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1.1 DEFINITION OF LEARNING SYSTEM 

WHAT IS MACHINE LEARNING? 

 

Machine learning studies computer algorithms for learning to do stuff. We might, 

for instance, be interested in learning to complete a task, or to make accurate predictions, 

or to behave intelligently. The learning that is being done is always based on some sort 

of observations or data, such as examples (the most common case in this course), direct 

experience, or instruction. So in general, machine learning is about learning to do better 

in the future based on what was experienced in the past. 

The emphasis of machine learning is on automatic methods. In other words, the goal is 

to devise learning algorithms that do the learning automatically without human 

intervention or assistance. The machine learning paradigm can be viewed as 

“programming by example.” 

Often we have a specific task in mind, such as spam filtering. But rather than program 

the computer to solve the task directly, in machine learning, we seek methods by 

which the computer will come up with its own program based on examples that we 

provide. 

Machine learning is a core subarea of artificial intelligence. It is very unlikely that we will 

be able to build any kind of intelligent system capable of any of the facilities that we 

associate with intelligence, such as language or vision, without using learning to get there. 
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These tasks are otherwise simply too difficult to solve. Further, we would not consider 

a system to be truly intelligent if it were incapable of learning since learning is at the 

core of intelligence. 

1.2 GOALS OF MACHINE LEARNING RESEARCH 

 

The primary goal of machine learning research is to develop general purpose 

algorithms of practical value. Such algorithms should be efficient. As usual, as computer 

scientists, we care about time and space efficiency. But in the context of learning, we also 

care a great deal about another precious resource, namely, the amount of data that is 

required by the learning algorithm. 

Learning algorithms should also be as general purpose as possible. We are looking for 

algorithms that can be easily applied to a broad class of learning problems. 

Of primary importance, we want the result of learning to be a prediction rule that is as 

accurate as possible in the predictions that it makes. 

Occasionally, we may also be interested in the interpretability of the prediction rules 

produced by learning. In other words, in some contexts (such as medical diagnosis), 

we want the computer to find prediction rules that are easily understandable by human 

experts. 

As mentioned above, machine learning can be thought of as “programming by example.” 

What is the advantage of machine learning over direct programming? First, the results of 

using machine learning are often more accurate than what can be created    through direct 

programming. The reason is that machine learning algorithms are data driven, and are able 

to examine large amounts of data. On the other hand, a human expert is likely to be guided 

by imprecise impressions or perhaps an examination     of     only     a     relatively     small     

number of examples. 
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1.3 LEARNING MODELS 

 

To study machine learning mathematically, we need to formally define the 

learning problem. 

This precise definition is called a learning model. A learning model should be rich enough 

to capture important aspects of real learning problems, but simple enough to study the 

problem mathematically. As with any mathematical model, simplifying assumptions are 

unavoidable. 

A learning model should answer several questions: 

 What is being learned? 

 

 How is the data being generated? In other words, where does it come from? 

 

 How is the data presented to the learner? For instance, does the learner see all the data at once or 

only one example at a time? 

 What is the goal of learning in this model? 
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2.1CONCEPT LEARNING TASK 

To ground our discussion of concept learning, consider the example task of learning 

the target concept "days on which my friend Aldo enjoys his favorite water sport." 

Table 2.1 describes a set of example days, each represented by a set of attributes. The 

attribute EnjoySport indicates whether or not Aldo enjoys his favorite water sport on this 

day. The task is to learn to predict the value of EnjoySport for an arbitrary day, based on the 

values of its other attributes. 

What hypothesis representation shall we provide to the learner in this case? 

 

Let us begin by considering a simple representation in which each hypothesis consists 

of a conjunction of constraints on the instance attributes. In particular, let each hypothesis 

be a vector of six constraints, specifying the values of the six attributes Sky, AirTemp, 

Humidity, Wind, Water, and Forecast. For each attribute, the hypothesis will either 

 

 

 Indicate by a "?' that any value is acceptable for this attribute, 

 

 Specify a single required value (e.g., Warm) for the attribute, or 

 

Indicate by a "Ø" that no value is acceptable. 
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If some instance x satisfies all the constraints of hypothesis h, then h classifies x as a positive 

example (h(x) = 1). To illustrate, the hypothesis that Aldo enjoys his favorite sport only on 

cold days with high humidity (independent of the values of the other attributes) is represented 

by the expression (?, Cold, High, ?, ?, ?) 

 

The most general hypothesis-that every day is a positive example-is represented by (?, ?, ?, ?, 

?, ?) and the most specific possible hypothesis-that no day is a positive example-is represented 

by (0,0,0,0,0,0) To summarize, the EnjoySport concept learning task requires learning the set 

of days for which EnjoySport = yes, describing this set by a conjunction of constraints over 

the instance attributes. In general, any concept learning task can be described by the set of 

instances over which the target function is defined, the target function, the set of candidate 

hypotheses considered by the learner, and the set of available training examples. The definition 

of the EnjoySport concept learning task in this general form. 

2.2 CONCEPT LEARNING AS SEARCH 

Concept learning can be viewed as the task of searching through a large space of 

hypothesis implicitly defined by the hypothesis representation. The goal of the concept 

learning search is to find the hypothesis that best fits the training examples. 

Concept learning is a task of searching a hypotheses space the representation chosen for 

hypotheses determines the search space In the example we have: 
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2.3 GENERAL-TO-SPECIFIC ORDERING OF HYPOTHESES 

Many algorithms for concept learning organize the search through the hypothesis space by 

relying on a very useful structure that exists for any concept learning problem: a general-to-

specific ordering of hypotheses. By taking advantage of this naturally occurring structure over 

the hypothesis space, we can design learning algorithms that exhaustively search even infinite 

hypothesis spaces without explicitly enumerating every hypothesis. To illustrate the general-

to-specific ordering, consider the two hypotheses 

             h1 = (Sunny, ?, ?, Strong, ?, ?)  

             h2 = (Sunny, ?, ?, ?, ?, ?) 
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FIND-S: FINDING THE MOST SPECIFIC HYPOTHESIS 
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3.1 DECISION-TREE LEARNING  

Decision tree learning is a method for approximating discrete-valued target functions, in 

which the learned function is represented by a decision tree. Learned trees can also be re-

represented as sets of if-then rules to improve human readability. 

These learning methods are among the most popular of inductive inference algorithms 

and have been successfully applied to a broad range of tasks from learning to diagnose 

medical cases to learning to assess credit risk of loan applicants. 

 

3.2 DECISION TREE REPRESENTATION 
 

Decision trees classify instances by sorting them down the tree from the root to some 

leaf node, which provides the classification of the instance. Each node in the tree specifies 

a test of some attribute of the instance, and each branch descending. 

CHAPTER THREE 

DECISION TREE 
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From that node corresponds to one of the possible values for this attribute. An instance 

is classified by starting at the root node of the tree, testing the attribute specified by 

this node, then moving down the tree branch corresponding to the value of the attribute 

in the given example. This process is then repeated for the sub-tree rooted at the new 

node. 

Figure 3.1 illustrates a typical learned decision tree. This decision tree classifies 

Saturday mornings according to whether they are suitable for playing tennis. 

For example, the instance 

 

 

 

Would be sorted down the leftmost branch of this decision tree and would therefore be 

classified as a negative instance (i.e., the tree predicts that PlayTennis 

= no). 
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This tree and the example used in Table 3.2 to illustrate the ID3 learning algorithm are 

adapted from (Quinlan 1986). 

Many practical problems have been found to fit these characteristics. Decision tree 

learning has therefore been applied to problems such as learning to classify medical 

patients by their disease, equipment malfunctions by their cause, and loan applicants by 

their likelihood of defaulting on payments. Such problems, in which the task is to classify 

examples into one of a discrete set of possible categories, are often referred to as 

classifications problems. 

 

3.3 THE BASIC DECISION TREE LEARNING ALGORITHM 

Most algorithms that have been developed for learning decision trees are variations on a 

core algorithm that employs a top-down, greedy search through the space of possible 

decision trees. This approach is exemplified by the ID3 algorithm (Quinlan 1986) and 

its successor C4.5 (Quinlan 1993), which form the primary focus of our discussion here. 

Basic algorithm, ID3, learns decision trees by constructing them top down, beginning 

with the question "which attribute should be tested at the root of the tree?'To 

answer this question, each instance attribute is evaluated using a statistical test to 

determine how well it alone classifies the training examples 

 

3.4 WHICH ATTRIBUTE IS THE BEST CLASSIFIER? 

The central choice in the ID3 algorithm is selecting which attribute to test at each node in 

the tree. We would like to select the attribute that is most useful for classifying 

examples. What is a good quantitative measure of the worth of an attribute? We will 

define a statistical property, called information gain that measures how well a given 

attribute separates the training examples according to their target classification. ID3 uses 
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this information gain measure to select among the candidate attributes at each step while 

growing the tree. 

 
3.5 ENTROPY MEASURES HOMOGENEITY OF EXAMPLES 
In order to define information gain precisely, we begin by defining a measure commonly 

used in information theory, called entropy, that characterizes the (im) purity of an arbitrary 

collection of examples. Given a collection S, containing positive and negative examples 

of some target concept, the entropy of S relative to this Boolean classification is 
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3.6 INFORMATION GAIN MEASURES THE EXPECTED 

REDUCTION IN ENTROPY 
 

Given entropy as a measure of the impurity in a collection of training examples, we can now 

define a measure of the effectiveness of an attribute in classifying the training data. The 

measure we will use, called information gain, is simply the expected reduction in 

entropy caused by partitioning the examples according to this attribute. More precisely, 

the information gain, Gain(S, A) of an attribute A, relative to a collection of examples S, 

is defined as 
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From table D and for each associated subset Si , we compute degree of impurity. We have 

discussed about how to compute these indices in the previous section. 

 

To compute the degree of impurity, we must distinguish whether it is come from the 

parent table D or it come from a subset table Si with attribute i. 

 

If the table is a parent table D, we simply compute the number of records of each class. 

For example, in the parent table below, we can compute degree of impurity based on 

transportation mode. In this case we have 4 Busses, 3 Cars and 3 Trains (in short 4B, 3C, 

3T): Based on these data, we can compute probability of each class.  Since  probability  is  

equal  to  frequency  relative,  we  have 

 

Prob (Bus) = 4 / 10 = 0.4 

Prob (Car) = 3 / 10 = 0.3 

Prob (Train) = 3 / 10 = 0.3 
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Observe that when to compute probability, we only focus on the classes , not on the 

attributes . Having the probability of each class, now we are ready to compute the 

quantitative indices of impurity degrees. 

 

3.7 ENTROPY 
 

One way to measure impurity degree is using entropy. 

 

Example: Given that Prob (Bus) = 0.4, Prob (Car) = 0.3 and Prob (Train) = 0.3, we can now 

compute entropy as 

Entropy = – 0.4 log (0.4) – 0.3 log (0.3) – 0.3 log (0.3) = 1.571 The 

logarithm is base 2. 

 

Entropy of a pure table (consist of single class) is zero because the probability is 1 and log 

(1) = 0. Entropy reaches maximum value when all classes in the table have equal probability. 

Figure below plots the values of maximum entropy for different number of classes n, 

where probability is equal to p=1/n. I this case, maximum entropy is equal to -n*p*log 

p. Notice that the value of entropy is larger than 1 if the number of classes is more than 2. 
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Table D 

 

 

If the table is a subset of attribute table Si, we need to separate the computation of 

impurity degree for each value of the attribute i. 
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For example, attribute Travel cost per km has three values: Cheap, Standard and Expensive. 

Now we sort the table Si = [Travel cost/km, Transportation mode] based on the values 

of Travel cost per km. Then we separate each value of the travel cost and compute the 

degree of impurity (either using entropy, gini index or classification error). 

 

 

3.8 INFORMATION GAIN 
 

The reason for different ways of computation of impurity degrees between data table D 

and subset table S i is because we would like to compare the difference of impurity degrees 

before we split the table (i.e. data table D) and after we split the table according to the 

values of an attribute i (i.e. subset table Si) . The measure to 
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compare the difference of impurity degrees is called information gain . We would like to 

know what our gain is if we split the data table based on some attribute values. 

 

Information gain is computed as impurity degrees of the parent table and weighted 

summation of impurity degrees of the subset table. The weight is based on the number 

of records for each attribute values. Suppose we will use entropy as measurement of 

impurity degree, then we have: 

 

Information gain (i) = Entropy of parent table D – Sum (n k /n * Entropy of each value k 

of subset table Si ) 

 

For example, our data table D has classes of 4B, 3C, 3T which produce entropy of 

 

1.571. Now we try the attribute Travel cost per km which we split into three: Cheap 

that has classes of 4B, 1T (thus entropy of 0.722), Standard that has classes of 2T (thus 

entropy = 0 because pure single class) and Expensive with single class of 3C (thus entropy 

also zero). 

 

The information gain of attribute Travel cost per km is computed as 1.571 

– (5/10 * 0.722+2/10*0+3/10*0) = 1.210 

You can also compute information gain based on Gini index or classification error in the 

same method. The results are given below. 
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For each attribute in our data, we try to compute the information gain. The illustration below 

shows the computation of information gain for the first iteration (based on the data table) 

for other three attributes of Gender, Car ownership and Income level. 

 

Table below summarizes the information gain for all four attributes. In practice, you 

don't need to compute the impurity degree based on three methods. You can use either 

one of Entropy or Gini index or index of classification error.  
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Once you get the information gain for all attributes, then we find the optimum attribute 

that produce the maximum information gain (i* = argmax {information gain of attribute 

i}). In our case, travel cost per km produces the maximum information gain. We put this 

optimum attribute into the node of our decision tree. As it is the first node, then it is the root 

node of the decision tree. Our decision tree now consists of a single root node. 

 

Once we obtain the optimum attribute, we can split the data table according to that optimum 

attribute. In our example, we split the data table based on the value of travel cost per km. 

 
 

Using this information, we can now update our decision tree. We can add node 

Gender which has two values of male and female. The pure class is related to leaf 

node, thus Male gender has leaf node of Bus. For Female gender, we need to split 

further the attributes in the next iteration. 
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After the split of the data, we can see clearly that value of Expensive travel cost/km 

is associated only with pure class of Car while Standard travel cost/km is only related to 

pure class of Train. Pure class is always assigned into leaf node of a decision tree. We can 

use this information to update our decision tree in our first iteration into the following. 

 

 

 

 

For Cheap travel cost/km, the classes are not pure, thus we need to split further. 

Second Iteration 

 

In the second iteration, we need to update our data table. Since Expensive and Standard 

Travel cost/km have been associated with pure class, we do not need these data any 

longer. For second iteration, our data table D is only come from the Cheap Travel cost/km. 

We remove attribute travel cost/km from the data because they are equal and redundant. 
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Now we have only three attributes: Gender, car ownership and Income level. The degree 

of impurity of the data table D is shown in the picture below. 

 

 

 

Then, we repeat the procedure of computing degree of impurity and information 

gain for the three attributes. The results of computation are exhibited below. 
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The maximum gain is obtained for the optimum attribute Gender. Once we obtain 

the optimum attribute, the data table is split according to that optimum attribute. In 

our case, Male Gender is only associated with pure class Bus, while Female still 

need further split of attribute.  
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Using this information, we can now update our decision tree. We can add node Gender 

which has two values of male and female. The pure class is related to leaf node, thus Male 

gender has leaf node of Bus. For Female gender, we need to split further the attributes in 

the next iteration. 

 

 

Third iteration 

 

Data table of the third iteration comes only from part of the data table of the 

second iteration with male gender removed (thus only female part). Since attribute 

Gender has been used in the decision tree, we can remove the attribute and focus 

only on the remaining two attributes: Car ownership and Income level. 

 
 

If you observed the data table of the third iteration, it consists only two rows. Each row 

has distinct values. If we use attribute car ownership, we will get pure class for each of 
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its value. Similarly, attribute income level will also give pure class for each value. 

Therefore, we can use either one of the two attributes. Suppose we select attribute 

car ownership, we can update our decision tree into the final version 

 

 

Now we have grown the final full decision tree based on the data. 

  



26 | P a g e  
 
 

 

 

 

 

 

 

 

 

 

 4.1 FUNDAMENTALS OF ARTIFICIAL NEURAL NETWORKS. 
Artificial neural network (ANN) models have been studied for many years with 

the hope of achieving "Human-like performance", Different names were given to these 

models such as: 

- Parallel distributed processing models 
 

- Biological computers or Electronic Brains. 
 

- Connectionist models 
 

- Neural morphic system 
 

After that, all these names settled on Artificial Neural Networks (ANN) and after it 

on neural networks (NN) only. 

There are two basic different between computer and neural, these are: 
 

1- These models are composed of many non-linear computational elements operating 

in parallel and arranged in patterns reminiscent of biological neural networks. 

2- Computational Elements (or node s) are connected via weights that are typically 

adapted during use to improve performance just like human brain. 

Computer logic Elements (1, 0) 
 

Neural weighted performance 
 
 

Areas of Neural Networks 
 
The areas in which neural networks are currently being applied are:  

1-Signal processing 

2- Pattern Recognition. 
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3- Control problems 
 
4- Medicine 

 
5- Speech production 

  
6- Speech Recognition 

 
7- Business 

 

4.2 THEORY OF NEURAL NETWORKS (NN)  

 Human brain is the most complicated computing device known to a human being. The 

capability of thinking, remembering, and problem solving of the brain has inspired many 

scientists to model its operations. Neural network is an attempt to model the functionality of 

the brain in a simplified manner. These models attempt to achieve "good" performance via 

dense interconnections of simple computational elements. The term (ANN) and the connection 

of its models are typically used to distinguish them from biological network of neurons of 

living organism which can be represented systematically as shown in figure below  

 

Biological Neural Network and Artificial Neural Network 

Neclues is a simple processing unite which receives and combines signals from many other 

neurons through input paths called dendrites if the combined signal is strong enough, it 

activates the firing of neuron which produces an o/p signal. The path of the o/p signal is called 
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the   axon, synapse is the junction between the (axon) of the neuron and the dendrites of the 

other neurons. The transmission across this junction is chemical in nature and the amount of 

signal transferred depends on the synaptic strength of the junction. This synoptic strength is 

modified when the brain is learning. 

Weights (ANN)   synaptic strength (biological Networks) 

4.3 TYPES OF LEARNING 

In case a neural network is to be used for particle applications, a general procedure is to be 

taken, which in its various steps can be described as follows:- 

1: A logical function to be represented is given. The input vector e1 , e2, e3,  ….  , en are present, 

whom the output vectors a1, a2, a3, ….  , an  assigned. These functions are to be represented 

by a network. 

2: A topology is to be selected for the network. 

3: The weights w1, w2, w3, … are to be selected in such away that the network represents The 

given function (n) the selected topology. Learn procedures are to be used for determining 

the weights. 

4: After the weights have been learned and the network becomes available, it can be used as 

after as desired. 

1- Supervised Learning:- 

        The supervised is that, at every step the system is informed about the exact output 

vector. The weights are changed according to a formula (e.g. the delta-rule), if o/p is unequal 

to a. This method can be compared to learning under a teacher, who knows the contents to be 

learned and regulates them accordingly in the learning procedure. 

2- Unsupervised Learning:- 

 Here the correct final vector is not specified, but instead the weights are changed 

through random numbers. With the help of an evaluation function one can ascertain whether 

the output calculated with the changed weights is better than the previous one. In this case the 
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changed weights are stored, else forgotten. This type of learning is also called reinforcement 

learning. 

4.4 TYPICAL ARCHITECTURE OF ANN  

Neural nets are often classified as single layer or multilayer. In determining the number 

of layers, the input units are not counted as a layer, because they perform no computation. 

Equivalently, the number of layers in the net can be defined to be the number of layers of 

weighted interconnects links between the slabs of neurons. 

1- Single-Layer Net:- 
 

A single-layer net has one layer of connection weight. Often, the units can be 

distinguished as input units, which receive signals from the outside world, and output 

units, from which the response of the net can be read. In the typical single-layer net 

shown in figure bellow the input units are fully connected to output units but are not 

connected to other input units and the output units are not connected to other output 

units. 

 
Single Layer Neural Network 

 

2-Multilayer net  

A Multilayer net is a net with one or more layers (or levels) of nodes which is called hidden 

units, between the input units and the output units. Typically, there is a layer of weights 
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between two adjacent levels of units (input, hidden, or output). Multilayer nets can solve more 

complicated problems than can single-layer nets, but training may be more difficult. However, 

in some cases, training may be more successful because it is possible to solve a problem that 

a single-layer net can not be trained to perform correctly at all. The figure bellow shows the 

multilayer neural net. 

 
Multiple Layer Neural Network 

 

4.5 BASIC ACTIVATION FUNCTIONS 

 The activation function (Sometimes called a transfers function) shown in figure below 

can be a linear or nonlinear function. There are many different types of activation functions. 

Selection of one type over another depends on the particular problem that the neuron (or neural 

network) is to solve. The most common types of activation function are:- 
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1- The first type is the linear (or identity) function.  

qqlinq vvfy )(  

 
  

 
 

 
 

 
 

2-The second type of activation function is a hard limiter; this is a binary (or bipolar) function 

that hard-limits the input to the function to either a 0 or a 1 for the binary type, and a -1 or 1 

for the bipolar type. The binary hard limiter is sometimes called the threshold function, and 

the bipolar hard limiter is referred to as the symmetric hard limiter.  

a- The o/p of the binary hard limiter:- 
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b-The o/p for the symmetric hard limiter (shl):-  
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3-The fourth type is sigmoid. Modern NN's use the sigmoid nonlinearity which is also known 

as logistic, semi linear, or squashing function.  
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Ex.1 find y for the following neuron if :- x1=0.5,  x2=1, x3=0.7 

+

1 

vq 

 

 

-1  

+

1 

x 

vq 

 

 

0 

 

0.5 

 

Y O G A 260
Highlight



33 | P a g e  
 
 

 

 w1=0,  w2=-0.3, w3=0.6 

 

Sol 

net = 332211 WXWXWX   

      =0.5*0+1*-0.3+(-0.7*0.6)= -0.72 

1- if   f  is linear  

 y =  -0.72  

2- if  f is hard limiter (on-off) 

 y = -1 

3-if   f  is sigmoid   

  32.0
e1

1
y

)72.0(






 

4.6 THE BIAS  
 التعلم لتحسين تضاف ثابتة قيمة

Some networks employ a bias unit as part of every layer except the output layer. 

This units have a constant activation value of 1 or -1, it's weight might be adjusted during 

learning. The bias unit provides a constant term in the weighted sum which results in an 

improvement on the convergence properties of the network.  

A bias acts exactly as a weight on a connection from a unit whose activation is always 

increasing the bias increases the net input to the unit. If a bias is included, the activation 

function is typically taken to be: 

 









; 0    net   if     1

; 0  net   if       1
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4.7 LEARNING ALGORITHMS 
 

 The NN's mimic the way that a child learns to identify shapes and colors NN algorithms 

are able to adapt continuously based on current results to improve performance. Adaptation or 

learning is an essential feature of NN's in order to handle the new "environments" that are 

continuously encountered. In contrast to NN's algorithms, traditional statistical techniques are 

not adoption but typically process all training data simultaneously before being used with new 

data. The performance of learning procedure depends on many factors such as:-  

1- The choice of error function. 

2- The net architecture. 

3- Types of nodes and possible restrictions on the values of the weights.  

4- An activation function.  
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Input unit  
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The convergent of the net:-  

 Depends on the:- 

1- Training set  

2- The initial conditions  

3- Learning algorithms.  

4.8 PERCEPTRON 
 

the perceptron is an algorithm for supervised learning of binary classifiers. A binary classifier 

is a function which can decide whether or not an input, represented by a vector of numbers, 

belongs to some specific class. It is a type of linear classifier, i.e. a classification algorithm 

that makes its predictions based on a linear predictor function combining a set of weights with 

the feature vector. 

 
The algorithm is as follows: 

1. Initialize the weights and threshold to small random numbers. 

2. Present a vector x to the neuron inputs and calculate the output. 

3. Update the weights according to: 

                         w(t+1)=w(t)+c(d-y)*x 

 
 where 

o d is the desired output, 

o t is the iteration number, and 

o c is the learning rate or step size, where 0.0 < c <= 1.0 

4. Repeat steps 2 and 3 until: 

o the iteration error is less than a user-specified error threshold or 

o a predetermined number of iterations have been completed. 
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Illustration of the perceptron learning algorithm  

Example: Consider the following training set: 

x1 x2 x3 d 

1 0 1 -1 

0 -1 -1 1 

-1 -0.5 -1 1 

 

The learning rate is assumed to be 0.1. The initial weight vector is w0 = (1, −1, 0). Then the 

learning according to the perceptron learning rule progresses as follows.  

Solution: 

[Step 1] Input x at t=1, desired output d is -1: 

Net1=(1,-1,0) (
1
0
1

) = 1 

Correction in this step is needed since  

y1 = −1 ≠ sign(1). 

We thus obtain the updated vector 

w1 = w0 + 0.1(−1 − 1) x1 

Plugging in numerical values we obtain 

w1 =(
1

−1
0

) − 0.2 (
1
0
1

) = (
0.8
−1

−0.2
)  

 

[Step 2] Input x at t=2 , desired output d is 1. For the present w1 we compute the following: 

Net2=(0.8,-1,-0.2) (
0

−1
−1

) = 1.2 

Correction is not performed in this step since 1 = sign(1.2), so we let w2 := w1 

[Step 3] Input is x at t=3, desired output d is 1. 
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Net3=(0.8,-1,-0.2) (
−1

−0.5
−1

) = -0.1 

Correction in this step is needed since y3 = 1 6 ≠ sign(−0.1). We thus obtain the updated vector  

w3 = w2 +0.1(1+1) x3 

Plugging in numerical values we obtain 

 

W3=(
0.8
−1

−0.2
) + 0.2 (

−1
−0.5
−1

) = (
0.6

−1.1
−0.4

)  

[Step 4] Input x1 , desired output d is -1: 

Net4=(0.6,-1.1,-0.4) (
1
0
1

) = 0.2 

Correction in this step is needed since y1 = −1 6 ≠ sign(0.2). We thus obtain the updated vector  

w4 = w3 + 0.1(−1 − 1) x 1  

Plugging in numerical values we obtain 

 

W4=(
0.6

−1.1
−0.4

) − 0.2 (
1
0
1

) = (
0.4

−1.1
−0.6

)  

 

Terminates this learning process at t=6, the correct weights (0.4, −1.1, −0.6). 

  

Y O G A 260
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4.9 BACK PROPAGATION  

 The determination of the error is a recursive process which start with the o/p units and 

the error is back propagated to the I/p units. Therefore the rule is called error Back propagation 

(EBP) or simply Back Propagation (BP). The weight is changed exactly in the same form of 

the standard DR  

ijij x   w   

ijijij x       )t(w)1t(w       

There are two other equations that specify the error signal. If a unite is an o/p unit, the error 

signal is given by:- 

j)  net(f  )yd( jjj   

Where     iij x w     j   net  

 

The GDR minimize the squares of the differences between the actual and the desired o/p values 

summed over the o/p unit and all pairs of I/p and o/p vectors. The rule minimize the overall 

error  pEE  by implementing a gradient descent in E: - where,    2
jjjp )yd(2/1E

. 

The BP consists of two phases:-  

1- Forward Propagation:-  

 During the forward phase, the I/p is presented and propagated towards the o/p.                                                                    

 المرحلة الأولى                                                                                                              

 

 

 

 

 

 

Y1 

Y2 

Yn 

Pattern                    Hidden                     o/p 
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2- Backward Propagation:- 

 During the backward phase, the errors are formed at the o/p and propagated towards 

the I/p  

 

 

 

 

 

 

3- Compute the error in the hidden layer. 

 If 
xe1

1
)x(fy


  

    )y1(yf   

Equation is can rewrite as:- 

)yd)(y1(y jjj   

The error signal for hidden units for which there is no specified target (desired o/p) is 

determined recursively in terms of the error signals of the units to which it directly connects 

and the weights of those connections:-  

That is   

 
k ikkjj w)net(f  

Or  

           
k ikkjjj w)y1(y  

 

B.P learning is implemented when hidden units are embedded between input and output 

units.  
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Convergence:- 

A quantitative measure of the learning is the :Root Mean Square (RMS) error which is 

calculated to reflect the "degree" of learning. 

Generally, an RMS bellow (0.1) indicates that the net has learned its training set. Note that 

the net does not provide a yes /no response that is "correct" or "incorrect" since the net get 

closer to the target value incrementally with each step. It is possible to define a cut off point 

when the nets o/p is said to match the target values.  

 

 

 

 

 

 

- Convergence is not always easy to achieve because sometimes the net gets stuck in a 

"Local minima" and stops learning algorithm.  

- Convergence can be represented intuitively in terms of walking about mountains. 

Momentum term  

 The choice of the learning rate plays important role in the stability of the process. It is 

possible to choose a learning rate as large as possible without leading to oscillations. This 

offers the most rapid learning. One way to increase the learning rate without leading to 

oscillations is to modify the GDR to include momentum term.  

This can be achieved by the following rule:-  

))1t(W)t(W(x)t(W)1t(W ijijijijij   

 

Where )10(   is a constant which determines the effect of the past weight changes on 

the current direction of movement in weight space.  

  

Local minima  
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A "global minima" unfortunately it is possible to encounter a local minima, avally that 

is not the lowest possible in the entire terrain. The net does not leave a local minima by the 

standard BP algorithm and special techniques should be used to get out of a local minima such 

as:-  

 

1- Change the learning rate or the momentum term.  

2- Change the no. of hidden units (10%). 

3- Add small random value to the weights.  

4- Start the learning again with different initial weights. 

Back propagation training algorithm  

Training a network by back propagation involves three stages:-  

1-the feed forward of the input training pattern  

2-the back propagation of the associated error  

3-the adjustment of the weights 

let n = number of input units in input layer, 

let p = number of hidden units in hidden layer  

let m = number of output units in output layer  

let Vij be the weights between i/p layer and the hidden layer,  

let Wij be the weights between hidden layer and the output layer,  

we refer to the i/p units as Xi , i=1, 2, ….,n. and we refer to the hidden units as Zj , j=1,….,p. 

and we refer to the o/p units as yk, k=1,….., m.  

j1  is the error in hidden layer,  

k2  is the error in output layer, 

  is the learning rate  

  is the momentum coefficient (learning coefficient, 0.0 <   < 1.0, 

yk is the o/p of the net (o/p layer),  

Zj is the o/p of the hidden layer,  
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Xi is the o/p of the i/p layer.  

  is the learning coefficient.  

The algorithm is as following :-  

Step 0 : initialize weights (set to small random value).  

Step 1 : while stopping condition is false do steps 2-9  

 Step 2: for each training  pair, do steps 3-8  

Feed forward :- 

Step 3:- Each i/p unit (Xi) receives i/p signal Xi & broad casts this signal to all units in 

the layer above (the hidden layer)  

 

Step 4:- Each hidden unit (Zj) sums its weighted i/p signals,  





n

1i
iji abias)  is   Vaj(   vxVajinjZ  

and applies its activation function to compute its output signal (the activation function 

is the binary sigmoid function),  

inj))-(Z-exp(1   /  1)injZ(fZ j   

and sends this signal to all units in the layer above (the o/p layer).  

Step 5:- Each output unit (Yk)sums its weighted i/p signals,  

 abias)  is  wok  (where    Zjwjkwokinky

p

1j




  

and applies its activation function to compute its output signal.  

)inky(exp1/(1)inky(fyk   

back propagation of error:-  

step 6 : Each output unit (yk , k= 1 tom ) receive a target pattern corresponding to the 

input training pattern, computes its error information term and calculates its 

weights correction term used to update Wjk later,  
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 ),yT(*)y1(y kkkkk2   

 where Tk is the target pattern & k=1 to m . 

step 7 : Each hidden unit (Zj, j= 1 top ) computes its error information term and 

calculates  its weight correction term used to update Vij later,  





m

1k
j1 kWjk2*)Zj1(*Zj  

Update weights and bias :-  

step 8: Each output unit (yk, k =1 tom ) updates its bias and weights:  

)],dd(Wjk*[Zj*k2*)new(Wjk   

 j= 1 to p  

 Each hidden unit (Zj, j= 1 to p) update its bias and weights:  

 )],dd(vij[Xi*j1*)new(Vij   

 I = 1 to n  

Step 9 : Test stopping condition. 

Example: Suppose you have BP- ANN with 2-input , 2-hiddden , 1-output nodes with sigmoid 

function and the following matrices weight, trace with 1-iteration.  

 5.00.3   w                              
2.075.0

3.01.0
V 







 
  

Where 1T and , (1,0)    x0.45,   ,9.0 k   

Solution:-  

 

 

 

 

 

 

 

X1 

X2 Z2 

Z1 

Y1 

 0.1      V11 

 0.2      V22 

 0.75           V12 

-0.3           V21 
 0.3        W11 

 -0.5      W21 

 

 

 

Input 

units 

Hidden 

units 

output 

units 
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1-Forword phase :-  

484.0)1iny(exp1/(1)1iny(fy

-0.063(-0.5)*0.4260.3*0.5            

WZWZ1iny

426.0))2inZ(exp1/(1)2inZ(fZ

5.0))1inZ(exp1/(1)1inZ(fZ

3.02.0*03.0*1VXVX2inZ

1.075.0*01.0*1VXVX1inZ

1

212111

2

1

222121

212111















 

2-Backward phase :- 

 










m

1k
jkk2jjj1

21

2

W*)Z1(*Z

129.0)484.01(*)484.01(484.0

)ykTk(*)yk1(ykk

 

015.0))5.0(*129.0(*)426.01(426.0       

)W(*)Z1(Z

0.00970.3)*(0.129*0.5)-(1 0.5       

)W(*)Z1(Z

21212212

11211111









 

3-Update weights:-  

 

 
 

 

 
 

0.0944 0.1*0.91*0.0097*0.45        

)old(V  *X**V

)old(V  *X**)new(V

0.4253-0.5*0.90.426*0.129*0.45         

)old(W  *Z**W

0.2990.3*0.90.5*0.129*0.45         

)old(W *Z**W

)old(W*Z**)new(W

1111111

ijij1ij

2122121

1112111

jkjk2jk
















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 

 

 
0.18 0.2*0.90*-0.0158*0.45        

)old(V  *X**V

0.6750.75*0.90*0.0097*0.45        

)old(V  *X**V

2771.0 -0.3*0.91*0.0158*0.45        

)old(V  *X**V

2221222

2121121

1211212













 

 

 0.4253-0.299      W          
18.0675.0

2771.00944.0
V 







 
  
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4.10 THE HOPFIELD NETWORK  

The Nobel prize winner (in physics ) John Hopfield has developed the discrete Hopfield net 

in (1982-1984). The net is a fully interconnected neural net, in the sense that each unit is 

connected to every other unit. The discrete Hopfield net has symmetric weights with no self-

connections, i.e,  

jiij WW           

And   0Wii   

In this NN, inputs of 0 or 1 are usually used, but the weights are initially calculated after 

converting the inputs to -1 or +1 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

“The Hopfield network“  

The outputs of the Hopfield are connected to the inputs as shown in Figure, Thus feedback has 

been introduced into the network. The present output pattern is no longer solely dependent on 

the present inputs, but is also dependent on the previous outputs. Therefore the network can 

be said to have some sort of memory, also the Hopfield network has only one layer of neurons.  

The response of an individual neuron in the network is given by :-   

w21 

w31 
T1 

w12 

w32 
T2 

w13 

w23 
T3 

w21 
 

w31 

 

w12 
 

w32 

 

w13 
 

w23 

 

x1 

x2 

x3 

y1 

y2 

y3 
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j

n

ji  1i

iijj TXW  if    1y  


  

j

n

ji  1i

iijj TXW  if    0y  


 

This means that for the jth neuron, the inputs from all other neurons are weighted and 

summed. 

 Note ji  , which means that the output of each neuron is connected to the input of 

every other neuron, but not to itself. The output is a hard-limiter which gives a 1 output if the 

weighted sum is greater than Tj  and an output of 0 if the weighted sum is less than Tj. it will 

be assumed that the output does not change when the weighted sum is equal to Tj.  

 Thresholds also need to be calculated. This could be included in the matrix by assuming 

that there is an additional neuron, called neuron 0, which is permanently stuck at 1. All other 

neurons have input connections to this neuron’s output with weight W01, W02, W03,…etc. 

this provides an offset which is added to the weighted sum. The relation ship between the 

offset and the threshold Tj is therefore:- -W0jTj   

The output [y] is just the output of neuron 0 which is permanently stuck at 1, so the formula 

becomes:-       0

t

0 YXW   

For example, if the patterns  0011X1   and  0101X2   are to be stored, first convert 

them to  

 1111X1   

 1111X2      

To find the threshold:-  

1- The matrix  












1111

1111
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2-The transpose of the matrix is 

























11

11

11

11

  

3- y0 is permanently stuck at +1 , so the offsets are calculated as follows  
































































2

0

0

2

    
1

1
  

11

11

11

11

0W  

 

4-These weights could be converted to thresholds to give:- 

2T

0T

0T

2T

4

3

2

1









  -W0jTj   

Example: Consider the following samples are stored in a net:-  

bipolar     convert              binary

1111

1111

1111

1100

0011

0010











































 

The binary input is (1110). We want the net to know which of samples is the i/p near to?  

 

Note :-  

A binary Hopfield net can be used to determine whether an input vector is a “known” vector 

(i.e., one that was stored in the net ) or “unknown” vector.  

Solution:-1-use Hebb rule to find the weights matrix  
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



















44434241

34333231

24232221

14131211

WWWW

WWWW

WWWW

WWWW

W   

 

Wii=0 (diagonal)    

     Wij=Wji                     



















0WWW

W0WW

WW0W

WWW0

4

3

2

1

4         3         2         1       

434241

343231

242321

141312

 

1)1*1()1*1()1*1(W

1)1*1()1*1()1*1(W

1)1*1()1*1()1*1(W

14

13

12







 

3)1*1()1*1()1*1(W

3)1*1()1*1()1*1(W

1WW

24

23

1221







 

3)1*1()1*1()1*1(W

3WW

1WW

34

2332

3231







 

3WW

3WW

1WW

3443

2442

1441







 





























0331

3031

3301

1110

W  

2-The i/p vector x = (1 1 1 0). For this vector, y= (1 1 1 0)  
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Choose unit y1 to update its activation   


m

j

1jj1 wyX1iny  

(1110)y

101           

0)]*1(1)*1(1)*(11)*[(01in1y







 

Choose unit y2 to up date its activation:-  


j

2jj2 wyx2iny  

)1010(y

0y         02iny

1)2(1            

)]3*0()3*1()0*1()1*1[(1            

2









 

Choose unit y3 to update its activation:-  


j

3jj3 wyx3iny  

)1000(y

0y         03iny

3)4(1            

)]3*0()0*1()3*1()1*1[(1            

3









 

Choose unit y4 to update its activation:- 


j

j4j4 wyxin4y  

           = 0+ [(1*-1) + (1*-3) + (1*3) + (0*0)] 

           = 0+ (-1)     = -1 

y-in4 < 0      y4=0 

y = (1000) 

3- Test for convergence, false  

 The input vector x = (1000), for this vector,  



51 | P a g e  
 
 

 

Y= (1 0 0 0)  

)1100(y

014iny

013iny

12iny

11iny











 

 The input vector x= (1 1 0 0)  

Y= (1 1 0 0)  

)1100(y

044iny

043iny

122iny

121iny











 

The input is near to the second sample. 

True. 

Stop. 
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4.11  KOHONEN NETWORK  

 Teuvo kohonen presented the self-organizing feature map in 1982. it is an unsupervised, 

competitive learning , clustering network in which only one neuron (or only one neuron in a 

group) is “on” at a time. 

 The self-organizing neural networks, also called (topology –preserving maps), assume 

a topological structure among the cluster units. This property is observed in the brain, but is 

not found in other artificial neural networks.  

There are  m cluster units arranged in a one –or two – dimensional array. 

Cluster . معينة صفة لها مجموعة كل   المعلومات من مجاميع وهي:    

 The weight vector  for cluster units serves as an exemplar of the input patterns 

associated with that cluster. During the self organizing process, the cluster unit whose weight 

vector matches the input pattern most closely (typically, the square of the minimum Euclidean 

distance ) is chosen as the winner. The winning unit and its neighboring units update their 

weights. The weight vectors of neighboring units are not, in general, close to the input pattern. 

Kohonen Network Architecture  

 A kohonen network has two layers, an input layer to receive the input and an output 

layer. Neurons in the output layer are usually arranged into a regular two dimensional array. 

The architecture of the kohonen self-organizing map is shown bellow. 

  

 

 

 

 

Figure (4.1) 

(kohonen self-organizing map) 

 

 

Y1 Yj Ym 

x1 xi xn 

W11 Wi1 

Wn1 
W1j 

Wij 
Wnj 

W1m 

W1m 
Wnm 
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Kohonen Network Algorithm  

Step 0 : initialize weights wij  

 Set topological neighborhood parameters  

 Set Learning rate parameters. 

Step1:while stopping condition is false, do step 2-8  

Step2: for each input vector x, do step 3-5 

Step3: for each j, compute distance  

  
i

2
iji )wx()j(D  Euclidean distances  

Step4 : find index J such that D(J) is a minimum  

Step5: for all units j within a specified neighborhood of J, and for all i: 

)]old(WijXi[)old(Wij)new(Wij    

Step6: update learning rate. 

Step7: Reduce radius of topological neighborhood at specified times  

Step8: Test stopping condition. 
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Example: A kohonen self-organizing map (SOM) to be cluster four vectors  

  

)1100(4vector

)0001(3vector

)1000(2vector

)0011(1vector









 

The maximum no. of clusters to be formed is m=2 with learning rate 6.0    

 

Solution: With only 2 clusters available, the neighborhood of nodJ is set so that only one 

cluster up dates its weight at each step  

Initial weight matrix: 



















3.09.0

7.05.0

4.06.0

8.02.0

 

1- for the first vector      
)0011(

xxxx 4321
  

     86.1)9.00()5.00()6.01()2.01()i(D 2222   

    98.0)3.00()7.00()4.01()8.01()2(D 2222   (Minimum) 

2J   (The input vector) is closest to output node 2)  

 The weight on the winning unit is update:-  

0.92  0.8)-0.6(10.8                  

))old(Wx(6.0)old(W)new(W 12i1221




 

0.76     0.360.4                  

 0.4)-0.6(10.4 )(22



newW
 

0.28                  

 0.7)-0.6(00.7 )new(W23




 

0.12                  

 0.3)-0.6(00.3 )new(W24




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This gives the weight matrix  



















12.09.0

28.05.0

76.06.0

92.02.0

 

2-for the second vector  1000  

66.0)9.01()5.00()6.00()2.00()i(D 2222   minimum  

2768.2)12.01()28.00()76.00()92.00()2(D 2222   

1J  (The i/p vector is closest to o/p node 1) 

After update the first column of the weight matrix:-  



















12.096.0

28.020.0

76.024.0

92.008.0

 

3- for the third vector (1 0 0 0)  

856.1)96.00()20.00()24.00()08.0()i(D 2222    

minimum      2768.2        

)12.01()28.00()76.00()92.01()2(D 2222




  

2J  (The i/p vector is closest to o/p node (2))  

After update the second column of the weight matrix:-  



















48.0.096.0

112.020.0

304.024.0

968.008.0

 

4- for the fourth vector ( 0  0  1  1)  

minimum 7056.0)96.01()20.01()24.00()08.00()i(D 2222 

    2.724)048.01()112.01()304.00()968.00()2(D 2222    
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1J  (the i/p vector is closest to o/p node 1) 

After update the first column of the weight matrix :-  



















48.0.0984.0

112.0680.0

304.0096.0

968.0032.0

 

 Reduce the learning rate  

3.0)6.0(*5.0)t()*1t(   

 After one iteration the weight matrix will be:-  



















048.0984.0

110.0680.0

300.0096.0

970.0032.0
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Genetic Algorithm (GA) 5.1 
 

A genetic algorithm is a search procedure modelled on the mechanics of natural selection 

rather than a simulated reasoning process. Domain Knowledge is embedded in the abstract 

representation of a candidate solution termed an organism. Organisms are grouped into sets 

called populations. Successive population are called generation. The aim of GA is search for 

goal. 

A generational GA creates an initial generation G(0) , and for each generation ,G(t) , generates 

a new one ,G(t+1) . An abstract view of the algorithm is:- 

Generate initial population, G(0);  

Evaluate G(0); 

t:=0; 

Repeat 

t:=t+ 1 

Generate G(t) using G(t-1); 

Evaluate G(t); 

 Until solution is found. 

 

 Genetic Operators 5.1.1 

The process of evolving a solution to a problem involves a number of operations that are 

loosely modeled on their counterparts from genetics .  

Modeled after the processes of biological genetics , pairs of vectors in the population are 

allowed to “ mate” with a probability that is proportional to their fitness . the mating procedure 

typically involves one or more genetic operators . The most commonly applied genetic 

operators are :- 

1- Crossover. 

2- Mutation. 

3- Reproduction. 
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1- Crossover  

Is the process where information from two parents is combined to form children. It takes two 

chromosomes and swaps all genes residing after a randomly selected crossover point to 

produce new chromosomes. 

This operator does not add new genetic information to the population chromosomes but 

manipulates the genetic information already present in the mating pool (MP). 

The hope is to obtain new more fit children It works as follows :- 

1- Select two parents from the MP ( The best two chromosomes ) . 

2- Find a position K between two genes randomly in the range (1, M-1 )        

M = length of chromosome 

3- Swap the genes after K between the two parents. 

.the more fit one orThe output will be the both children  

 

2- Mutation  

    The basic idea of it is to add new genetic information to chromosomes. It is important 

when the chromosomes are similar and the GA may be yet stuck in Local maxima. A way 

to introduce new information is by changing the a of some genes. Mutation can be applied 

to :-  

1- Chromosomes selected from the MP. 

2- Chromosomes that have already subject to crossover.  

The Figure bellow illustrates schematically the GA approach. 

 

3- Reproduction  

    After manipulating the genetic information already present in the MP . by fitness 

function the reproduction operator add new genetic information to the population of the 

chromosomes by combining strong parents with strong children , the hope is to obtain 

new more fit children . Reproduction imitate to the natural selection.  
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This schematic diagram of a genetic algorithm shows the functions that are carried out in 

each generation. Over a number of such generation the initial population is evolved to the 

point where it can meet some criterion with respect the problem at hand. 

 

 

 

Genetic Algorithm approach 

 

5.2 Genetic Programming (GP)  
 

     Genetic programming (GP) is a domain – independent problem – solving approach in 

which computer programs are evolved to solve, or approximately solve problems. Thus, 

it addresses one of the central goals of computer science namely automatic programming. 

The goal of automatic programming is to create, in an automated way, a computer 

program that enables a computer to solve a problem. 

     GP is based on reproduction and survival of the fittest genetic operations such as 

crossover and mutation. Genetic operation are used to create new        offspring population 

of individual computer programs from the current population of programs . 
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   GP  has several properties that make it more suitable than other paradigms      ( e.g. . 

best – first search , heuristic search , hill climbing etc . ) , these properties are :-  

1- GP produces a solution to a problem as a computer program. Thus GP is automatic 

programming. 

2- Adaptation in GP is general hierarchical computer programs of dynamically 

varying size & shape. 

3- It is probabilistic algorithm. 

4- Another important feature of GP is role of pre processing of inputs and post 

processing of outputs .  
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