
Working with Variables,
Operators, and expressions

using C Sharp Language

Understanding Statements

A statement is a command that performs an action, such as calculating a value and storing the result,
or displaying a message to a user. You combine statements to create methods. You’ll learn more
about methods in Chapter 3, “Writing Methods and Applying Scope,” but for now, think of a method
as a named sequence of statements. Main, which was introduced in the previous chapter, is an
example of a method.

Statements in C# follow a well-defined set of rules describing their format and construction. These
rules are collectively known as syntax. (In contrast, the specification of what statements do is collec-
tively known as semantics.) One of the simplest and most important C# syntax rules states that you

Network Programming
Lecture One

U n i v e r s i t y o f T e c h n o l o g y
C o m p u t e r S c i e n c e s
D r . M o h a m m a d N a t i q

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

  

must terminate all statements with a semicolon. For example, you saw in Chapter 1 that without its
terminating semicolon, the following statement won’t compile:

Console.WriteLine("Hello World!");

Tip  C# is a “free format” language, which means that white space, such as a space charac-
ter or a new line, is not significant except as a separator. In other words, you are free to lay
out your statements in any style you choose. However, you should adopt a simple, consis-
tent layout style to make your programs easier to read and understand.

The trick to programming well in any language is learning the syntax and semantics of the lan-
guage and then using the language in a natural and idiomatic way. This approach makes your pro-
grams more easily maintainable. As you progress through this book, you’ll see examples of the most
important C# statements.

Using Identifiers

Identifiers are the names you use to identify the elements in your programs, such as namespaces,
classes, methods, and variables. (You will learn about variables shortly.) In C#, you must adhere to the
following syntax rules when choosing identifiers:

■■ You can use only letters (uppercase and lowercase), digits, and underscore characters.

■■ An identifier must start with a letter or an underscore.

For example, result, _score, footballTeam, and plan9 are all valid identifiers, whereas result%,
footballTeam$, and 9plan are not.

Important  C# is a case-sensitive language: footballTeam and FootballTeam are not the
same identifier.

Identifying Keywords
The C# language reserves 77 identifiers for its own use, and you cannot reuse these identifiers for
your own purposes. These identifiers are called keywords, and each has a particular meaning. Exam-
ples of keywords are class, namespace, and using. You’ll learn the meaning of most of the C# key-
words as you proceed through this book. The following table lists the keywords:

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

dr_mo
Highlight

dr_mo
Highlight

dr_mo
Highlight

dr_mo
Highlight

 2

abstract do in protected true

as double int public try

base else interface readonly typeof

bool enum internal ref uint

break event is return ulong

byte explicit lock sbyte unchecked

case extern long sealed unsafe

catch false namespace short ushort

char finally new sizeof using

checked fixed null stackalloc virtual

class float object static void

const for operator string volatile

continue foreach out struct while

decimal goto override switch

default if params this

delegate implicit private throw

Tip  In the Visual Studio 2012 Code and Text Editor window, keywords are colored blue
when you type them.

C# also uses the following identifiers. These identifiers are not reserved by C#, which means that
you can use these names as identifiers for your own methods, variables, and classes, but you should
avoid doing so if at all possible.

add get remove

alias global select

ascending group set

async into value

await join var

descending let where

dynamic orderby yield

from partial

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

  

Using Variables

A variable is a storage location that holds a value. You can think of a variable as a box in the
computer’s memory holding temporary information. You must give each variable in a program an
unambiguous name that uniquely identifies it in the context in which it is used. You use a variable’s
name to refer to the value it holds. For example, if you want to store the value of the cost of an item
in a store, you might create a variable simply called cost and store the item’s cost in this variable.
Later on, if you refer to the cost variable, the value retrieved will be the item’s cost that you stored
there earlier.

Naming Variables
You should adopt a naming convention for variables that helps you avoid confusion concerning the vari-
ables you have defined. This is especially important if you are part of a project team with several develop-
ers working on different parts of an application; a consistent naming convention helps to avoid confusion
and can reduce the scope for bugs. The following list contains some general recommendations:

■ Don’t start an identifier with an underscore. Although this is legal in C#, it can limit the
interoperability of your code with applications built by using other languages, such as
Microsoft Visual Basic.

■ Don’t create identifiers that differ only by case. For example, do not create one variable named
myVariable and another named MyVariable for use at the same time, because it is too easy to
get them confused. Also, defining identifiers that differ only by case can limit the ability to
reuse classes in applications developed by using other languages that are not case sensitive,
such as Microsoft Visual Basic.

■ Start the name with a lowercase letter.

Declaring Variables
Variables hold values. C# has many different types of values that it can store and process—integers,
floating-point numbers, and strings of characters, to name three. When you declare a variable, you must
specify the type of data it will hold.

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

dr_mo
Highlight

dr_mo
Highlight

dr_mo
Highlight

dr_mo
Highlight

dr_mo
Highlight

 4

You declare the type and name of a variable in a declaration statement. For example, the following
statement declares that the variable named age holds int (integer) values. As always, the statement
must be terminated with a semicolon.

int age;

The variable type int is the name of one of the primitive C# types, integer, which is a whole number.
(You’ll learn about several primitive data types later in this chapter.)

After you’ve declared your variable, you can assign it a value. The following statement assigns age
the value 42. Again, you’ll see that the semicolon is required.

age = 42;

The equal sign (=) is the assignment operator, which assigns the value on its right to the variable on
its left. After this assignment, you can use the age variable in your code to refer to the value it holds.
The next statement writes the value of the age variable, 42, to the console:

Console.WriteLine(age);

Working with Primitive Data Types

C# has a number of built-in types called primitive data types. The following table lists the most com-
monly used primitive data types in C# and the range of values that you can store in each.

Data type Description Size (bits) Range Sample usage

int Whole numbers (integers) 32 –231 through 231 – 1
int count;
count = 42;

long Whole numbers (bigger range) 64 –263 through 263 – 1
long wait;
wait = 42L;

float Floating-point numbers 32 ±1.5 x 10-45 through
±3.4 x 1038

float away;
away = 0.42F;

double Double-precision (more accu-
rate) floating-point numbers 64 ±5.0 x 10-324 through

±1.7 x 10308
double trouble;
trouble = 0.42;

Data type Description Size (bits) Range Sample usage

decimal Monetary values 128 28 significant figures
decimal coin;
coin = 0.42M;

string Sequence of characters 16 bits per
character Not applicable

string vest;
vest = "fortytwo";

char Single character 16 0 through 216 – 1
char grill;
grill = 'x';

bool Boolean 8 true or false
bool teeth;
teeth = false;

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

67

Creating Methods

A method is a named sequence of statements. If you have previously programmed using a language
such as C, C++, or Microsoft Visual Basic, you will see that a method is similar to a function or a sub-
routine. A method has a name and a body. The method name should be a meaningful identifier that
indicates the overall purpose of the method (calculateIncomeTax, for example). The method body con-
tains the actual statements to be run when the method is called. Additionally, methods can be given
some data for processing and can return information, which is usually the result of the processing.
Methods are a fundamental and powerful mechanism.

U n i v e r s i t y o f T e c h n o l o g y
C o m p u t e r S c i e n c e s
D r . M o h a m m a d N a t i q

Network Programming
Lecture Two

Writing Methods and
Applying Scope using C

Sharp Language
Univ

ers
ity

 of
 Tec

hn
olo

gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

  

Declaring a Method
The syntax for declaring a C# method is as follows:

returnType methodName (parameterList)
{
 // method body statements go here
}

■ The returnType is the name of a type and specifies the kind of information the method
returns as a result of its processing. This can be any type, such as int or string. If you’re writ-
ing a method that does not return a value, you must use the keyword void in place of the
return type.

■■ The methodName is the name used to call the method. Method names follow the same
identifier rules as variable names. For example, addValues is a valid method name, whereas
add$Values is not. For now, you should follow the camelCase convention for method names—
for example, displayCustomer.

■■ The parameterList is optional and describes the types and names of the information that you
can pass into the method for it to process. You write the parameters between opening and
closing parentheses, (), as though you’re declaring variables, with the name of the type fol-
lowed by the name of the parameter. If the method you’re writing has two or more param-
eters, you must separate them with commas.

■■ The method body statements are the lines of code that are run when the method is called.
They are enclosed between opening and closing braces, { }.

Here’s the definition of a method called addValues that returns an int result and has two int param-
eters, leftHandSide and rightHandSide:

int addValues(int leftHandSide, int rightHandSide)
{

 // ...
 // method body statements go here
 // ...

}

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

dr_mo
Highlight

dr_mo
Highlight

dr_mo
Highlight

dr_mo
Highlight

dr_mo
Highlight

dr_mo
Highlight

dr_mo
Highlight

 6

Here’s the definition of a method called showResult that does not return a value and has a single
int parameter, called answer:

void showResult(int answer)
{
 // ...
}

Notice the use of the keyword void to indicate that the method does not return anything.

Important  Visual Basic programmers should notice that C# does not use different key-
words to distinguish between a method that returns a value (a function) and a method that
does not return a value (a procedure or subroutine). You must always specify either a return
type or void.

Returning Data from a Method
If you want a method to return information (that is, its return type is not void), you must include a
return statement at the end of the processing in the method body. A return statement consists of the
keyword return followed by an expression that specifies the returned value, and a semicolon. The type
of the expression must be the same as the type specified by the method declaration. For example,
if a method returns an int, the return statement must return an int; otherwise, your program will not
compile. Here is an example of a method with a return statement:

int addValues(int leftHandSide, int rightHandSide)
{
 // ...
 return leftHandSide + rightHandSide;
}

The return statement is usually positioned at the end of the method because it causes the method
to finish, and control returns to the statement that called the method, as described later in this chap-
ter. Any statements that occur after the return statement are not executed (although the compiler
warns you about this problem if you place statements after the return statement).

If you don’t want your method to return information (that is, its return type is void), you can use a
variation of the return statement to cause an immediate exit from the method. You write the keyword
return immediately followed by a semicolon. For example:

void showResult(int answer)
{
 // display the answer
 ...
 return;
}

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

dr_mo
Highlight

dr_mo
Highlight

dr_mo
Highlight

dr_mo
Highlight

dr_mo
Highlight

dr_mo
Highlight

  

If your method does not return anything, you can also omit the return statement because the
method finishes automatically when execution arrives at the closing brace at the end of the method.
Although this practice is common, it is not always considered good style.

In the following exercise, you will examine another version of the MathsOperators project from
Chapter 2. This version has been improved by the careful use of some small methods. Dividing code
in this way helps to make it easier to understand and more maintainable.

Examine method definitions

1. Start Visual Studio 2012 if it is not already running.

2. Open the Methods project in the \Microsoft Press\Visual CSharp Step By Step\Chapter 3\
Windows X\Methods folder in your Documents folder.

3. On the DEBUG menu, click Start Debugging.

Visual Studio 2012 builds and runs the application. It should look the same as the application
from Chapter 2.

4. Refamiliarize yourself with the application and how it works, and then return to Visual Studio.
On the DEBUG menu, click Stop Debugging (or click Quit in the Methods window if you are
using Windows 7).

5. Display the code for MainWindow.xaml.cs in the Code and Text Editor window (in Solution
Explorer, expand the MainWindow.xaml file and then double-click MainWindow.xaml.cs).

6. In the Code and Text Editor window, locate the addValues method.

The method looks like this:

private int addValues(int leftHandSide, int rightHandSide)
{
 expression.Text = leftHandSide.ToString() + " + " + rightHandSide.ToString();
 return leftHandSide + rightHandSide;
}

Note  Don’t worry about the private keyword at the start of the definition of this
method for the moment; you will learn what this keyword means in Chapter 7,
“Creating and Managing Classes and Objects.”

The addValues method contains two statements. The first statement displays the calcula-
tion being performed in the expression text box on the form. The values of the parameters
leftHandSide and rightHandSide are converted to strings (using the ToString method you met
in Chapter 2) and concatenated together using the string version of the plus operator (+).

الجزء العملي

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

 8

The second statement uses the int version of the + operator to add the values of the
leftHandSide and rightHandSide int variables together, and then returns the result of this
operation. Remember that adding two int values together creates another int value, so the
return type of the addValues method is int.

If you look at the methods subtractValues, multiplyValues, divideValues, and remainderValues,
you will see that they follow a similar pattern.

7. In the Code and Text Editor window, locate the showResult method.

The showResult method looks like this:

private void showResult(int answer)
{
 result.Text = answer.ToString();
}

This method contains one statement that displays a string representation of the answer
parameter in the result text box. It does not return a value, so the type of this method is void.

Tip  There is no minimum length for a method. If a method helps to avoid repetition
and makes your program easier to understand, the method is useful regardless of
how small it is.

There is also no maximum length for a method, but usually you want to keep your
method code small enough to get the job done. If your method is more than one
screen in length, consider breaking it into smaller methods for readability.

Calling Methods
Methods exist to be called! You call a method by name to ask it to perform its task. If the method
requires information (as specified by its parameters), you must supply the information requested. If
the method returns information (as specified by its return type), you should arrange to capture this
information somehow.

Specifying the Method Call Syntax
The syntax of a C# method call is as follows:

result = methodName (argumentList)

■■ The methodName must exactly match the name of the method you’re calling. Remember, C#
is a case-sensitive language.

■■ The result = clause is optional. If specified, the variable identified by result contains the value
returned by the method. If the method is void (that is, it does not return a value), you must

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

dr_mo
Highlight

dr_mo
Highlight

dr_mo
Highlight

dr_mo
Highlight

dr_mo
Highlight

dr_mo
Highlight

  

omit the result = clause of the statement. If you don’t specify the result = clause and the
method does return a value, the method runs but the return value is discarded.

■■ The argumentList supplies the information that the method accepts. You must supply an argu-
ment for each parameter, and the value of each argument must be compatible with the type
of its corresponding parameter. If the method you’re calling has two or more parameters, you
must separate the arguments with commas.

Important  You must include the parentheses in every method call, even when calling a
method that has no arguments.

To clarify these points, take a look at the addValues method again:

int addValues(int leftHandSide, int rightHandSide)
{
 // ...
}

The addValues method has two int parameters, so you must call it with two comma-separated int
arguments, such as this:

addValues(39, 3); // okay

You can also replace the literal values 39 and 3 with the names of int variables. The values in those
variables are then passed to the method as its arguments, like this:

int arg1 = 99;
int arg2 = 1;
addValues(arg1, arg2);

If you try to call addValues in some other way, you will probably not succeed for the reasons
described in the following examples:

addValues; // compile-time error, no parentheses
addValues(); // compile-time error, not enough arguments
addValues(39); // compile-time error, not enough arguments
addValues("39", "3"); // compile-time error, wrong types for arguments

The addValues method returns an int value. This int value can be used wherever an int value can be
used. Consider these examples:

int result = addValues(39, 3); // on right-hand side of an assignment
showResult(addValues(39, 3)); // as argument to another method call

The following exercise continues with the Methods application. This time, you will examine some
method calls.

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

dr_mo
Highlight

dr_mo
Highlight

dr_mo
Rectangle

dr_mo
Rectangle

10

Console Class
Represents the standard input, output, and error streams for console applications.

Examples

The following example demonstrates how to read data from, and write data to, the
standard input and output streams. Note that these streams can be redirected by
using the SetIn and SetOut methods.

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

21

University of Technology
Computer Sciences
Dr. Mohammad Natiq

Network Programming
Lecture Three

Object-Oriented Programming

OOP stands for Object-Oriented Programming. Procedural programming is about
writing procedures or methods that perform operations on the data, while object-
oriented programming is about creating objects that contain both data and
methods.

Object-oriented programming has several advantages over procedural
programming:

• OOP is faster and easier to execute.
• OOP provides a clear structure for the programs.
• OOP helps to keep the C# code DRY "Don't Repeat Yourself", and makes the

code easier to maintain, modify and debug.
• OOP makes it possible to create full reusable applications with less code

and shorter development time.

Tip: The "Don't Repeat Yourself" (DRY) principle is about reducing the repetition of
code. You should extract out the codes that are common for the application, and
place them at a single place and reuse them instead of repeating it.

What are Classes and Objects?
Classes and objects are the two main aspects of object-oriented programming.

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

22

Look at the following illustration to see the difference between class and
objects:

So, a class is a template for objects, and an object is an instance of a class.

Classes and Objects

You learned from the previous chapter that C# is an object-oriented programming
language.

Everything in C# is associated with classes and objects, along with its attributes and
methods. For example: in real life, a car is an object. The car has attributes, such as
weight and color, and methods, such as drive and brake.

A Class is like an object constructor, or a "blueprint" for creating objects.

Create a Class

To create a class, use the class keyword:

Create an Object
An object is created from a class. We have already created the class named Car,
so now we can use this to create objects.

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

23

To create an object of Car, specify the class name, followed by the object name,
and use the keyword new:

Multiple Objects

You can create multiple objects of one class:

Using Multiple Classes

You can also create an object of a class and access it in another class. This is often
used for better organization of classes (one class has all the fields and methods,
while the other class holds the Main() method (code to be executed)).

prog2.cs

prog.cs

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

24

Class Members

Fields and methods inside classes are often referred to as "Class Members":

Fields

In the previous chapter, you learned that variables inside a class are called fields,
and that you can access them by creating an object of the class, and by using the
dot syntax (.).

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

25

The following example will create an object of the Car class, with the name myObj.
Then we print the value of the fields color and maxSpeed:

You can also leave the fields blank, and modify them when creating the object:

Object Methods
Methods normally belongs to a class, and they define how an object of a class
behaves.

Just like with fields, you can access methods with the dot syntax. However, note
that the method must be public. And remember that we use the name of the
method followed by two parantheses () and a semicolon ; to call (execute) the
method:

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

26

Access Modifiers

By now, you are quite familiar with the public keyword that appears in many of our
examples:

C# has the following access modifiers:

Private Modifier

If you declare a field with a private access modifier, it can only be accessed within
the same class:

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

27

If you try to access it outside the class, an error will occur:

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

27

Network Programming APIs

Working with Sockets

A socket is an object that represents a low-level access point to the IP stack. This
socket can be open or closed or one of a set number of intermediate states. A socket
can send and receive data down this connection. Data is generally sent in blocks of
a few kilobytes at a time for efficiency; each of these blocks is called a packet.

All packets that travel on the Internet must use the Internet protocol. This means
that the source IP address, destination address must be included in the packet. Most
packets also contain a port number. A port is simply a number between 1 and 65,535
that is used to differentiate higher protocols, such as email or FTP (Table 3.1). Ports
are important when it comes to programming your own network applications
because no two applications can use the same port. It is recommended that
experimental programs use port numbers above 1024.

Packets that contain port numbers come in two flavors: UDP and TCP/IP. UDP has
lower latency than TCP/IP, especially on startup. Where data integrity is not of the
utmost concern, UDP can prove easier to use than TCP, but it should never be used
where data integrity is more important than performance; however, data sent via
UDP can sometimes arrive in the wrong order and be effectively useless to the
receiver. TCP/IP is more com-plex than UDP and has generally longer latencies, but
it does guarantee that data does not become corrupted when traveling over the
Internet. TCP is ideal for file transfer, where a corrupt file is more unacceptable than
a slow download; however, it is unsuited to Internet radio, where the odd sound out
of place is more acceptable than long gaps of silence.

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

28

Creating a simple “hello world” application
This program will send the words “hello world” over a network. It consists of two
executables, one a client, the other a server. These two programs could be physically
separated by thousands of kilometers, but as long as the IP addresses of both
computers are known, the principle still works.

In this example, the data will be sent using UDP. This means that the words “hello
world” will be bundled up with information that will be used by IP routers to ensure
that the data can travel anywhere it wishes in the world. UDP data is not bundled
with headers that track message integrity or security. Furthermore, the receiving
end is not obliged to reply to the sender with acknowledgments as each packet
arrives. The elimination of this requirement allows UDP data to travel with much
lower latency than TCP. UDP is useful for small payload transfers, where all of the
data to be sent can be contained within one network packet. If there is only one
packet, the out-of-sequence problems associated with UDP do not apply; therefore,
UDP is the underlying protocol behind DNS.

ASCIIEncoding Class
Encoding is the process of transforming a set of Unicode characters into a sequence
of bytes. Decoding is the process of transforming a sequence of encoded bytes into
a set of Unicode characters. Some protocols require ASCII or a subset of ASCII. In
these cases ASCII encoding is appropriate.

The GetByteCount method determines how many bytes result in encoding a set of
Unicode characters, and the GetBytes method performs the actual encoding.

Likewise, the GetCharCount method determines how many characters result in
decoding a sequence of bytes, and the GetChars and GetString methods perform
the actual decoding.

ASCIIEncoding ascii = new ASCIIEncoding();

String unicodeString ="This Unicode string contains two characters "

Byte[] encodedBytes = ascii.GetBytes(unicodeString);

foreach (Byte b in encodedBytes)

 {

 Console.Write("[{0}]", b);

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

29

 }

IPEndPoint Class

The IPEndPoint class contains the host and local or remote port information needed
by an application to connect to a service on a host. By combining the host's IP
address and port number of a service, the IPEndPoint class forms a connection point
to a service.

public class IPEndPoint : System.Net.EndPoint

PROPERTIES

Address
Gets or sets the IP address of the endpoint.

AddressFamily
Gets the Internet Protocol (IP) address family.

Port
Gets or sets the port number of the endpoint.

METHODS

Create(SocketAddress)
Creates an endpoint from a socket address.

Parse(String)
Converts an IP network endpoint (address and port) represented as a string to an
IPEndPoint instance.

ToString()
Returns the IP address and port number of the specified endpoint.

Example

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

30

Writing a simple UDP client

To get started, open Visual Studio .NET, click New Project, then click Visual C#
projects, and then Windows Application. Set the name to “UDP Client” and press
OK.

Now, design the form as shown in Figure 3.1. Name the button button1 and the
textbox tbHost.

You also need to include some assemblies by adding these lines to just

under the lock of the using statements at the top of the code:

Writing a simple UDP server
The purpose of the UDP server is to detect incoming data sent from the UDP client.

Table: Significant members of the UdpClient class.

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

31

As before, create a new C# project, but with a new user interface, as shown below.
The list box should be named lbConnections.

A key feature of servers is multithreading (i.e., they can handle hundreds of
simultaneous requests). In this case, our server must have at least two threads: one
handles incoming UDP data, and the main thread of execution may continue to
maintain the user interface, so that it does not appear hung.

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

32

Again, we use the UdpClient object. Its constructor indicates that it should be bound
to port 8080, like in the client. The Receive method is blocking (i.e., the thread does
not continue until UDP data is received). In a real-world application, suitable timeout
mechanisms should be in place because UDP does not guarantee packet delivery.
Once received, the data is in byte array format, which is then converted to a string
and displayed on-screen in the form source address: data.

There is then the matter of actually invoking the serverThread method
asynchronously, such that the blocking method, Receive, does not hang the
application. This is solved using threads as follows:

To finish off, the following assemblies are to be added:

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

33

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

1

University of Technology
Computer Sciences
Dr. Mohammad Natiq

System.IO

(StreamReader and StreamWriter)

C# StreamReader Class
StreamReader is used to read characters to a stream in a specified encoding.
StreamReader.Read method reads the next character or next set of characters from the
input stream. StreamReader is inherited from TextReader that provides methods to read a
character, block, line, or all content.

StreamReader is defined in the System.IO namespace. StreamReader provides the
following methods:

1. Peak – Returns if there is a character or not.
2. Read - Reads the next character or next set of characters from the input stream.
3. ReadBlock - Reads a specified maximum number of characters from the current

stream and writes the data to a buffer, beginning at the specified index.
4. ReadLine - Reads a line of characters from the current stream and returns the data

as a string.
5. ReadToEnd - Reads all characters from the current position to the end of the stream.

The following example uses an instance of StreamReader to read text from a file.

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

2

C# StreamWriter Class
StreamWriter class in C# writes characters to a stream in a specified encoding.
StreamWriter.Write() method is responsible for writing text to a stream.

StreamWriter is defined in the System.IO namespace. StreamWriter provides the following
Write methods:

1. Write – Writes data to the stream.
2. WriteLine – Writes a line terminator to the text string or stream.
3. Creating a StreamWriter using a Filename

The following code snippet creates a StreamWriter from a filename with default encoding
and buffer size.

The following code snippet creates a StreamWriter and adds some text to the writer using
StreamWriter.Write method. If the file does not exist, the writer will create a new file. If
the file already exists, the writer will override its content.

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

3

A good practice is to use these objects in a using statement so that the unmanaged
resources are correctly disposed. The using statement automatically calls Dispose on the
object when the code that is using it has completed.

C# using statement
C# and .NET provide resource management for managed objects through the garbage
collector - You do not have to explicitly allocate and release memory for managed objects.
Clean-up operations for any unmanaged resources should be performed in the destructor
in C#.

To allow the programmer to explicitly perform these clean-up activities, objects can
provide a Dispose method that can be invoked when the object is no longer needed. The
C# using statement defines a boundary for the object outside of which, the object is
automatically destroyed. The using statement in C# is exited when the end of the "using"
statement block or the execution exits the "using" statement block indirectly, for example-
an exception is thrown.

The "using" statement allows you to specify multiple resources in a single statement. The
object could also be created outside the "using" statement. The objects specified within
the using block must implement the IDisposable interface. The framework invokes the
Dispose method of objects specified within the "using" statement when the block is exited.

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

4

StreamWriter.Write() method
 StreamWriter.Write() method writes a char, string of chars, or a string to the steam. The
following code snippet creates and writes different content to the stream

File.AppendText(String) Method
Creates a StreamWriter that appends UTF-8 encoded text to an existing file, or to a new
file if the specified file does not exist.

The following example appends text to a file.

The following code example creates a StreamReader and reads a file content one line at a
time and displays to the console. If there is an exception, the exception is displayed on the
console.

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

5

Univ
ers

ity
 of

 Tec
hn

olo
gy

Com
pu

ter
 Scie

nc
es

Dr. M
oh

am
mad

 N
ati

q

