10101

) A i N
i g ;."- f:;, -'J".
1A a [t} b = ‘...
| N 01010421
K &y e e el = !
)=y | ()L 1.0 (. i]
: J LU
| = 100010 !

| 754611101111100001&5

University of Technology- Computer Science

Microprocessor

Third Class
2023-2024

Asst. Prof Dr. Raheem Abdul Sahib

Micro-processors — 1’°st course

> Introduction to Microprocessor and Microcomputer system.
e Microprocessor Architecture and Register Set.
e System Buses
e Memory types and physical addressing.
e 1/O devices

» Instruction Set and Format

» Addressing Modes

> Introduction to Assembly Programming Language.
e Arithmetic and logical Instructions (Shift and Rotate).
e Program Control (interrupt and subroutine call).

References:

1. Abel P., "IBM PC Assembly Language and Programming”, 4" Edition,
Prentice Hall, 1998..

2. Thorne M., "Computer Organization and Assembly Language
Programming", 2" Edition, Benjamin/Cummings, 1990.

1. Introduction to Microprocessor and Microcomputer system.
1.1 What Is an Integrated Circuit?

Integrated circuit or IC or microchip or chip is a microscopic electronic circuit array
formed by the fabrication of various electrical and electronic components (resistors,
capacitors, transistors, and so on) on a semiconductor material (silicon) wafer, which can
perform operations similar to the large discrete electronic circuits made of discrete

electronic components. See figure 1

Figure 1: Integrated Circuit

1.2 What is a Microprocessor?

Computer's Central Processing Unit (CPU) built on a single Integrated Circuit (IC) is called
a microprocessor. A digital computer with one microprocessor which acts as a CPU is called
microcomputer (See figure 2). It is a programmable, multipurpose, clock -driven, register-
based electronic device that reads binary instructions from a storage device called memory,
accepts binary data as input and processes data according to those instructions and provides
results as output.

Microprocessor

ALU

Output
Device

Input
Device

Figure 2: Block Diagram of a Microcomputer

The microprocessor contains millions of tiny components like transistors, registers,

and diodes that work together. A microprocessor consists of an ALU, Control Unit and
Register array:

1.

2.
3.

ALU: performs arithmetic and logical operations on the data received from an
input device or memory.

Control unit: controls the instructions and flow of data within the computer.
Register array:consists of registers identified by letters like B, C, D, E, H, L,
and accumulator.

1.3 Evolution of Microprocessors (dusstall cilaflaall Ay 1)) ghail)

We can categorize the microprocessor according to the generations or according to the
size of the microprocessor:

1.

First Generation (4 - bit Microprocessors)
The first generation microprocessors were introduced in the year 1971-1972 by Intel

Corporation. It was named Intel 4004 since it was a 4-bit processor.

It was a processor on a single chip. It could perform simple arithmetic and logical
operations such as addition, subtraction, Boolean OR and Boolean AND.

| had a control unit capable of performing control functions like fetching an
instruction from storage memory, decoding it, and then generating control pulses to
execute it.

Second Generation (8 - bit Microprocessor)

The second generation microprocessors were introduced in 1973 again by Intel. It
was a first

8-bit microprocessorwhich could perform arithmetic and logic operations on 8-bit
words. It was Intel 8008, and another improved version was Intel 8088.

Third Generation (16 - bit Microprocessor)
The third generation microprocessors, introduced in 1978 were represented by

Intel's 8086, Zilog Z800 and 80286, which were 16 - bit processorswith a
performance like inicomputers.

Fourth Generation (32 - bit Microprocessors)

Several different companies introduced the 32-bit microprocessors, but the most
popular one is the Intel 80386.

Fifth Generation (64 - bit Microprocessors)

From 1995 to now we are in the fifth generation. After 80856, Intel came out with a
new processor namely Pentium processor followed by Pentium Pro CPU, which
allows multiple CPUs in a single system to achieve multiprocessing.

Note: Other improved 64-bit processors are Celeron, Dual, Quad, Octa Core
processors.

Table 1: Important Intel Microprocessors

Microprocessor

4004

8085

a0ae

80286

80386

80486

Pentium

Pentium Pro

FPentium 11

Pentium 11

Pentium 4

Itanium

Year of

Invention

1971

1976

1978

1982

1985

1989

1953

1995

1299

2000

2001

WWord
Length

4-bit

8-bit

16-bit

16-bit

32-bit

32-bit

32-bit

32-bit

3Z2-birt

32-bit

32-bit

64-bit

MNMemory
addressing
Capacity

1 KB

64 KB

1MB

16MB real, 4

GB virtual

4GB
64TE wirtual

real,

4GB
S4TE wirtual

real,

A5B real,32-
bit
address,564-
bit data bus

54GE
36-bit

real,

address bus

64GB

64GE

64 address

lines

Pins

16

40

40

63

132
14%14
PGA

168
17X17
PGA

237
PGA

287
PGA

370
PGA

423
PGA

423
PGA

Clock

750
KH=z

3-6
MH=z

5-8
MHz

6-12.5
MHz

20-33
MHz

25-100
MHz

60-200

150-
200
MHz

233-
400
rMHz

600-
5 s
MHz

600-
1.3
GHz

733
MHz-
1.3
GHz

Remarks

First

Microprocessor

Popular 8-bit

Microprocessor

Widely wsed in
PC/XT

Widely used in
PC/AT

Contains rARAL
on chip
Contains RARAL,
cache and FPLU,
1.2 million
transistors
Contains 2
AllUs2 Caches,
FPU. 3.3 Million
transistors, 2.3 V,
7.5 million

transistors

It is a data flow
processor. It
contains second
lewvel cache

also.3.3 v

All features
Pentium pro plus
AN X

technology.2.2 V,
7.5 million

transistors

Improved version
of Pentium 1l; 7O

new SIMD

Improved version

of Pentium Il

64-bit

Processor

EPIC

1.4 List of Terms Used in a Microprocessor

Here

is a list of some of the frequently used terms in a

MIiCroprocessor—

>

>

>

Instruction Set— It is the set of instructions that the microprocessor can
understand and given to the microprocessor. The instruction set acts as an
interface between the software and hardware.

Bus- The bus is used for the transmission of data, address and control
information. This transmission occurs in different elements of the
microprocessor. The bus in this is basically of three types which are data bus,
a control bus, and address bus.

Bandwidth— It is the number of bits processed in a single instruction.
Clock Speed— It determines the number of operations per second the
processor can perform. It is expressed in megahertz (MHz) or gigahertz
(GHz). It is also known as Clock Rate.

Word Length— It depends upon the (number of bits) of internal data bus,
registers, ALU, etc. An 8-bit microprocessor can process 8-bit data at a time.
The word length ranges from 4 bits to 64 bits depending upon the type of the
microcomputer. A processor with longer word length is more powerful and
can process data at a faster speed as compared to processor with shorter word
length

IPC (Instructions Per Cycle) - It is a measure of how many instructions a
CPU is capable of executing in a single clock.

Data Types- The microprocessor has multiple data type formats like binary, BCD,
ASClII, signed and unsigned numbers.

1.5 Working of Microprocessor

The microprocessor follows a sequence to execute the instruction:Fetch, Decode, and then

Execute.

Initially, the instructions are stored in the storage memory of the computer in sequential
order. The microprocessor fetches those instructions from the stored area (memory), then
decodes it and executes those instructions till STOP instruction is met. Then, it sends the
result in binary form to the output port. Between these processes, the register stores the
temporary data and ALU (Arithmetic and Logic Unit) performs the computing functions.

1.5.1 How does a Microprocessor Work?

% A computer can only do what the programmer has told it to do, in the form of a

program.

«» A program is just a sequence of very simple commands that lead the computer to
solve some problem.

++ Once the program is written and debugged, the computer can execute the instructions
very fast, and always do it the same, every time, without a mistake.

*
X4

L)

K/
X4

)

The microprocessor itself is usually a single integrated circuit (IC).
Most microprocessors (MPU), or very small computers, have much the same

commands or instructions that they can perform.

% In a typical MPU, there are commands to move data around, do simple math (add,

subtract, multiply, and divide), bring data into the micro from the outside world, and
send data out of the micro to the outside world.

+«+ A microprocessor executes a program by repeatedly cycling through following three

basic steps: Fetch, Decode, and then Execute, see figure 3

» Initially, the instructions are stored in the memory in a sequential order. The
microprocessor fetches those instructions from the memory,

» then decodes it and executes those instructions till STOP instruction is reached.

» Later, it sends the result in binary to the output port. Between these processes,
the register stores the temporarily data and ALU performs the computing
functions.
NOT: The power of the given microprocessor is measured in terms of bits.

» The processor executes the instruction using the following steps: Figure 3:
Workflow of instructions execution

» This sequence is continued until all instructions are performed

Fetch-Execute Cycle

Fetch Execute

Decode

Figure 3: Workflow of instructions execution

1.6 Features of Microprocessor

@)

Low Cost - Due to integrated circuit technology microprocessors are available at
very low cost. It will reduce the cost of a computer system.

High Speed - Due to the technology involved in it, the microprocessor can work at
very high speed. It can execute millions of instructions per second.

Small Size - A microprocessor is fabricated in a very less footprint due to very large
scale and ultra large scale integration technology. Because of this, the size of t he
computer system is reduced.

Versatile- The same chip can be used for several applications, therefore,
microprocessors are versatile.

Low Power Consumption - Microprocessors are using metal oxide semiconductor
technology, which consumes less power.

Less Heat Generation - Microprocessors uses semiconductor technology which will
not emit much heat as compared to vacuum tube devices.

Reliable - Since microprocessors use semiconductor technology, therefore, the
failure rate is very less. Hence it is very reliable.

Portable - Due to the small size and low power consumption microprocessors are
portable.

1.7 Instructions Execution
A microprocessor executes a collection of machine instructions that tell the processor what
to do. Based on the instructions, a microprocessor does three basic things:

» Using its ALU (Arithmetic/Logic Unit), a microprocessor can perform
mathematical operations like addition, subtraction, multiplication and division.
Modern microprocessors contain complete floating-point processors that can
perform extremely sophisticated operations on large floating-point numbers.

» A microprocessor can move data from one memory location to another.

» A microprocessor can make decisions and jump to a new set of instructions based
on those decisions.

This is about as simple as a microprocessor gets. This microprocessor has:

v An address bus (that may be 8, 16, 32 or 64 bits wide) that sends an address to
memory

v A data bus (that may be 8, 16, 32 or 64 bits wide) that can send data to memory or
receive data from memory

v" An RD (read) and WR (write) line to tell the memory whether it should set or get
the addressed location

v A clock line that lets a clock pulse sequence the processor

v' A reset line that resets the program counter to zero (or whatever) and restarts
execution

. Types of Microprocessors
There are many types of microprocessor:

Vector Processors: A vector processor is designed for vector computations. A vector
is an array of operands of the same type. Consider the following vectors:

Vector A (a1, az, as, , @n), Vector B (by, bz, ba,......., bn)
Examples of vector processors are:
DEC's VAX 9000, IBM 390/VF, CRAY Research Y-MP family, Hitachi’s S-810/20, etc

Array Processors or SIMD Processors: Array processors are also designed for vector
computations. The difference between an array processor and a vector processor is that a
vector processor uses multiple vector pipelines whereas an array processor employs a
number of processing elements to operate in parallel. An array processor contains multiple
numbers of ALUs. Each ALU is provided with the local memory. The ALU together with the local
memory is called a Processing Element (PE). An array processor is a SIMD (Single Instruction
Multiple Data) processor. Thus using a single instruction, the same operation can be performed on
an array of data which makes it suitable for vector computations.

PE, PE, PE,

ALU ALU ALU

M M L I I M

Control ﬁ ﬁ T\

processor

Figure 4: Schematic Diagram of an Array Processor or SIMD

3. Scalar and Superscalar Processors

A processor that executes scalar data is called scalar processor. The simplest scalar processor
makes processing of only integer instruction using fixed-points operands. A powerful scalar
processor makes processing of both integer as well floating- point numbers. It contains an
integer ALU and a Floating Point Unit (FPU) on the same CPU chip.
A scalar processor may be RISC processor or CISC processor.
Examples of CISC processors are:

o Intel 386, 486; Motorola's 68030, 68040; etc.
Examples of RISC scalar processors are:

o Intel 1860, Motorola MC8810, SUN's SPARC CY7C601, etc.
A superscalar processor has multiple pipelines and executes more than one instruction per
clock cycle.

o Examples of superscalar processors are: Pentium, Pentium Pro, Pentium II,
Pentium I,

RISC and CISC Processors

RISC stands for Reduced Instruction Set Computer and

CISC stands for Complex Instruction Set Computer.

There are two approaches of the design of the control unit of a microprocessor i.e.-

o Hardware approach and Software approach.
Q:What are the main differences between RISC and CISC?

S.No. RISC CIsC

1. Simple instruction set Complex instruction set

2. Consists of Large number of registers. Less number of registers

3. Larger Program Smaller program

4. Simple processor circuitry (small number | Complex processor circuitry (more
of transistors) number of transistors)

5. More RAM usage Little Ram usage

6. Simple addressing modes Variety of addressing modes

7. Fixed length instructions Variable length instructions

8. Fixed number of clock cycles for executing | Variable number of clock cycles for each
one instruction instructions

What is an 8085 Microprocessor?

Answer: It is an 8-bit microprocessor that can process, accept and send 8-bit data
simultaneously. It operates on a 3MHz clock frequency and has 16 address lines so it
has 64-kilo bytes of memory

What is the 8086 microprocessor?

Answer: It is a 16-bit microprocessor having 20 address lines and 16 data lines along
with 1MB of memory storage. The processing is faster than that of the 8085
Microprocessor.

Computer Abstraction Hierarchy

Hardware or software How this component affects

component performance

Algorithm Determines both the number of source-level
statements and the number of 1/0 operations
executed

Programming language, Determines the number of computer

compiler, and architecture instructions for each source-level statement

Processor and memory system Determines how fast instructions can be

executed
1/0 system (hardware and Determines how fast 1/0 operations may be
operating system) executed

The performance of a program depends on a combination of the effectiveness of the
algorithms used in the program, the software systems used to create and translate the program
into machine instructions, and the effectiveness of the computer in executing those
instructions, which may include input/output (1/O) operations.

If we open the box containing the computer, we see a fascinating board of thin plastic,
covered with dozens of small gray or black rectangles.

Figure 5 shows the contents of the Desktop computer and Figure 6 shows the inside of
laptop computer

In figure 6 , The motherboard is shown in the upper part of the photo. Two disk drives
are in front—the hard drive on the left and a DVD drive on the right. The hole in the middle
is for the laptop battery. The small rectangles on the motherboard contain the devices that
drive our advancing technology, called integrated circuits and nicknamed chips.

The board is composed of three pieces: the piece connecting to the I/O devices
mentioned earlier, the memory, and the processor. The memory is where the programs are
kept when they are running; it also contains the data needed by the running programs. Figure
7 shows that memory is found on the two small boards, and each small memory board
contains eight integrated circuits.

10

.................

o

Hard drive Processor Fan with Spot for Spot for Motherboard Fan with DVD drive
cover memory battery cover
DIMMs

Figure 5: Desktop computer

DRAM stands for Dynamic Random Access Memory. Several DRAMSs are used together to
contain the instructions and data of a program. In contrast to sequential access memories,
such as magnetic tapes, the RAM portion of the term DRAM means that memory accesses
take basically the same amount of time no matter what portion of the memory is read.

. Motherboard

A plastic board containing packages of integrated circuits or chips, including processor,
cache, memory, and connectors for 1/0 devices such as networks and disks. integrated
circuit Also called a chip. A device combining dozens to millions of transistors. Memory is
the storage area in which programs are kept when they are running and that contains the
data needed by the running programs

5.1 Dynamic Random Access memory (DRAM)
Memory built as an integrated circuit; it provides random access to any location.

The processor: it is the active part of the board, following the instructions of a program to
the letter. It adds numbers, tests numbers, signals I/O devices to activate, and so on. The
processor is under the fan and covered by a heat sink on the left side of Figure 1.7.
Occasionally, people call the processor the CPU or central processor unit. Descending even
lower into the hardware, Figure 1.9 reveals details of a microprocessor. The processor
logically comprises two main components: data path and control, the respective brawn and
brain of the processor. The data path performs the arithmetic operations, and control tells the

11

data path, memory, and 1/O devices what to do according to the wishes of the instructions of
the program.

5.2 Central Processor unit (CPU)

Also called processor. The active part of the computer, which contains the data path
and control and which adds numbers, tests numbers, signals 1/0 devices to activate, and
so on. Data path The component of the processor that performs arithmetic operations,
control is the component of the processor that commands the data path, memory, and 1/0
devices.

One of the most important abstractions is the interface between the hardware and the lowest-
level software abstraction A mode | that renders lower-level details of computer systems
temporarily invisible to facilitate design of sophisticated systems.

name: the instruction set architecture, or simply architecture, of a computer. The
instruction set architecture includes anything programmers need to know to make a binary
machine language program work correctly, including instructions, 1/0O devices, and so on.
Typically, the operating system will encapsulate the details of doing I/0O, allocating memory,
and other low-level system functions so that application programmers do not need to worry
about such details. The combination of the basic instruction set and the operating system
interface provided for application programmers is called the application binary interface
(ABI).

instruction set architecture Also called architecture. An abstract interface between

the hardware and the lowest-level software that encompasses all the information necessary
to write a machine language program that will run correctly, including

instructions, registers, memory access, 1/0.

An instruction set architecture allows computer designers to talk about functions
independently from the hardware that performs them. For example, we can talk about the
functions of a digital clock (keeping time, displaying the time, setting the alarm)
independently from the clock hardware (quartz crystal, LED displays, plastic buttons).

Computer implementation of an architecture along the same lines: an implementation is
hardware that obeys the architecture abstraction.

Both hardware and software consist of hierarchical layers, with each lower layer hiding
details from the level above. This principle of abstraction is the way both hardware
designers and software designers cope with the complexity of computer systems. One
key interface between the levels of abstraction is the instruction set architecture—the
interface between the hardware and low-level software. This abstract interface enables
many implementations of varying cost and performance to run identical software.

5.3 Technologies for Processors (PERFORMANCE MEASURES)

Processors and memory have improved at an incredible rate, because computer
designers have long embraced the latest in electronic technology to try to win the race to
design a better computer. Figure 7 shows the technologies that have been used over time

12

5.3.1 Performance

we need to determine the time taken by a computer to execute a given job. We define
the clock cycle time as the time between two consecutive rising (trailing) edges of a periodic
clock signal (Fig. 7).

4— Clock cycle time —® Time

Figure 7: clock signal

Clock cycles allow counting unit computations, because the storage of computation results
is synchronized with rising (trailing) clock edges. The time required to execute a job by a
computer is often expressed in terms of clock cycles. We denote the number of CPU clock
cycles for executing a job to be the cycle count (CC), the cycle time by CT, and the clock
frequency by f =1/CT. The time taken by the CPU to execute a job can be expressed as
CPU time = CC x CT = CC/f

It may be easier to count the number of instructions executed in a given program as compared
to counting the number of CPU clock cycles needed for executing that program.

5.3.2 Defining Performance

we can define computer performance in several different ways.
If you were running a program on two different desktop computers, you'd say that the faster
one is the desktop computer that gets the job done first. If you were running datacenter that
had several servers running jobs submitted by many users, you'd say that the faster computer
was the one that completed the most jobs during a day.
As an individual computer user, you are interested in reducing response time—the time
between the start and completion of a task—also referred to as execution time. Datacenter
managers are often interested in increasing throughput or bandwidth—the total amount of
work done in a given time. Hence, in most cases, we will need different performance
metrics as well as different sets of applications to benchmark embedded and desktop
computers, which are more focused on response time, versus servers, which are more focused
on throughput.
Therefore, the average number of clock cycles per instruction (CPI) has been used as an
alternate performance measure. The following equation shows how to compute the CPI.

_ CPU clock cycles for the program

Instruction count
CPU time = Instruction count X CPI X Clock cycle time

Instruction count X CPI
N Clock rate

It is known that the instruction set of a given machine consists of a number of
instruction categories: ALU (simple assignment and arithmetic and logic instructions), load,
store, branch, and so on. In the case that the CPI for each instruction category is known, the
overall CPI can be computed as:

13

CPI = i, CPI; X I
Instruction count

where li is the number of times an instruction of type i is executed in the program and CPli
is the average number of clock cycles needed to execute such instruction.

Example: Consider computing the overall CPI for a machine A for which the following
performance measures were recorded when executing a set of benchmark programs. Assume
that the clock rate of the CPU is 200 MHz.

Instruction Percentage of No. of cycles
category oceurrence per instruction
ALU 38 1
Load & store 15 3
Branch 42 4
Others 5 5

Assuming the execution of 100 instructions, the overall CPI can be computed as

SELCPLixl 38x1415x34+42x445x5

= =76
Instruction count 100

CPl, =

It should be noted that the CPI reflects the organization and the instruction set
architecture of the processor while the instruction count reflects the instruction set
architecture and compiler technology used. This shows the degree of interdependence
between the two performance parameters. Therefore, it is imperative that both the CPI and
the instruction count are considered in assessing the merits of a given computer or
equivalently in comparing the performance of two machines.

A different performance measure that has been given a lot of attention in recent years
is MIPS (million instructions-per-second (the rate of instruction execution per unit time)),
which is defined as

Instruction count Clock rate

MIPS = =
Execution time X 10¢ CPI x 10©

Example: Suppose that the same set of benchmark programs considered above were
executed on another machine, call it machine B, for which the following measures
were recorded.

Instruction Percentage of No. of cycles
category occurrence per instruction
ALU 35 1

Load & store 30 2
Branch 15 3
Others 20 5

14

What is the MIPS rating for the machine considered in the previous example
(machine A) and machine B assuming a clock rate of 200 MHz, and instruction

Account is 100;

CPI,

MIPS ,

CPI,

MIPS , =

2.76

i=q CPI;xI; 38x1+15X3+42x4+5%x5
Instruction count 100
Clock rate 200 x 10°
= 70.24

CPI_ x 106 2.76 x 106

* . CPI; X 35Xx1+30x2+20%x5+15x%x3
= =24

Instruction count
Clock rate

200 x 10°

83.67

CPI_ x 106 2.4 x 106

Thus MIPS, > MIPS,.

100

It is interesting to note here that although MIPS has been used as a performance
measure for machines, one has to be careful in using it to compare machines having different
instruction sets. This is because MIPS does not track execution time. Consider, for example,
the following measurement made on two different machines running a given set of
benchmark programs.

Suppose that you have a set of benchmark programs of two machines (A and B) that
were executed on both machines for which the following measures were recorded.

Machine A Machine B
Instruction Percentage of | No. of Cycles | Percentage of | No. of Cycles Per
Category Occurrence | Per Instruction | Occurrence Instruction
CPU 38 1 35 1
Load and Store 15 3 30 2
Brach 42 4 15 3
Others 5 5 20 5

What is the MIPS rating for the machines considered in the table above for machines
(A, B) assuming a clock rate of 200 MHz?

15

Computer Microprocessor (Part Two)
Lecturers:
Ass. Prof. Shaimaa Hameed Shaker
And Asst. Prof. Dr. Raheem Abdul Sahib Olga
2022-2023
Computer Science Dept.

References
1. "fundamentals of computer organization and architecture”, by Mostafa Abd-
El-Barr Hesham El-Rewini, 1PstP edition/2005.
2. David A. Patterson and John L. Hennessy, ""Computer Organization and
Design'*,1998.

3. M. M. Mano, ""‘computer system architecture™ third edition, prentice Hall, 1993.
4. Walter A. Triebel, "The 80386, 80486, and Pentium® Processors
Hardware,Software, and Interfaceing®, 1998.

2.Microprocessor - 8086 Overview

8086 Microprocessor is an enhanced version of 8085 Microprocessor that was designed by Intel in 1976. It is a 16-
bit Microprocessor having 20 address lines and16 data lines that provides up to 1MB storage. It consists of powerful

instruction set, which provides operations like multiplication and division easily.
It supports two modes of operation, i.e. Maximum mode and Minimum mode. Maximum mode is suitable for

system having multiple processors and Minimum mode is suitable for system having a single processor.
2.1 Features of 8086
The most prominent features of an 8086 microprocessor are as follows —

¢ It has an instruction queue, which is capable of storing six instruction bytes from the memory resulting in

faster processing.
e It was the first 16-bit processor having 16-bit ALU, 16-bit registers, internal data bus, and 16-bit external
data bus resulting in faster processing.

e Itisavailable in 3 versions based on the frequency of operation —

o 8086 — 5MHz

o 8086-2 — 8MHz

o (c)8086-1 — 10 MHz
It uses two stages of pipelining, i.e. Fetch Stage and Execute Stage, which improves performance.
Fetch stage can prefetch up to 6 bytes of instructions and stores them in the queue.
Execute stage executes these instructions.
It has 256 vectored interrupts.

e It consists of 29,000 transistors.
2.2 Comparison between 8085 & 8086 Microprocessor

e Size — 8085 is 8-bit microprocessor, whereas 8086 is 16-bit microprocessor.

e Address Bus — 8085 has 16-bit address bus while 8086 has 20-bit address bus.

e Memory — 8085 can access up to 64Kb, whereas 8086 can access up to 1 Mb of memory.

e Instruction — 8085 doesn’t have an instruction queue, whereas 8086 has an instruction queue.
e Pipelining — 8085 doesn’t support a pipelined architecture while 8086 supports a pipelined architecture.
e 1/O— 8085 can address 28 = 256 1/0O's, whereas 8086 can access 216 = 65,536 1/O's.
e Cost — The cost of 8085 is low whereas that of 8086 is high.
2.3 Architecture of 8086

The following diagram depicts the architecture of an 8086 Microprocessor (Figure 2.1)

i
I
1
8 |
S INSTRUCTION |
STREAM |
4 BYTE |
a QUEUE |
2 I
Y I
e ey ¥ — 1 [T A SO~ e
I |
| I
| |
I CONTROL 1
| SYSTEM |
________________ J 1
|
A-BUS :
1
|
|
1
|
|
ARITHMETIC |
LOGIC UNIT :
-
' — i
: |
OPERANDS :
FLAGS i ,_L |

Figure (2.1) Architecture of 8086

2.3.1 Microprocessor - 8086 Functional Units
8086 Microprocessor is divided into two functional units, i.e., EU (Execution Unit) and BIU (Bus Interface Unit).
A. EU (Execution Unit)
Execution unit gives instructions to BIU stating from where to fetch the data and then decode and execute those
instructions. Its function is to control operations on data using the instruction decoder & ALU. EU has no direct
connection with system buses as shown in the above figure, it performs operations over data through BIU.
Let us now discuss the functional parts of 8086 microprocessors.
1. ALU
It handles all arithmetic and logical operations, like +, —, X, /, OR, AND, NOT operations.

2. Flag Register

It is a 16-bit register that behaves like a flip-flop, i.e. it changes its status according to the result stored in
the accumulator. It has 9 flags and they are divided into 2 groups — Conditional Flags and Control Flags.

1. Conditional Flags

It represents the result of the last arithmetic or logical instruction executed. Following is the list of conditional flags :

e Carry flag — This flag indicates an overflow condition for arithmetic operations.

e Auxiliary flag — When an operation is performed at ALU, it results in a carry/barrow from lower nibble
(i.e. DO — D3) to upper nibble (i.e. D4 — D7), then this flag is set, i.e. carry given by D3 bit to D4 is AF flag.
The processor uses this flag to perform binary to BCD conversion.

e Parity flag — This flag is used to indicate the parity of the result, i.e. when the lower order 8-bits of the
result contains even number of 1’s, then the Parity Flag is set. For odd number of 1’s, the Parity Flag is
reset.

e Zero flag — This flag is set to 1 when the result of arithmetic or logical operation is zero else it is set to 0.

e Sign flag — This flag holds the sign of the result, i.e. when the result of the operation is negative, then the
sign flag is set to 1 else set to 0.

e Overflow flag — This flag represents the result when the system capacity is exceeded.

2. Control Flags

Control flags controls the operations of the execution unit. Following is the list of control flags

e Trap flag — It is used for single step control and allows the user to execute one instruction at a time for

debugging. If it is set, then the program can be run in a single step mode.

e Interrupt flag — It is an interrupt enable/disable flag, i.e. used to allow/prohibit the interruption of a

program. It is set to 1 for interrupt enabled condition and set to O for interrupt disabled condition.

e Direction flag — It is used in string operation. As the name suggests when it is set then string bytes are

accessed from the higher memory address to the lower memory address and vice-a-versa.
3. General Purpose Register

There are 8 general purpose registers, i.e., AH, AL, BH, BL, CH, CL, DH, and DL. These registers can be

used individually to store 8-bit data and can be used in pair s to store 16bit data. The valid register pairs

are AH and AL, BH and BL, CH and CL, and DH and DL. It is referred to the AX, BX, CX, and DX

respectively.

e AXrregister — It is also known as Accumulator registers. It is used to store operands for arithmetic

operations.

e BXregister — It is used as a base register. It is used to store the starting base address of the memory

area within the data segment.

e CXrregister — It is referred to as counter. It is used in loop instruction to store the loop counter.

e DX register — This register is used to hold 1/O port address for I/O instruction.

4. pointer register

It is a 16-bit register, which holds the address from the start of the segment to the memory location, where a

word was most recently stored on the stack.
B. BIU (Bus Interface Unit)

BIU takes care of all data and addresses transfers on the buses for the EU like sending addresses, fetching
instructions from the memory, reading data from the ports and the memory as well as writing data to the ports and the
memory. EU has no direction connection with System Buses so this is possible with the BIU. EU and BIU are
connected with the Internal Bus.

It has the following functional parts (BIU)

e Instruction queue — BIU contains the instruction queue. BIU gets up to 6 bytes of next instructions and stores
them in the instruction queue. When EU executes instructions and is ready for its next instruction, then it
simply reads the instruction from this instruction queue resulting in increased execution speed.

e Fetching the next instruction while the current instruction executes is called pipelining.

e Segment register — BIU has 4 segment buses, i.e. CS, DS, SS& ES. It holds the addresses of instructions and
data in memory, which are used by the processor to access memory locations. It also contains 1 pointer register
IP, which holds the address of the next instruction to executed by the EU.

o CS —TItstands for Code Segment. It is used for addressing a memory location in the code segment of
the memory, where the executable program is stored.

o DS — It stands for Data Segment. It consists of data used by the program and is accessed in the data
segment by an offset address or the content of other register that holds the offset address.

oSS — It stands for Stack Segment. It handles memory to store data and addresses during execution.

o ES—1Itstands for Extra Segment. ES is additional data segment, which is used by the string to hold
the extra destination data.

e Instruction pointer — It is a 16-bit register used to hold the address of the next instruction to be executed.

2.4 Microprocessor - 8086 Pin Configuration
8086 was the first 16-bit microprocessor available in 40-pin DIP (Dual Inline Package) chip. Let us now
discuss in detail the pin configuration of a 8086 Microprocessor.
2.4.1 8086 Pin Diagram
Here is the pin diagram of 8086 microprocessors (Figure 2.2)

GNO 1 40 [voce

AD,, ”_jj 2 39] AD,

AD,; (13 3 [AS,

AD,, ._j 4 37 | AS,

D, (15 38 [Awss

ADyo [& 35 [0 AwSe

AD, (17 34] BHES,

ADg [@ 33 T Mnaax

AD, (19 32] RD

AD, [10 P 31 7] RQGT, (HOLD)
AD; 1 30] ROGT, (HLOA)Y
AD, [2 29] LOCK (WH)
ADy [13 28] & ons)
AD, [14 N SR T (OT/A)
AD, 118 {1 8 (CEN)
an, 1 e 25 [os, (ALE)
N vy 24 |1 oS, (INTA)
TR 18 23 [] TEST

K] 19 22 |1 READY

ano | 20 21 [] RESET

Figure (2.2)8086 Pin Diagram

Let us now discuss the signals in detail —

1.

2.

3.

10.

11.

12.

Power supply and frequency signals: It uses 5V DC supply at Vcc pin 40, and uses ground at Vss pin 1 and
20 for its operation.

Clock signal: Clock signal is provided through Pin-19. It provides timing to the processor for operations. Its
frequency is different for different versions, i.e. 5MHz, 8MHz and 10MHz.

Address/data bus: AD0O-AD15. These are 16 address/data bus. ADO-AD7 carries low order byte data and
ADB8AD15 carries higher order byte data. During the first clock cycle, it carries 16-bit address and after that
it carries 16-bit data.

Address/status bus :A16-A19/S3-S6. These are the 4 address/status buses. During the first clock cycle, it
carries 4-bit address and later it carries status signals.

S7/BHE: BHE stands for Bus High Enable. It is available at pin 34 and used to indicate the transfer of data
using data bus D8-D15. This signal is low during the first clock cycle, thereafter it is active.
Read($overline{RD}$)It is available at pin 32 and is used to read signal for Read operation.

Ready: It is available at pin 22. It is an acknowledgement signal from 1/O devices that data is transferred. It
is an active high signal. When it is high, it indicates that the device is ready to transfer data. When it is low,
it indicates wait state.

RESET: It is available at pin 21 and is used to restart the execution. It causes the processor to immediately
terminate its present activity. This signal is active high for the first 4 clock cycles to RESET the
microprocessor.

INTR: It is available at pin 18. It is an interrupt request signal, which is sampled during the last clock cycle
of each instruction to determine if the processor considered this as an interrupt or not.

NMI: It stands for non-mask able interrupt and is available at pin 17. It is an edge triggered input, which
causes an interrupt request to the microprocessor.

$\overline{ TEST}$: This signal is like wait state and is available at pin 23. When this signal is high, then the
processor has to wait for IDLE state, else the execution continues.

MN/\overline{MX} :1t stands for Minimum/Maximum and is available at pin 33. It indicates what mode
the processor is to operate in; when it is high, it works in the minimum mode and vice-aversa.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

INTA: It is an interrupt acknowledgement signal and id available at pin 24. When the microprocessor
receives this signal, it acknowledges the interrupt.

ALE: It stands for address enable latch and is available at pin 25. A positive pulse is generated each time the
processor begins any operation. This signal indicates the availability of a valid address on the address/data
lines.

DEN: It stands for Data Enable and is available at pin 26. It is used to enable Transreceiver 8286. The trans
receiver is a device used to separate data from the address/data bus.

DT/R: It stands for Data Transmit/Receive signal and is available at pin 27. It decides the direction of data
flow through the trans receiver. When it is high, data is transmitted out and vice-a-versa.

M/10: This signal is used to distinguish between memory and 1/0 operations. When it is high, it indicates
I/0O operation and when it is low indicating the memory operation. It is available at pin 28.

WR: It stands for write signal and is available at pin 29. It is used to write the data into the memory or the
output device depending on the status of M/IO signal.

HLDA: It stands for Hold Acknowledgement signal and is available at pin 30. This signal acknowledges the
HOLD signal.

HOLD: This signal indicates to the processor that external devices are requesting to access the address/data
buses. It is available at pin 31.

QS: and QSo: These are queue status signals and are available at pin 24 and 25. These signals provide the
status of instruction queue. Their conditions are shown in the following table

Q Q Status
So S1

0 0 No operation
0 1 First byte of opcode from the queue
1 0 Empty the queue

1 1 Subsequent byte from the queue

So, S1, S2: These are the status signals that provide the status of operation, which is used by the Bus Controller
8288 to generate memory & 1/O control signals. These are available at pin 26, 27, and 28. Following is the
table showing their status:

S2 S1 So Status

0 0 0 Interrupt acknowledgement

0 0 1 1/0 Read

0O 1 o0 1/0 Write

0o 1 1 Halt

1 0 0 Opcode fetch
1 0 1 Memory read
1 1 0 Memory write

1 1 1 Passive

23. LOCK: When this signal is active, it indicates to the other processors not to ask the CPU to leave the system
bus. It is activated using the LOCK prefix on any instruction and is available at pin 29.

24. RQ/GT1and RQ/GToThese are the Request/Grant signals used by the other processors requesting the CPU
to release the system bus. When the signal is received by CPU, then it sends acknowledgment. RQ/GT has
a higher priority than RQ/GT1.

2.4.2 Microprocessor - 8086 Instruction Sets

The 8086 microprocessor supports 8 types of instructions —
1. Data Transfer Instructions

Arithmetic Instructions

Bit Manipulation Instructions

String Instructions

Processor Control Instructions

2
3
4
5. Program Execution Transfer Instructions (Branch & Loop Instructions)
6
7. Iteration Control Instructions

8

Interrupt Instructions

Let us now discuss these instruction sets in detail.

1. Transfer Instructions
These instructions are used to transfer the data from the source operand to the destination operand. Following
are the list of instructions under this group —
A: Instruction to transfer a word
e MOV — Used to copy the byte or word from the provided source to the provided destination.
e PPUSH — Used to put a word at the top of the stack.
e POP — Used to get a word from the top of the stack to the provided location.
PUSHA — Used to put all the registers into the stack.
POPA — Used to get words from the stack to all registers.
XCHG - Used to exchange the data from two locations.
XLAT — Used to translate a byte in AL using a table in the memory.
B. Instructions for input and output port transfer
e IN — Used to read a byte or word from the provided port to the accumulator.
e OUT — Used to send out a byte or word from the accumulator to the provided port.
C: Instructions to transfer the address
e LEA — Used to load the address of operand into the provided register.
e LDS — Used to load DS register and other provided register from the memory
e LES - Used to load ES register and other provided register from the memory.
D: Instructions to transfer flag registers
e LAHF — Used to load AH with the low byte of the flag register.
e SAHF — Used to store AH register to low byte of the flag register.
o PUSHF — Used to copy the flag register at the top of the stack.
e POPF — Used to copy a word at the top of the stack to the flag register.

2. Arithmetic Instructions
These instructions are used to perform arithmetic operations like addition, subtraction, multiplication, division,
etc. Following is the list of instructions under this group:
A: Instructions to perform addition
e ADD — Used to add the provided byte to byte/word to word.
e ADC — Used to add with carry.
e INC — Used to increment the provided byte/word by 1.

e AAA — Used to adjust ASCII after addition.
e DAA — Used to adjust the decimal after the addition/subtraction operation.
B: Instructions to perform subtraction
e SUB — Used to subtract the byte from byte/word from word.
SBB — Used to perform subtraction with borrow.
DEC — Used to decrement the provided byte/word by 1.
NPG — Used to negate each bit of the provided byte/word and add 1/2’s complement.
CMP — Used to compare 2 provided byte/word.
AAS — Used to adjust ASCII codes after subtraction.
DAS — Used to adjust decimal after subtraction.
struction to perform multiplication
MUL - Used to multiply unsigned byte by byte/word by word.
IMUL — Used to multiply signed byte by byte/word by word.
AAM — Used to adjust ASCII codes after multiplication.
structions to perform division
DIV — Used to divide the unsigned word by byte or unsigned double word by word.
IDIV — Used to divide the signed word by byte or signed double word by word.
AAD — Used to adjust ASCII codes after division.
CBW — Used to fill the upper byte of the word with the copies of sign bit of the lower byte.
e CWD — Used to fill the upper word of the double word with the sign bit of the lower word.
3. Bit Manipulation Instructions
These instructions are used to perform operations where data bits are involved, i.e. operations like logical, shift.
Following is the list of instructions under this group —
A: Instructions to perform logical operation
e NOT — Used to invert each bit of a byte or word.
e AND — Used for adding each bit in a byte/word with the corresponding bit in another byte/word.
e OR — Used to multiply each bit in a byte/word with the corresponding bit in another byte/word.
e XOR — Used to perform Exclusive-OR operation over each bit in a byte/word with the corresponding
bit in another byte/word.
e TEST — Used to add operands to update flags, without affecting operands.
B: Instructions to perform shift operations
e SHL/SAL — Used to shift bits of a byte/word towards left and put zero(S) in LSBs.
e SHR — Used to shift bits of a byte/word towards the right and put zero(S) in MSBs.
e SAR — Used to shift bits of a byte/word towards the right and copy the old MSB into the new MSB.
C: Instructions to perform rotate operations
e ROL — Used to rotate bits of byte/word towards the left, i.e. MSB to LSB and to Carry Flag [CF].
e ROR — Used to rotate bits of byte/word towards the right, i.e. LSB to MSB and to Carry Flag [CF].
e RCR — Used to rotate bits of byte/word towards the right, i.e. LSB to CF and CF to MSB.
e RCL — Used to rotate bits of byte/word towards the left, i.e. MSB to CF and CF to LSB.
4. String Instructions

String is a group of bytes/words and their memory is always allocated in a sequential order. Following is the
list of instructions under this group —

REP — Used to repeat the given instruction till CX # 0.

REPE/REPZ — Used to repeat the given instruction until CX = 0 or zero flag ZF = 1.

REPNE/REPNZ — Used to repeat the given instruction until CX = 0 or zero flag ZF = 1.
MOVS/MOVSB/MOVSW — Used to move the byte/word from one string to another.
COMS/COMPSB/COMPSW — Used to compare two string bytes/words.

INS/INSB/INSW — Used as an input string/byte/word from the I/O port to the provided memory location.

OUTS/OUTSB/OUTSW — Used as an output string/byte/word from the provided memory location to the I/O
port.

e SCAS/SCASB/SCASW — Used to scan a string and compare its byte with a byte in AL or string word with a
word in AX.

e LODS/LODSB/LODSW — Used to store the string byte into AL or string word into AX.

S e o e 0 o o

C:1

D: 1

e 6 o o S5 o o o

5. Program Execution Transfer Instructions (Branch and Loop Instructions)
These instructions are used to transfer/branch the instructions during an execution. It includes the
following instructions —
A: Instructions to transfer the instruction during an execution without any condition —
e CALL — Used to call a procedure and save their return address to the stack.
e RET — Used to return from the procedure to the main program.
e JMP — Used to jump to the provided address to proceed to the next instruction.
B: Instructions to transfer the instruction during an execution with some conditions —
e JA/INBE — Used to jump if above/not below/equal instruction satisfies.
JAE/INB — Used to jump if above/not below instruction satisfies.
JBE/INA — Used to jump if below/equal/ not above instruction satisfies.
JC — Used to jump if carry flag CF =1
JE/JZ — Used to jump if equal/zero flag ZF = 1
JG/INLE — Used to jump if greater/not less than/equal instruction satisfies.
JGE/JINL — Used to jump if greater than/equal/not less than instruction satisfies.
JL/INGE — Used to jump if less than/not greater than/equal instruction satisfies.
JLE/ING — Used to jump if less than/equal/if not greater than instruction satisfies.
JNC — Used to jump if no carry flag (CF = 0)
JNE/INZ — Used to jump if not equal/zero flag ZF = 0
JNO — Used to jump if no overflow flag OF =0
JNP/JPO — Used to jump if not parity/parity odd PF =0
JNS — Used to jump if not sign SF =0
JO — Used to jump if overflow flag OF = 1
JP/IPE — Used to jump if parity/parity even PF = 1
e JS - Used to jump if sign flag SF = 1
6. Processor Control Instructions

These instructions are used to control the processor action by setting/resetting the flag values.
Following are the instructions under this group —

STC — Used to set carry flag CF to 1

CLC — Used to clear/reset carry flag CF to 0

CMC — Used to put complement at the state of carry flag CF.

STD — Used to set the direction flag DF to 1

CLD — Used to clear/reset the direction flag DF to 0

STI — Used to set the interrupt enable flag to 1, i.e., enable INTR input.

e CLI — Used to clear the interrupt enable flag to 0, i.e., disable INTR input.

7. lIteration Control Instructions
These instructions are used to execute the given instructions for number of times. Following is the list
of instructions under this group —
e LOOP — Used to loop a group of instructions until the condition satisfies, i.e., CX =0
o | OOPE/LOOPZ — Used to loop a group of instructions till it satisfies ZF =1 & CX =0
e | OOPNE/LOOPNZ — Used to loop a group of instructions till it satisfies ZF =0 & CX =0
e JCXZ - Used to jump to the provided address if CX =0
8. Interrupt Instructions

These instructions are used to call the interrupt during program execution.

(] INT — Used to interrupt the program during execution and calling service specified.
(] INTO — Used to interrupt the program during execution if OF = 1
® |RET — Used to return from interrupt service to the main program._

Computer Microprocessor

Part 3:

Lecturer: Asst. Prof. Dr. Raheem Abdul Sahib Ogla

References
1. "fundamentals of computer organization and architecture”, by Mostafa
Abd-EI-Barr Hesham El-Rewini, 1PstP edition/2005.
2. David A. Patterson and John L. Hennessy, "*Computer Organization and
Design'*,1998.
3. M. M. Mano, "computer system architecture™ third edition, prentice Hall,
1993.

4. Walter A. Triebel, ""The 80386, 80486, and Pentium® Processors
Hardware,Software, and Interfaceing®, 1998.

Microprocessor: Memory system and Addressing Mode

Micro-processors — 1’°st course

> Introduction to Microprocessor and Microcomputer system.
e Microprocessor Architecture and Register Set.
e System Buses
e Memory types and physical addressing.
e 1/O devices

» Instruction Set and Format

» Addressing Modes

> Introduction to Assembly Programming Language.
e Arithmetic and logical Instructions (Shift and Rotate).
e Program Control (interrupt and subroutine call).

References:

1. Abel P., "IBM PC Assembly Language and Programming”, 4" Edition,
Prentice Hall, 1998..

2. Thorne M., "Computer Organization and Assembly Language
Programming", 2" Edition, Benjamin/Cummings, 1990.

1. Memory system

The memory of a computer system consists of tiny electronic switches, with each
switch set in one of two states: open or close. It is however more convenient to think of
these states as 0 and 1. Thus each switch can represent a binary digit or bit, as it is known,
the memory unit consists of millions of such bits, bits are organized into groups of eight
bits called byte. Memory can be viewed as consisting of an ordered sequence of bytes.
Each byte in this memory can be identified by its sequence number starting with 0, is
shown in Figure 3. This is referred to as memory address of the byte. Such memory is
called byte addressable memory.

Adidress ‘ Kk -« Dawa

Read Memory Unit

Wre

W X G, A

Figure3 logical view of the memory

8086 can address up to 1 MB (22° bytes) of main memory this magic number comes
from the fact that the address bud of the 8086 has 20 address lines. This number is referred
to as the Memory Address Space (MAS). The memory address space of a system is
determined by the address bus width of the CPU used in the system. The actual memory in
a system is always less than or equal to the MAS.

Two basic memory operations

The memory unit supports two fundamental operations: Read and Write.

The read operation read a previously stored data and the write operation stores a value in
memory, is shown in Figure 4.

Adfiress in Decinal Address s Hex |
e 5 [FEFEE
FFFFE
;4 Bz
i 009201
v guovy

Figure 4: Block Diagram of Memory system

-3=

Steps in a typical read cycle:

1- Place the address of the location to be read on the address bus.

2- Activate the memory read control signal on the control bus.

3- Wait for the memory to retrieve the data from the address memory location.
4- Read the data from the data bus.

5- Drop the memory read control signal to terminate the read cycle.

Steps in a typical write cycle:

1- Place the address of the location to be written on the address bus.
2- Place the data to be written on the data bus.

3- Activate the memory write control signal on the control bus.

4- Wait for the memory to store the data at the address location.

5- Drop the memory write control signal to terminate the write cycle.

Addresses: group of bits which are arranged sequentially in memory, to enable direct
access, a number called address is associated with each group. Addresses start at 0 and
increase for successive groups. The term location refers to a group of bits with a unique
address.

QL1: Define Offset address?

Offset is the displacement of the memory location from the starting location of the segment.
The 8086 addresses a segmented memory. The complete physical address which is 20-bits long is
generated using segment and offset registers each of the size 16-bit. In Other word, offset address
is the number of address locations added to a base address in order to get to a specific
absolute address. See figure (5)

FFFFF
1FFFF
1FO00 Offset = FOOO

64 K-Byle

sSegrment

Segment register

10000 - {101:].3
00000

Figure (5) Shows the implementation o f offset Address

=« gddresses type ==

Logical address= CS: IP (Instruction Pointer (IP))
Offset address= CSO+IP

Physical address= CS0+offset address

Lower range= CS+0000 or 00000

Upperrang= CS+FFFF

agkrowppE

Example:

If CS=24F6H and IP 634AH

The Logical address= CS: IP then 24F6:634A

Offset address= CSO+IP then 634A

Physical address= CSO+offset address then
2B2AA(24F60+634A)

Lower range= CS+0000 then 24F60(24F60+0000)

Upperrang= CS+FFFF then 34F5F(24F60+FFFF)

7- INPUT/OUTPUT
Input / Output (1/0) devices provide the means by which the computer system can
interact with the outside world. Computers use I/0 devices (also called peripheral devices)
for two major purposes:
1. To communicate with the outside world and,
2. Store data.

Devices that are used to communicate like, printer, keyboard, modem, Devices that
are used to store data like disk drive. 1/0O devices are connected to the system bus through
I/O controller (interface) — which acts as interface between the system bus and I/O devices.

There are two main reasons for using 1/O controllers

1. I/O devices exhibit different characteristics and if these devices are connected
directly, the CPU would have to understand and respond appropriately to each 1/0 device.
This would cause the CPU to spend a lot of time interacting with 1/Devices and spend less
time executing user programs.

2. The amount of electrical power used to send signals on the system bus is very low.
This means that the cable connecting the I/O device has to be very short (a few centimeters
at most). 1/0 controllers typically contain driver hardware to send current over long cable
that connects 1/O devices, is shown in Figure 6.

Address

Daea

Dtk Bus

SHarus 2 | I
d _JI Device
Canmral Bus Cooemand
'O Comtroler

Fig6: Input/ Output device interface

Q1;\ What is the difference between base address and offset address?
Solution

The base address register is a pointer to a byte in memory, and the offset
specifies a number of bytes. Immediate means the address is calculated using
the base address register and a 12-bit offset encoded in the instruction.

ey e il e

|_ Doy | Instdn | ¥l |

e iy

Ty

= e B s

2.Addressing mode of 8086:
What Means by Addressing Modes?

The different ways in which a source operand is denoted in an instruction is known
as addressing modes. There are 8 different addressing modes in 8086 programming —

1. Immediate addressing mode

The addressing mode in which the data operand is a part of the instruction itself is known
as immediate addressing mode.

Example

MOV CX, 4929 H,
ADD AX, 2387 H,
MOV AL, FFH

2. Register addressing mode

It means that the register is the source of an operand for an instruction.

Example

MOV CX, AX ; copies the contents of the 16-bit AX register into ; the 16-bit CX
register),

ADD BX, AX

3. Direct addressing mode
The addressing mode in which the effective address of the memory location is written
directly in the instruction.

Example
MOV AX, [1592H], MOV AL, [0300H]

4. Register indirect addressing mode

This addressing mode allows data to be addressed at any memory location through an
offset address held in any of the following registers: BP, BX, DI & SI.

Example

MOV AX, [BX]; Suppose the register BX contains 4895H, then the contents
; 4895H are moved to AX

ADD CX, {BX}

5. Based addressing mode
In this addressing mode, the offset address of the operand is given by the sum of contents
of the BX/BP registers and 8-bit/16-bit displacement.

Example
MOV DX, [BX+04], ADD CL, [BX+08]

6. Indexed addressing mode

In this addressing mode, the operands offset address is found by adding the contents of Sl
or DI register and 8-bit/16-bit displacements.

Example
MOV BX, [SI+16], ADD AL, [DI+16]

7. Based-index addressing mode

In this addressing mode, the offset address of the operand is computed by summing the
base register to the contents of an Index register.

Example
ADD CX, [AX+SI], MOV AX, [AX+DI]

8. Based indexed with displacement mode

In this addressing mode, the operands offset is computed by adding the base register
contents. An Index registers contents and 8 or 16-bit displacement.

Example
MOV AX, [BX+DI+08], ADD CX, [BX+SI+16]

Q2: \What is the difference between logical address and physical address 80867
Solution

The basic difference between Logical and physical address is that Logical
address is generated by CPU in perspective of a program whereas the
physical address is a location that exists in the memory unit.

Q3: \ What is the main difference between base and index register addressing
modes?

In the 8086 through the 80286, this type of addressing uses one base register (BP
or BX), and one index register (DI or Sl) to indirectly address memory. The base
register often holds the beginning location of a memory array, while the
index register holds the relative position of an element in the array.

Q4:\ What are the 3 basic addressing modes?
Lesson Summary

Here are the addressing modes discussed: Immediate: The operand is included
in the instruction. Direct: The effective address of the operand in memory is
part of the instruction. Indirect: The instruction contains a memory address,
which contains the effective address of the operand in memory.

5.What are the addressing modes?
The most common types of addressing modes are immediate, indirect, direct,
indexed, and register addressing modes.

8086 Microprocessor (g2l glleall & 4l gind) 5k

*Addressing Mode 4 giadl (3 ks 3 galal) La

S Usna sl LI (e 38 5al) nlaal) 535) Sy ilitn 5k & giall plinsl s 55k
s e by ol daeadl aama 5 KI5 Glsie A Jsasl LS aaad s clalaadl) ciliyll
Glald dapa (MOV) Sladei aladiul ob o (Memory/registers)<Standl/ 5 SIAl
2(MOV)

MOV Destination, Source

gl N daadl 87 (source) aadl AU deleall iy ud ek
Lis(segment registers) adaliall S¥la aladind o5 S) J sa sl ¢(destination)
(general-purpose registers). bl (il 2 Y1 Ella g cuia

£8086 Microprocessor (a8 gllaall & 4 giall 5 b A L

e il pa Jpadilly Gpan agfliig (oY) ((8086) G llaall L3 4 gic glia sl 4l cllia
(assembly instructions): asadll &l sl

Register addressing mode:Jaudl Ligie gy .1
& cm}l\ 132 ¢«(operands) Cbilaadl Jasd E el sl cBladl aladsiul cmjl\ 1 ety
yasll A zUsd ¥ (CPU) 4Soal dalaall 325 (0¥ (s AY) glasil 4jaa I
e JEaS clandl B (e 3k ddae o ja) 43S el dadlaal) Bas5b (S 3 SIAN)
-l
MOV AX, BL
MOV AL, BL
(AL). s(AX) (BL) Jaas iy feusii o3le | 5 sS3a0) &l Jlag|
s Jla
(source code). suadll 368 aa Jalaill L8 an jidll jdn4a 55 0 (ORG 100h)
ORG 100h
MOV AX, CX
ret
(CX) e sime iy odled JUall (Y (Jlaia(CX) S(AX) Blaas (o S 5 simacJliall 138 b
(AX). Jam)

https://e3arabi.com/%d8%a7%d9%84%d8%aa%d9%82%d9%86%d9%8a%d8%a9/%d9%83%d9%85%d8%a8%d9%8a%d9%88%d8%aa%d8%b1/%d8%b7%d8%b1%d9%82-%d8%a7%d9%84%d8%b9%d9%86%d9%88%d9%86%d8%a9-%d9%81%d9%8a-%d8%a7%d9%84%d9%85%d8%b9%d8%a7%d9%84%d8%ac-%d8%a7%d9%84%d8%af%d9%82%d9%8a%d9%82-8085-microprocessor/
https://e3arabi.com/%d8%a7%d9%84%d8%aa%d9%82%d9%86%d9%8a%d8%a9/%d9%83%d9%85%d8%a8%d9%8a%d9%88%d8%aa%d8%b1/%d8%b7%d8%b1%d9%82-%d8%a7%d9%84%d8%b9%d9%86%d9%88%d9%86%d8%a9-%d9%81%d9%8a-%d8%a7%d9%84%d9%85%d8%b9%d8%a7%d9%84%d8%ac-%d8%a7%d9%84%d8%af%d9%82%d9%8a%d9%82-8085-microprocessor/
https://e3arabi.com/%d8%a7%d9%84%d8%aa%d9%82%d9%86%d9%8a%d8%a9/%d9%83%d9%85%d8%a8%d9%8a%d9%88%d8%aa%d8%b1/%d8%a7%d9%84%d9%81%d8%b1%d9%82-%d8%a8%d9%8a%d9%86-%d8%a7%d9%84%d8%b3%d8%ac%d9%84%d8%a7%d8%aa-%d9%88%d8%a7%d9%84%d8%b0%d8%a7%d9%83%d8%b1%d8%a9-registers-vs-memory/
https://e3arabi.com/%d8%a7%d9%84%d8%aa%d9%82%d9%86%d9%8a%d8%a9/%d9%83%d9%85%d8%a8%d9%8a%d9%88%d8%aa%d8%b1/%d8%a7%d9%84%d9%81%d8%b1%d9%82-%d8%a8%d9%8a%d9%86-%d8%a7%d9%84%d8%b3%d8%ac%d9%84%d8%a7%d8%aa-%d9%88%d8%a7%d9%84%d8%b0%d8%a7%d9%83%d8%b1%d8%a9-registers-vs-memory/
https://e3arabi.com/%d8%a7%d9%84%d8%aa%d9%82%d9%86%d9%8a%d8%a9/%d9%83%d9%85%d8%a8%d9%8a%d9%88%d8%aa%d8%b1/%d8%a7%d9%84%d9%85%d8%b9%d8%a7%d9%84%d8%ac-%d8%a7%d9%84%d8%af%d9%82%d9%8a%d9%82-8086-microprocessor/
https://e3arabi.com/%d8%a7%d9%84%d8%aa%d9%82%d9%86%d9%8a%d8%a9/%d9%83%d9%85%d8%a8%d9%8a%d9%88%d8%aa%d8%b1/%d8%a7%d9%84%d9%85%d8%b9%d8%a7%d9%84%d8%ac-%d8%a7%d9%84%d8%af%d9%82%d9%8a%d9%82-8086-microprocessor/
https://e3arabi.com/%d8%a7%d9%84%d8%aa%d9%82%d9%86%d9%8a%d8%a9/%d9%83%d9%85%d8%a8%d9%8a%d9%88%d8%aa%d8%b1/%d8%a7%d9%84%d9%81%d8%b1%d9%82-%d8%a8%d9%8a%d9%86-%d8%aa%d8%b5%d9%85%d9%8a%d9%85%d8%a7%d8%aa-%d9%85%d8%b9%d9%85%d8%a7%d8%b1%d9%8a%d8%a9-%d9%88%d8%ad%d8%af%d8%a9-%d8%a7%d9%84%d9%85%d8%b9%d8%a7%d9%84/
https://e3arabi.com/%d8%a7%d9%84%d8%aa%d9%82%d9%86%d9%8a%d8%a9/%d9%83%d9%85%d8%a8%d9%8a%d9%88%d8%aa%d8%b1/%d8%a7%d9%84%d9%81%d8%b1%d9%82-%d8%a8%d9%8a%d9%86-%d8%aa%d8%b5%d9%85%d9%8a%d9%85%d8%a7%d8%aa-%d9%85%d8%b9%d9%85%d8%a7%d8%b1%d9%8a%d8%a9-%d9%88%d8%ad%d8%af%d8%a9-%d8%a7%d9%84%d9%85%d8%b9%d8%a7%d9%84/
https://e3arabi.com/%d8%a7%d9%84%d8%aa%d9%82%d9%86%d9%8a%d8%a9/%d9%83%d9%85%d8%a8%d9%8a%d9%88%d8%aa%d8%b1/%d9%87%d8%b1%d9%85%d9%8a%d8%a9-%d8%a7%d9%84%d8%b0%d8%a7%d9%83%d8%b1%d8%a9-%d9%81%d9%8a-%d9%85%d8%b9%d9%85%d8%a7%d8%b1%d9%8a%d8%a9-%d8%a7%d9%84%d9%83%d9%85%d8%a8%d9%8a%d9%88%d8%aa%d8%b1-memory-hierarch/
https://e3arabi.com/%d8%a7%d9%84%d8%aa%d9%82%d9%86%d9%8a%d8%a9/%d9%83%d9%85%d8%a8%d9%8a%d9%88%d8%aa%d8%b1/%d9%87%d8%b1%d9%85%d9%8a%d8%a9-%d8%a7%d9%84%d8%b0%d8%a7%d9%83%d8%b1%d8%a9-%d9%81%d9%8a-%d9%85%d8%b9%d9%85%d8%a7%d8%b1%d9%8a%d8%a9-%d8%a7%d9%84%d9%83%d9%85%d8%a8%d9%8a%d9%88%d8%aa%d8%b1-memory-hierarch/
https://e3arabi.com/%d8%a7%d9%84%d8%aa%d9%82%d9%86%d9%8a%d8%a9/%d9%86%d8%b5%d8%a7%d8%a6%d8%ad-%d8%ad%d9%88%d9%84-%d9%83%d9%8a%d9%81%d9%8a%d8%a9-%d9%83%d8%aa%d8%a7%d8%a8%d8%a9-%d9%83%d9%88%d8%af-%d9%86%d8%b8%d9%8a%d9%81/
https://e3arabi.com/%d8%a7%d9%84%d8%aa%d9%82%d9%86%d9%8a%d8%a9/%d9%86%d8%b5%d8%a7%d8%a6%d8%ad-%d8%ad%d9%88%d9%84-%d9%83%d9%8a%d9%81%d9%8a%d8%a9-%d9%83%d8%aa%d8%a7%d8%a8%d8%a9-%d9%83%d9%88%d8%af-%d9%86%d8%b8%d9%8a%d9%81/

Immediate Addressing Mode: il 43 sial) auag -2

(constant 4uli iad JAY) y(register) daw Laaasl cillaall (e gle 55 lia caasll 138 3
relly e JUS dgleal) ey 2y de yun dand) b cvalue)

(AX). Jaell(30H) Ausdiall dpmsdsal) Lafil) uii30H) «(MOV AX Sl

(BX). Jawll(255) &z dall 4l guii(MOV BX 255) Jla¥)

& A ol Jail cadaiall e (84) il Aall Jraail (5) 58l 4 ginll auda g alodin) SliSay
Jas) Aagill 228 Caual 23 dalal) Gial e S Jas 8 Al 038 Jraniy Y 5l o8 ¢ adaitall Dlas
kil

2 Jla

(DS). Jass 3(320H) o 3a i il o yiail

ORG 100h

MOV AX,320H; copies hexadecimal value 320h to AX
MOV DS, AX; copies value of AX into DS

ret; stops the program

Direct Addressing Mode: sdial) 4 gial) alag -3
Jaws (o < la¥) (S8 cmuman Gally Jaall 5 ,SIA00 (e i) (385 51 Jpany a5t
(DS) Jaw e Dbl A Jamil ¢ dadll o) iall lusd o(Offset address) o sas O sie s
A A1 Y o sie il

MOV CX, [481]
& (DS = 2162H) Of o= 58 «(1E1) 4(481) J(hexadecimal) 4 e cudl adll
(DS) Jaws (s Sl) Jai) ¢ ril)) gimll Clad (2162 01EL) sSums (sabiall ()l sinl)
& ey «(26120H + 1E1H = 26301H) il o)) sindl ¢ sSas Aal 3Y) o)) sie) 4dual
((CX) Jdaudl 3(26301H) 3813 adsa iy gina Jpand whs ((MOV) Slasled 25 2ay
S aise H(CX) o) s sime (2335 AeCX) «(MOV [2481] @l ¥l Jasiins
(26301H).
s Jla

ORG 100h

MOV AX, 2162H; copies hexadecimal value 2162h to AX

MOV DS, AX; copies value of AX into DS

MOV CX, 24; copies decimal value 24 into CX

MOV [481], CX; stores the data of CX to memory address 2162:01E1
MOV BX, [481]; load data from memory address 2162:01E1 into BX
RET; stops the program

3 SN gl sie 8(24) A dall dadll (35 25 5 «(hexadecimal) (18) Juall 1 8
(21801h).

https://e3arabi.com/%d8%a7%d9%84%d8%b9%d9%84%d9%88%d9%85/%d8%a7%d9%84%d8%b3%d8%b1%d8%b9%d8%a9/
https://e3arabi.com/%d8%a7%d9%84%d8%b9%d9%84%d9%88%d9%85/%d8%a7%d9%84%d8%b3%d8%b1%d8%b9%d8%a9/
https://e3arabi.com/%d8%a7%d9%84%d8%aa%d9%82%d9%86%d9%8a%d8%a9/%d8%a5%d8%af%d8%a7%d8%b1%d8%a9-%d8%a7%d9%84%d8%a8%d9%8a%d8%a7%d9%86%d8%a7%d8%aa-%d9%88%d8%a7%d9%84%d8%aa%d8%ae%d8%b2%d9%8a%d9%86-%d9%81%d9%8a-%d8%aa%d8%b7%d8%a8%d9%8a%d9%82-signal/
https://e3arabi.com/%d8%a7%d9%84%d8%aa%d9%82%d9%86%d9%8a%d8%a9/%d8%a5%d8%af%d8%a7%d8%b1%d8%a9-%d8%a7%d9%84%d8%a8%d9%8a%d8%a7%d9%86%d8%a7%d8%aa-%d9%88%d8%a7%d9%84%d8%aa%d8%ae%d8%b2%d9%8a%d9%86-%d9%81%d9%8a-%d8%aa%d8%b7%d8%a8%d9%8a%d9%82-signal/

Register Indirect Addressing Mode: Jawll jéluall & 4 gial) auag -4
(s AN CBlall 028 2ad 8 3 g sall dal JY) Ol sie Janall il e &siall gy adiig
easa Aol g Lgial) & ANDS) Al s AsIY) lsie £ sana oo g (DI)SSI 5(BX

“iad (Glxd Ul gic aal
MOV AL, [SI]

Al pdage Jhia bl JI(DS) disad ook oo (Al Glsidl Qi jla¥) eda i
e i3Sl SIS Jon ol B adis ¢(S1) (B 25asall A1)) gie) aidlial 5
psfind Agle Ll Y1 CuilS 1Y) @illy) dsasl) sy A 5 SIA &8 gal da) Y1 O s

A (el BY) il (A ((AL) JI(SI) o <l sina grasiy ol gy
2 Jha

ORG 100h
MOV AX, 0708h; set AX to hexadecimal value of 0708h
MOV DS, AX; copy value of AX to DS
MOV CX, 0154h; set CX to hexadecimal value of 0154h
MOV SlI, 42Ah; set Sl to 42Ah

MOV [SI], CX; copy contents of CX to memory at 0708:042Ah
RET ;returns to operating system

(07080 + 042A = T4AAA) s (physical address) (sbxdll o siall cede Jid 3
o1 5a) pal 0 520u(074 AB) 5(54) ¢8| el e s B 0)30m(074AA) - Ol (Sl
(01). s eclitl

Based Relative Addressing Mode: 4l abul e & ginl) g g -5
Claaldal) 4ad o(BP) SI(BX) W «(base register) Gl Slas 138 45 giall auza 5 adiia
el) sial

Physical Address= Segment Register (Shifted to left by 1) + Effective address

4 5(0ffset register) 413Y) daw g sene sa(effective address) (sl o) sl
:Slied ((SS) 5(DS) 2(BP) 3(BX) - dsal yid¥) adaliall cas) 3y

MOV [BX+5], DX
(DS (shifted left) + s aill o) siall (BX +5) 58 hiall ol siall ¢ Jall 138 3

O sl alall 3 SIAl a8 e I(DX) A gty 2adsilly Aalall <l Jlag¥) o i BX+5)
(physical address= DS (shifted left) +BX+5). =il

https://e3arabi.com/%d8%a7%d9%84%d8%b9%d9%84%d9%88%d9%85/%d8%a7%d9%84%d9%81%d8%b1%d9%82-%d8%a8%d9%8a%d9%86-%d8%a7%d9%84%d9%85%d8%b3%d8%a7%d9%81%d8%a9-%d9%88%d8%a7%d9%84%d8%a5%d8%b2%d8%a7%d8%ad%d8%a9-distance-vs-displacement/
https://e3arabi.com/%d8%a7%d9%84%d8%b9%d9%84%d9%88%d9%85/%d8%a7%d9%84%d9%81%d8%b1%d9%82-%d8%a8%d9%8a%d9%86-%d8%a7%d9%84%d9%85%d8%b3%d8%a7%d9%81%d8%a9-%d9%88%d8%a7%d9%84%d8%a5%d8%b2%d8%a7%d8%ad%d8%a9-distance-vs-displacement/

2 Jla

ORG 100h
MOV AX, 0708h; set AX to hexadecimal value of 0708h
MOV DS, AX; copy value of AX to DS
MOV CX, 0154h; set CX to hexadecimal value of 0154h
MOV BX, 42Ah; set BX to 42Ah
MOV [BX+5],DX ;copy contents of DX to memory at 0708:042Fh
RET ;returns to operating system

:A(MOV DX, [BX + 5]) 4 A dladl cila KU (any
MOV DX, 5[BX]
MOV DX, [BX]+5

Indexed Relative Addressing Mode: 4w giall dppudl) 4 gial) auzag -6
«(based relative addressing mode) el ol 43 sinll quca g 4ds 52 138 43 ginll pun g
e Jie ((BP) 5(BX) <Blaws (e Y(S1) 5(DI) Sl pasinn 431 58 2 51l G3RY)
: SIS el
DI = 145).<SI = 2B2 «(DS = 704 oS 13)

MOV [DI]+12, AL
3 SI ol ie e (AL) (s sine g Ao 2auilly dalal) &l Sl sda Jaxtin
(7197 “7040” + 145 + 127).

MOV BX, [SI]+10
Jaull(7302 “7040 + 2B2 +107) 58I) sie (he il sinal) Jpans &l Sl 038 o siias
(BX).

Based Indexed Addressing Mode: aixall (u sgdall 4 gial) plag -7

s) el anil) A giall g g o gra e @l 5l (B ga 2dinall (s jedall i sinll gy ()
e dau sBP) ((BX 13a) s(base register) Gubal S addivg (o jgdall i) 4 giall
S «DI)¢(SI sl s(index register)

MOV AX, [BX+S1+20]
r AU il e oMed s) Saall il a1 UK Wiyl Sy

MOV AX, [SI+BX+20]

OR

MOV AX, [SI1][BX]+20
13 <Y1 (DS (Shifted left) + SI + BX + 20) s =l o)) sinll () sSom cdllal) 020 8
«(SS (Shifted left) + SI + BX + 20) st =il () sinll () 5S0d ((BP) 2(BX) Llasia
rop ¥ cila e s plan G e oY)

MOV AX, [BX][BP]+20
MOV AX, [SI][DI]+20
a5 adaia Ja g sl g bl Jas acay aa ol 138 GY clags 7 saia e (i) DS
Based Indexed with Displacement mode 4 sial) Jaai -8
base J) b siaal xans Offset J) clua oy ¢ 4 siall Jaad (e g il 120 3
displacement-cu 16) 8 a« index J) &3swe by gisaregister.

s Jlia

MOV AX, [BX+DI1+08]
ADD CX, [BX+S1+16]

Q6: \ What are different addressing modes in 80867 Give Examples for each one

Immediate addressing mode.

Register addressing mode.

Direct addressing mode.

Register indirect addressing mode.
Based addressing mode.

Indexed addressing mode.

Based-index addressing mode.

e Based indexed with displacement mode.

Q7:\ What are displacement base and index in 80867?

In 8086 we have base registers and index registers. So EU calculates EA by summing a
displacement, the content of base register and the content of index register.

EA = {Base Register} + {Index Register} + {8 Or 16-bit displacement}

The displacement is an 8 or 16 bit number that is contained in the instruction.

Q8: \ How physical address is calculated in 8086 explain with example?
The 8086 addresses a segmented memory. The complete physical address which is 20-bits
long is generated using segment and offset registers each of the size 16-bit. The content
of a segment register also called as segment address, and content of an offset register also
called as offset address.

	Blank Page

