
Page | 1

قسم علوم الحاسوب –الجامعة التكنولوجية

 فرع امنية الحاسوب والامن السيبراني

الفصل الاول -مادة الشفرات الخبيثة

 2024/2025-المرحلة الثالثة

 اخلاص خلف .د.أ

Page | 2

Syllabus of malicious software/Third class-1st course

▪ Definition of malware

▪ Types of Malicious software

➢ Backdoor

➢ Logic Bomb

➢ Trojan Horses

➢ Mobile code

➢ Multiple-Threat Malware

▪ Viruses

➢ The Nature of Viruses

➢ Initial Infection

➢ Viruses Classification

 A virus classification by Target

✓ Boot sector infector

✓ File infector

✓ Macro virus

 A virus classification by Concealment strategy

✓ No Concealment

✓ Encryption

✓ Stealth

✓ Oligomorphism

✓ Polymorphism

✓ Metamorphism

✓ Strong Encryption

➢ Virus Kits

➢ Macro Viruses

➢ E-Mail Viruses

▪ VIRUS COUNTERMEASURES

▪ Antivirus Approaches

1. Generations of antivirus software (Static methods)

✓ First generation: simple scanners

✓ Second generation: heuristic scanners

Page | 3

✓ Third generation: activity traps

✓ Fourth generation: full-featured protection

✓ Fifth generation: Integrity Checkers

2. Advanced Antivirus Techniques (Dynamic Methods)

✓ 1 .Generic Decryption.

✓ 2 .Digital Immune System.

✓ 3. Behavior Blocking Software

▪ Comparison of Anti-Virus Detection Techniques:

▪ Verification, Quarantine, and Disinfection:

▪ Virus Databases and Virus Description Languages

▪ Worms

✓ The Morris Worm

✓ Worm Propagation Model

✓ Recent Worm Attacks:

✓ State of Worm Technology

✓ Mobile Phone Worms:

✓ Worm Countermeasures

✓ NETWORK-BASED WORM DEFENSE

▪ Distributed Denial of Service Attacks:

✓ DDoS Attack Description

✓ Constructing the Attack Network

✓ Types of scanning strategies

✓ DDoS Countermeasures

References

1- Cryptography And Network Security Principles And Practice Fifth Edition William

Stallings

2- Computer Viruses and Malware by John Ay cock University of Calgary Canada,

2006 Springer

Page | 4

Definition: -

Malware – short for malicious software – is software used or programmed by attackers to

disrupt computer operation, gather sensitive information or gain unauthorized access to

computers.

Malicious software or Malware is a software that designed for harm, exploit, or compromise

the functionality, security of computer system, networks or devices some examples of

malware are backdoor, trojan horse, worms , e - mail viruses, spyware,

TYPES OF MALICIOUS SOFTWARE

Malicious software can be divided into two categories: those that need a host program, and

those that are independent. The former, referred to as parasitic, are essentially fragments of

programs that cannot exist independently of some actual application program, utility, or

system program. Viruses, logic bombs, and backdoors are examples. Independent malware

is a self-contained program that can be scheduled and run by the operating system.Worms and

bot programs are examples.

We can also differentiate between those software threats that do not replicate and those that

do. The former are programs or fragments of programs that are activated by a trigger.

Examples are logic bombs, backdoors, and bot programs. The latter consist of either a

program fragment or an independent program that, when executed, may produce one or more

copies of itself to be activated later on the same system or some other system.Viruses and

worms are examples.

Backdoor

A backdoor, also known as a trapdoor, is a secret entry point into a program that allows

someone who is aware of the backdoor to gain access without going through the usual security

access procedures. Programmers have used backdoors legitimately for many years to debug

and test programs; such a backdoor is called a maintenance hook. This usually is done when

the programmer is developing an application that has an authentication procedure, or a long

setup, requiring the user to enter many different values to run the application. To debug the

Page | 5

program, the developer may wish to gain special privileges or to avoid all the necessary setup

and authentication. The programmer may also want to ensure that there is a method of

activating the program should something be wrong with the authentication procedure that is

being built into the application. The backdoor is code that recognizes some special sequence

of input or is triggered by being run from a certain user ID or by an unlikely sequence of

events.

✓ A backdoor is a means to access a computer system or encrypted data that bypasses the

system's customary security mechanisms. Web server backdoors are used for a number of

malicious activities, including:

 Data theft

 Website defacing

 Server hijacking

 Infecting website visitors

How does a backdoor work?

Backdoors are used by hackers to gain access to a device by circumventing security

mechanisms. Often time's developers install backdoors as a means of troubleshooting their

program, but this also leaves a gap for hackers to exploit. The term is often used to describe

vulnerabilities put in place on purpose, for example, to allow government surveillance groups

to access citizens’ smart phones and computers.

Logic Bomb

One of the oldest types of program threat, predating viruses and worms, is the logic bomb.The

logic bomb is code embedded in some legitimate program that is set to “explode” when certain

conditions are met. Examples of conditions that can be used as triggers for a logic bomb are

the presence or absence of certain files, a particular day of the week or date, or a particular user

running the application. Once triggered, a bomb may alter or delete data or entire files, cause a

machine halt, or do some other damage.

Page | 6

Logic bombs are often used with viruses, worms, and Trojan horses to time them to do

maximum damage before being noticed. For example, a programmer may hide a piece of

code that starts deleting files.

Trojan Horses

A Trojan horse is a useful, or apparently useful, program or command procedure containing

hidden code that, when invoked, performs some unwanted or harmful function. Trojan horse

programs can be used to accomplish functions indirectly that an unauthorized user could not

accomplish directly. For example, to gain access to the files of another user on a shared

system, a user could create a Trojan horse program that, when executed, changes the

invoking user’s file permissions so that the files are readable by any user. The author could

then induce users to run the program by placing it in a common directory and naming it such

that it appears to be a useful utility program or application. An example is a program that

ostensibly produces a listing of the user’s files in a desirable format. After another user has

run the program, the author of the program can then access the information in the user’s files.

An example of a Trojan horse program that would be difficult to detect is a compiler that

has been modified to insert additional code into certain programs as they are compiled, such

as a system login program . The code creates a backdoor in the login program that permits

the author to log on to the system using a special password.This Trojan horse can never be

discovered by reading the source code of the login program.

Trojan horses fit into one of three models:
 Continuing to perform the function of the original program and additionally performing a

separate malicious activity.

 Continuing to perform the function of the original program but modifying the function to

perform malicious activity (e.g., a Trojan horse version of a login program that collects

passwords) or to disguise other malicious activity (e.g., a Trojan horse version of a process

listing program that does not display certain processes that are malicious).

 Performing a malicious function that completely replaces the function of the original

program.

Page | 7

Mobile Code

Mobile code often acts as a mechanism for a virus, worm, or Trojan horse to be transmitted

to the user’s workstation. In other cases, mobile code takes advantage of vulnerabilities to

perform its own exploits, such as unauthorized data access.

The most common ways of using mobile code for malicious operations on local system are

cross-site scripting, interactive and dynamic Web sites, e-mail attachments, and downloads

from untrusted sites or of untrusted software.

Another definition - Malicious mobile code (MMC) is any software program designed to

move from computer to computer and network to network, in order to intentionally modify

computer systems without the consent of the owner or operator. MMC includes viruses,

Trojan horses, and worms.

Mobile code is any program or application capable of movement while embedded in an email,

document or website. Mobile code uses network or storage media, such as a Universal Serial

Bus (USB) flash drive. The term is often used in a malicious context; mobile code creates

varying degrees of computer and system damage. Mobile code is usually downloaded via the

body of an HTML email or email attachment. Mobile code is also known as executable

content, remote code and active capsules.

Multiple-Threat Malware

Viruses and other malware may operate in multiple ways. The terminology is far from

uniform; this subsection gives a brief introduction to several related concepts that could be

considered multiple-threat malware.

A multipartite virus infects in multiple ways.Typically, the multipartite virus is capable of

infecting multiple types of files, so that virus eradication must deal with all of the possible

sites of infection.

A blended attack uses multiple methods of infection or transmission, to maximize the speed

of contagion and the severity of the attack. Some writers characterize a blended attack as a

Page | 8

package that includes multiple types of malware.An example of a blended attack is the Nimda

attack, erroneously referred to as simply a worm.

Nimda uses four distribution methods:

✓ E-mail: A user on a vulnerable host opens an infected e-mail attachment; Nimda looks for

e-mail addresses on the host and then sends copies of itself to those addresses.

✓ Windows shares: Nimda scans hosts for unsecured Windows file shares; it can then use

NetBIOS86 as a transport mechanism to infect files on that host.

✓ Web servers: Nimda scans Web servers, looking for known vulnerabilities in Microsoft

IIS. If it finds a vulnerable server, it attempts to transfer a copy of,itself to the server and

infect it and its files.

✓ Web clients: If a vulnerable Web client visits a Web server that has been infected by

Nimda, the client’s workstation will become infected.

Viruses
 The Nature of Viruses

A computer virus is a piece of software that can “infect” other programs by modifying

them; the modification includes injecting the original program with a routine to make

copies of the virus program, which can then go on to infect other programs. Computer

viruses first appeared in the early 1980s,

Biological viruses are tiny scraps of genetic code—DNA or RNA—that can take over the

machinery of a living cell and trick it into making thousands of flawless replicas of the

original virus. Like its biological counterpart, a computer virus carries in its instructional

code the recipe for making perfect copies of itself. The typical virus becomes embedded in

a program on a computer. Then, whenever the infected computer comes into contact with an

uninfected piece of software, a fresh copy of the virus passes into the new program. Thus,

the infection can be spread from computer to computer by unsuspecting users who either

swap disks or send programs to one another over a network. In a network environment, the

Page | 9

ability to access applications and system services on other computers provides a perfect

culture for the spread of a virus.

A virus can do anything that other programs do.The difference is that a virus attaches itself

to another program and executes secretly when the host program is run. Once a virus is

executing, it can perform any function, such as erasing files and programs that is allowed by

the privileges of the current user.

 A computer virus has three parts :

1. Infection mechanism: The means by which a virus spreads, enabling it to replicate. The

mechanism is also referred to as the infection vector.

2. Trigger: The event or condition that determines when the payload is activated or delivered.

3. Payload: What the virus does, besides spreading. The payload may involve damage or may

involve benign but noticeable activity.

 Typical virus goes through the following four phases During its lifetime:

1. Dormant phase: The virus is idle. The virus will eventually be activated b some event,

such as a date, the presence of another program or file, or the capacity of the disk

exceeding some limit. Not all viruses have this stage.

2. Propagation phase: The virus places a copy of itself into other programs or into certain

system areas on the disk. The copy may not be identical to the propagation version; viruses

often morph to evade detection. Each infected program will now contain a clone of the

virus, which will itself enter a propagation phase.

3. Triggering phase: The virus is activated to perform the function for which it was

intended. As with the dormant phase, the triggering phase can be caused by a variety of

system events, including a count of the number of times that this copy of the virus has

made copies of itself.

4. Execution phase: The function is performed. The function may be harmless such as a

message on the screen, or damaging, such as the destruction o programs and data files.

Page | 10

 Initial Infection:

Once a virus has gained entry to a system by infecting a single program, it is in a position to

potentially infect some or all other executable files on that system when the infected program

executes. Thus, viral infection can be completely prevented by preventing the virus from

gaining entry in the first place. Unfortunately, prevention is extraordinarily difficult because a

virus can be part of any program outside a system. In general, many forms of infection can also

be blocked by denying normal users the right to modify programs on the system.

The lack of access controls on early PCs is a key reason why traditional machine code based

viruses spread rapidly on these systems. In contrast, while it is easy enough to write a machine

code virus for UNIX systems, they were almost never seen in practice because the existence of

access controls on these systems prevented effective propagation of the virus. Traditional

machine code based viruses are now less prevalent, because modern PC OSs do have more

effective access controls.

Viruses Classification

There has been a continuous arms race between virus writers and writers of antivirus

software since viruses first appeared. As effective countermeasures are developed for existing

types of viruses.

Viruses are classified into two orthogonal axes:

1. the type of Target the virus tries to infect .

2. by Concealment strategy which is a method the virus uses to conceal itself from detection

by users and antivirus software.

1- A virus classification by Target includes the following categories:

1. Boot sector infector: Infects a master boot record or boot record and spreads when a

system is booted from the disk containing the virus.

2. File infector: Infects files that the operating system or shell consider to be executable.

3. Macro virus: Infects files with macro code that is interpreted by an application.

2- A virus classification by Concealment strategy includes the following categories:

1. No Concealment: Not hiding at all is one concealment strategy which is remarkably easy to

implement in a computer virus. It goes without saying, however, that it's not very effective

- once the presence of a virus is known, it's trivial to detect and analyze.

Page | 11

2. Encryption: A typical approach is as follows. A portion of the virus creates a rando

encryption key and encrypts the remainder of the virus. The key is stored with the virus.

When an infected program is invoked, the virus uses the stored random key to decrypt the

virus. When the virus replicates, a different random key is selected. Because the bulk of the

virus is encrypted with a different key for each instance, there is no constant bit pattern to

observe.

3. Stealth virus: A form of virus explicitly designed to hide itself from detection by antivirus

software. Thus, the entire virus, not just a payload is hidden. One example of a stealth virus

was discussed earlier: a virus that uses compression so that the infected program is exactly

the same length as an uninfected version. Far more sophisticated techniques are possible.

For example, a virus can place intercept logic in disk I/O routines, so that when there is an

attempt to read suspected portions of the disk using these routines, the virus will present

back the original, uninfected program.Thus, stealth is not a term that applies to a virus as

such but, rather, refers to a technique used by a virus to evade detection.

4. Oligomorphism: Assuming an encrypted virus' key is randomly changed with each new

infection, the only unchanging part of the virus is the code in the decryptor loop. Anti-virus

software will exploit this fact for detection, so the next logical development is to change the

decryptor loop's code with each infection.

An oligomorphic virus, or semi-polymorphic virus, is an encrypted virus which has a

small, finite number of different decryptor loops at its disposal. The virus selects a new

decryptor loop from this pool for each new infection. For example, Whale had 30 different

decryptor variants, and Memorial had 96 decryptors. In terms of detection, oligomorphism

only makes a virus marginally harder to spot. Instead of looking for one decryptor loop for

the virus, anti-virus software can simply have all of the virus' possible decryptor loops

enumerated, and look for them all.

5. Polymorphic virus: A virus that mutates with every infection, making detection by the

“signature” of the virus impossible and harder. A polymorphic virus creates copies during

Page | 12

replication that are functionally equivalent but have distinctly different bit patterns. As with

a stealth virus, the purpose is to defeat programs that scan for viruses. In this case, the

“signature” of the virus will vary with each copy. To achieve this variation, the virus may

randomly insert superfluous instructions or interchange the order of independent

instructions. A more effective approach is to use encryption.The strategy of the encryption

virus is followed. The portion of the virus that is responsible for generating keys and

performing encryption/decryption is referred to as the mutation engine. The mutation

engine itself is altered with each use.

6. Metamorphic virus: As with a polymorphic virus, a metamorphic virus mutates with

every infection. The difference is that a metamorphic virus rewrites itself completely

at each iteration, increasing the difficulty of detection. Metamorphic viruses may change

their behavior as well as their appearance.

7. Strong Encryption: The encryption methods discussed so far result in viruses that, once

captured, are susceptible to analysis. The major problem is not the encryption method,

because that can always be strengthened; the major problem is that viruses carry their

decryption keys with them.

This might seem a necessary weakness, because if a virus doesn't have its key, it can't

decrypt and run its code. There are, however, two other possibilities.

1. The key comes from outside an infected system:

• A virus can retrieve the key from a web site, but that would mean that the virus would then

have to carry the web site's address with it, which could be blocked as a countermeasure.

To avoid knowing a specific web site's name, a virus could use a web search engine to get

the key instead.

• A binary virus is one where the virus is in two parts, and doesn't become virulent until both

pieces are present on a system. There have only been a few binary viruses, such as

Dichotomy and RMNS.

One manifestation of binary viruses would be where virus V1 has strongly encrypted code,

and virus V2 has its key. But this scheme is unlikely to work well in practice. If V1 and V2

Page | 13

travel together, then both will bear the same risk of capture and analysis, defeating the

purpose of separating the encryption key. If V1 and V2 spread separately (e.g., V2 is

released a month after V1, and uses a different infection vector) then their spread would be

independent.

2. The key comes from inside an infected system. Using environmental key generation, the

decryption key is constructed of elements already present in the target's environment, like:

➢ the machine's domain name

➢ the time or date

➢ some data in the system (e.g., file contents)

➢ the current user name

➢ the interface's language setting (e.g., Chinese, Hebrew).

This makes it very easy to target viruses to particular individuals or groups. A target

doesn't even know that they possess the key.

 Combined with strong encryption, environmental key generation would render a virus

unanalyzable even if captured. To fully analyze an encrypted virus, it has to be decrypted,

and while the elements comprising the key may be discovered, the exact value of the key

will not. In this case, the only real hope of decryption lies in a poor choice of key. A poorly-

chosen key with a relatively small range of possible values (e.g., the language setting)

would be susceptible to a brute-force attack. method is to catch exceptions that invalid code

may cause, then try to run the decrypted "code" and see if it works.

 Virus Kits

Another weapon in the virus writers’ armory is the virus-creation toolkit. Such a toolkit

enables a relative novice to quickly create a number of different viruses. Although viruses

created with toolkits tend to be less sophisticated than viruses designed from scratch, the sheer

number of new viruses that can be generated using a toolkit creates a problem for antivirus

schemes.

 Macro Viruses

In the mid-1990s, macro viruses became by far the most prevalent type of virus.

Page | 14

Macro viruses are particularly threatening for a number of reasons:

1. A macro virus is platform independent. Many macro viruses infect Microsoft Word

documents or other Microsoft Office documents. Any hardware platform and operating

system that supports these applications can be infected.

2. Macro viruses infect documents, not executable portions of code. Most of the information

introduced onto a computer system is in the form of a document rather than a program.

3. Macro viruses are easily spread.A very common method is by electronic mail.

4. Because macro viruses infect user documents rather than system programs, traditional file

system access controls are of limited use in preventing their spread.

Macro viruses take advantage of a feature found in Word and other office

applications such as Microsoft Excel, namely the macro. In essence, a macro is an executable

program embedded in a word processing document or other type of file. Typically, users

employ macros to automate repetitive tasks and thereby save keystrokes. The macro language

is usually some form of the Basic programming language.A user might define a sequence of

keystrokes in a macro and set it up so that the macro is invoked when a function key or special

short combination of keys is input.

Successive releases of MS Office products provide increased protection against

macro viruses. For example, Microsoft offers an optional Macro Virus Protection tool that

detects suspicious Word files and alerts the customer to the potential risk of opening a file

with macros.Various antivirus product vendors have also developed tools to detect and correct

macro viruses. As in other types o viruses, the arms race continues in the field of macro

viruses, but they no longer are the predominant virus threat.

E-Mail Viruses

A more recent development in malicious software is the e-mail virus. The first rapidly

spreading e-mail viruses, such as Melissa, made use of a Microsoft Word macro embedded in

an attachment. If the recipient opens the e-mail attachment, the Word macro is activated.Then

✓ The e-mail virus sends itself to everyone on the mailing list in the user’s e-mail package.

✓ The virus does local damage on the user’s system.

In 1999, a more powerful version of the e-mail virus appeared. This newer version can be

activated merely by opening an e-mail that contains the virus rather than opening an

attachment. The virus uses the Visual Basic scripting language supported by the e-mail

package.

Page | 15

Thus, we see a new generation of malware that arrives via e-mail and uses e-mail software

features to replicate itself across the Internet. The virus propagates itself as soon as it is

activated (either by opening an e-mail attachment or by opening the e-mail) to all of the e-

mail addresses known to the infected host. As a result, whereas viruses used to take months

or years to propagate, they now do so in hours.This makes it very difficult for antivirus

software to respond before much damage is done.

Ultimately, a greater degree of security must be built into Internet utility and application

software on PCs to counter the growing threat.

Melissa is a fast-spreading macro virus that is distributed as an e-mail attachment that, when

opened, it targeted Microsoft Word system, and if the user has the Microsoft Outlook e-mail

program, causes the virus to be resent to the first 50 people in each of the user's address books.

VIRUS COUNTERMEASURES

1- Antivirus Approaches

The ideal solution to the threat of viruses is prevention: Do not allow a virus to get

into the system in the first place, or block the ability of a virus to modify any files containing

executable code or macros.This goal is, in general, impossible to achieve,

although prevention can reduce the number of successful viral attacks.The next best

approach is to be able to do the following:

➢ Detection: Once the infection has occurred, determine that it has occurred and locate the

virus.

➢ Identification: Once detection has been achieved, identify the specific virus that has

infected a program.

➢ Removal: Once the specific virus has been identified, remove all traces of the virus from

the infected program and restore it to its original state. Remove the virus from all infected

systems so that the virus cannot spread further.

If detection succeeds but either identification or removal is not possible, then the alternative

is to discard the infected file and reload a clean backup version. Advances in virus and

antivirus technology go hand in hand. Early viruses were relatively simple code fragments

and could be identified and purged with relatively simple antivirus software packages. As the

virus arms race has evolved, both viruses and, necessarily, antivirus software have grown

more complex and sophisticated.

Generations of antivirus software(Static methods)

• First generation: simple scanners

• Second generation: heuristic scanners

• Third generation: activity traps

Page | 16

• Fourth generation: full-featured protection

• Fifth generation: Integrity Checkers

1- First generation: Simple Scanners

A first-generation scanner requires a virus signature to identify a virus. The virus may

contain “wildcards” but has essentially the same structure and bit pattern in all copies. Such

signature-specific scanners are limited to the detection of known viruses. Another type of

first-generation scanner maintains a record of the length of programs and looks for changes

in length.

2- Second generation: heuristic scanners

A second-generation scanner does not rely on a specific signature. Rather, the scanner uses

heuristic rules to search for probable virus infection. One class of such scanners looks for

fragments of code that are often associated with viruses. For example, a scanner may look for

the beginning of an encryption loop used in a polymorphic virus and discover the encryption

key. Once the key is discovered, the scanner can decrypt the virus to identify it, then remove

the infection and return the program to service.

3- Third generation: activity traps

Third-generation programs are memory-resident programs that identify a virus by its actions

rather than its structure in an infected program. Such programs have the advantage that it is

not necessary to develop signatures and heuristics for a wide array of viruses. Rather, it is

necessary only to identify the small set of actions that indicate an infection is being attempted

and then to intervene.

4- Fourth generation: full-featured protection

Fourth-generation products are packages consisting of a variety of antivirus techniques used

in conjunction. These include scanning and activity trap components. In addition, such a

package includes access control capability, which limits the ability of viruses to penetrate a

system and then limits the ability of a virus to update files in order to pass on the infection.

The arms race continues.With fourth-generation packages, a more comprehensive defense

strategy is employed, broadening the scope of defense to more general-purpose computer

security measures.

Page | 17

5- Integrity checkers:

Integrity Checkers: Viruses operate by changing files. An integrity checker exploits this

behavior to find viruses, by watching for unauthorized changes to files. Integrity checkers

must start with a perfectly clean, 100% virus-free system. The integrity checker initially

computes and stores a checksum for each file in the system it's watching. Later, a file's

checksum is recomputed and compared against the original, stored checksum. If the

checksums are different, then a change to the file occurred.

Note: A checksum is a small-sized block of data derived from another block of digital data

for the purpose of detecting errors that may have been introduced during its transmission or

storage. By themselves, checksums are often used to verify data integrity but are not relied

upon to verify data authenticity.

There are three types of integrity checker:

a) Offline. Checksums are only verified periodically, e.g., once a week.

b) Self-checking. Executable files are modified to check themselves when run.

c) Integrity shells. An executable file's checksum is verified immediately prior to

execution.

2- Advanced Antivirus Techniques (Dynamic Methods)

More sophisticated antivirus approaches and products continue to appear. In this

subsection, we highlight some of the most important.

1. Generic Decryption.

2. Digital Immune System.

3. Behavior Blocking Software

1- GENERIC DECRYPTION

Generic decryption (GD) technology enables the antivirus program to easily detect even the

most complex polymorphic viruses while maintaining fast scanning speeds . Recall that when

a file containing a polymorphic virus is executed, the virus must decrypt itself to activate. In

Page | 18

order to detect such a structure, executable files are run through a GD scanner, which contains

the following elements:

• CPU emulator: A software-based virtual computer. Instructions in an executable file are

interpreted by the emulator rather than executed on the underlying processor. The emulator

includes software versions of all registers and other processor hardware, so that the underlying

processor is unaffected by programs interpreted on the emulator.

• Virus signature scanner: A module that scans the target code looking for known virus

signatures.

• Emulation control module: Controls the execution of the target code. At the start of each

simulation, the emulator begins interpreting instructions in the target code, one at a time.Thus,

if the code includes a decryption routine that decrypts and hence exposes the virus, that code

is interpreted. In effect, the virus does the work for the antivirus program by exposing the

virus. Periodically, the control module interrupts interpretation to scan the target code for

virus signatures. During interpretation, the target code can cause no damage to the actual

personal

computer environment, because it is being interpreted in a completely controlled environment.

The most difficult design issue with a GD scanner is to determine how long to run each

interpretation.Typically, virus elements are activated soon after a program begins executing,

but this need not be the case. The longer the scanner emulates particular program, the more

likely it is to catch any hidden viruses. However, the antivirus program can take up only a

limited amount of time and resources before users complain of degraded system performance.

2- DIGITAL IMMUNE SYSTEM

The digital immune system is a comprehensive approach to virus protection developed by

IBM and subsequently refined by Symantec The motivation for this development has been

the rising threat of Internet-based virus propagation.. Traditionally, the virus threat was

characterized by the relatively slow spread of new viruses and new mutations. Antivirus

software was typically updated on a monthly basis, and this was sufficient to control the

Page | 19

problem. Also traditionally, the Internet played a comparatively small role in the spread of

viruses.

Two major trends in Internet technology have had an increasing impact on the rate of virus

propagation in recent years:-

1. Integrated mail systems: Systems such as Lotus Notes and Microsoft Outlook make it

very simple to send anything to anyone and to work with objects that are received.

2. Mobile-program systems: Capabilities such as Java and ActiveX allow programs to move

on their own from one system to another. In response to the threat posed by these Internet-

based capabilities, IBM has developed a prototype digital immune system. This system

expands on the use of program emulation discussed in the preceding subsection and

provides a general purpose emulation and virus-detection system. The objective of this

system is to provide rapid response time so that viruses can be stamped out almost as soon

as they are introduced. When a new virus enters an organization, the immune system

automatically captures it, analyzes it, adds detection and shielding for it, removes it, and

passes information about that virus to systems running IBM AntiVirus so that it can be

detected before it is allowed to run elsewhere.

The following steps explain the typical steps in digital immune system operation:

1. A monitoring program on each PC uses a variety of heuristics based on system behavior,

suspicious changes to programs, or family signature to infer that a virus may be present.The

monitoring program forwards a copy of any program thought to be infected to an

administrative machine within the organization.

2. The administrative machine encrypts the sample and sends it to a central virus analysis

machine.

3. This machine creates an environment in which the infected program can be safely run for

analysis.Techniques used for this purpose include emulation, or the creation of a protected

environment within which the suspect program can be executed and monitored. The virus

analysis machine then produces a prescription for identifying and removing the virus.

4. The resulting prescription is sent back to the administrative machine.

5. The administrative machine forwards the prescription to the infected client.

Page | 20

6. The prescription is also forwarded to other clients in the organization.

7. Subscribers around the world receive regular antivirus updates that protect them from the

new virus.

Figure(1) illustrates the typical steps in digital immune system operation:

Figure 1 Digital Immune System

The success of the digital immune system depends on the ability of the virus analysis machine

to detect new and innovative virus strains. By constantly analyzing and monitoring the viruses

found in the wild, it should be possible to continually update the digital immune software to

keep up with the threat.

3- BEHAVIOR-BLOCKING SOFTWARE

 Unlike heuristics or fingerprint-based scanners, behavior-blocking software integrates with the

operating system of a host computer and monitors program behavior in real-time for malicious

actions .The behavior blocking software then blocks potentially malicious actions before they

have a chance to affect the system. Monitored behaviors can include:-

➢ Attempts to open, view, delete, and/or modify files;

➢ Attempts to format disk drives and other unrecoverable disk operations;

➢ Modifications to the logic of executable files or macros;

➢ Modification of critical system settings, such as start-up settings;

Page | 21

➢ Scripting of e-mail and instant messaging clients to send executable content; and

➢ Initiation of network communications.

(Figure 2) illustrates the operation of a behavior blocker. Behavior-blocking software runs

on server and desktop computers and is instructed through policies set by the network

administrator to let benign actions take place but to intercede when unauthorized or

suspicious actions occur. The module blocks any suspicious software from executing. A

blocker isolates the code in a sandbox, which restricts the code’s access to various OS

resources and applications. The blocker then sends an alert. Because a behavior blocker can

block suspicious software in real-time, it has an advantage over such established antivirus

detection techniques a fingerprinting or heuristics. While there are literally trillions of

different ways to obfuscate and rearrange the instructions of a virus or worm, many of which

will evade detection by a fingerprint scanner or heuristic, eventually malicious code must

make a well-defined request to the operating system. Given that the behavior blocker can

intercept all such requests, it can identify and block malicious actions regardless of how

obfuscated the program logic appears to be.

 Behavior blocking alone has limitations. Because the malicious code must run on the target

machine before all its behaviors can be identified, it can cause harm before it has been

detected and blocked. For example, a new virus might shuffle a number of seemingly

unimportant files around the hard drive before infecting a single file and being blocked. Even

though the actual infection was blocked, the use may be unable to locate his or her files,

causing a loss to productivity or possibly worse.

Page | 22

(Figure 2) BEHAVIOR-BLOCKING SOFTWARE

Comparison of Anti-Virus Detection Techniques:

Scanning: Gives precise identification of any viruses that are found. This characteristic

makes scanning useful by itself, as well as in conjunction with other anti-virus techniques.

But requires an up-to-date database of virus signatures for scanning to be effective. Even

assuming that users update their virus databases right away, which isn't the case, there is a

delay between the time when a new threat is discovered and when an anti-virus company

has a signature update ready.

Static heuristics: Static heuristic analysis detects both known and unknown viruses. But:

False positives are a major problem, and a detected virus is neither identified, nor

disinfectible except by using generic methods.

Note: In terms of the accuracy of an IDS, there are four possible states for each activity

observed. A true positive state is when the IDS identifies an activity as an attack and the

Page | 23

activity is actually an attack. A true positive is activity is actually an attack. That is, a false

negative is when the IDS fails to catch an attack.

Integrity checkers: Integrity checkers boast high operating speeds and low resource

requirements. They detect known and unknown viruses. But: Detection only occurs after a

virus has infected the computer, and the source of the infection can't necessarily be

pinpointed. An integrity checker can't detect viruses in newly-created files, or ones modified

legitimately,

such as through a software update. Ultimately, the user will be called upon to assess whether

a change to a file was made legitimately or not. Finally, found viruses can't be identified or

disinfected.

Behavior blockers: Known and unknown viruses are detected. But: While a behavior

blocker knows which executable is the problem, unlike an integrity checker, it again cannot

identify or disinfect the virus.

Emulation: Any viruses found are running in a safe environment. Known and unknown

viruses are detected, even new polymorphic viruses. But emulation is slow. The emulator

may stop before the virus reveals itself, and even so, precise emulation is very hard to get

correct.

Verification, Quarantine, and Disinfection:

The tasks for anti-virus software that lie beyond detection are verification, quarantine, and

disinfection. Compared to detection, these three tasks are performed rarely, and can be

much slower and more resource-intensive if necessary.

Verification: After the initial detection of a virus occurs, Anti-virus software will often

perform a secondary verification. It is performed for two reasons. First, it is used to reduce

false positives that might happen by coincidence. Second, verification is used to positively

identify the virus.

Quarantine: When a virus is detected in a file, anti-virus software may need to quarantine

the infected file, isolating it from the rest of the system. Quarantine is only a temporary

measure, and may only be done until the user decides how to handle the file.

Page | 24

Disinfection: It does not mean that an infected system has been restored to its original

state, even if the disinfection was successful, there are different ways to do disinfection:

Restore infected files from backups. Because everyone meticulously keeps backups of their

files, the affected files can be restored to their backed-up state.

Virus Databases and Virus Description Languages

A virus database and virus description languages are crucial components in the field of

cybersecurity, particularly in antivirus and anti-malware systems. Here's an overview of

both.

Virus Database

- Purpose: A virus database is a comprehensive repository of known malware signatures,

behaviors, and other characteristics. Antivirus software uses this database to detect and

remove malware on a system.

- Content:

 - Signatures: Unique patterns or sequences in the code of known viruses. These can be

binary patterns, file hashes, or specific code sequences.

 - Behavioral Patterns: Descriptions of how a virus operates, such as file access patterns,

network traffic behavior, or changes to system settings.

 - Metadata: Information about each virus, including its name, type, origin, known

payloads, and potential impacts.

- Update Mechanism: The database needs regular updates to include new threats as they

are discovered. Most antivirus programs frequently update their virus databases to stay

effective against emerging malware.

Virus Description Languages

- Purpose: Virus description languages are used to create formal descriptions of malware.

These languages help security tools analyze and categorize viruses based on their behaviors,

signatures, and effects on systems,e.g (YARA:, OpenIOC (Indicator of Compromise, Snort

Rules)

Page | 25

Key Features:

 - Pattern Matching: These languages allow for complex pattern matching against files,

processes, or network traffic, helping to identify known or unknown malware.

 - Flexibility: The languages are typically flexible enough to describe both known viruses

and emerging threats, allowing for the creation of signatures that can evolve with the threat

landscape.

 - Automation: Descriptions written in these languages can be automatically used by

security tools to scan for malware without manual intervention.

How They Work Together

1. Detection: When a file or behavior on a system matches a signature or description in the

virus database (often defined using a virus description language like YARA), the antivirus

software flags it as malicious.

2. Analysis: The descriptions in the virus database help cybersecurity professionals

understand the nature of the detected malware, its potential impact, and how to remove or

mitigate it.

3. Updates: As new viruses are discovered, their characteristics are described using virus

description languages, and these descriptions are added to the virus database.

In summary, the virus database contains the data necessary for identifying

malware, while virus description languages provide the tools to describe and

detect that malware in a structured, automated manner.

Worms

A worm is a program that can replicate itself and send copies from computer to computer

across network connections. Upon arrival, the worm may be activated to replicate and

propagate again. In addition to propagation, the worm usually performs some unwanted

function. An e-mail virus has some of the characteristics of a worm because it propagates

Page | 26

itself from system to system. we can still classify it as a virus because it uses a document

modified to contain viral macro content and requires human action. A worm actively seeks

out more machines to infect and each machine that is infected serves as an automated

launching pad for attacks on other machines.

The first known worm implementation was done in in the early 1980s. Network worm

programs use network connections to spread from system to system. Once active within a

system, a network worm can behave as a computer virus or bacteria, or it could implant

Trojan horse programs or perform any number of disruptive or destructive actions.

To replicate itself, a network worm uses some sort of network vehicle.

Examples include the following:

1. Electronic mail facility: A worm mails a copy of itself to other systems, so that its code is

run when the e-mail or an attachment is received or viewed.

2. Remote execution capability: A worm executes a copy of itself on another system, either

using an explicit remote execution facility or by exploiting a program flaw in a network

service to subvert its operations.

Note: Remote code execution is the ability an attacker has to access someone else's computing

device and make changes, no matter where the device is geographically located.

3. Remote login capability: A worm logs onto a remote system as a user and then use

commands to copy itself from one system to the other, where it then executes.

The new copy of the worm program is then run on the remote system where, in addition to

any functions that it performs at that system, it continues to spread in the same fashion.

A network worm exhibits the same characteristics as a computer virus: (a dormant phase, a

propagation phase, a triggering phase, and an execution phase)

 The propagation phase generally performs the following functions:

1. Search for other systems to infect by examining host tables or similar repositories of

remote system addresses.

Note: Remote address is the IP Address/host name of the remote computer to which the

connection is connected.

Page | 27

2. Establish a connection with a remote system.

3. Copy itself to the remote system and cause the copy to be run.

Note: A remote computer is a computer to which a user does not have physical access, but

which he or she can access or manipulate via some kind of computer network. Remote

desktop software allows a person to control a remote computer from another computer.

The Morris Worm

Until the current generation of worms, the best known was the worm released onto the

Internet by Robert Morris in 1988 .The Morris worm was designed to spread on UNIX

systems and used a number of different techniques for propagation.

When a copy began execution, its first task was to discover other hosts known to this

host that would allow entry from this host.The worm performed this task by examining a

variety of lists and tables, including system tables that declared which other machines were

trusted by this host, users’ mail forwarding files, tables by which users gave themselves

permission for access to remote accounts, and from a program that reported the status of

network connections.

For each discovered host, the worm tried a number of methods for gaining access:

1. It attempted to log on to a remote host as a legitimate user. In this method, the worm first

attempted to crack the local password file and then used the discovered passwords and

corresponding user IDs. The assumption was that many users would use the same password

on different systems. To obtain the passwords, the worm ran a password-cracking program

that tried

a) Each user’s account name and simple permutations of it

b) A list of 432 built-in passwords that Morris thought to be likely candidates2

c) All the words in the local system dictionary

2. It exploited a bug in the UNIX finger protocol, which reports the whereabouts of a remote

user.

3. It exploited a trapdoor in the debug option of the remote process that receives and sends

mail.

Page | 28

If any of these attacks succeeded, the worm achieved communication with the operating

system command interpreter. It then sent this interpreter a short bootstrap program, issued a

command to execute that program, and then logged off. The bootstrap program then called

back the parent program and downloaded the remainder of the worm. The new worm was

then executed.

Worm Propagation Model

The speed of propagation and the total number of hosts infected depend on a number of

factors, including the mode of propagation, the vulnerability or vulnerabilities

exploited, and the degree of similarity to preceding attacks. For the latter factor, an attack

that is a variation of a recent previous attack may be countered more effectively than a more

novel attack. Figure 3 shows the dynamics for one typical set of parameters. Propagation

proceeds through three phases. In the initial phase, the number of hosts increases

exponentially. To see that this is so, consider a simplified case in which a worm is launched

from a single host and infects two nearby hosts. Each of these hosts infects two more hosts,

and so on.This results in exponential growth. After a time, infecting hosts waste some time

attacking already infected hosts, which reduces the rate of infection. During this middle

phase, growth is approximately linear, but the rate of infection is rapid.When most

vulnerable computers have been infected, the attack enters a slow finish phase as the worm

seeks out those remaining hosts that are difficult to identify.

Page | 29

(Figure 3) Worm Propagation Model

Clearly, the objective in countering a worm is to catch the worm in its slow start phase, at a

time when few hosts have been infected.

Recent Worm Attacks:

The contemporary era of worm threats began with the release of the Code Red worm in July

of 2001. Code Red exploits a security hole in the Microsoft Internet Information Serve (IIS) to

penetrate and spread. It also disables the system file checker in Windows.

During a certain period of time, it only spreads. It then initiates a denial-ofservice attack

against a government Web site by flooding the site with packets from numerous hosts. The

worm then suspends activities and reactivates periodically. In the second wave of attack, Code

Red infected nearly 360,000 servers in 14 hours. In addition to the havoc it caused at the

targeted server, Code Red consumed enormous amounts of Internet capacity, disruptin service.

Page | 30

Code Red II is a variant that targets Microsoft IISs. In addition, this newer worm installs a

backdoor, allowing a hacker to remotely execute commands on victim computers.

Mass-mailing e-mail worm that appeared in 2004. It followed a growing trend of installing a

backdoor in infected computers, thereby enabling hackers to gain remote access to data such

as passwords and credit card numbers. This worm replicated up to 1000 times per minute and

reportedly flooded the Internet with 100 million infected messages in 36 hours.

State of Worm Technology

The state of the art in worm technology includes the following:

➢ Multiplatform: Newer worms are not limited to Windows machines but can attack a

variety of platforms, especially the popular varieties of UNIX.

➢ Multi-exploit: New worms penetrate systems in a variety of ways, using exploits against

Web servers, browsers, e-mail, file sharing, and other networkbased applications.

➢ Ultrafast spreading: One technique to accelerate the spread of a worm is to conduct a

prior Internet scan to accumulate Internet addresses of vulnerable machines.

➢ Polymorphic: To evade detection, skip past filters, and foil real-time analysis, worms

adopt the virus polymorphic technique. Each copy of the worm has new code generated on

the fly using functionally equivalent instructions and encryption techniques.

➢ Metamorphic: In addition to changing their appearance, metamorphic worms have a

repertoire of behavior patterns that are unleashed at different stages of propagation.

➢ Transport vehicles: Because worms can rapidly compromise a large number of systems,

they are ideal for spreading other distributed attack tools, such as distributed denial of

service bots.

➢ Zero-day exploit: To achieve maximum surprise and distribution, a worm should exploit

an unknown vulnerability that is only discovered by the general network community when

the worm is launched.

Page | 31

Mobile Phone Worms:

Worms first appeared on mobile phones in 2004. These worms communicate through

Bluetooth wireless connections or via the multimedia messaging service (MMS).The target is

the mobile phone.

Mobile phone malware can completely disable the phone, delete data on the phone, or force

the device to send costly messages to premium-priced numbers.

An example of a mobile phone worm is CommWarrior, which was launched in 2005. This

worm replicates by means of Bluetooth to other phones in the receiving area. It also sends

itself as an MMS file to numbers in the phone’s address book and in automatic replies to

incoming text messages and MMS messages. In addition, it copies itself to the removable

memory card and inserts itself into the program installation files on the phone.

Worm Countermeasures

There is considerable overlap in techniques for dealing with viruses and worms. Once a worm

is resident on a machine, antivirus software can be used to detect it.

let us consider the requirements for an effective worm countermeasure scheme:

➢ Generality: The approach taken should be able to handle a wide variety of worm attacks,

including polymorphic worms.

➢ Timeliness: The approach should respond quickly so as to limit the number of infected

systems and the number of generated transmissions from infected systems.

➢ Resiliency: The approach should be resistant to evasion techniques employed by attackers

to evade worm countermeasures.

➢ Minimal denial-of-service costs: The approach should result in minimal reduction in

capacity or service due to the actions of the countermeasure software. That is, in an attempt

to contain worm propagation, the countermeasure should not significantly disrupt normal

operation.

➢ Transparency: The countermeasure software and devices should not require

modification to existing (legacy) OSs, application software, and hardware.

Page | 32

➢ Global and local coverage: The approach should be able to deal with attack sources both

from outside and inside the enterprise network.

Countermeasure Approaches

A. Signature-based worm scan filtering: This type of approach generates a worm signature,

which is then used to prevent worm scans from entering a network / host. This approach is

vulnerable to the use of polymorphic worms: Either the detection software misses the

worm or, if it is sufficiently sophisticated to deal with polymorphic worms, the scheme

may take a long time to react.

B. Filter-based worm containment: This approach is similar to class A but focuses on worm

content rather than a scan signature. The filter checks a message to determine if it contains

worm code. This approach can be quite effective but requires efficient detection algorithms

and rapid alert dissemination.

NETWORK-BASED WORM DEFENSE

 The key element of a network-based worm defense is worm monitoring software. Consider

an enterprise network at a site, consisting of one or an interconnected set of LANs. Two

types of monitoring software are needed:

➢ Ingress monitors:

These are located at the border between the enterprise network and the Internet.They can be

part of the ingress filtering software of a border router or external firewall or a separate passive

monitor.A honeypot can also capture incoming worm traffic.

Note: In computer terminology, a honeypot is a computer security mechanism set to detect,

or, in some manner, counteract attempts at unauthorized use of information systems. A

honeypot is a computer system for trapping hackers or tracking unconventional or new

hacking methods. Honeypots are designed to purposely deceive hackers and identify

malicious activities performed over the Internet.

➢ Egress monitors:

These can be located at the egress point of individual LANs on the enterprise network as well

as at the border between the enterprise network and the Internet. In the former case, the egress

Page | 33

monitor can be part of the egress filtering software of a LAN router or switch. As with ingress

monitors, the external firewall or a honeypot can house the monitoring software.

(Figure 4) shows an example of a worm countermeasure architecture .

The system works as follows (numbers in figure refer to numbers in the following list):

1. Sensors deployed at various network locations detect a potential worm. The sensor logic

can also be incorporated in IDS sensors.

2. The sensors send alerts to a central server that correlates and analyzes the incoming

alerts.The correlation server determines the likelihood that a worm attack is being observed

and the key characteristics of the attack.

3. The server forwards its information to a protected environment, where the potential worm

may be sandboxed for analysis and testing.

4. The protected system tests the suspicious software against an appropriately instrumented

version of the targeted application to identify the vulnerability.

5. The protected system generates one or more software patches and tests these.

6. If the patch is not susceptible to the infection and does not compromise the application’s

functionality, the system sends the patch to the application host to update the targeted

application.

Page | 34

(Figure 4) Placement of Worm Monitors

Distributed Denial of Service Attacks:

 Distributed denial of service (DDoS) attacks present a significant security threat

to corporations and the threat appears to be growing. In one study, covering a three-week

period in 2001, investigators observed more than 12,000 attacks against more than 5000

distinct targets, ranging from well-known ecommerce companies such as Amazon and

Hotmail to small foreign ISPs and dial-up connections. DDoS attacks make computer

systems inaccessible to servers, networks, with useless traffic so that legitimate users can

no longer gain access to those resources.

 A denial of service (DoS) attack is an attempt to prevent legitimate users of a service

from using that service. When this attack comes from a single host or network node, then

it is simply referred to as a DoS attack. A more serious threat is posed by a DDoS attack.

Page | 35

In a DDoS attack, an attacker is able to recruit a number of hosts throughout the Internet

to simultaneously or in a coordinated fashion launch an attack upon the target.

DDoS Attack Description

A DDoS attack attempts to consume the target’s resources so that it cannot provide

service. One way to classify DDoS attacks is in terms of the type of resource that is

consumed. Broadly speaking, the resource consumed is either an internal host resource on

the target system or data transmission capacity in the local network to which the target is

attacked.

The following examples are one of the popular internal resources for the TCP data

structure:

1. In many systems, a limited number of data structures are available to hold process

information (process identifiers, process table entries, process slots, etc.). An intruder may

be able to consume these data structures by writing a simple program that does nothing

but repeatedly create copies of itself.

2. An intruder may also attempt to consume disk space in other ways, including:

▪ generating excessive numbers of mail messages

▪ intentionally generating errors that must be logged99999-0

▪ placing files in anonymous areas or network-shared areas

Another way to classify DDoS attacks is as either direct or reflector DDoS attacks.

 In a direct DDoS attack (Figure 5-a), the attacker is able to implant zombie software

on a number of sites distributed throughout the Internet. Often, the DDoS attack involves

two levels of zombie machines: master zombies and slave zombies. The hosts of both

machines have been infected with malicious code.The attacker coordinates and triggers the

master zombies, which in turn coordinate and trigger the slave zombies.The use of two levels

of zombies makes it more difficult to trace the attack back to its source and provides for a

more resilient network of attackers..

Page | 36

(Figure 5-a) Direct DDoS Attack

A reflector DDoS attack adds another layer of machines (Figure 5.b). In this type of attack,

the slave zombies construct packets requiring a response that contains the target’s IP address

as the source IP address in the packet’s IP header. These packets are sent to uninfected

machines known as reflectors. The uninfected machines respond with packets directed at the

target machine. A reflector DDoS attack can easily involve more machines and more traffic

than a direct DDoS attack and hence be more damaging. Further, tracing back the attack or

filtering out the attack packets is more difficult because the attack comes from widely

dispersed uninfected machines.

Page | 37

(Figure 5-b) Reflector DDoS Attack

Note: In computing, a zombie is a computer connected to the Internet that has been

compromised by a hacker, computer virus or Trojan horse program and can be used to

perform malicious tasks under remote direction. A zombie (also known as a bot) is a

computer that a remote attacker has accessed and set up to forward transmissions (including

spam and viruses) to other computers on the Internet.(figure 6)

 The zombie computer sends an enormous amount of packets of useless information to

a targeted Web site in order to clog the site's routers and keep legitimate users from gaining

access to the site. The traffic sent to the Web site is confusing and therefore the computer

receiving the data spends time and resources trying to understand the influx of data that has

been transmitted by the zombies. Compared to programs such as viruses or worms that can

eradicate or steal information, zombies are relatively benign as they temporarily cripple

Web sites by flooding them with information and do not compromise the site's data.

Page | 38

(Figure 6) Zombie connection in internet

Constructing the Attack Network

The first step in a DDoS attack is for the attacker to infect a number of machines with zombie

software that will ultimately be used to carry out the attack.

The essential ingredients in this phase of the attack are the following:

1. Software that can carry out the DDoS attack.The software must be able to run on a large

number of machines, must be able to conceal its existence, must be able to communicate

with the attacker or have some sort of time-triggered mechanism, and must be able to

launch the intended attack toward the target.

2. A vulnerability in a large number of systems.The attacker must become aware of a

vulnerability that many system administrators and individual users have failed to patch

and that enables the attacker to install the zombie software.

3. A strategy for locating vulnerable machines, a process known as scanning.

In the scanning process, the attacker first seeks out a number of vulnerable machines and infects

them. Then, typically, the zombie software that is installed in the infected machines repeats

the same scanning process, until a large distributed network of infected machines is created.

Page | 39

Types of scanning strategies:

➢ Random: Each compromised host probes random IP address. This technique produces a

high volume of Internet traffic, which may cause generalized disruption even before the

actual attack is launched.

➢ Hit-List: The attacker first compiles a long list of potential vulnerable machines. This can

be a slow process done over a long period to avoid detection p-0that an attack is underway.

Once the list is compiled, the attacker begins infecting machines on the list. Each infected

machine is provided with a portion of the list to scan. This strategy results in a very short

scanning period, which may make it difficult to detect that infection is taking place.

➢ Topological: This method uses information contained on an infected victim machine to find

more hosts to scan.

DDoS Countermeasures:

In general, there are three lines of defense against DDoS attacks:

1. Attack prevention and preemption (before the attack):

These mechanisms enable the victim to endure attack attempts without denying service

to legitimate clients. Techniques include enforcing policies for resource consumption

and providing backup resources available on demand. In addition, prevention

mechanisms modify systems and protocols on the Internet to reduce the possibility of

DDoS attacks.

2. Attack detection and filtering (during the attack):

These mechanisms attempt to detect the attack as it begins and respond immediately.

This minimizes the impact of the attack on the target. Detection involves looking for

suspicious patterns of behavior Response involves filtering out packets likely to be part

of the attack.

3. Attack source trace back and identification (during and after the attack):

Page | 40

This is an attempt to identify the source of the attack as a first step in preventing future

attacks. However, this method typically does not yield results fast enough, if at all, to

mitigate an ongoing attack.

