
 2023-2024

Software Branch

Third Class
Assist. Prof. Dr. Ayad R. Abbas

Machine

Learning

M
a

c
h

in
e

L
e

a
r

n
i
n

g

Machine Learning Software Branch

REFERENCES

1. Fundamentals of Neural Networks: Architecture,

 Algorithms, and application. By Laurene Fausett

2. Neural Networks. By Phil Picton

3. Neural Networks. Fundamentals, Application, Examples. By

Werner Kinnebrock

4. Neural network for identification, prediction and control. By D. T. Pham

and X. Liu.

5. Machine Learning, Tom Mitchell, McGraw Hill, 1997.

6. COS 511: Theoretical Machine Learning

http://www.cs.princeton.edu/courses/archive/spr08/cos511/scribe_notes/020

4.pdf

7. http://people.revoledu.com/kardi/tutorial/DecisionTree/how‐to‐use‐

decision‐tree.htm

1 | P a g e

1.1 DEFINITION OF LEARNING SYSTEM

WHAT IS MACHINE LEARNING?

Machine learning studies computer algorithms for learning to do stuff. We might,

for instance, be interested in learning to complete a task, or to make accurate predictions,

or to behave intelligently. The learning that is being done is always based on some sort

of observations or data, such as examples (the most common case in this course), direct

experience, or instruction. So in general, machine learning is about learning to do better

in the future based on what was experienced in the past.

The emphasis of machine learning is on automatic methods. In other words, the goal is

to devise learning algorithms that do the learning automatically without human

intervention or assistance. The machine learning paradigm can be viewed as

“programming by example.”

Often we have a specific task in mind, such as spam filtering. But rather than program

the computer to solve the task directly, in machine learning, we seek methods by

which the computer will come up with its own program based on examples that we

provide.

Machine learning is a core subarea of artificial intelligence. It is very unlikely that we will

be able to build any kind of intelligent system capable of any of the facilities that we

associate with intelligence, such as language or vision, without using learning to get there.

2 | P a g e

These tasks are otherwise simply too difficult to solve. Further, we would not consider

a system to be truly intelligent if it were incapable of learning since learning is at the

core of intelligence.

1.2 GOALS OF MACHINE LEARNING RESEARCH

The primary goal of machine learning research is to develop general purpose

algorithms of practical value. Such algorithms should be efficient. As usual, as computer

scientists, we care about time and space efficiency. But in the context of learning, we also

care a great deal about another precious resource, namely, the amount of data that is

required by the learning algorithm.

Learning algorithms should also be as general purpose as possible. We are looking for

algorithms that can be easily applied to a broad class of learning problems.

Of primary importance, we want the result of learning to be a prediction rule that is as

accurate as possible in the predictions that it makes.

Occasionally, we may also be interested in the interpretability of the prediction rules

produced by learning. In other words, in some contexts (such as medical diagnosis),

we want the computer to find prediction rules that are easily understandable by human

experts.

As mentioned above, machine learning can be thought of as “programming by example.”

What is the advantage of machine learning over direct programming? First, the results of

using machine learning are often more accurate than what can be created through direct

programming. The reason is that machine learning algorithms are data driven, and are able

to examine large amounts of data. On the other hand, a human expert is likely to be guided

by imprecise impressions or perhaps an examination of only a relatively small

number of examples.

3 | P a g e

1.3 LEARNING MODELS

To study machine learning mathematically, we need to formally define the

learning problem.

This precise definition is called a learning model. A learning model should be rich enough

to capture important aspects of real learning problems, but simple enough to study the

problem mathematically. As with any mathematical model, simplifying assumptions are

unavoidable.

A learning model should answer several questions:

 What is being learned?

 How is the data being generated? In other words, where does it come from?

 How is the data presented to the learner? For instance, does the learner see all the data at once or

only one example at a time?

 What is the goal of learning in this model?

4 | P a g e

2.1CONCEPT LEARNING TASK

To ground our discussion of concept learning, consider the example task of learning

the target concept "days on which my friend Aldo enjoys his favorite water sport."

Table 2.1 describes a set of example days, each represented by a set of attributes. The

attribute EnjoySport indicates whether or not Aldo enjoys his favorite water sport on this

day. The task is to learn to predict the value of EnjoySport for an arbitrary day, based on the

values of its other attributes.

What hypothesis representation shall we provide to the learner in this case?

Let us begin by considering a simple representation in which each hypothesis consists

of a conjunction of constraints on the instance attributes. In particular, let each hypothesis

be a vector of six constraints, specifying the values of the six attributes Sky, AirTemp,

Humidity, Wind, Water, and Forecast. For each attribute, the hypothesis will either

 Indicate by a "?' that any value is acceptable for this attribute,

 Specify a single required value (e.g., Warm) for the attribute, or

Indicate by a "Ø" that no value is acceptable.

5 | P a g e

If some instance x satisfies all the constraints of hypothesis h, then h classifies x as a positive

example (h(x) = 1). To illustrate, the hypothesis that Aldo enjoys his favorite sport only on

cold days with high humidity (independent of the values of the other attributes) is represented

by the expression (?, Cold, High, ?, ?, ?)

The most general hypothesis-that every day is a positive example-is represented by (?, ?, ?, ?,

?, ?) and the most specific possible hypothesis-that no day is a positive example-is represented

by (0,0,0,0,0,0) To summarize, the EnjoySport concept learning task requires learning the set

of days for which EnjoySport = yes, describing this set by a conjunction of constraints over

the instance attributes. In general, any concept learning task can be described by the set of

instances over which the target function is defined, the target function, the set of candidate

hypotheses considered by the learner, and the set of available training examples. The definition

of the EnjoySport concept learning task in this general form.

2.2 CONCEPT LEARNING AS SEARCH

Concept learning can be viewed as the task of searching through a large space of

hypothesis implicitly defined by the hypothesis representation. The goal of the concept

learning search is to find the hypothesis that best fits the training examples.

Concept learning is a task of searching a hypotheses space the representation chosen for

hypotheses determines the search space In the example we have:

6 | P a g e

2.3 GENERAL-TO-SPECIFIC ORDERING OF HYPOTHESES

Many algorithms for concept learning organize the search through the hypothesis space by

relying on a very useful structure that exists for any concept learning problem: a general-to-

specific ordering of hypotheses. By taking advantage of this naturally occurring structure over

the hypothesis space, we can design learning algorithms that exhaustively search even infinite

hypothesis spaces without explicitly enumerating every hypothesis. To illustrate the general-

to-specific ordering, consider the two hypotheses

 h1 = (Sunny, ?, ?, Strong, ?, ?)

 h2 = (Sunny, ?, ?, ?, ?, ?)

7 | P a g e

FIND-S: FINDING THE MOST SPECIFIC HYPOTHESIS

8 | P a g e

9 | P a g e

3.1 DECISION-TREE LEARNING

Decision tree learning is a method for approximating discrete-valued target functions, in

which the learned function is represented by a decision tree. Learned trees can also be re-

represented as sets of if-then rules to improve human readability.

These learning methods are among the most popular of inductive inference algorithms

and have been successfully applied to a broad range of tasks from learning to diagnose

medical cases to learning to assess credit risk of loan applicants.

3.2 DECISION TREE REPRESENTATION

Decision trees classify instances by sorting them down the tree from the root to some

leaf node, which provides the classification of the instance. Each node in the tree specifies

a test of some attribute of the instance, and each branch descending.

CHAPTER THREE

DECISION TREE

10 | P a g e

From that node corresponds to one of the possible values for this attribute. An instance

is classified by starting at the root node of the tree, testing the attribute specified by

this node, then moving down the tree branch corresponding to the value of the attribute

in the given example. This process is then repeated for the sub-tree rooted at the new

node.

Figure 3.1 illustrates a typical learned decision tree. This decision tree classifies

Saturday mornings according to whether they are suitable for playing tennis.

For example, the instance

Would be sorted down the leftmost branch of this decision tree and would therefore be

classified as a negative instance (i.e., the tree predicts that PlayTennis

= no).

11 | P a g e

This tree and the example used in Table 3.2 to illustrate the ID3 learning algorithm are

adapted from (Quinlan 1986).

Many practical problems have been found to fit these characteristics. Decision tree

learning has therefore been applied to problems such as learning to classify medical

patients by their disease, equipment malfunctions by their cause, and loan applicants by

their likelihood of defaulting on payments. Such problems, in which the task is to classify

examples into one of a discrete set of possible categories, are often referred to as

classifications problems.

3.3 THE BASIC DECISION TREE LEARNING ALGORITHM

Most algorithms that have been developed for learning decision trees are variations on a

core algorithm that employs a top-down, greedy search through the space of possible

decision trees. This approach is exemplified by the ID3 algorithm (Quinlan 1986) and

its successor C4.5 (Quinlan 1993), which form the primary focus of our discussion here.

Basic algorithm, ID3, learns decision trees by constructing them top down, beginning

with the question "which attribute should be tested at the root of the tree?'To

answer this question, each instance attribute is evaluated using a statistical test to

determine how well it alone classifies the training examples

3.4 WHICH ATTRIBUTE IS THE BEST CLASSIFIER?

The central choice in the ID3 algorithm is selecting which attribute to test at each node in

the tree. We would like to select the attribute that is most useful for classifying

examples. What is a good quantitative measure of the worth of an attribute? We will

define a statistical property, called information gain that measures how well a given

attribute separates the training examples according to their target classification. ID3 uses

12 | P a g e

this information gain measure to select among the candidate attributes at each step while

growing the tree.

3.5 ENTROPY MEASURES HOMOGENEITY OF EXAMPLES
In order to define information gain precisely, we begin by defining a measure commonly

used in information theory, called entropy, that characterizes the (im) purity of an arbitrary

collection of examples. Given a collection S, containing positive and negative examples

of some target concept, the entropy of S relative to this Boolean classification is

13 | P a g e

3.6 INFORMATION GAIN MEASURES THE EXPECTED

REDUCTION IN ENTROPY

Given entropy as a measure of the impurity in a collection of training examples, we can now

define a measure of the effectiveness of an attribute in classifying the training data. The

measure we will use, called information gain, is simply the expected reduction in

entropy caused by partitioning the examples according to this attribute. More precisely,

the information gain, Gain(S, A) of an attribute A, relative to a collection of examples S,

is defined as

14 | P a g e

From table D and for each associated subset Si , we compute degree of impurity. We have

discussed about how to compute these indices in the previous section.

To compute the degree of impurity, we must distinguish whether it is come from the

parent table D or it come from a subset table Si with attribute i.

If the table is a parent table D, we simply compute the number of records of each class.

For example, in the parent table below, we can compute degree of impurity based on

transportation mode. In this case we have 4 Busses, 3 Cars and 3 Trains (in short 4B, 3C,

3T): Based on these data, we can compute probability of each class. Since probability is

equal to frequency relative, we have

Prob (Bus) = 4 / 10 = 0.4

Prob (Car) = 3 / 10 = 0.3

Prob (Train) = 3 / 10 = 0.3

15 | P a g e

Observe that when to compute probability, we only focus on the classes , not on the

attributes . Having the probability of each class, now we are ready to compute the

quantitative indices of impurity degrees.

3.7 ENTROPY

One way to measure impurity degree is using entropy.

Example: Given that Prob (Bus) = 0.4, Prob (Car) = 0.3 and Prob (Train) = 0.3, we can now

compute entropy as

Entropy = – 0.4 log (0.4) – 0.3 log (0.3) – 0.3 log (0.3) = 1.571 The

logarithm is base 2.

Entropy of a pure table (consist of single class) is zero because the probability is 1 and log

(1) = 0. Entropy reaches maximum value when all classes in the table have equal probability.

Figure below plots the values of maximum entropy for different number of classes n,

where probability is equal to p=1/n. I this case, maximum entropy is equal to -n*p*log

p. Notice that the value of entropy is larger than 1 if the number of classes is more than 2.

16 | P a g e

Table D

If the table is a subset of attribute table Si, we need to separate the computation of

impurity degree for each value of the attribute i.

17 | P a g e

For example, attribute Travel cost per km has three values: Cheap, Standard and Expensive.

Now we sort the table Si = [Travel cost/km, Transportation mode] based on the values

of Travel cost per km. Then we separate each value of the travel cost and compute the

degree of impurity (either using entropy, gini index or classification error).

3.8 INFORMATION GAIN

The reason for different ways of computation of impurity degrees between data table D

and subset table S i is because we would like to compare the difference of impurity degrees

before we split the table (i.e. data table D) and after we split the table according to the

values of an attribute i (i.e. subset table Si) . The measure to

18 | P a g e

compare the difference of impurity degrees is called information gain . We would like to

know what our gain is if we split the data table based on some attribute values.

Information gain is computed as impurity degrees of the parent table and weighted

summation of impurity degrees of the subset table. The weight is based on the number

of records for each attribute values. Suppose we will use entropy as measurement of

impurity degree, then we have:

Information gain (i) = Entropy of parent table D – Sum (n k /n * Entropy of each value k

of subset table Si)

For example, our data table D has classes of 4B, 3C, 3T which produce entropy of

1.571. Now we try the attribute Travel cost per km which we split into three: Cheap

that has classes of 4B, 1T (thus entropy of 0.722), Standard that has classes of 2T (thus

entropy = 0 because pure single class) and Expensive with single class of 3C (thus entropy

also zero).

The information gain of attribute Travel cost per km is computed as 1.571

– (5/10 * 0.722+2/10*0+3/10*0) = 1.210

You can also compute information gain based on Gini index or classification error in the

same method. The results are given below.

19 | P a g e

For each attribute in our data, we try to compute the information gain. The illustration below

shows the computation of information gain for the first iteration (based on the data table)

for other three attributes of Gender, Car ownership and Income level.

Table below summarizes the information gain for all four attributes. In practice, you

don't need to compute the impurity degree based on three methods. You can use either

one of Entropy or Gini index or index of classification error.

20 | P a g e

Once you get the information gain for all attributes, then we find the optimum attribute

that produce the maximum information gain (i* = argmax {information gain of attribute

i}). In our case, travel cost per km produces the maximum information gain. We put this

optimum attribute into the node of our decision tree. As it is the first node, then it is the root

node of the decision tree. Our decision tree now consists of a single root node.

Once we obtain the optimum attribute, we can split the data table according to that optimum

attribute. In our example, we split the data table based on the value of travel cost per km.

Using this information, we can now update our decision tree. We can add node

Gender which has two values of male and female. The pure class is related to leaf

node, thus Male gender has leaf node of Bus. For Female gender, we need to split

further the attributes in the next iteration.

21 | P a g e

After the split of the data, we can see clearly that value of Expensive travel cost/km

is associated only with pure class of Car while Standard travel cost/km is only related to

pure class of Train. Pure class is always assigned into leaf node of a decision tree. We can

use this information to update our decision tree in our first iteration into the following.

For Cheap travel cost/km, the classes are not pure, thus we need to split further.

Second Iteration

In the second iteration, we need to update our data table. Since Expensive and Standard

Travel cost/km have been associated with pure class, we do not need these data any

longer. For second iteration, our data table D is only come from the Cheap Travel cost/km.

We remove attribute travel cost/km from the data because they are equal and redundant.

22 | P a g e

Now we have only three attributes: Gender, car ownership and Income level. The degree

of impurity of the data table D is shown in the picture below.

Then, we repeat the procedure of computing degree of impurity and information

gain for the three attributes. The results of computation are exhibited below.

23 | P a g e

The maximum gain is obtained for the optimum attribute Gender. Once we obtain

the optimum attribute, the data table is split according to that optimum attribute. In

our case, Male Gender is only associated with pure class Bus, while Female still

need further split of attribute.

24 | P a g e

Using this information, we can now update our decision tree. We can add node Gender

which has two values of male and female. The pure class is related to leaf node, thus Male

gender has leaf node of Bus. For Female gender, we need to split further the attributes in

the next iteration.

Third iteration

Data table of the third iteration comes only from part of the data table of the

second iteration with male gender removed (thus only female part). Since attribute

Gender has been used in the decision tree, we can remove the attribute and focus

only on the remaining two attributes: Car ownership and Income level.

If you observed the data table of the third iteration, it consists only two rows. Each row

has distinct values. If we use attribute car ownership, we will get pure class for each of

25 | P a g e

its value. Similarly, attribute income level will also give pure class for each value.

Therefore, we can use either one of the two attributes. Suppose we select attribute

car ownership, we can update our decision tree into the final version

Now we have grown the final full decision tree based on the data.

26 | P a g e

 4.1 FUNDAMENTALS OF ARTIFICIAL NEURAL NETWORKS.
Artificial neural network (ANN) models have been studied for many years with

the hope of achieving "Human-like performance", Different names were given to these

models such as:

- Parallel distributed processing models

- Biological computers or Electronic Brains.

- Connectionist models

- Neural morphic system

After that, all these names settled on Artificial Neural Networks (ANN) and after it

on neural networks (NN) only.

There are two basic different between computer and neural, these are:

1- These models are composed of many non-linear computational elements operating

in parallel and arranged in patterns reminiscent of biological neural networks.

2- Computational Elements (or node s) are connected via weights that are typically

adapted during use to improve performance just like human brain.

Computer logic Elements (1, 0)

Neural weighted performance

Areas of Neural Networks

The areas in which neural networks are currently being applied are:

1-Signal processing

2- Pattern Recognition.

27 | P a g e

3- Control problems

4- Medicine

5- Speech production

6- Speech Recognition

7- Business

4.2 THEORY OF NEURAL NETWORKS (NN)

 Human brain is the most complicated computing device known to a human being. The

capability of thinking, remembering, and problem solving of the brain has inspired many

scientists to model its operations. Neural network is an attempt to model the functionality of

the brain in a simplified manner. These models attempt to achieve "good" performance via

dense interconnections of simple computational elements. The term (ANN) and the connection

of its models are typically used to distinguish them from biological network of neurons of

living organism which can be represented systematically as shown in figure below

Biological Neural Network and Artificial Neural Network

Neclues is a simple processing unite which receives and combines signals from many other

neurons through input paths called dendrites if the combined signal is strong enough, it

activates the firing of neuron which produces an o/p signal. The path of the o/p signal is called

28 | P a g e

the axon, synapse is the junction between the (axon) of the neuron and the dendrites of the

other neurons. The transmission across this junction is chemical in nature and the amount of

signal transferred depends on the synaptic strength of the junction. This synoptic strength is

modified when the brain is learning.

Weights (ANN)  synaptic strength (biological Networks)

4.3 TYPES OF LEARNING

In case a neural network is to be used for particle applications, a general procedure is to be

taken, which in its various steps can be described as follows:-

1: A logical function to be represented is given. The input vector e1 , e2, e3, …. , en are present,

whom the output vectors a1, a2, a3, …. , an assigned. These functions are to be represented

by a network.

2: A topology is to be selected for the network.

3: The weights w1, w2, w3, … are to be selected in such away that the network represents The

given function (n) the selected topology. Learn procedures are to be used for determining

the weights.

4: After the weights have been learned and the network becomes available, it can be used as

after as desired.

1- Supervised Learning:-

 The supervised is that, at every step the system is informed about the exact output

vector. The weights are changed according to a formula (e.g. the delta-rule), if o/p is unequal

to a. This method can be compared to learning under a teacher, who knows the contents to be

learned and regulates them accordingly in the learning procedure.

2- Unsupervised Learning:-

 Here the correct final vector is not specified, but instead the weights are changed

through random numbers. With the help of an evaluation function one can ascertain whether

the output calculated with the changed weights is better than the previous one. In this case the

29 | P a g e

changed weights are stored, else forgotten. This type of learning is also called reinforcement

learning.

4.4 TYPICAL ARCHITECTURE OF ANN

Neural nets are often classified as single layer or multilayer. In determining the number

of layers, the input units are not counted as a layer, because they perform no computation.

Equivalently, the number of layers in the net can be defined to be the number of layers of

weighted interconnects links between the slabs of neurons.

1- Single-Layer Net:-

A single-layer net has one layer of connection weight. Often, the units can be

distinguished as input units, which receive signals from the outside world, and output

units, from which the response of the net can be read. In the typical single-layer net

shown in figure bellow the input units are fully connected to output units but are not

connected to other input units and the output units are not connected to other output

units.

Single Layer Neural Network

2-Multilayer net

A Multilayer net is a net with one or more layers (or levels) of nodes which is called hidden

units, between the input units and the output units. Typically, there is a layer of weights

30 | P a g e

between two adjacent levels of units (input, hidden, or output). Multilayer nets can solve more

complicated problems than can single-layer nets, but training may be more difficult. However,

in some cases, training may be more successful because it is possible to solve a problem that

a single-layer net can not be trained to perform correctly at all. The figure bellow shows the

multilayer neural net.

Multiple Layer Neural Network

4.5 BASIC ACTIVATION FUNCTIONS

 The activation function (Sometimes called a transfers function) shown in figure below

can be a linear or nonlinear function. There are many different types of activation functions.

Selection of one type over another depends on the particular problem that the neuron (or neural

network) is to solve. The most common types of activation function are:-

31 | P a g e

1- The first type is the linear (or identity) function.

qqlinq vvfy )(

2-The second type of activation function is a hard limiter; this is a binary (or bipolar) function

that hard-limits the input to the function to either a 0 or a 1 for the binary type, and a -1 or 1

for the bipolar type. The binary hard limiter is sometimes called the threshold function, and

the bipolar hard limiter is referred to as the symmetric hard limiter.

a- The o/p of the binary hard limiter:-

2

4

6

-6

-4

-2 2 4 6 -2 -4 8 -8 -6

+

1

vq

32 | P a g e










0 v if 1

0 v if 0
)v(fy

q

q
qhlq

b-The o/p for the symmetric hard limiter (shl):-















0 if 1

0 if 0
0 et if 1

)(

q

q
qshlq

v

v
n

vfy

3-The fourth type is sigmoid. Modern NN's use the sigmoid nonlinearity which is also known

as logistic, semi linear, or squashing function.

qvqbsq
e1

1
)v(fy






xe1

1
y




Ex.1 find y for the following neuron if :- x1=0.5, x2=1, x3=0.7

+

1

vq

-1

+

1

x

vq

0

0.5

Y O G A 260
Highlight

33 | P a g e

 w1=0, w2=-0.3, w3=0.6

Sol

net = 332211 WXWXWX 

 =0.5*0+1*-0.3+(-0.7*0.6)= -0.72

1- if f is linear

 y = -0.72

2- if f is hard limiter (on-off)

 y = -1

3-if f is sigmoid

 32.0
e1

1
y

)72.0(







4.6 THE BIAS
 التعلم لتحسين تضاف ثابتة قيمة

Some networks employ a bias unit as part of every layer except the output layer.

This units have a constant activation value of 1 or -1, it's weight might be adjusted during

learning. The bias unit provides a constant term in the weighted sum which results in an

improvement on the convergence properties of the network.

A bias acts exactly as a weight on a connection from a unit whose activation is always

increasing the bias increases the net input to the unit. If a bias is included, the activation

function is typically taken to be:









; 0 net if 1

; 0 net if 1
)net(f

Where

w3

x1

x2

x3

w1

w2 y

34 | P a g e

 

i
iiWXbnet

4.7 LEARNING ALGORITHMS

 The NN's mimic the way that a child learns to identify shapes and colors NN algorithms

are able to adapt continuously based on current results to improve performance. Adaptation or

learning is an essential feature of NN's in order to handle the new "environments" that are

continuously encountered. In contrast to NN's algorithms, traditional statistical techniques are

not adoption but typically process all training data simultaneously before being used with new

data. The performance of learning procedure depends on many factors such as:-

1- The choice of error function.

2- The net architecture.

3- Types of nodes and possible restrictions on the values of the weights.

4- An activation function.

1

1X

2X

y

b

W1

W2

Input unit

output unit

35 | P a g e

The convergent of the net:-

 Depends on the:-

1- Training set

2- The initial conditions

3- Learning algorithms.

4.8 PERCEPTRON

the perceptron is an algorithm for supervised learning of binary classifiers. A binary classifier

is a function which can decide whether or not an input, represented by a vector of numbers,

belongs to some specific class. It is a type of linear classifier, i.e. a classification algorithm

that makes its predictions based on a linear predictor function combining a set of weights with

the feature vector.

The algorithm is as follows:

1. Initialize the weights and threshold to small random numbers.

2. Present a vector x to the neuron inputs and calculate the output.

3. Update the weights according to:

 w(t+1)=w(t)+c(d-y)*x

 where

o d is the desired output,

o t is the iteration number, and

o c is the learning rate or step size, where 0.0 < c <= 1.0

4. Repeat steps 2 and 3 until:

o the iteration error is less than a user-specified error threshold or

o a predetermined number of iterations have been completed.

36 | P a g e

Illustration of the perceptron learning algorithm

Example: Consider the following training set:

x1 x2 x3 d

1 0 1 -1

0 -1 -1 1

-1 -0.5 -1 1

The learning rate is assumed to be 0.1. The initial weight vector is w0 = (1, −1, 0). Then the

learning according to the perceptron learning rule progresses as follows.

Solution:

[Step 1] Input x at t=1, desired output d is -1:

Net1=(1,-1,0) (
1
0
1

) = 1

Correction in this step is needed since

y1 = −1 ≠ sign(1).

We thus obtain the updated vector

w1 = w0 + 0.1(−1 − 1) x1

Plugging in numerical values we obtain

w1 =(
1

−1
0

) − 0.2 (
1
0
1

) = (
0.8
−1

−0.2
)

[Step 2] Input x at t=2 , desired output d is 1. For the present w1 we compute the following:

Net2=(0.8,-1,-0.2) (
0

−1
−1

) = 1.2

Correction is not performed in this step since 1 = sign(1.2), so we let w2 := w1

[Step 3] Input is x at t=3, desired output d is 1.

37 | P a g e

Net3=(0.8,-1,-0.2) (
−1

−0.5
−1

) = -0.1

Correction in this step is needed since y3 = 1 6 ≠ sign(−0.1). We thus obtain the updated vector

w3 = w2 +0.1(1+1) x3

Plugging in numerical values we obtain

W3=(
0.8
−1

−0.2
) + 0.2 (

−1
−0.5
−1

) = (
0.6

−1.1
−0.4

)

[Step 4] Input x1 , desired output d is -1:

Net4=(0.6,-1.1,-0.4) (
1
0
1

) = 0.2

Correction in this step is needed since y1 = −1 6 ≠ sign(0.2). We thus obtain the updated vector

w4 = w3 + 0.1(−1 − 1) x 1

Plugging in numerical values we obtain

W4=(
0.6

−1.1
−0.4

) − 0.2 (
1
0
1

) = (
0.4

−1.1
−0.6

)

Terminates this learning process at t=6, the correct weights (0.4, −1.1, −0.6).

Y O G A 260
Highlight

Y O G A 260
Highlight

Y O G A 260
Highlight

38 | P a g e

4.9 BACK PROPAGATION

 The determination of the error is a recursive process which start with the o/p units and

the error is back propagated to the I/p units. Therefore the rule is called error Back propagation

(EBP) or simply Back Propagation (BP). The weight is changed exactly in the same form of

the standard DR

ijij x w 

ijijij x)t(w)1t(w 

There are two other equations that specify the error signal. If a unite is an o/p unit, the error

signal is given by:-

j) net(f)yd(jjj 

Where   iij x w j net

The GDR minimize the squares of the differences between the actual and the desired o/p values

summed over the o/p unit and all pairs of I/p and o/p vectors. The rule minimize the overall

error  pEE by implementing a gradient descent in E: - where,   2
jjjp)yd(2/1E

.

The BP consists of two phases:-

1- Forward Propagation:-

 During the forward phase, the I/p is presented and propagated towards the o/p.

 المرحلة الأولى

Y1

Y2

Yn

Pattern Hidden o/p

39 | P a g e

2- Backward Propagation:-

 During the backward phase, the errors are formed at the o/p and propagated towards

the I/p

3- Compute the error in the hidden layer.

 If
xe1

1
)x(fy




)y1(yf 

Equation is can rewrite as:-

)yd)(y1(y jjj 

The error signal for hidden units for which there is no specified target (desired o/p) is

determined recursively in terms of the error signals of the units to which it directly connects

and the weights of those connections:-

That is

 
k ikkjj w)net(f

Or

  
k ikkjjj w)y1(y

B.P learning is implemented when hidden units are embedded between input and output

units.

40 | P a g e

Convergence:-

A quantitative measure of the learning is the :Root Mean Square (RMS) error which is

calculated to reflect the "degree" of learning.

Generally, an RMS bellow (0.1) indicates that the net has learned its training set. Note that

the net does not provide a yes /no response that is "correct" or "incorrect" since the net get

closer to the target value incrementally with each step. It is possible to define a cut off point

when the nets o/p is said to match the target values.

- Convergence is not always easy to achieve because sometimes the net gets stuck in a

"Local minima" and stops learning algorithm.

- Convergence can be represented intuitively in terms of walking about mountains.

Momentum term

 The choice of the learning rate plays important role in the stability of the process. It is

possible to choose a learning rate as large as possible without leading to oscillations. This

offers the most rapid learning. One way to increase the learning rate without leading to

oscillations is to modify the GDR to include momentum term.

This can be achieved by the following rule:-

))1t(W)t(W(x)t(W)1t(W ijijijijij 

Where)10( is a constant which determines the effect of the past weight changes on

the current direction of movement in weight space.

Local minima

41 | P a g e

A "global minima" unfortunately it is possible to encounter a local minima, avally that

is not the lowest possible in the entire terrain. The net does not leave a local minima by the

standard BP algorithm and special techniques should be used to get out of a local minima such

as:-

1- Change the learning rate or the momentum term.

2- Change the no. of hidden units (10%).

3- Add small random value to the weights.

4- Start the learning again with different initial weights.

Back propagation training algorithm

Training a network by back propagation involves three stages:-

1-the feed forward of the input training pattern

2-the back propagation of the associated error

3-the adjustment of the weights

let n = number of input units in input layer,

let p = number of hidden units in hidden layer

let m = number of output units in output layer

let Vij be the weights between i/p layer and the hidden layer,

let Wij be the weights between hidden layer and the output layer,

we refer to the i/p units as Xi , i=1, 2, ….,n. and we refer to the hidden units as Zj , j=1,….,p.

and we refer to the o/p units as yk, k=1,….., m.

j1 is the error in hidden layer,

k2 is the error in output layer,

 is the learning rate

 is the momentum coefficient (learning coefficient, 0.0 <  < 1.0,

yk is the o/p of the net (o/p layer),

Zj is the o/p of the hidden layer,

42 | P a g e

Xi is the o/p of the i/p layer.

 is the learning coefficient.

The algorithm is as following :-

Step 0 : initialize weights (set to small random value).

Step 1 : while stopping condition is false do steps 2-9

 Step 2: for each training pair, do steps 3-8

Feed forward :-

Step 3:- Each i/p unit (Xi) receives i/p signal Xi & broad casts this signal to all units in

the layer above (the hidden layer)

Step 4:- Each hidden unit (Zj) sums its weighted i/p signals,





n

1i
iji abias) is Vaj(vxVajinjZ

and applies its activation function to compute its output signal (the activation function

is the binary sigmoid function),

inj))-(Z-exp(1 / 1)injZ(fZ j 

and sends this signal to all units in the layer above (the o/p layer).

Step 5:- Each output unit (Yk)sums its weighted i/p signals,

 abias) is wok (where Zjwjkwokinky

p

1j






and applies its activation function to compute its output signal.

)inky(exp1/(1)inky(fyk 

back propagation of error:-

step 6 : Each output unit (yk , k= 1 tom) receive a target pattern corresponding to the

input training pattern, computes its error information term and calculates its

weights correction term used to update Wjk later,

43 | P a g e

),yT(*)y1(y kkkkk2 

 where Tk is the target pattern & k=1 to m .

step 7 : Each hidden unit (Zj, j= 1 top) computes its error information term and

calculates its weight correction term used to update Vij later,





m

1k
j1 kWjk2*)Zj1(*Zj

Update weights and bias :-

step 8: Each output unit (yk, k =1 tom) updates its bias and weights:

)],dd(Wjk*[Zj*k2*)new(Wjk 

 j= 1 to p

 Each hidden unit (Zj, j= 1 to p) update its bias and weights:

)],dd(vij[Xi*j1*)new(Vij 

 I = 1 to n

Step 9 : Test stopping condition.

Example: Suppose you have BP- ANN with 2-input , 2-hiddden , 1-output nodes with sigmoid

function and the following matrices weight, trace with 1-iteration.

 5.00.3 w
2.075.0

3.01.0
V 







 


Where 1T and , (1,0) x0.45, ,9.0 k 

Solution:-

X1

X2 Z2

Z1

Y1

 0.1 V11

 0.2 V22

 0.75 V12

-0.3 V21
 0.3 W11

 -0.5 W21

Input

units

Hidden

units

output

units

44 | P a g e

1-Forword phase :-

484.0)1iny(exp1/(1)1iny(fy

-0.063(-0.5)*0.4260.3*0.5

WZWZ1iny

426.0))2inZ(exp1/(1)2inZ(fZ

5.0))1inZ(exp1/(1)1inZ(fZ

3.02.0*03.0*1VXVX2inZ

1.075.0*01.0*1VXVX1inZ

1

212111

2

1

222121

212111















2-Backward phase :-










m

1k
jkk2jjj1

21

2

W*)Z1(*Z

129.0)484.01(*)484.01(484.0

)ykTk(*)yk1(ykk

015.0))5.0(*129.0(*)426.01(426.0

)W(*)Z1(Z

0.00970.3)*(0.129*0.5)-(1 0.5

)W(*)Z1(Z

21212212

11211111









3-Update weights:-

 
 

 

 
 

0.0944 0.1*0.91*0.0097*0.45

)old(V *X**V

)old(V *X**)new(V

0.4253-0.5*0.90.426*0.129*0.45

)old(W *Z**W

0.2990.3*0.90.5*0.129*0.45

)old(W *Z**W

)old(W*Z**)new(W

1111111

ijij1ij

2122121

1112111

jkjk2jk

















45 | P a g e

 

 

 
0.18 0.2*0.90*-0.0158*0.45

)old(V *X**V

0.6750.75*0.90*0.0097*0.45

)old(V *X**V

2771.0 -0.3*0.91*0.0158*0.45

)old(V *X**V

2221222

2121121

1211212













 0.4253-0.299 W
18.0675.0

2771.00944.0
V 







 


46 | P a g e

4.10 THE HOPFIELD NETWORK

The Nobel prize winner (in physics) John Hopfield has developed the discrete Hopfield net

in (1982-1984). The net is a fully interconnected neural net, in the sense that each unit is

connected to every other unit. The discrete Hopfield net has symmetric weights with no self-

connections, i.e,

jiij WW 

And 0Wii 

In this NN, inputs of 0 or 1 are usually used, but the weights are initially calculated after

converting the inputs to -1 or +1 respectively.

“The Hopfield network“

The outputs of the Hopfield are connected to the inputs as shown in Figure, Thus feedback has

been introduced into the network. The present output pattern is no longer solely dependent on

the present inputs, but is also dependent on the previous outputs. Therefore the network can

be said to have some sort of memory, also the Hopfield network has only one layer of neurons.

The response of an individual neuron in the network is given by :-

w21

w31
T1

w12

w32
T2

w13

w23
T3

w21

w31

w12

w32

w13

w23

x1

x2

x3

y1

y2

y3

47 | P a g e

j

n

ji 1i

iijj TXW if 1y  


j

n

ji 1i

iijj TXW if 0y  


This means that for the jth neuron, the inputs from all other neurons are weighted and

summed.

 Note ji  , which means that the output of each neuron is connected to the input of

every other neuron, but not to itself. The output is a hard-limiter which gives a 1 output if the

weighted sum is greater than Tj and an output of 0 if the weighted sum is less than Tj. it will

be assumed that the output does not change when the weighted sum is equal to Tj.

 Thresholds also need to be calculated. This could be included in the matrix by assuming

that there is an additional neuron, called neuron 0, which is permanently stuck at 1. All other

neurons have input connections to this neuron’s output with weight W01, W02, W03,…etc.

this provides an offset which is added to the weighted sum. The relation ship between the

offset and the threshold Tj is therefore:- -W0jTj 

The output [y] is just the output of neuron 0 which is permanently stuck at 1, so the formula

becomes:-      0

t

0 YXW 

For example, if the patterns  0011X1  and  0101X2  are to be stored, first convert

them to

 1111X1 

 1111X2 

To find the threshold:-

1- The matrix 












1111

1111

48 | P a g e

2-The transpose of the matrix is

























11

11

11

11

3- y0 is permanently stuck at +1 , so the offsets are calculated as follows
































































2

0

0

2

1

1

11

11

11

11

0W

4-These weights could be converted to thresholds to give:-

2T

0T

0T

2T

4

3

2

1









 -W0jTj 

Example: Consider the following samples are stored in a net:-

bipolar convert binary

1111

1111

1111

1100

0011

0010











































The binary input is (1110). We want the net to know which of samples is the i/p near to?

Note :-

A binary Hopfield net can be used to determine whether an input vector is a “known” vector

(i.e., one that was stored in the net) or “unknown” vector.

Solution:-1-use Hebb rule to find the weights matrix

49 | P a g e





















44434241

34333231

24232221

14131211

WWWW

WWWW

WWWW

WWWW

W

Wii=0 (diagonal)

 Wij=Wji



















0WWW

W0WW

WW0W

WWW0

4

3

2

1

4 3 2 1

434241

343231

242321

141312

1)1*1()1*1()1*1(W

1)1*1()1*1()1*1(W

1)1*1()1*1()1*1(W

14

13

12







3)1*1()1*1()1*1(W

3)1*1()1*1()1*1(W

1WW

24

23

1221







3)1*1()1*1()1*1(W

3WW

1WW

34

2332

3231







3WW

3WW

1WW

3443

2442

1441



































0331

3031

3301

1110

W

2-The i/p vector x = (1 1 1 0). For this vector, y= (1 1 1 0)

50 | P a g e

Choose unit y1 to update its activation


m

j

1jj1 wyX1iny

(1110)y

101

0)]*1(1)*1(1)*(11)*[(01in1y







Choose unit y2 to up date its activation:-


j

2jj2 wyx2iny

)1010(y

0y 02iny

1)2(1

)]3*0()3*1()0*1()1*1[(1

2









Choose unit y3 to update its activation:-


j

3jj3 wyx3iny

)1000(y

0y 03iny

3)4(1

)]3*0()0*1()3*1()1*1[(1

3









Choose unit y4 to update its activation:-


j

j4j4 wyxin4y

 = 0+ [(1*-1) + (1*-3) + (1*3) + (0*0)]

 = 0+ (-1) = -1

y-in4 < 0 y4=0

y = (1000)

3- Test for convergence, false

 The input vector x = (1000), for this vector,

51 | P a g e

Y= (1 0 0 0)

)1100(y

014iny

013iny

12iny

11iny











 The input vector x= (1 1 0 0)

Y= (1 1 0 0)

)1100(y

044iny

043iny

122iny

121iny











The input is near to the second sample.

True.

Stop.

52 | P a g e

4.11 KOHONEN NETWORK

 Teuvo kohonen presented the self-organizing feature map in 1982. it is an unsupervised,

competitive learning , clustering network in which only one neuron (or only one neuron in a

group) is “on” at a time.

 The self-organizing neural networks, also called (topology –preserving maps), assume

a topological structure among the cluster units. This property is observed in the brain, but is

not found in other artificial neural networks.

There are m cluster units arranged in a one –or two – dimensional array.

Cluster . معينة صفة لها مجموعة كل المعلومات من مجاميع وهي:

 The weight vector for cluster units serves as an exemplar of the input patterns

associated with that cluster. During the self organizing process, the cluster unit whose weight

vector matches the input pattern most closely (typically, the square of the minimum Euclidean

distance) is chosen as the winner. The winning unit and its neighboring units update their

weights. The weight vectors of neighboring units are not, in general, close to the input pattern.

Kohonen Network Architecture

 A kohonen network has two layers, an input layer to receive the input and an output

layer. Neurons in the output layer are usually arranged into a regular two dimensional array.

The architecture of the kohonen self-organizing map is shown bellow.

Figure (4.1)

(kohonen self-organizing map)

Y1 Yj Ym

x1 xi xn

W11 Wi1

Wn1
W1j

Wij
Wnj

W1m

W1m
Wnm

53 | P a g e

Kohonen Network Algorithm

Step 0 : initialize weights wij

 Set topological neighborhood parameters

 Set Learning rate parameters.

Step1:while stopping condition is false, do step 2-8

Step2: for each input vector x, do step 3-5

Step3: for each j, compute distance

  
i

2
iji)wx()j(D Euclidean distances

Step4 : find index J such that D(J) is a minimum

Step5: for all units j within a specified neighborhood of J, and for all i:

)]old(WijXi[)old(Wij)new(Wij 

Step6: update learning rate.

Step7: Reduce radius of topological neighborhood at specified times

Step8: Test stopping condition.

54 | P a g e

Example: A kohonen self-organizing map (SOM) to be cluster four vectors

)1100(4vector

)0001(3vector

)1000(2vector

)0011(1vector









The maximum no. of clusters to be formed is m=2 with learning rate 6.0

Solution: With only 2 clusters available, the neighborhood of nodJ is set so that only one

cluster up dates its weight at each step

Initial weight matrix:



















3.09.0

7.05.0

4.06.0

8.02.0

1- for the first vector
)0011(

xxxx 4321

 86.1)9.00()5.00()6.01()2.01()i(D 2222 

 98.0)3.00()7.00()4.01()8.01()2(D 2222  (Minimum)

2J  (The input vector) is closest to output node 2)

 The weight on the winning unit is update:-

0.92 0.8)-0.6(10.8

))old(Wx(6.0)old(W)new(W 12i1221





0.76 0.360.4

 0.4)-0.6(10.4)(22



newW

0.28

 0.7)-0.6(00.7)new(W23





0.12

 0.3)-0.6(00.3)new(W24





Y O G A 260
Highlight

Y O G A 260
Highlight

Y O G A 260
Highlight

Y O G A 260
Highlight

Y O G A 260
Highlight

Y O G A 260
Highlight

Y O G A 260
Highlight

Y O G A 260
Highlight

55 | P a g e

This gives the weight matrix



















12.09.0

28.05.0

76.06.0

92.02.0

2-for the second vector  1000

66.0)9.01()5.00()6.00()2.00()i(D 2222  minimum

2768.2)12.01()28.00()76.00()92.00()2(D 2222 

1J  (The i/p vector is closest to o/p node 1)

After update the first column of the weight matrix:-



















12.096.0

28.020.0

76.024.0

92.008.0

3- for the third vector (1 0 0 0)

856.1)96.00()20.00()24.00()08.0()i(D 2222 

minimum 2768.2

)12.01()28.00()76.00()92.01()2(D 2222





2J  (The i/p vector is closest to o/p node (2))

After update the second column of the weight matrix:-



















48.0.096.0

112.020.0

304.024.0

968.008.0

4- for the fourth vector (0 0 1 1)

minimum 7056.0)96.01()20.01()24.00()08.00()i(D 2222 

 2.724)048.01()112.01()304.00()968.00()2(D 2222 

56 | P a g e

1J  (the i/p vector is closest to o/p node 1)

After update the first column of the weight matrix :-



















48.0.0984.0

112.0680.0

304.0096.0

968.0032.0

 Reduce the learning rate

3.0)6.0(*5.0)t()*1t(

 After one iteration the weight matrix will be:-



















048.0984.0

110.0680.0

300.0096.0

970.0032.0

57 | P a g e

Genetic Algorithm (GA) 5.1

A genetic algorithm is a search procedure modelled on the mechanics of natural selection

rather than a simulated reasoning process. Domain Knowledge is embedded in the abstract

representation of a candidate solution termed an organism. Organisms are grouped into sets

called populations. Successive population are called generation. The aim of GA is search for

goal.

A generational GA creates an initial generation G(0) , and for each generation ,G(t) , generates

a new one ,G(t+1) . An abstract view of the algorithm is:-

Generate initial population, G(0);

Evaluate G(0);

t:=0;

Repeat

t:=t+ 1

Generate G(t) using G(t-1);

Evaluate G(t);

 Until solution is found.

 Genetic Operators 5.1.1

The process of evolving a solution to a problem involves a number of operations that are

loosely modeled on their counterparts from genetics .

Modeled after the processes of biological genetics , pairs of vectors in the population are

allowed to “ mate” with a probability that is proportional to their fitness . the mating procedure

typically involves one or more genetic operators . The most commonly applied genetic

operators are :-

1- Crossover.

2- Mutation.

3- Reproduction.

Y O G A 260
Highlight

Y O G A 260
Highlight

Y O G A 260
Highlight

Y O G A 260
Highlight

Y O G A 260
Highlight

Y O G A 260
Highlight

Y O G A 260
Highlight

Y O G A 260
Highlight

Y O G A 260
Highlight

Y O G A 260
Highlight

Y O G A 260
Highlight

Y O G A 260
Highlight

58 | P a g e

1- Crossover

Is the process where information from two parents is combined to form children. It takes two

chromosomes and swaps all genes residing after a randomly selected crossover point to

produce new chromosomes.

This operator does not add new genetic information to the population chromosomes but

manipulates the genetic information already present in the mating pool (MP).

The hope is to obtain new more fit children It works as follows :-

1- Select two parents from the MP (The best two chromosomes) .

2- Find a position K between two genes randomly in the range (1, M-1)

M = length of chromosome

3- Swap the genes after K between the two parents.

.the more fit one orThe output will be the both children

2- Mutation

 The basic idea of it is to add new genetic information to chromosomes. It is important

when the chromosomes are similar and the GA may be yet stuck in Local maxima. A way

to introduce new information is by changing the a of some genes. Mutation can be applied

to :-

1- Chromosomes selected from the MP.

2- Chromosomes that have already subject to crossover.

The Figure bellow illustrates schematically the GA approach.

3- Reproduction

 After manipulating the genetic information already present in the MP . by fitness

function the reproduction operator add new genetic information to the population of the

chromosomes by combining strong parents with strong children , the hope is to obtain

new more fit children . Reproduction imitate to the natural selection.

Y O G A 260
Highlight

Y O G A 260
Highlight

59 | P a g e

This schematic diagram of a genetic algorithm shows the functions that are carried out in

each generation. Over a number of such generation the initial population is evolved to the

point where it can meet some criterion with respect the problem at hand.

Genetic Algorithm approach

5.2 Genetic Programming (GP)

 Genetic programming (GP) is a domain – independent problem – solving approach in

which computer programs are evolved to solve, or approximately solve problems. Thus,

it addresses one of the central goals of computer science namely automatic programming.

The goal of automatic programming is to create, in an automated way, a computer

program that enables a computer to solve a problem.

 GP is based on reproduction and survival of the fittest genetic operations such as

crossover and mutation. Genetic operation are used to create new offspring population

of individual computer programs from the current population of programs .

60 | P a g e

 GP has several properties that make it more suitable than other paradigms (e.g. .

best – first search , heuristic search , hill climbing etc .) , these properties are :-

1- GP produces a solution to a problem as a computer program. Thus GP is automatic

programming.

2- Adaptation in GP is general hierarchical computer programs of dynamically

varying size & shape.

3- It is probabilistic algorithm.

4- Another important feature of GP is role of pre processing of inputs and post

processing of outputs .

61 | P a g e

62 | P a g e

