
INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

1

 الجامعة التكنولوجية

قسم علوم الحاسوب

 وسائط المتعددةفرع ال

 ثالثة المرحلة ال

 ولالكورس الأ

 طرق البحث الذكيةمادة

2023 - 2024

 عبداللهحسـنين سـمير. د.م.أ

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

2

قسن علوم الحاسوب / الجاهعة التكنولوجية

 ولالكورس الأ – ثالثةالورحلة ال – وسائط الوتعددةفرع ال

حسـنين سـوير . د.م.أ– هادة طرق بحث ذكية

"Artificial Intelligence Concept and Fundamentals"

1. Principles fundamentals of A.I.

Artificial Intelligence, Artificial Evolution and Artificial Life are

three distinct approaches to programming computers in order to make

them behave as if they were human, more primitive animals, or other

living species.

There are two fundamentally major approaches in the field of AI.

One is often termed traditional symbolic AI, which has been historically

dominant. It is characterized by a high level of abstraction. Knowledge

engineering systems and logic programming fall in this category.

Symbolic

AI covers areas such as knowledge base systems, logical reasoning,

symbolic machine learning, search techniques, and natural language

processing. The second approach is based on low level, microscopic

biological models, similar to the emphasis of physiology orgenetics.

Neural networks, genetic algorithms and DNA computing are the prime

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

3

examples of this latter approach. These biological models do not

necessarily resemble their original biological counterparts. However, they

are evolving areas from which many people expect significant practical

applications in the future.

2. What Means by A.I.

Artificial intelligence (AI) maybe defined as the branch of

computer science that is concerned with the automation of intelligent

behavior. This definition is particularly appropriate to this book in that it

emphasizes our conviction that AI is apart of computer science and, as

such, must be based on sound theoretical and applied principles of that

field. These principles include the data structures used in knowledge

representation, the algorithms needed to apply that knowledge, and the

languages and programming techniques used in their implementation.

For any computing system it is very important to achieve an

acceptable level of software quality. The basic goal of software quality is

the prevention of software faults or, at least, the lowering of software

fault rates.

One way to combine higher quality with higher efficiency is to use

supporting quality devices, these devices, based as they are on the

accumulated knowledge and experience of the organization’s

development and maintenance professional, contribute to meeting

software goals by:

 Saving the time required to run the application of the software

under hand.

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

4

 Reviewing register the memory area that handles the knowledge

base and the operations.

 Defining the type of controlled needed and search technique.

3. General Problem Solving Approaches

There exist quite a large number of problem solving techniques in

AI that rely on search. The simplest among them is the generate‐and‐test

method. The algorithm for the generate‐and‐test method can be fom1ally

stated in the figure (1) follow. It is clear from the above algorithm that the

algorithm continues the possibility of exploring a new state in each

iteration of the repeat‐until loop and exits only when the current state is

equal to the goal. Most important part in the algorithm is to generate a

new state. This is not an easy task.

If generation of new states is not feasible, the algorithm

should be terminated. In our simple algorithm, we, however, did not

include this intentionally to keep it simplified. But how does one generate

the states of a problem? To formalize this, we define a four tuple, called

state space, denoted by {nodes, arc, goal, current },

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

5

Figure (1) Generate and Test Algorithm

Where:

 nodes represent the set of existing states in the search space;

an arc denotes an operator applied to an existing state to cause

transition to another state; goal denotes the desired state to be

identified in the nodes; and current represents the state, now generated for

matching with the goal. The state space for most of the search

problems takes the form of a tree or a graph. Graph may contain more

than one path between two distinct nodes, while for a tree it has

maximum value of one.

To build a system to solve a particular problem, we need to do four

things:

1. Define the problem precisely. This definition must include precise

specifications of what the initial situation(s) will be as well as what

final situations constitute acceptable solutions to the problem.

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

6

2. Analyze the problem. A few very important features can have an

immense impact on the appropriateness of various possible

techniques for solving the problem.

3. Isolate and represent the task knowledge that is necessary to solve

the problem.

4. Choose the best problem‐solving technique(s) and apply it (them)

to the particular problem.

Measuring problem‐solving performance is an essential matter in

term of any problem solving approach. The output of a problem‐solving

algorithm is either failure or a solution. (Some algorithm might get stuck

in an infinite loop and never return an output.) We will evaluate an

algorithm's performance in four ways:

 Completeness: Is the algorithm guaranteed to find a solution

when there is one?

 Optimality: Does the strategy find the optimal solution?

 Time complexity: How long does it take to find a soluƟon?1

 Space complexity: How much memory is needed to perform the

search ?

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

7

"Knowledge Representation"

1. What are Knowledge Representation Schemes ?

In Al, there are four basic categories of representational schemes:

logical, procedural, network and structured representation schemes.

1. Logical representation uses expressions in formal logic to represent

its knowledge base. Predicate Calculus is the most widely used

representation scheme.

2. Procedural representation represents knowledge as a set of

instructions for solving a problem. These are usually if-then rules

we use in rule-based systems.

3. Network representation captures knowledge as a graph in which

the nodes represent objects or concepts in the problem domain and

the arcs -represent relations or associations between them.

4. Structured representation extends network representation schemes

by allowing each node to have complex data structures named slots

with attached values.

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

8

2.The Propositional Calculus

2.1 Symbols and Sentences

The prepositional calculus and, in the next subsection, the predicate

calculus are first of all languages. Using their words, phrases, and

sentences, we can represent and reason about properties and relationships

in the world. The first step in describing a language is to introduce the

pieces that make it up: set of symbols.

DEFINTION

PROPOSITIONAL CALCULUS SYMBOLS

The symbols of prepositional Calculus are, the prepositional symbols:

P. Q. R,S,T....

truth symbols

true, false

and connectives:

¬ Ǝ ᵾ ˄ ˅

Prepositional symbols denote propositions of statements about the

world that may be either true or raise, such as "the car is red" or" water is

wet." Propositions are denoted by uppercase letters near the end of the

English alphabet. Sentences in the propositional calculus are formed from

these atomic symbols according to the following rules:

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

9

DEFINITION

PROPOSIONAL CALCULUS SENTENCES

Every prepositional symbol and truth symbol is a sentence.

For example: true, P, Q, and R are sentences.

The negation of a sentence is a sentence

for example: ¬P and ¬false are sentences

The conjunction and of two sentences : is a sentence

For example: P ˄ ¬P is a sentence.

The disjunction or of two sentences is a sentence.

For example P ˅ ¬P. is a sentence,

The implication of one sentence for another is a sentence.

For example P Q is sentence.

The equivalence of two sentences Is a sentence.

For example: P ˅ Q = R is a sentence.

3. Legal sentences are also called well-formed formulas 01 WFFs.

IN expressions of the form P ˄ Q. P and Q are called the conjuncts

In P ˅ Q and Q are referred to as disjuncts in an implication P Q, P

is the premise or antecedent and Q, the conclusion or consequent .

In propositional calculus sentences. the symbols() and [] are used to

group symbols into sub expressions and so control their order of

evaluation and meaning. for example (P ˄ Q)= R is quit different from

P ˅ (Q=R).

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

10

An expression is a sentence, or well-formed formula, of the prepositional

calculus if and only if it can be formed of legal symbols through some

sequence of these rules. For example :

P ˄ Q R = ¬P ˅ ¬ Q ˅ R

is a well-formed sentence in the in the propositions calculus because:

P, Q, and R are-proposition and .thus sentences.

P ˄ Q, the conjunction of two sentences, is a sentence.

(P ˄ Q) R, the implication of a sentence for another, is a sentence.

¬P and ¬Q, the negations of sentences, are sentences.

¬P ˅ ¬Q, the disjunction of two sentences, is a sentence.

¬P ˅ ¬ Q ˅ R, the disjunction of two sentences, is a sentence.

((P ˄ Q) R) = ¬P ˅ ¬Q ˅ R, the equivalence of two sentences, is a

sentence.

This is our original sentence, which has been Constructed through a series

of applications of legal roles and is therefore well formed.

DEFINITION

PROPOSITIONAL CALCULUS SEMANTICS

An interpretation of a set of propositional is the assignment of a

truth value , either T or F , to each propositional symbol .

The symbol true is always assigned T, and the symbol false is assigned F.

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

11

Figure (1), Truth table for the operator AND

Figure (2), Truth table demonstrating the equivalence formula.

4. The Predicate Calculus (Predicate Logic)

In prepositional calculus, each atomic symbol (P, Q, etc.) denotes a

proposition of some complexity.

There is no way to access the components of an individual

assertion. Predicate calculus provides this ability.

For example, instead pf letting a single prepositional symbol, P,

denote: 1he entire sentence "it rained on Tuesday," we can create a

predicate weather that describes a relationship between a date and the

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

12

weather. weather (Tuesday, rain) through inference rules we can

manipulate predicate calculus expression accessing their individual

components and inferring new sentences.

Predicate calculus also allows expressions^ contain variables.

Variables let us create general assertions about classes of entities. For

example, we could state that for :

all values, of X, where X is a day of the week , the statement weather (

X, rain) is true ; I,e., it rains it rains everyday. As with propositional

calculus, we will first define the syntax of the language and then discuss

its semantics.

Examples of English sentences represented in Predicate Logic:

1- If it doesn't rain tomorrow, Tom will go to the mountains.

¬ weather (rain, tomorrow)go(tom, mountains).

2- Emma is a Doberman pinscher and a good dog.

Good dog (emma) ˄ isa (emma, Doberman)

3- All basketball players are tall.

ᵾ X (basketball _ player(X) tall (X))

4- Some people like anchovies.

ƎX (person(X) ˄ likes(X, anchovies)),

5- If wishes were horses, beggars would ride.

equal(wishes, horses) ride(beggars).

6- Nobody likes taxes

¬ Ǝ X likes(X,taxes).

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

13

Example: Convert the following sentences into Predicate logic form:

"All people who are not poor and are smart are hippy. Those people who

read are not stupid. John can read and is wealthy. Happy people have

exciting lives. Can anyone be found with an exciting life?"

Solution:

ᵾ X (¬ poor (X) ˄ smart (X) happy (X)).

ᵾ Y (read (Y) ¬ stupid (Y)). == ᵾ Y (read (Y) smart (Y)).

read (john) ˄ wealthy (john). == read (john) ˄ ¬ poor (john).

ᵾ Z (Happy (Z) exciting (Z)).

Ǝ W (exciting (W)).

Homework: Convert the following sentences into Predicate logic form:

Anyone passing his history exams and winning the lottery is happy. But

anyone who studies or is lucky can pass all his exams. John did not study

but he is lucky. Anyone who is lucky wins the lottery. Is John happy?

5. Conceptual Graphs: a Network Language

Figure (3), Conceptual relations of different arities.

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

14

Figure (4), Graph of "Mary gave John the book."

Figure (5), Conceptual graph indicating that the dog named emma is brown.

Figure (6), Conceptual graph indicating that a particular (but unnamed) dog is brown.

Figure (7), Conceptual graph indicating that a dog named emma is brown.

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

15

Figure (8), Conceptual graph of the sentence "The dog scratches its ear with its paw."

Showing the use of a propositional concept. Figure 9 and 10

Figure (9), Conceptual graph of the statement "Tom believes that Jane likes pizza".

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

16

Figure (10), Conceptual graph of the proposition "There are no pink dogs".

Homework:

Represent the following sentences using Conceptual Graph method:

 John likes small cars.

 Mary gave Tom red book.

 John thinks that Mary gave the book to Tom.

John thinks that Mary gave the book to Tom in the classroom.

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

17

1- Intelligent Search Methods and Strategies

Search is inherent to the problem and methods of artificial intelligence (AI).

This is because AI problems are intrinsically complex. Efforts to solve

problems with computers which human can routinely innate cognitive abilities,

pattern recognition, perception and experience, invariably must turn to

considerations of search. All search methods essentially fall into one of two

categories, exhaustive (blind) methods and heuristic or informed methods.

2 ‐State Space Search

The state space search is a collection of several states with appropriate

connections (links) between them. Any problem can be represented as such

space search to be solved by applying some rules with technical strategy

according to suitable intelligent search algorithm.

What we have just said, in order to provide a formal description of a problem,

we must do the following:

1‐ Define a state space that contains all the possible configurations of the

relevant objects (and perhaps some impossible ones). It is, of course, possible

to define this space without explicitly enumerating all of the states it contains.

2‐ Specify one or more states within that space that describe possible situations

from which the problem‐solving process may start. These states are called the

initial states.

3‐ Specify one or more states that would be acceptable as solutions to the

problem. These states are called goal states.

4‐ Specify a set of rules that describe the actions (operators) available. Doing

this will require giving thought to the following issues:

• What unstated assumptions are present in the informal problem description?

• How general should the rules be?

• How much of the work required to solve the problem should be precomputed

and represented in the rules?

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

18

The problem can then be solved by using rules, in combination with an

appropriate control strategy, to move through the problem space until a

path from an initial state to a goal state is found. Thus the process of search is

fundamental to the problem‐solving process. The fact that search provides the

basis for the process of problem solving does not, however, mean that other,

more direct approaches cannot also be exploited. Whenever possible, they can

be included as steps in the search by encoding them rules. Of course, for

complex problems, more sophisticated computations will be needed. Search is

a general mechanism that can be used when no more direct methods is known.

At the same time, it provide the framework into which more direct

methods for solving subparts of a problem can be embedded.

To successfully design and implement search algorithms, a programmer must

be able to analyze and predict their behavior. Questions that need to be

answered include:

• Is the problem solver guaranteed to find a solution?

• Will the problem solver always terminate, or can it become caught in an

infinite loop?

• When a solution is found, is it guaranteed to be optimal?

• What is the complexity of the search process in terms of time usage? Memory

usage?

• How can the interpreter most effectively reduce search complexity?

• How can an interpreter be designed to most effectively utilize a representation

language?

To get a suitable answer for these questions search can be structured into three

parts. A first part presents a set of definitions and concepts that lay the

foundations for the search procedure into which induction is mapped. The

second part presents an alternative approaches that have been taken to

induction as a search procedure and finally the third part present the version

space as a general methodology to implement induction as a search

procedure. If the search procedure contains the principles of the above three

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

19

requirement parts, then the search algorithm can give a guarantee to get an

optimal solution for the current problem.

3 ‐General Problem Solving Approaches

There exist quite a large number of problem solving techniques in AI that rely

on search. The simplest among them is the generate‐and‐test method. The

algorithm for the generate‐and‐test method can be fom1ally stated in figure (1).

It is clear from the above algorithm that the algorithm continues the possibility

of exploring a new state in each iteration of the repeat‐until loop and exits only

when the current state is equal to the goal. Most important part in the algorithm

is to generate a new state. This is not an easy task.

Figure (1), Generate and Test Algorithm

If generation of new states is not feasible, the algorithm should be

terminated. In simple algorithm, we, however, did not include this intentionally

to keep it simplified. But how does one generate the states of a problem? To

formalize this, we define a four tuple, called state space, denoted by

{nodes, arc, goal, current },

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

20

where

Nodes represent the set of existing states in the search space;

an arc denotes an operator applied to an existing state to cause

transition to another state;

Goal denotes the desired state to be identified in the nodes;

and current represents the state, now generated for matching with the goal.

The state space for most of the search problems takes the form of a tree or a

graph. Graph may contain more than one path between two distinct nodes,

while for a tree it has maximum value of one.

To build a system to solve a particular problem, we need to do four things:

1. Define the problem precisely. This definition must include precise

specifications of what the initial situation(s) will be as well as what final

situations constitute acceptable solutions to the problem.

2. Analyze the problem. A few very important features can have an immense

impact on the appropriateness of various possible techniques for solving the

problem.

3. Isolate and represent the task knowledge that is necessary to solve the

problem.

4. Choose the best problem‐solving technique(s) and apply it (them) to the

particular problem.

Measuring problem‐solving performance is an essential matter in term of any

problem solving approach. The output of a problem‐solving algorithm is either

failure or a solution. (Some algorithm might get stuck in an infinite loop and never

return an output.) We will evaluate an algorithm's performance in four ways:

• Completeness: Is the algorithm guaranteed to find a solution when there is one?

• Optimality: Does the strategy find the optimal solution?

• Time complexity: How long does it take to find a solution?

• Space complexity: How much memory is needed to perform the search?

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

21

4 ‐ Search Technique

Having formulated some problems, we now need to solve them. This is done

by a search through the state space. The root of the search tree is a search node

corresponding to the initial state. The first step is to test whether this is a goal

state. Because this is not a goal state, we need to consider some other states.

This is done by expanding the current state; that is, applying the successor

function to the current state, thereby generating a new set of states. Now we

must choose which of these possibilities to consider further. We continue

choosing, testing and expanding either a solution is found or there are no more

states to be expanded. The choice of which state to expand is determined by the

search strategy. It is important to distinguish between the state space and the

search tree. For the route finding problem, there are only N states in the state

space, one for each city. But there are an infinite number of nodes.

There are many ways to represent nodes, but we will assume that a node is a

data structure with five components:

• STATE: the state in the state space to which the node corresponds؛

• PARENT-NODE: the node in the search tree that generated this node؛

• ACTION: the action that was applied to the parent to generate the node؛

• PATH‐COST: the cost, traditionally denoted by g(n), of the path from the

initial state to the node, as indicated by the parent pointers; and

• DEPTH: the number of steps along the path from the initial state.

As usual, we differentiate between two main families of search strategies:

systematic search and local search. Systematic search visits each state that

could be a solution, or skips only states that are shown to be dominated by

others, so it is always able to find an optimal solution.

Local search does not guarantee this behavior. When it terminates, after

having exhausted resources (such as time available or a limit number of

iterations), it reports the best solution found so far, but there is no guarantee

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

22

that it is an optimal solution. To prove optimality, systematic algorithms are

required, at the extra cost of longer running times with respect to local search.

Systematic search algorithms often scale worse with problem size than local

search algorithms.

Blind Search

There many search strategies that come under the heading of blind search

(also called uniformed search). The term means that they have no additional

information about states beyond that provided in the problem definition. All

they can do is generate successors and distinguish a goal state from a non-goal

state.

Thus blind search strategies have not any previous information about the goal

nor the simple paths lead to it. However blind search is not bad, since more

problems or applications need it to be solved; in other words there are some

problems give good solutions if they are solved by using depth or breadth first

search.

Breadth first search is a simple strategy in which the root node is

expanded first, then all the successors of the root node are expanded next, then

their successors, and so on. In general all the nodes are expanded at a

given depth in the search tree before any nodes at the next level are expanded.

Breadth first search can be implemented by calling TREE‐SEARCH with any

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

23

empty fringe that is a first‐in‐first‐out (FIFO) queue, assuring that the

nodes that are visited first will be expanded first. In other words, calling

TREE‐SEARCH (problem, FIFO‐QUEUE) result in a breadth first search. The

FIFO queue puts all newly generated successors at the end of the queue, which

means that shallow nodes are expanded before deeper nodes.

Function Breadth-First Search

Begin

 Open: = [Initial state]; %initialize

 Closed: = [];

 While open <> [] do %state remain

 Begin

 Remove leftmost state from open, call it X;

 If X is a goal then return SUCCESS %goal found

 Else

 Begin

 Generate children of X;

 Put X on closed;

 Discard children of X if already on open or closed; %loop check

 Put remaining children on right end of open %queue

 End;

 End;

 Return FAIL %no states left

End.

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

24

Consider the following problem state space:

Find the path from a to j using breadth first search algorithm

Open Closed

 [a] []

[b, c, d] [a]

[c, d, e, f] [a, b]

[d, e, f, g] [a, b, c]

[e, f, g, h] [a, b, c, d]

[f, g, h, i, j] [a, b, c, d, e]

[g, h, i, j, k] [a, b, c, d, e, f]

[h, i, j, k, l, m] [a, b, c, d, e, f, g]

[i, j, k, l, m, n, p] [a, b, c, d, e, f, g, h]

[j, k, l, m, n, p] [a, b, c, d, e, f, g, h, i]

Stop the goal (j) is found

Depth first search always expands the deepest node in the current fringe

of the search tree. The search proceeds immediately to the deepest level

of the search tree, where the nodes have no successors. As those nodes are

 a

b c d

e f g h

i j k l m n p

3 2

7
4

6 5

6

4 7

5 2 8 7 4 2 1

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

25

expanded, they are dropped from the fringe, so then the search “backs up” to

the next shallowest node that still has unexplored successors. This strategy

can be implemented by TREE‐SEARCH with a last‐in first‐out (LIFO) queue,

also known as a stack.

As an alternative to the TREE‐SEARCH implementation, it is common to

implement depth‐first search with a recursive function that calls itself on each

of its children in turn.

Function Depth-First Search

Begin

 Open: = [Initial state]; %initialize

 Closed: = [];

 While open <> [] do %state remain

 Begin

 Remove leftmost state from open, call it X;

 If X is a goal then return SUCCESS %goal found

 Else

 Begin

 Generate children of X;

 Put X on closed;

 Discard children of X if already on open or closed; %loop check

 Put remaining children on left end of open %stack

 End;

 End;

 Return FAIL %no states left

End.

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

26

Consider the following problem state space:

Find the path from a to k using depth first search algorithm

Open Closed

 [a] []

[b, c, d] [a]

[e, f, c, d] [a, b]

[i, j, f, c, d] [a, b, e]

[j, f, c, d] [a, b, e, i]

[f, c, d] [a, b, e, i, j]

[k, c, d] [a, b, e, i, j, f]

Stop the goal (k) is found

Heuristic Search Algorithms

In this section, we can saw that many of the problems that fall within the

purview of artificial intelligence are too complex to be solved by direct

techniques; rather they must be attacked by appropriate search methods armed

 a

b c d

e f g h

i j k l n p q

3 2

7
4

6 5

6

4 7

5 2 8 7 4 2 1

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

27

with whatever direct techniques are available to guide the search. These

methods are all varieties of heuristic search.

They can be described independently any particular task or problem domain.

But when applied to Particular problems, their efficacy is highly dependent on

the way they exploit domain‐specific knowledge since in and of themselves

they are unable to overcome the combinatorial explosion to which search

processes are so vulnerable. For this reason, these techniques are often called

weak methods. Although a realization of the limited effectiveness of these

weak methods to solve hard problems by themselves has been an important

result that emerged from the last decades of AI research, these techniques

continue to provide the framework into which domain‐specific knowledge can

be placed, either by hand or as a result of automatic learning.

Hill climbing is a variant of generate‐and‐test in which feedback from the test

procedure is used to help the generator decide which direction to move in the

search space. In a pure generate‐and‐test procedure, the test function responds

with only a yes or no. but if the test function is augmented with a heuristic

function that provide an estimate of how close a given is to a goal state. This is

particularly nice because often the computation of the heuristic function can be

done at almost no cost at the same time that the test for a solution is

being performed. Hill climbing is often used when a good heuristic function is

available for evaluating states but when no other useful knowledge is available.

For example, suppose you are in an unfamiliar city without a map and you

want to get downtown. You simply aim for the tall buildings. The heuristic

function is just distance between the current location and the location of the tall

buildings and the desirable states are those in which this distance is minimized.

For each state f(n) = h(n) where h(n) is the heuristic function that

computes the heuristic value for each state n.

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

28

Function Hill Climbing Search

Begin

 Open: = [Initial state]; %initialize

 Closed: = [];

 CS= initial state;

 Path= [initial state];

 Stop= FALSE;

 While open <> [] do %states remain

 Begin

 If CS=goal then return path

 Generate all children of CS and put them into open;

 If open= [] then

 Stop= TRUE

 Else

 Begin

 X= CS;

 For each state Y in open do

 Begin

 Compute the heuristic value of y (h(Y));

 If Y is better than X then

 X=Y

 End;

 If X is better than CS then

 CS=X

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

29

 Else

 Stop= TRUE;

 End;

 End;

 Return (FAIL); %open is empty

End.

Consider the following problem state space then:

Find the path from a to m using Hill Climbing search algorithm.

Open Closed

 [a] []

[b5, c4, d8] [a]

[c4, b5, d8] [a]

[f5, g3, b5, d8] [a, c4]

[g3, f5, b5, d8] [a, c4]

[n8, m7, f5, b5, d8] [a, c4, g3]

[m7, n8, f5, b5, d8] [a, c4, g3]

Stop the goal (m) is found

 a

 b c d

 e f g h

 i j k n m l p

5 4

8
6

 7 5

8

3 8

4 3 6 8 7 4 2

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

30

Now let us discuss a new heuristic method called "Best First Search",

which is a way of combining the advantages of both depth‐first and

breadth‐first search into a single method.

The actual operation of the algorithm is very simple. It proceeds in steps,

expanding one node at each step, until it generates a node that

corresponds to a goal state. At each step, it picks the most promising of the

nodes that have so far been generated but not expanded. It generates the

successors of the chosen node, applies the heuristic function to them, and

adds them to the list of open nodes, after checking to see if any of them

have been generated before. By doing this check, we can guarantee that each

node only appears once in the graph, although many nodes may point to it as a

successors. Then the next step begins.

For each state f(n) = h(n) where h(n) is the heuristic function that

computes the heuristic value for each state n.

Function Best-First Search

Begin

 Open: = [Initial state]; %initialize

 Closed: = [];

 While open <> [] do %states remain

 Begin

 Remove leftmost state from open, call it X;

 If X = goal then return the path from initial to X

 Else

 Begin

 Generate children of X;

 For each child of X do

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

31

 Case

 The child is not on open or closed;

 Begin

 Assign the child a heuristic value;

 Add the child to open

 End;

 The child is already on open;

 If the child was reached by a shorter path

 Then give the state on open the shorter path

 The child is already on closed;

 If the child was reached by a shorter path then

 Begin

 Remove the state from closed;

 Add the child to open

 End;

 End; %case

 Put X on closed;

 Re-order states on open by heuristic merit (best leftmost)

 End;

Return FAIL %open is empty

End.

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

32

Consider the following problem state space then:

Find the path from a to k using Best first Search algorithm.

Open Closed

 [a] []

[z8, y9, x7] [a]

[x7, z8, y9] [a]

[p8, q7, z8, y9] [a, x7]

[q7, p8, z8, y9] [a, x7]

[k4, g2, p8, z8, y9] [a, x7, q7]

[g2, k4, p8, z8, y9] [a, x7, q7]

[k4, p8, z8, y9] [a, x7, q7, g2]

The goal (k) is found

The first advance approach to the best first search is known as A‐search

algorithm. A algorithm is simply define as a best first search plus specific

function. This specific function represent the actual distance (levels) between

the initial state and the current state and is denoted by g(n). A notice will be

mentioned here that the same steps that are used in the best first search are used

in an A algorithm but in addition to the g(n) as follow;

 a

 z y x

 m n p q

 r t v u h k g

8 9

7
6

8 7

7

6 8

4 3 6 9 7 4 2

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

33

f(n) = h(n) + g(n) where h(n) is the heuristic function that computes the

heuristic value for each state n, and g(n) is the generation function that

computes the actual distance (levels) between initial state to current state n.

Example:

Find the path from a to k using A-search algorithm

Open Closed

 [a] []

[b4, c3, d5] [a]

[b4+1, c3+1, d5+1] [a]

 [c4, b5, d6] [a]

[f5, g4, b5, d6] [a, c4]

[f5+2, g4+2, b5, d6] [a, c4]

[f7, g6, b5, d6] [a, c4]

[b5, g6, d6,, f7] [a, c4]

[e6, f7, g6, d6, f7] [a, c4, b5]

[e6+2, f7+2, g6, d6, f7] [a, c4, b5]

[g6, d6, f7, e8] [a, c4, b5]

[n1, k2, d6, f7, e8] [a, c4, b5, g6]

 a

b c d

e f g h

m i j n k p l

4 3

3
7

6 5

5

4 3

5 2 8 1 2 4 3

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

34

[n1+3, k2+3, d6, f7, e8] [a, c4, b5, g6]

[n4, k5, d6, f7, e8] [a, c4, b5, g6]

[k5, d6, f7, e8] [a, c4, b5, g6, n4]

Stop the goal (k) is found

The second advance approach to the best first search is known as

A*‐search algorithm. A* algorithm is simply define as a best first

search plus specific function. This specific function represent the actual

distance (levels) between the current state and the goal state and is denoted by

g(n).

f(n) = h(n) + g(n) where h(n) is the heuristic function that computes the

heuristic value for each state n, and g(n) is the generation function that

computes the actual distance (levels) between current state n to goal state.

Function A* Search Algorithm

Begin

 Open: = [Initial state]; %initialize

 Closed: = [];

 While open <> [] do %states remain

 Begin

 Remove leftmost state from open, call it X;

 If X = goal then return the path from initial to X

 Else

 Begin

 Generate children of X;

 For each child of X do

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

35

 Begin

 Add the distance between current state to goal state to the heuristic

value for each child %make the g(n)

 Case

 The child is not on open or closed;

 Begin

 Assign the child a heuristic value;

 Add the child to open

 End;

 The child is already on open;

 If the child was reached by a shorter path

 Then give the state on open the shorter path

 The child is already on closed;

 If the child was reached by a shorter path then

 Begin

 Remove the state from closed;

 Add the child to open

 End;

 End; %case

 Put X on closed;

 Re-order states on open by heuristic merit (best leftmost)

 End;

Return FAIL %open is empty

End.

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

36

Example:

Find the path from a to k using A*-search algorithm

Open Closed

[a] []

[b4, c3, d5] [a]

[b4+4, c3+2, d5+2] [a]

[c5, d7, b8] [a]

[f5, e4, d7, b8] [a, c5]

[f5+3, e4+1, d7, b8] [a, c5]

[e5, d7, f8, b8] [a, c5]

[h2, k2, d7, f8, b8] [a, c5, e5]

[h2+2, k2+0, d7, f8, b8] [a, c5, e5]

[k2, h4, d7, f8, b8] [a, c5, e5]

Stop, the goal (k) is found

 a

b c d

i f e g

m p j h k q r

4 3

3
4

6 5

5

4 3

5 2 8 2 2 4 3

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

37

Heuristic Search Methods with Heuristic Function

Hill Climbing

For each state f(n) = h(n) where h(n) is the heuristic function that computes the

heuristic value for each state n.

Best First Search

For each state f(n) = h(n) where h(n) is the heuristic function that computes the

heuristic value for each state n.

A‐search algorithm

f(n) = h(n) + g(n) where h(n) is the heuristic function that computes the heuristic

value for each state n, and g(n) is the generation function that computes the actual

distance (levels) between initial state to current state n.

A*‐search algorithm

f(n) = h(n) + g(n) where h(n) is the heuristic function that computes the heuristic

value for each state n, and g(n) is the generation function that computes the actual

distance (levels) between current state n to goal state.

Problems with Hill Climbing Search Procedure

1- Fost Hill (Local Minima)

This problem causes stopping search procedure.

The algorithm not found the goal state although it is existed in the search space, this is

because of the algorithm search performance and behavior which depends on a

determined strategy without backing path from dead end state which causes algorithm

termination, this problem can be solved by using backtracking process in the

algorithm strategy.

2- Plateau Problem

This problem causes stopping search procedure.

When the search procedure reach to a state has an equivalent heuristic values

(choices), the algorithm stops searching for the goal and not get the solution path

although it is existed in the search space, in other words, there is a state has two or

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

38

more children with the same heuristic value (Plateau partial search space), this

problem can be solved by some kind of search procedures such as continuing search

with the most left side.

3- Ridge Problem

This problem does not cause stopping search procedure.

The search procedure gets the solution path with some cost measurements which is

not considered the best, since the best path is existed in dominate partial search

space; this problem can be solved by applying more than one rule in each search

procedure stage.

A Comparison between Heuristic Search and Blind Search

 Blind Search Heuristic Search

1
In term of complexity: it is less

complex.

In term of complexity: it is more

complex.

2

In term of memory capacity:

usually need more memory

capacity.

In term of memory capacity: usually

need less memory capacity.

3

In term of run time consuming:

usually consumes more run

time.

In term of run time consuming:

usually consumes less run time.

4
Guarantee for solution. Guarantee for solution, except Hill

Climbing (not always).

5

Usually does not find the

optimal solution path.

Usually finds the optimal solution

path or nearly the optimal solution

path.

6
It does not have a guider in

search behavior.

It has a guider in search behavior

(Heuristic Function).

7
It is not efficient in game

playing.

It is efficient in game playing such as

Minmax or Alpha-Beta procedures.

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

39

Using Heuristic in Games

The sliding-tile puzzle consists of three black tiles, three white tiles, and

an empty space in the configuration shown in Figure (1). The puzzle has

two legal moves with associated costs:

 A tile may move into an adjacent empty location. This has a cost of 1.

 A tile can hop over one or two other tiles into the empty' position,

this has a cost equal to the number of tiles jumped over.

The goal is to have all the white tiles to the left of all the black tiles. The

position of the blank is not important.

a. Analyze the state space with respect to complexity and looping.

b. Propose a heuristic for solving this problem and analyze it.

Figure (5), the sliding block puzzle

The 8-puzzle Problem

We now evaluate the performance of several different heuristics for

solving the 8-puzzle. Figure (6), shows a start and goal state for the 8-

puzzle, along with the first three states generated in the search.

The simplest heuristic counts the tiles out of place in each state when it is

compared with the goal. This is intuitively appealing, because it would

seem that, all else being equal; the state that had fewest tiles out of place

is probably closer to the desired goal and would be the best to examine

next.

However, this heuristic does not use all of the information available in a

board configuration, because it does not take into account the distance the

tiles must be moved.

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

40

A "better" heuristic would sum all the distances by which the tiles are out

of place, one for each square a tile must be moved to reach its position in

the goal state. Both of these heuristics can be criticized for failing to

acknowledge the difficulty of tile reversals. That is, if two tiles are next to

each other and the goal requires their being in apposite locations, it takes

(many) more than two moves to put them back in place, as the tiles must

"go around" each other (Figure 7).

Figure(6), The start state, first moves, and goal state for an example 8-puzzle.

Figure (7) An 8-puzzle state with a goal and two reversals: 1 and 2, 5 and 6.

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

41

Figure (8), the 8-puzzle problem solving with heuristic values

For the 8-puzzle Grid

There is one center location.

There are four corners location.

There are four sides location.

Possible Moves

 When the space position is in the center of the grid, possible moves = 4.

 When the space position is in the corner of the grid, possible moves = 2

 When the space position is in the side of the grid, possible moves = 3.

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

42

Figure (9), the 8-puzzle problem solved by A-search algorithm

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

43

Another Examples of 8-Puzzle Problem

Consider the following 8-puzzle problem then draw the problem state space to find the

goal using A-search algorithm (or Best first or Hill climbing) then list the solution path.

 R I

 A O O

 P L G

 A I

 P R O

 L O G

I.S G.S

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

44

Consider the following 8-tiles problem then draw the problem state space to

give the following requirements:

Find the goal using Best first search (or A-algorithm or Hill climbing) algorithm

A B

B C A

C C B

 A A

B B B

C C C

I.S G.S

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

45

Single Solution Metaheuristics

Some Metaheuristic Classifications

• Nature inspired versus nonnature inspired: Many metaheuristics are

inspired by natural processes: evolutionary algorithms and artificial immune

systems from biology; ants, bees colonies, and particle swarm optimization from

swarm intelligence into different species (social sciences); and simulated

annealing from physics.

• Memory usage versus memoryless methods: Some metaheuristic algorithms

are memoryless; that is, no information extracted dynamically is used during the

search. Some representatives of this class are local search, GRASP, and

simulated annealing. While other metaheuristics use a memory that contains

some information extracted online during the search. For instance, short-term

and long-term memories in tabu search.

• Deterministic versus stochastic: A deterministic metaheuristic solves an

optimization problem by making deterministic decisions (e.g., local search, tabu

search). In stochastic metaheuristics, some random rules are applied during the

search (e.g., simulated annealing, evolutionary algorithms). In deterministic

algorithms, using the same initial solution will lead to the same final solution,

whereas in stochastic metaheuristics, different final solutions may beobtained

from the same initial solution. This characteristic must be taken into account in

the performance evaluation of metaheuristic algorithms.

• Population-based search versus single-solution based search: Single-

solution based algorithms (e.g., local search, simulated annealing) manipulate

and transform a single solution during the search while in population-based

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

46

algorithms (e.g., particle swarm, evolutionary algorithms) a whole population of

solutions is evolved. These two families have complementary characteristics:

single-solution based metaheuristics are exploitation oriented; they have the

power to intensify the search in local regions. Population-based metaheuristics

are exploration oriented; they allow a better diversification in the whole search

space. In the next chapters of this book, we have mainly used this classification.

In fact, the algorithms belonging to each family of metaheuristics share many

search mechanisms.

• Iterative versus greedy: In iterative algorithms, we start with a complete

solution (or population of solutions) and transform it at each iteration using

some search operators. Greedy algorithms start from an empty solution, and at

each step a decision variable of the problem is assigned until a complete solution

is obtained. Most of the metaheuristics are iterative algorithms.

Local Search

Others…

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

47

Simulated Annealing

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

48

Tabu Search

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

49

GRASP

Greedy Randomized Adaptive Search Procedure

Guided Local Search

INTELLIGENT SEARCH METHODS ASST. PROF. DR. HASANEN S. ABDULLAH

50

Variable Neighborhood Search (VNS)

References:

1. George F. Luger, “Artificial Intelligence Structures and Strategies

for Complex Problem Solving”, Pearson Education Asia

(Singapore), Sixth edition.

2. Stuart J. Russell and Peter Norvig, "Artificial Intelligence A

Modern Approach", Second Edition, Prentice Hall.

3. Amit Konar, "Artificial Intelligence and Soft Computing", Behavior

and Cognitive Modeling of the Human Brian, CRC Press.

4. El-Ghazali Talbi, "METAHEURISTICS FROM DESIGN TO

IMPLEMENTATION", University of Lille – CNRS – INRIA,

WILEY, A JOHN WILEY & SONS, INC, PUBLICATION.

