
EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

1

الجاهعت التكنولوجيت

قسن علوم الحاسوب

ركاء الاصطناعي فرع ال

 ثالثت الورحلت ال

 ثانيالكورس ال

 الأنظوت الخبيرةهادة

 2024 - 2025

 عبذالله حسـنين سـوير. د.أ

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

2

قسن علوم الحاسوب / الجاهعت التكنولوجيت

الكورس الثاني – ثالثتالورحلت ال – ركاء الاصطناعيفرع ال

حسـنين سـوير . د.أ – الأنظوت الخبيرةهادة

1. Introduction to Expert Systems

Expert systems are computer programs that are constructed to do the

kinds of activities that human experts can do such as design, compose, plan,

diagnose, interpret, summarize, audit, give advice. The work such a system is

concerned with is typically a task from the worlds of business or

engineering/science or government.

Expert systems are usually set up to operate in a manner that will be

perceived as intelligent: that is, as if there were a human expert on the other

side of the video terminal. A characteristic body of programming techniques

give these programs their power. Expert systems generally use automated

reasoning and the so-called weak methods, such as search or heuristics, to do

their work. These techniques are quite distinct from the well-articulated

algorithms and crisp mathematical procedures more traditional programming.

Figure (1) the vectors of expert system development

Expert

system

New Programming

Techniques

Method for

Dealing with Knowledge

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

3

As shown in Figure(1), the development of expert systems is based on

two distinct, yet complementary, vectors:

a. New programming technologies that allow us to deal with knowledge and

inference with ease.

b. New design and development methodologies that allow us to effectively use

these technologies to deal with complex problems.

The successful development of expert systems relies on a well-balanced

approach to these two vectors.

2. Expert System Using

Here is a short nonexhaustive list of some of the things expert systems have

been used for:

 To approve loan applications, evaluate insurance risks, and evaluate

investment opportunities for the financial community.

 To help chemists find the proper sequence of reactions to create new

molecules.

 To configure the hardware and software in a computer to match the

unique arrangements specified by individual customers.

 To diagnose and locate faults in a telephone network from tests and

trouble reports.

 To help geologists interpret the data from instrumentation at the drill tip

during oil well drilling.

 To help physicians diagnose and treat related groups of diseases, such as

infections of the blood or the different kinds of cancers.

 To help navies interpret hydrophone data from arrays of microphones on

the ocean floor that are used t\u the surveillance of ships in the vicinity.

 To examine and summarize volumes of rapidly changing data that are

generated too last for human scrutiny, such as telemetry data from

landsat satellites.

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

4

Most of these applications could have been done in more traditional ways as

well as through an expert system, but in all these cases there were advantages

to casting them in the expert system mold.

 In some cases, this strategy made the program more human oriented. In

others, it allowed the program to make better judgments.

In others, using an expert system made the program easier to maintain and

upgrade.

3. Expert Systems are Kind of AI Programs
Expert systems occupy a narrow but very important corner of the entire

programming establishment. As part of saying what they are, we need to

describe their place within the surrounding framework of established

programming systems.

Figure(2) shows the three programming styles that will most concern us.

Expert systems are part of a larger unit we might call AI (artificial intelligence)

programming. Procedural programming is what everyone learns when they

first begin to use BASIC or PASCAL or FORTRAN. Procedural

programming and A.I programming are quite different in what they try to do

and how they try to do it.

 Figure(2) three kinds of programming

In traditional programming (procedural programming), the computer has

to be told in great detail exactly what to do and how to do it. This style has

Artificial intelligence programming

Procedural programming

Expert systems

programming

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

5

been very successful for problems that are well defined. They usually are found

in data processing or in engineering or scientific work.

AI programming sometimes seems to have been defined by default, as

anything that goes beyond what is easy to do in traditional procedural

programs, but there are common elements in most AI programs. What

characterizes these kinds of programs is that they deal with complex problems

that are often poorly understood, for which there is no crisp algorithmic

solution, and that can benefit from some sort of symbolic reasoning.

There are substantial differences in the internal mechanisms of the

computer languages used for these two sorts of problems. Procedural

programming focuses on the use of the assignment statement (" = " or ":-") for

moving data to and from fixed, prearranged, named locations in memory.

These named locations are the program variables. It also depends on a

characteristic group of control constructs that tell the computer what to do.

Control gets done by using

if-then-else goto

do-while procedure calls

repeat-until sequential execution (as default)

AI programs are usually written in languages like Lisp and Prolog.

Program variables in these languages have an ephemeral existence on the stack

of the underlying computer rather than in fixed memory locations. Data

manipulation is done through pattern matching and list building. The list

techniques are deceptively simple, but almost any data structure can be built

upon this foundation. Many examples of list building will be seen later when

we begin to use Prolog. AI programs also use a different set of control

constructs. They are :

procedure calls

sequential execution

recursion

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

6

4. Expert System, Development Cycle
The explanation mechanism allows the program to explain its reasoning

to the user, these explanations include justification for the system's

conclusions, explanation of why the system needs a particular piece of data.

Figure (3) below shows the exploratory cycle for rule based expert

system.

Figure(3) The exploratory cycle for expert system

failed

passed

Yes No

No

Begin

Define problems and goals

Design and construct prototype

Test / use system

Analyze and correct shortcoming

Final

evaluation

Ready for

final

evaluation

Are design

assumptions

still correct

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

7

5. Expert System Architecture and Components

The architecture of expert system consists of several components as shown in figure (4) below:

Figure(4)Expert system architecture

5.1. User Interface

 The user interacts with the expert system through a user interface that

make access more comfortable for the human and hides much of the system

complexity. The interface styles includes questions and answers, menu-driver,

natural languages, or graphics interfaces.

5.2. Explanation Processor

 The explanation part allows the program to explain its reasoning to the

user. These explanations include justifications for the system's conclusion

(HOW queries), explanation of why the system needs a particular piece of data

(WHY queries).

5.3. Knowledge Base

The heart of the expert system contains the problem solving knowledge

(which defined as an original collection of processed information) of the

Explanation processor

Inference engine User Interface Knowledge base

Working memory

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

8

particular applications, this knowledge is represented in several ways such as

if-then rules form.

5.4. Inference Engine

The inference engine applies the knowledge to the solution of actual

problems. It s the interpreter for the knowledge base. The inference engine

performs the recognize act control cycle.

The inference engine consists of the following components:-

1. Rule interpreter.

2. Scheduler

3. HOW process

4. WHY process

5. knowledge base interface.

5.5. Working Memory

It is a part of memory used for matching rules and calculation. When the

work is finished this memory will be raised.

6. Systems that Explain their Actions
An interface system that can explain its behavior on demand will seem much

more believable and intelligent to its users. In general, there are two things a

user might want to know about what the system is doing. When the system asks

for a piece of evidence, the user might want to ask,

"Why do you want it?"

When the system states a conclusion, the user will frequently want to ask,

 "How did you arrive at that conclusion?"

This section explores simple mechanisms that accommodate both kinds

of questioning. HOW and WHY questions are different in several rather

obvious ways that affect how they can be handled in an automatic reasoning

program. There are certain natural places where these questions are asked, and

they are at opposite ends of the inference tree. It is appropriate to let the user

ask a WHY question when the system is working with implications at the

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

9

bottom of the tree; that is: when it will be necessary to ask the user to supply

data.

The system never needs to ask for additional information when it is

working in the upper parts of the tree. These nodes represent conclusions that

the system has figured out rather than asked for, so a WHY question is not

pertinent. To be able to make the conclusions at the top of the tree, however, is

the purpose for which all the reasoning is being done. The system is trying to

deduce information about these conclusions. It is appropriate to ask a HOW

question when the system reports the results of its reasoning about such nodes.

There is also a difference in timing of the questions. WHY questions

will be asked early on and then at unpredictable points all throughout the

reasoning. The system asks for information when it discovers that it needs it.

The. time for the HOW questions usually comes at the end when all the

reasoning is complete and the system is reporting its results.

7. Differentiation between Expert System and other Intelligent Systems

i) In the expert systems the inference engine is split from knowledge base

while in the other intelligent systems they are merged (work together),

this gave the expert systems flexible properties in:

 Modifications, insertion, deletions, updating easier.

 Less run time and reduced memory capacity and effort.

 Replace the current knowledge base with new or other knowledge

base from the same environment (task(s)).

ii) The expert system has the ability to answer about the user's queries or

questions especially the WHY and HOW questions, WHY question

related with required input, and HOW question related with resulted

output.

iii) The expert system in its architecture contains the explanation

mechanism, with responsible for the above property (ii) which is not

available in other intelligent systems.

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

10

Controlling the Reasoning Strategy (1)

The control strategy is determined as comparing the number of initial

state(s) to the number of goal state(s), therefore and according to the fact

that say "the search will be from less to more" we can determine the

control strategy for any system (if the set of initial state(s) and goal

state(s) are clear and complete) easily.

For the classification system

The number of initial state(s) : The number of goal state(s)

 Many (properties) 1 (the target class)

 The search will be from less to more

Thus the preferred control strategy is "backward" chaining.

Classification Program with Backward Chaining (Bird, Beast, Fish) Version1

database

db_confirm(symbol, symbol)

db_denied(symbol, symbol)

clauses

guess_animal :- identify(X), write(“Your animal is a(n) ”,X),!.

identify(giraffe) :-

 it_is(ungulate),

 confirm(has, long_neck),

 confirm(has, long_legs),

 confirm(has, dark_spots)

identify(zebra) :-

 it_is(ungulate),

 confirm(has, black_strips),!.

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

11

identify(cheetah) :-

 it_is(mammal),

 it-is(carnivorous),

 confirm(has, tawny_color),

 confirm(has, black_spots),!.

identify(tiger) :-

 it_is(mammal),

 it-is(carnivorous),

 confirm(has, tawny_color),

 confirm(has, black_strips),!.

identify(eagle) :-

 it_is(bird),

 confirm(does, fly),

 it-is(carnivorous),

 confirm(has, use_as_national_symbol),!.

identify(ostrich) :-

 it_is(bird),

 not(confirm(does, fly)),

 confirm(has, long_neck),

 confirm(has, long_legs),!.

identify(penguin) :-

 it_is(bird),

 not(confirm(does, fly)),

 confirm(does, swim),

 confirm(has, black_and_white_color),!.

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

12

identify(blue_whale) :-

 it_is(mammal),

 not(it-is(carnivorous)),

 confirm(does, swim),

 confirm(has, huge_size),!.

identify(octopus) :-

 not(it_is(mammal),

 it_is(carnivorous),

 confirm(does, swim),

 confirm(has, tentacles),!.

identify(sardine) :-

 it_is(fish),

 confirm(has, small_size),

 confirm(has, use_in_sandwiches),!.

identify(unknown). /* Catch-all rule if nothing else works.

*/

it-is(bird):-

 confirm(has, feathers),

 confirm(does, lay_eggs),!

it-is(fish):-

 confirm(does, swim),

 confirm(has, fins),!.

 it-is(mammal):-

 confirm(has, hair),!.

it-is(mammal):-

 confirm(does, give_milk),!.

it-is(ungulate):-

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

13

 it-is(mammal),

 confirm(has, hooves),

 confirm(does, chew_cud),!.

it-is(carnivorous):-

 confirm(has, pointed_teeth),!.

it-is(carnivorous):-

 confirm(does, eat_meat),!.

confirm(X,Y):- db_confirm(X,Y),!.

confirm(X,Y):- not(denied(X,Y)),!, check(X,Y).

denied(X,Y):- db-denied(X,Y),!.

Check(X,Y):- write(X, “ it “, Y, \ “n”), readln(Reply), remember(X, Y,

Reply).

remember(X, Y, yes):- asserta(db_confirm(X, Y)).

remember(X, y, no):- assereta(db_denied(X, Y)), fail.

Controlling the Reasoning Strategy (2)

According to the same assumptions, we can reach to same facts that say:

For the classification system

The number of initial state(s) : The number of goal state(s)

 Many (properties) 1 (the target class)

 The search will be from less to more

Thus the preferred control strategy is "backward" chaining, but it can be

used the "forward" chaining as another strategy to solve the animal

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

14

classification system but under different conditions as they illustrated in

the system requirements such as:

-Decision tree to design the problem.

-The special code for the classification system as a forward chaining.

Classification Program with Forward Chaining (Bird, Beast, Fish) Version2

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

15

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

16

database

db_confirm(symbol, symbol)

db_denied(symbol, symbol)

clauses

guess_animal :-

 find_animal, have_found(X),

 write(“Your animal is a(n) ”,X),nl,!.

find_animal:- test1(X), test2(X,Y), test3(X,Y,Z), test4(X,Y,Z,_),!.

Find_animal.

test1(m):- it_is(mammal),!.

test1(n).

test2(m,c):- it_is(carnivorous),!.

test2(m,n).

test2(n,w):- confirm(does, swim),!.

test2(n,n).

test3(m,c,s):- confirm(has, strips), asserta(have_found(tiger)),!.

test3(m,c,n):- asserta(have_found(cheetah)),!.

test3(m,n,l):- not(confirm(does, swim)),

 not(confirm(does, fly)),!.

test3(m,n,n):- asserta(have_found(blue_whale)),!.

test3(n,n,f):- confirm(does, fly),

 asserta(have_found(eagle)),!.

test3(n,n,n):- asserta(have_found(ostrich)),!.

test3(n,w,t):- cofirm(has, tentacles),

 asserta(have_found(octopus)),!.

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

17

test3(n,w,n).

test4(m,n,l,s):- confirm(has, strips),

 asserta(have_found(zebra)),!.

test4(m,n,l,n):- asserta(have_found(giraffe)),!.

test4(n,w,n,f):- confirm(has, feathers),

 asserta(have_found(penguin)),!.

test4(n,w,n,n):- asserta(have_found(sardine)),!.

it-is(bird):- confirm(has, feathers),

 confirm(does, lay_eggs),!.

it-is(fish):- confirm(does, swim),

 confirm(has, fins),!.

 it-is(mammal):- confirm(has, hair),!.

it-is(mammal):- confirm(does, give_milk),!.

it-is(ungulate):- it-is(mammal),

 confirm(has, hooves),

 confirm(does, chew_cud),!.

it-is(carnivorous):- confirm(has, pointed_teeth),!.

it-is(carnivorous):- confirm(does, eat_meat),!.

confirm(X,Y):- db_confirm(X,Y),!.

confirm(X,Y):- not(denied(X,Y)),!, check(X,Y).

denied(X,Y):- db-denied(X,Y),!.

Check(X,Y):- write(X, “ it “, Y, \ “n”), readln(Reply), remember(X, Y, Reply).

remember(X, Y, yes):- asserta(db_confirm(X, Y)).

remember(X, y, no):- assereta(db_denied(X, Y)), fail.

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

18

Conclusions

1. Code written for backward chaining is clearer. All the rules in

version 1 of BBF have a nice declarative reading. They correspond

nicely to most people’s intuitive idea of how things should be

described when they are part of some kind of hierarchy. The

description is top down.

2. Code written for backward reasoning is also much easier to modify

or expand. It is apparent without much thought what would have to

be done to add another animal (class) to the structure: just define it.

But it is not always clear where to attach another instance to a

forward reasoning rule structure. In fact, if a number of additions

have to be made, all the rules may have to be redone to

accommodate the additions and at the same time to maintain the

same testing efficiency as was there before.

3. Code for the backward reasoning system will be easier to develop

in the first place because the built-in inference method in prolog is

backward chining.

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

19

Rule-Based Expert Systems

Rule-based expert systems represent problem-solving knowledge

as if.. then... rules. This approach lends itself to the architecture of typical

expert system that was described previously, and is one of the famous

techniques for representing domain knowledge in an expert system. It is

also one of the most natural, and remains widely used in practical and

experimental expert systems.

The Production System and Control Strategy in Problem Solving

The architecture of rule-based expert systems may be best

understood in terms of the production system model for problem solving.

The production system was the intellectual precursor of modern expert

system architectures, where application of production rules leads to

refinements of understanding of a particular problem situation. When the

production system is developed, the goal was to model human

performance in problem solving.

If we regard the expert system architecture as a production system,

the domain-specific knowledge base is the set of production rules. In a

rule-based system, these condition action pairs are represented as if…..

then….. rules, with the premises of the rules, the if portion, corresponding

to the condition, and the conclusion, the then portion, corresponding to

the action: when the condition is satisfied, the expert system takes the

action of asserting the conclusion as true. Case-specific data can be kept

in the working memory. The inference engine implements the recognize-

act cycle of the production system; this control may be either data-driven

or goal-driven.

Many problem domains seem to lend themselves more naturally to

forward search. In an interpretation problem, for example, most of the

data for the problem are initially given and it is often difficult to

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

20

formulate an hypotheses or goal. This suggests a forward reasoning

process in which the facts are placed in working memory and the system

searches for an interpretation.

In a goal-driven expert system, the goal expression is initially

placed in working memory. The system matches rule conclusions with

the goal, selecting one rule and placing its premises in the working

memory. This corresponds to a decomposition of the problem's goal into

simpler subgoals. The process continues in the next iteration of the

production system, with these premises becoming the new goals to match

against rule conclusions. The system thus works back from the original

goal until all the subgoals in working memory are known to be true,

indicating that the hypothesis has been verified.

Thus, backward search in an expert system corresponds roughly to

the process of hypothesis testing in human problem solving. In an expert

system, subgoals can be solved by asking the user for information. Some

expert systems allow the system designer to specify which subgoals may

be solved by

asking the user. Others simply ask the user about any subgoals that fail to

match rules in the knowledge base; i.e., if the program cannot infer the

truth of a subgoal, it asks the user.

As an example of goal-driven problem solving with user queries,

we next offer a small expert system for analysis of automotive problems.

This is not a full diagnostic system, as it contains only four very simple

rules. It is intended as an example to demonstrate goal driven rule

chaining, the integration of new data, and the use of explanation facilities:

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

21

Rule 1: if

the engine is getting gas, and

the engine will turn over,

then

the problem is spark plugs.

Rule 2: if

the engine does not turn over, and

the lights do not come on

then

the problem is battery or cables.

Rule 3: if

the engine does not turn over, and

the lights do come on

then

the problem is the starter motor.

Rule 4: if

there is gas in the fuel tank, and

there is gas in the carburetor

then

the engine is getting gas.

To run this knowledge base under a goal-directed control regime,

place the top-level goal, the problem is X, in working memory. X is a

variable that can match with any phrase, for example the problem is

battery or cables; it will become bound to the solution when the problem

is solved.

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

22

Three rules match with this expression in working memory: rule 1,

rule 2, and rule 3.

If we resolve conflicts in favor of the lowest-numbered rule, then

rule 1 will fire. This causes X to be bound to the value spark plugs and

the premises of rule 1 to be placed in the working memory. The system

has thus chosen to explore the possible hypothesis that the spark plugs are

bad.

Figure (1), the production system at the start of a consultation in the

car diagnostic example.

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

23

Figure (2), the production system after rule 1 has fired.

Figure (3), the production system after rule 4 has fired. Note the stack-

based approach to goal reduction.

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

24

Figure (4), the and or graph searched in the car diagnosis example, with the

conclusion of rule 4 matching the first premise of rule 1.

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

25

Suppose the following diagnosing problems as production rules, then attempt the

tasks below:

If G and H then R1

If a and b then G

If c and d then H

If not (b) and e then R2

The facts are a, b, c, and d,

1. Through formal steps, show the contents of working memory via backward

chaining.

2. Draw the AND-OR graph for the diagnosing problems.

1-

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

26

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

27

2.

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

28

Rule-Based Expert Systems

(Working Memory Contents via Forward Chaining)

Consider the following production rules that describe the failure in a device,

then attempt the tasks below through using these rules:

if a and b then L

if L and j then Y1

if not(j) and K then Y2

if not(j) and not(K) then Y3

The facts are a, b, and j.

1. What are the contents of working memory if the system works as forward

chaining?

2. Build the search graph as described by the contents of working memory for the

forward chaining through any search method.

1:

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

29

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

30

2:

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

31

Programs that Work under Uncertainty factor

Approximation Reasoning and Bipolar States

Logical Implications

• Simple Implication

ct(c) = ct(e) * ct(imp)

• AND Implication

ct(c) = min(ct(e1), ct(e2)) * ct(imp)

• OR Implication

ct(c) = max(ct(e1), ct(e2)) * ct(imp)

Bipolar Calculation Values

 If ct1(c) is +ve and ct2(c) is +ve (+ +) then

Ct(c) = (ct1(c) + ct2(c)) - (ct1(c) * ct2(c))

 If ct1(c) is -ve and ct2(c) is -ve (- -) then

Ct(c) = (ct1(c) + ct2(c)) + (ct1(c) * ct2(c))

 If [ct1(c) is +ve and ct2(c) is -ve (+ -)] or

 [ct1(c) is -ve and ct2(c) is +ve (- +)] then

Ct(c) = (ct1(c) + ct2(c)) / (1-min(abs(ct1(c))), (abs(ct2(c)))

Reversible and non reversible Rules

Reversible

 If ct(c) is -ve and prefaced by not then Ct(c) is +ve

 If ct(c) is +ve and prefaced by not then Ct(c) is -ve

Non reversible

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

32

 If ct(c) is -ve and prefaced by not then Ct(c) is +ve

 If ct(c) is +ve and prefaced by not then Ct(c) = 1- (+ve)

Knowledge Base

• hypothesis_node(C).

• terminal_node(e).

• imp(logic op, rule type, conclusion name, left condition sign, left

condition name, right condition sign, right condition name, imp

value)

Examples:

Consider the following inference network, then answer the items below:

Certainty node (Ci)  non-terminal nodes

Evidence node (ei) Terminal nodes

e1= 0.3 e2= 0.4 e3= 0.8 e4= 0.6

the implication value (imp) is equal to 0.5 for all rules.

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

33

1. Write the knowledge base of the given inference network.

2. Calculate the certainty factor for the node C4.

1.

hypothesis-node(C4).

terminal-node(e1).

terminal-node(e2).

terminal-node(e3).

terminal-node(e4).

imp(o, rev, C1, pos, e3, pos, e4, 0.5).

imp(o, rev, C3, pos, e1, pos, e2, 0.5).

imp(s, nrev, C2, pos, C1, __, __, 0.5).

imp(a, nrev, C4, pos, C3, pos, C2, 0.5).

2.

ct(C1) = max(e3, e4) * 0.5

 = 0.8 * 0.5

 = 0.4

ct(C3) = max(e1, e2) * 0.5

 = 0.4 * 0.5

 = 0.2

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

34

ct(C2) = C1 * 0.5

 = 0.4 * 0.5

 = 0.2

ct(C4) = min(C3, C2) * 0.5

 = 0.2 * 0.5

 = 0.1

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

35

Systems that Explain their Actions

The HOW & WHY Facilities

Consider the following Inference Network (fuzzy net)

If e1 and e2 then C1 (imp= 0.8) nrev

If not(e3) or C3 then C2 (imp= 0.9) nrev

If e4 and e5 then C3 (imp= 0.8) rev

If C1 or C2 thenC4 (imp= 0.8) rev

1- Answering WHY Questions

S: Type w(why) or give the certainty for node e4

U: w

S: Attempting to establish c3 via the implication

 e4 and e5  c3

e2

C1 C2

e3 C3

rev

C4

e1

nrev

nrev

e4 e5

rev

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

36

Type w(why) or give the certainty for node e4

U: w

 S: Attempting to establish c2 via the implication

 not e3 or c3  c2

 Type w(why) or give the certainty for node e4

U: w

S: Attempting to establish c4 via the implication

 c1 or c2  c4

 Type w(why) or give the certainty for node e4

U: 0.85

2- Knowledge Base

hypothesis-node (C4).

terminal-node(e1).

terminal-node(e2).

terminal-node(e3).

terminal-node(e4).

terminal-node(e5).

imp(o, rev, C4, pos, C1, pos, C2, 0.8).

imp(a, nrev, C1, pos, e1, pos, e2, 0.8).

imp(o, nrev, C2, neg, e3, pos, C3, 0.9).

imp(a, rev, C3, pos, e4, pos, e5, 0.8).

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

37

3- Why Stack Description

Step 0

The stack is empty

Step1

imp(o, r, C4, pos, C1, pos, C2, 0.8).

Step2

imp(a, n, C1, pos, e1, pos, e2, 0.8).

imp(o, r, C4, pos, C1, pos, C2, 0.8).

Step3

imp(o, r, C4, pos, C1, pos, C2, 0.8).

Step4

imp(o, n, C2, neg, e3, pos, C3, 0.9).

imp(o, r, C4, pos, C1, pos, C2, 0.8).

Step5

imp(a, r, C3, pos, e4, pos, e5, 0.8).

imp(o, n, C2, neg, e3, pos, C3, 0.9).

imp(o, r, C4, pos, C1, pos, C2, 0.8).

Step6

imp(o, n, C2, neg, e3, pos, C3, 0.9).

imp(o, r, C4, pos, C1, pos, C2, 0.8).

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

38

Step7

imp(o, r, C4, pos, C1, pos, C2, 0.8).

Step 8

The stack is empty

4- Answering HOW Question

S: Type h(how) nodename, or c (to continue).

U: h c4

S: Concluded c4 with certainty of 0.68 from

 c1 or c2  c4

 The rule is reversible

 Certainty of c1 is 0.6

 Certainty of c2 is 0.85

 The certainty of the implication is 0.8

 Used alone the rule suggests a certainty of 0.68

 Type h(how) nodename, or c (to continue).

U: h c1

S: Concluded c1 with certainty of 0.6 from

 e1 or e2  c1

 The rule is reversible

 Certainty of e1 is 0.75

 Certainty of e2 is 0.65

 The certainty of the implication is 0.8

 Used alone the rule suggests a certainty of 0.6

Type h(how) nodename, or c (to continue).

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

39

Complete Example (Uncertainty Factor Calculations & Explanation Processor)

Consider the inference network bellow, then answer the following items:

1. Calculate the certainty factor for all nodes.

2. Write the knowledge base of the given inference network.

3. Show the contents of WHY stack when the system asks the user about the

certainty value of node e4.

4. Describe the HOW explanation mechanism when the user asks H C3. What is the

system response?

e1 = -0.2 e2 = 0.3 e3 = 0.8 e4 = -0.7 e5 = 0.4 and the

implication value (imp) for each rule is equal to 0.5

e2

C2 C3 C4

e3 e4

nrev

C1

e5 e1

nrev

rev

rev

nrev

nrev

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

40

The solution

1.

Ct1(C2) = min(not(e1), e2) * 0.5

Ct1(C2) = min(0.2, 0.3) * 0.5

Ct1(C2) = 0.1

Ct2(C2) = not(e3) * 0.5

Ct2(C2) = -0.8 * 0.5

Ct2(C2) = -0.4

Ct(C2) = (ct1(C2) + ct2(C2)) / (1-min(abs(ct1(C2))), (abs(ct2(C2)))

Ct(C2) = (0.1 + -0.4) / (1-min((0.1), (0.4)))

Ct(C2) = -0.3 / 0.9

Ct(C2) = -0.33

Ct(C3) = max(e3, e4) * 0.5

Ct(C3) = 0.8 * 0.5

Ct(C3) = 0.4

Ct(C4) = e5 * 0.5

Ct(C4) = 0.4 * 0.5

Ct(C4) = 0.2

Ct1(C1) = max(C2, C3) * 0.5

Ct1(C1) = 0.4 * 0.5

Ct1(C1) = 0.2

Ct2(C1) = not(C4) * 0.5

Ct2(C1) = 0.8 * 0.5

Ct2(C1) = 0.4

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

41

Ct(C1) = (ct1(C1) + ct2(C1)) - (ct1(C1) * ct2(C1))

Ct(C1) = (0.2 + 0.4) – (0.2 * 0.4)

Ct(C1) = 0.6 – 0.08

Ct(C1) = 0.52

2.

hypothesis-node (C1).

terminal-node(e1).

terminal-node(e2).

terminal-node(e3).

terminal-node(e4).

terminal-node(e5).

imp(o, nrev, C1, pos, C2, pos, C3, 0.5).

imp(o, nrev, C1, neg, C4, _, _, 0.5).

imp(a, nrev, C2, pos, e1, pos, e2, 0.5).

imp(s, rev, C2, pos, e3, _, _, 0.5).

imp(a, nrev, C3, pos, e3, pos, e4, 0.5).

imp(s, rev, C4, pos, e5, _, _, 0.5).

3.

step 0

The stack is empty

step 1

imp(o, nrev, C1, pos, C2, pos, C3, 0.5)

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

42

step2

imp(a, nrev, C2, pos, e1, pos, e2, 0.5)

imp(o, nrev, C1, pos, C2, pos, C3, 0.5)

step 3

imp(o, nrev, C1, pos, C2, pos, C3, 0.5)

step 4

imp(s, rev, C2, pos, e3, _, _, 0.5)

imp(o, nrev, C1, pos, C2, pos, C3, 0.5)

step 5

imp(o, nrev, C1, pos, C2, pos, C3, 0.5)

step 6

imp(a, nrev, C3, pos, e3, pos, e4, 0.5)

imp(o, nrev, C1, pos, C2, pos, C3, 0.5)

4.

S: Type h(how) nodename, or c (to continue).

U: h C3

S: Concluded C3 with certainty of 0.1 from

 e3 and e4  C3

 The rule is non reversible

 Certainty of e3 is 0.3

 Certainty of e4 is 0.2

 The certainty of the implication is 0.5

 Used alone the rule suggests a certainty of 0.1

 Type h(how) nodename, or c (to continue).

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

43

Homework / Consider the following Production rules:

if not(e3) or e4 then c1 (imp = 1.0) nrev

if not(e1) and not(e2) then c2 (imp = 0.8) rev

if c1 or e5 then c3 (imp = 0.7) nrev

if not(e6) then c4 (imp = 0.9) nrev

if e7 and e8 then c5 (imp = 0.8) nrev

if not(e9) then c5 (imp = 0.9) rev

if c2 then c6 (imp = 0.9) rev

if c3 then c6 (imp = 0.9) nrev

if c4 and c5 then c6 (imp = 0.85) nrev

e1= 0.2 e2= -0.2 e3= -0.2 e4= 0.7 e5= -0.5 e6= -0.8 e7= 0.8

e8= 0.8 e9= -0.7

1. Calculate the certainty factor for all nodes.

2. Write the knowledge base of the drawing inference network.

3. Show the contents of WHY stack when the system asks the user about the

certainty value of node e7.

4. Describe the HOW explanation mechanism when the user asks H C6. What is

the system response?

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

44

Approximate Reasoning (Structure of the FUZZYNET Program)

driver:- hypothesis-node(X), allinfer(X, Ct),

 write(“The certainty for “, X, “is”, Ct), nl, fail.

allinfer(Node, Ct):- findall(C1, infer(Node, C1), Ctlist),

 supercombine(Ctlist, Ct).

/*A simple implication */

infer(Node, Ct):-

 imp(s, Use, Node, Sign, Node2, _, _, C1),

 allinfer(Node2, C2),

 find_multiplier(Sign, Mult, dummy, 0), CS = Mult * C2,

 qualifier(Use, CS, Qmult), Ct = CS * C1 * Qmult.

/* An implication with an AND in the Premise */

 infer(Node1, Ct):-

 imp(a, Use, Node1, SignL, Node2, SignR, Node3, C1),

 allinfer(Node2, C2),

 allinfer(Node3, C3),

 find_multiplier(SignL, MultL, SignR, MultR),

 C2S = MultL * C2, C3S = MultR * C3,

 min(C2S, C3S, CX), qualifier(Use, CX, Qmult),

Ct = CX * C1 * Qmult.

/* An implication with an OR in the Premise */

 infer(Node1, Ct):-

 imp(o, Use, Node1, SignL, Node2, SignR, Node3, C1),

 allinfer(Node2, C2),

 allinfer(Node3, C3),

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

45

 find_multiplier(SignL, MultL, SignR, MultR),

 C2S = MultL * C2, C3S = MultR * C3,

 max(C2S, C3S, CX), qualifier(Use, CX, Qmult),

Ct = CX * C1 * Qmult.

infer(Node1, Ct):-

 terminal_node(Node1), evidence(Node1, Ct),!.

infer(Node1, Ct):-

 terminal_node(Node1)

write(“What is the certainty for node”, Node1),

nl, readreal(Ct), asserta(evidence(Node1, Ct)),!.

/* This is used for simple implication */

find_multiplier(pos, 1, dummy, 0).

find_multiplier(neg, -1, dummy, 0).

/* This is used for AND and OR implications */

find_multiplier(pos, 1, pos, 1).

find_multiplier(pos, 1, neg, -1).

find_multiplier(neg, -1, pos, 1).

find_multiplier(neg, -1, neg, -1).

supercombine([Ct], Ct):-!.

supercombine([C1, C2], Ct):- combine([C1, C2], Ct), !.

supercombine([C1, C2|T], Ct):- combine([C1, C2], C3), append([C3], T,

TL), nsupercombine(TL, Ct), !.

combine([-1, 1], 0).

combine([1, -1], 0).

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

46

Combine([C1, C2], Ct):- C1 >= 0, C2>= 0, Ct = C1 + C2 - C1 * C2.

Combine([C1, C2], Ct):- C1 < 0, C2< 0, Ct = C1 + C2 + C1 * C2.

combine([C1, C2], Ct):- C1 < 0, C2 >= 0, absvalue(C1, Z1), absvalue(C2, Z2),

 min(Z1, Z2, Z3), Ct = (C1 + C2) / (1 – Z3).

combine([C1, C2], Ct):- C2 < 0, C1 >= 0, absvalue(C1, Z1), absvalue(C2, Z2),

 min(Z1, Z2, Z3), Ct = (C1 + C2) / (1 – Z3).

absvalue(X, Y):- X = 0, Y = 0, !.

absvalue(X, Y):- X > 0, Y = X, !.

absvalue(X, Y):- X < 0, Y = -X, !.

qualifier(Use, C, Qmult):- Use = “r”, Qmult = 1, !.

qualifier(Use, C, Qmult):- Use = “n”, C >= 0, Qmult = 1, !.

qualifier(Use, C, Qmult):- Use = “n”, C < 0, Qmult = 0, !.

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

47

System that Explain their Actions

Explanation Mechanism

/* For and implication, the other in the same manner */

infer(Node1, Ct):-

 imp(a, Use, Node1, SignL, Node2, SignR, Node3, C1),

 assserta(dbimp(a, Use, Node1, SignL, Node2, SignR,

Node3, C1)),

 assserta(tdbimp(a, Use, Node1, SignL, Node2, SignR,

Node3,C1)),

 allinfer(Node2, C2),

 allinfer(Node3, C3),

 find_multiplier(SignL, MultL, SignR, MultR),

 C2S = MultL * C2, C3S = MultR * C3,

 min(C2S, C3S, CX), qualifier(Use, CX, Qmult),

Ct = CX * C1 * Qmult,

 assertz(infer_summary(

imp(a, Use, Node1, SignL, Node2, SignR, Node3, C1), Ct)),

retract(dbimp(a, Use, Node1, SignL, Node2, SignR, Node3, C1)),

retract(tdbimp(a, Use, Node1, SignL, Node2, SignR, Node3, C1)).

/* How Facility Sub Program */

Exsys_driver :- getallans, showresults,!.

Getallans :- not(prepare_answer).

 Prepare_answer :- answer(X, Y), fail.

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

48

answer(X, Y) :- hypothesis_node(X), allinfer(X, Y),

 assert(danswer(X, Y)).

Showresults :- not(displayall).

 displayall :- diplay_one_answer, fail.

 diplay_one_answer :- danswer(X, Y), clearwindow,

 write(“For this hypothesis:”), nl,

 write(“ “, X),nl, write(“The certainty is:”,

 Y),nl, nl,

 not(how_describer(X)).

how_describer(Node) :- repeat, nl,

 write(“Type h(how) nodename, or c(to continue),”),

 nl, readln(Reply), nl, how_explain(Reply),!.

how_explain(Reply) :- Reply = “c”.

how_explain(Reply) :- fronttoken(Reply, _, X1), fronttoken(X1, X, _),

infer_summary(imp(_, _, X, _, _, _, _, _), _),

clearwindow,!,

 write(“The rule(s) that bear upon this conclusion

 are:“),

 nl, nl, infer_summary(imp(A, A1, X, R, S, C, D,

 E),F),

 write(“Concluded: “, X), nl, gettype(A, Z),

 write(“from an “, Z), nl, write(“ premise 1 was:

 “,S), nl,

 write(“ premise 2 was: “,D), nl,

 write(“The certainty from use of this rule alone

 was: “,F),

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

49

 nl, nl, fail.

how_explain(Reply) :- fronttoken(Reply, _, X1), fronttoken(X1, X, _),

 terminal_node(X), evidence(X, C),

 write(“You told me that: “), nl, write(“ “, X), nl,

 write(“has a certainty of: “,C), nl, fail.

/* Why Facility Sub Program */

infer(Node, Ct) :- terminal_node(Node), evidence(Node, Ct), !.

infer(Node, Ct) :- terminal_node(Node), repeat, nl,

 write(“Type w(why) or give the certainty for node “,

 Node), nl, readln(Reply),

 reply_to_input(Node, Reply, Ct), !.

reply_to_input(Node, Reply, Ct) :- not(isname(Reply)),

 adjuststack,

 str_real(Reply, CT),

asserta(evidence(Node,Ct)),!.

reply_to_input(_, Reply, _) :- isname(Reply), Reply = “w”, nl,

 dbimp(U, V, R, S, S1, X, Y, Y1),

 why_describer(U, V, R, S, S1, X, Y, Y1),

 retract(dbimp(U, V, R, S, S1, X, Y, Y1)),

 putadjustflag,

 pauser, !, fail.

why_describer(U, U1, V, R, S, X, Y, Z) :- clearwindow, nl, U <>”s”,

 gettype(U,UU),

 write(“I am trying to use an inference rule of the type “),

 nl, write(UU), write(“, to support the conclusion: “), nl,

EXPERT SYSTEMS PROF. DR. HASANEN S. ABDULLAH

50

 write(“ “, V), nl, write(“Premise 1 is: “,S), nl, getmode(R, RR),

 write(“ This premise will be used “, RR), nl,

write(“Premise 2 is: “,Y),

 nl, getmode(X, XX), nl,

write(“ This premise will be used “, XX), nl,

 write(“The certainty of the implication is: “, Z), nl, !.

why_describer(“s”, V1, V, R, S, X, Y, Z) :- clearwindow, nl,

 write(“I am trying to use an inference rule of the type “), nl,

 write(“simple implication, to support the conclusion: “), nl,

 write(“ “, V), nl, write(“premise 1 is: “, S), nl, getmode(R, RR),

 write(“ This premise will be used “, RR), nl

 write(“The certainty of the implication is: “, Z), nl, !.

gettype(“a”, “and implication”).

gettype(“o”, “or implication”).

gettype(“s”, “simple implication”).

getmode(“pos”, “as you see it.”).

getmode(“neg”, “prefaced by not.”).

References:

1. Daniel H. .Marcellus,” Expert Systems Programming in Turbo Prolog”,

prentice Hall (New Jersey).

2. George F. Luger, “Artificial Intelligence Structures and Strategies for

Complex Problem Solving”, Pearson Education Asia (Singapore), Sixth

edition.

