +2k3 + k4]

k1= h f(Xo, yO)

n= O,X(): an0= 1

k,=0.1 (0, )=0.1[0 +1]=0.1
klel

kz—h f(X0+—, Y0+ )

=0.1 f(O+'T, 1+'T) =0.1[0.05+1.05]

K, =0.11.

Ks= h f(xo+ ,y0+ )= 0.1 (0.05, 1+ﬂ)

=0.1[0 05+1.0551
K;=0.1105.

K,=h f(xo+h, yo+ks) =0.1[0.1,1+0.1105]
=0.1[0.1,1.1105]

K, = 0.12105.

v =1 +%[0.1+ 2©0.11 +2®0.1105 +0.12105],
v, =1.11034

1
Y2=Yi +g [ki+ 2k, +2ks + ky]

k1= h f(Xl, Y1)

n= 1, x;,=%xo+th =0+0.1=0.1, y; =1.11034

k; =0.1 (0.1, 1.11034)=0.1[0.1 +1.11034]=0.12103
k;=0.12103

h k
k,=h f(x; +—. y;+-1).
2 (X1 2,}’1 5 )

=0.1 f(0.1+%, 0.12103+%) =0.13208

K, =0.13208.
K;=0.132638.
K4=0.1442978.
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y, = 1.24306.

o (X2, ¥2) = (0.2, 1.243006).

9-Runge- Kutta-Merson Method

The problem of Runge Kutta Method is not compute an approximate
decimal error[Rounding Error or Truncation Error], we think Runge-
Kutta-Merson Method give the an approximate the error of this problem
at any step as see in the following:-

1
Ynt1 = Yn +E [k1+ 4'k4 + kS]a
ki=h (X4, yn),

h k
k :hf n+_a n+ 1 )
2 (x 3 Y 3 )

h k
Ky=h fox+7 yot L
3 (x 3 Yy 6

h ky
= +2 21
I<4 h f(Xn 2 > Yn 8

ky
+22
6 ),
3k
+05
8 ),

Ks=h f(x,+ h, y, ’%-%um )

We compute the error as
Error = %[2k1-9k3 + 8k, - ks].

Example 11
Use Runge- Kutta-Merson Method to solve the D. E

%= X +y, withxo= 0, yo= 1, forx = 0toxy= 1.0, with h=0.1 work

to (4D),
Sol
fix,y) = P =x +y
dx

k= h (X, yn)-

n-= O,X(): an0= 1

k; =h (0, 1)=0.1[0 +1]=0.1
k; =0.1

h Ky
- n Ky
k,=h f(x,+ 3 Vot 3 ),

=hf(0+%, 1+%).
=h f(0.113, 1.0333) =0.1[0.113+1.0333]

K, =0.1067

0.1 " 0.1067
6 6

K3=hf(0+0'31 1+ ),
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— h £(0.0333+ 1.0344),
= 0.1[0.0333+ 1.0344],= 0.1068.

h k 3k
=h f(x, +—, y+ L +223 ).
Ka=hf(xat=-, yut == T=0—)
b R0 L0101 3(0.1068) )
2 8 8

— h £(0.05, 1.0525) = 0.1[0.05+ 1.0525].= 0.1103.
ki
2
= 0.1 f(0+0.1, 1+ "'21 _3(0.1068)

=0.1 (0.1, 1.1103 ),
—0.1[ 0.1, 1+1.1103 ].= 0.1210.

Yt =yt [kit ke + k],

Ks=h f(x,+ h, y,+ -%um ).

+2(0.1103) ).

1
Y1=Yo +g [ki+ 4ks +ks],

y =1 +% [0.1+ 4(0.1103) +0.1210],

y; = 1.1104.
X1 = Xp +h
x;=0+0.1=0.1

(Xl, Y1) = (01, 11104)
Error = %[2@-91{3 + 8k, - ks].

= % [2(0.1) -9 (0.1068)+ 8 (0.1103) - 0.1210].
<. Error =6.667@10°.
Problems
1-Apply Range —Kutta methods to the initials value problem,
choosing h = 0.2, and computing(y; +y, + y3+ y4+ys) of
y =x+y with y(0) = 0.
2- Use Range —Kutta methods to find numerical solution of the
following d. e.

() y =3x+ %, with y(0) =1, h =0.1. On interval (0<x <1)

(b) y" =x+y with y(0) =1, in the range (0<x <1) 1, withh=0.1.
3- Comparison of Euler and Range —Kutta methods to solve

y =2x"y{y-Inx +x, withy(1)=0,h=0.1. On interval (1< x <1.8).
And compute the error.
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4- Solve problem (3) by classical Range —Kutta methods, with h =
0.4, determine the error, and compute with (3).

System of Linear Equation
Definition 1

Let the system of linear equation as
a11X1,a12X2... A1nXn = b,
a1X1,a0Xy.. AnXy = by

Amlxl, AmX7. . ,aman = bm
Can put the apove system il matrix form as:-

ajp ap; - - a4, (X by
ayy ap — — — a4y | x b,
e I o e TV TUTTUTTRT (8)
Al Am1 — — — un )\ *n bm
Or
AXEB, oo )
app app — - — a4y by X1
ayy ap - — — ay, L) 9)
A=| - - - - - - |,B=| - |,and X=| -
Al Am1 — — — App bm Xn

Where A=mxn, matrix, a;; a;,..., am, are constant, X=nx1, B =mxland,
b, b, , by, are constant x; X, . X,, variable.

Now we study the following methods {Cramer's Rule, Inverse
Matrices, and Elimination Method}
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10-Cramer's Rule

To solve the system (8) by Cramer's Rule. Find determinate of A (| A|)
such that | A| # 0.

Let
ap app — — — 4y, by ap - - - ay
ay; axp — — - az, by ay - - - a,
JA|=D=| - - - - - -|Di5[- - - - - -|
Al Am1 — — — Qyp bm A1 — — — Aupn
apy by - - - ay anp ap - - - b
ayy by - - - ay, ay ay - - — b
D= - - - - — —|..,D,=| - -
A1 bm - T T Ay Ayl Ay1 — — — bm
To solve system (8), we must find unknown x; X, . X,as
D, D, D
Xl :_9 X2 =_9... an_n-
D D D

11-Solution of Linear Equations by using Inverse Matrices
To solve the system (8) by using Inverse Matrices Find determinate of
A (] A|) such that | A| # 0.

Or

AX=B,

Turing to the relation between the solution of linear equation and matrix
inversion multiplying both sides by A™' thus

A [AX=B]

AT AX=A"B.

X=A"B.

This equation gives the values of the entire unknown X by a simple
multiplication of matrix A by inverse of it matrix. As see in the following
example

Examplel2

Use the matrix inversion method; find the values of (x; x,, X3) for the
following set of linear algebraic equations:-

3X1 -6X2 + 7X3 =3

4X1 -5X3 = (9)
5X1 - 8X2 +6X3 --4

Solution

Put the system (9) in the following matrix form as
AX=B,
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3 -6 7\ x 3
40—5x2=3

5 -8 6 x3) (-4
Where| A
3 -6 7
|Al=|4 0 -5=462#0.
5 -8 6

We can find the inverse matrix of A (A™"), by any method.

026 0.14 -0.2
~A"=[052 012 -0.52|, now we can see the following
0.48 0.04 -0.36
A" [AX=B]
A AX=A"B.
X=A"B.
X1 026 0.14 -021Y) 3
2 X=|xy|=[052 012 —-052 3
X3 0.48 0.04 —0361\—4

X1 2

- X=| x5 |=| 4 |, which gives the solution of system as x; =2,
X3 3

Xp= 4, X3 = -4.

12-Gauss Elimination Method
We can use Gauss Elimination Method to solve the system of linear
equation in (8), as see in the following example

Example 13

3X1 -X;+ 2X3 =12

3 2%, +3x3=11... 0. o (10)
2X1-2X2-X3 =2

Solution

Put the system (10) in the following matrix form

3-12: 12| R

323: 11 Ry e (11)
2-2-1:12| R,

Where R; (i= 1, 2, 3) row of system.
Step 1
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By using
R2 — Rl, and 3R3 -2R1
System (11) become

3-12: 12| R
07 7 5 21| Ry oo (12)
0-4-7: -8 Ry

Step 2

By using

7R; +4R,

System (11) become

3 -12: 12 | R

0 7 7 1 21 | Ryt (13)
00 -21 :-42 | Ry

Step 3
From last system (13) we the following equation

3X1 -X2 -2X3 =12

7X2 +7X3 =21
21x3--42

Which can easily to solve this system to find:-

X3:2, Xy = 1, X1= 3.

13- Iterative Methods (Gauss Siedle Methods)

We can use Gauss Siedle Method to solve the system of linear equation in

(8), as see in the following example

a;X; tapXota;sxs = bl}

ay X tanX,tanxs = b,
a31X;tanX;,tassXs = b
To solve the system (13) by using Gauss Siedle Method can see the
following steps:-

Step 1

Re write system (13) as form

X1 =[ bi- apxs-a13%3]/(a11)

X2 :[ bz- 321X1-a23X3]/(322) ................................................ (15)

X3= [ bs- a31x- a3x,]/ (a33).

Step 2

Selected initial values of x; , X, and x; put in system (16). For example
(Let x; = X, = x3=0 1nitial values)

Step 3
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By using the new value of X;, x; and x; as Step 2.Repeated Step2 until no
change of values of x;, X, and x3.As see in following example

Examplel4
5X1 -2X2 X3 = 4
X1 H4X-2X3=3 ... (16)

X1 +4X2 +4X3 - 17

Solution

Step 1

Re write system (16) as form

X1 :[ 4+ 2X2-X3]/(5) .................................................... (17)

Xo =[ 3-X112X3]/(4) e (18)

X3= [ 17-X1=4X0]/(4). oo (19)

Step 2

Selected initial values of x;, X, and X3 put in system (15). For example
(Let x; = X, = x3=0 initial values).

Then get x, from Eq (17){by using x,=x3=0 } — x;=4/5=0.8, X, from
Eq (18) {by use new of x; =0.8, x3=0 } gives— x,= 0.55.Find x; from Eq
(19) {by use new of x; =0.8, x,=0.55} gives — x3 = 0.55.

Step 3

By using the new value of X, x, and x; as Step 2.Repeated Step2 until no
change of values of x;, X, and x;.As see in following values

n X1 X5 X3
0 0 0 0
1 0.8 0.55 3.775
2 0.265 2.572 2.898
3 1.247 1.889 3.007
4 0.956 2.008 2.998
5 1.002 2.003 3.000
6 1.001 1.999 3.000
7 0.999 2.000 3.000

In general let k (where k integer number) denoted repeated to number of
iteration. Then we can rewrite the system (15) as form:-

xf = [bl' aleg_l'aB x;‘_l]/(all)
b = by gy -2 x5 71/ (@20) b (20)

xé‘ = [bs- 331x{‘- a32x;‘]/(a33).
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Suppose that a;; # 0, ayp, # 0, a33# 0.

Problems

(a) Use Gauss Elimination Method to solve the following system of

linear equation

(1)

3X1 -X2 +3X3 =12

X1 X, +3X3 =11

2X1 -2X2 -X3 = 2

(2)

2X1 -Xp +X3 = 1

3X1 -2X2 + X3 = 0

5X1 +X, 2X3 =9

3)

X1 +2X3 =3
2X2 +3X3 =5

2X3 X4 = 7
X1 +4X4 =5

4)

X1 +2X2 —4X3 =4
5X1 -3X2 -7X3 =6
3X1 —4X2 +3X3 =1

(b) Use Gauss Siedle Method to solve the following system of linear

equation

(1)

3X1 -X2 +3X3 =12
X1 X, +3X3 =11
2X1 -2X2 -X3 = 2
(2)

2X1 -Xp X3 = 1
3X1 -2X2 + X3 = 0
5X1 +X, 2X3 =9

(5)

2X1 +X, —3X3 =1
5X1 +2X2 -6X3 =5
3X1 -X2 —4X3 =7

(6)

2X1 -4X2 +6X3 =5
X1 +3X2 —7X3 =2
7X1 +5X2 +9X3 =4
(7

-X1 +X5 +2X3 =2
3X1 X+ X3 = 6
-X1 +3X2 +4X3 =4

(5)

2X1 +X, —3X3 =1
5X1 +2X2 —6X3 =35
3X1 -X2 —4X3 =7

(6)

2X1 -4X2 +6X3 =5

X1 +3X2 -7X3 =2

7X1 +5X2 +9X3 =4
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3)

X1 +2X3 =3

2X2 +3X3 =5 (7)
2X3 +x4 = 7 -X1 +X, +2X3 =2
X +4X4 =5 3X1 X+ X3 = 6
-X1 +3X2 +4X3 =4
4
X1 +2X2 -4X3 =4
5X1 -3X2 -7X3 =6

3X1 -4X2 +3X3 =1.

14-L.east Squares Approximations

Let y denoted to real value, y denoted to approximation value, and d
denoted to deferent between the real value (y) from tables, and
approximation value ( 3 ), denoted to it in general as:-

di=y- y;, wherei=1,2...m.

Let there are m value y as (y; ... ym) corresponding to m value of x as(x;
... Xp) gives m of different d as (d; ... d,,), where

di =yi- y1,

d> =y2- ¥,

dm = ¥Ym~ ym .

The method of Least Squares Approximations using, the summation of
m

difference (D d; ) at minimum. We square the difference because the
i=1

negative sign.

SN =Y (ri-¥)*.
i=1 i=1

Let the relation between x and y at linear form as:-
y1 = atbxy,

The difference become as

di =YVi- a-in, let

“ 2
q=>Y.(d;)*,or
i=1

q ZZ(di)z =Y (i —a—bx;)* or
i=1 i=1
Q=D ri—a=bxi) (21)
i=1

There are only two unknown (a and b) in Eq (21).

49



Now if q at minimum, then first partial derivative of q (w .r .to) a and b
must equal to zero as:-

oqg &
B =,'=Zi_ 20yi—a-bx;) =0
oq _ &
b =i=Z:1— 2x;(yj—a-bx;) =0.
Re-write above equations as
m m
MA (D X)D =D Pi ceeeiee (22)
i=1 i=1
m m ) m
(Zx,-)a +(Zx i)b =Zx,-y,- ..................................... (23).
i=1 i=1 i=1

Put Eq (22and 23) in the following matrix form

m a m

m in Zyi

[=1 i=1
m

m m -
in zxzi b zxi.Vi
i=1 i=1 i=1

We can find two unknown (a and b) in Eq (21). By using crammers rule
as:-

LetD = o DU TP (25)
m m 2
X X
i=1 i=1
Where D the determinant such that D # 0, and
m m m
Zyi in m Zyi
—| i=1 =1 _|m i=1
D=~ . ) ,Dz—le_ h ,
inyi Zx i i=1 XiVi
i=1 i=1 i=1
a=21 ,b _D2
D D
Example 15

Find the following points to linear form y = a+ b x, where
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x y

1 3

2 5

3 8

4 13

5 16

Solution
ny_zxy
1 3 1 3
2 5 4 10
3 8 9 24
4 13 16 52
5 16 25 80

Sum 15 45 55 169

From Egs. (21 and 23)

Find the following points to linear form y = a ¢™. Where

S5at+15b=45,
15a+55b =169,
_ 5 15|= 50
15 55
45 15
Dy _’169 55|_—6
a=—,a= =
D 50 5
-6 17
y= T+ =5 %
Sy =-6+17x,
Example 16
X Y
0 1.5
1 2.5
2 3.5
3 5
4 7.5
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Sol

Ey =Ln(a ¢™) — Ln y = Ln(a) + Ln(e™)
— Ln y = Ln(a) +bx , compare with standard equation Y = A+b X
Y=LnyLn(a) =A,b= b, X= x.

Sum=10

m
Y = A+ b X— ma+t(Q x;)b
i=1

Y
1.5
2.5
3.5

5
7.5

Y=Lny

m
:Zyi
i=1

0.40547
0.91629
1.25276
1.60944
2.01490
6.19866

m m 2 m
Qlxpa +OQ. x*Db =) x;y;

5a+10 b = 6.19866,

10a+30 b =16.30974,

5 10
10 30

=50

6.19866 10
Dy _ _[16.30974 30

a=—,a
D 50

A= Ln(a) —> = ¢ —> ¢= a—> ¢= 473

—>a=1.5799,b =0.39120.

Y =1.5799 "%

Reference

| =0.45736, b

_D, __’

b

X’ X Y;
0 0
1 0.91629
4 2.50553
9 4.82831
16 8.05961
30 16.30974
5 6.19866’
_D, __|10 1630974 ~0.39120
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