

1st

 Class

2023-2024

Discrete Structures

المتقطعت الهياكل

قباس عزالدينأد. : ةستاذ المادأ

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

1

References

1- Theory and problems of Discrete mathematics, by Seymour

Lipschutz & Marc Lars Lipson, Schaum’s Outline Series, third

edition 2007

2- Mathematical foundation of computer science, Y.N. Singh,

2005

3- discrete structures, Amin Witno, Revision Notes and

Problems 2006, www.witno.com

4- Discrete mathematics for New technology, Rowan Garnier &

John Taylor, Second Edition, 2002

5- Discrete mathematical structures for computer science by

Bernard Kolman & Robert C. Busby

6- Discrete Mathematics and Its Applications, Seventh Edition,

Kenneth H. Rosen, AT&T Laboratories, 2012

7- http://www.math.uvic.ca/faculty/gmacgill/guide

8- http://en.wikibooks.org/wiki/Discrete_mathematics/Set_theory

http://www.witno.com/
http://www.math.uvic.ca/faculty/gmacgill/guide
http://en.wikibooks.org/wiki/Discrete_mathematics/Set_theory

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

2

SETS AND ELEMENTS
A set is a collection of objects called the elements or members

of the set. The ordering of the elements is not important and

repetition of elements is ignored,

for example

 {1, 3, 1, 2, 2, 1} = {1, 2, 3}.

One usually uses capital letters, A,B,X, Y, . . . , to denote sets,

and lowercase letters, a, b, x, y, . . ., to denote elements of sets.

Below you'll see a sampling of items that could be considered as

sets:

 The items in a store

 The English alphabet

 Even numbers

A set could have as many entries as you would like.

It could have one entry, 10 entries, 15 entries, infinite number of

entries, or even have no entries at all!

For example, in the above list the English alphabet would have

26 entries, while the set of even numbers would have an infinite

number of entries.

Each entry in a set is known as an element or member

Sets are written using curly brackets "{" and "}", with their

elements listed in between.

For example:

1- the English alphabet could be written as

{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}

2- even numbers could be {0,2,4,6,8,10,...}

Principles:

 belong to

 not belong to

 subset

 proper subset (is a non-equal subset)

For example, {a, b} is a proper subset of {a, b, c},

but {a, b, c} is not a proper subset of {a, b, c}.

  not subset

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

3

So we could replace the statement: "a is belong to the alphabet"

with:

 a  {alphabet}

and replace the statement "3 is not belong to the set of even

numbers" with:

 3  {Even numbers}

Now if we named our sets we could go even further.

Give the set consisting of the alphabet the name A,

and give the set consisting of even numbers the name E.

We could now write

a  A

and

3  E.

Problem

Let A = {2, 3, 4, 5} and C = {1, 2, 3, . . ., 8, 9}, Show that A is

a proper subset of C.

Answer

Each element of A belongs to C, so A ⊆ C. On the other hand,

 1  C but 1  A. Hence A ≠ C. Therefore A is a proper subset

of C.

There are three ways to specify a particular set:

1) By list its members separated by commas and contained in

braces{ }, (if it is possible), for example: A= {a,e,i,o,u}

2) By state those properties which characterize the elements

in the set, for example:

 A={x:x is a letter in the English alphabet, x is a vowel}

3) Venn diagram: (A graphical representation of sets).

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

4

Example (1)

 A={x:x is a letter in the English alphabet, x is a vowel}

e  A (e is belong to A)

f  A (f is not belong to A)

Example (2)

X is the set {1,3,5,7,9}

3  X and

 4  X

Example (3)

Let E = {x | x
2
 − 3x + 2 = 0} → (x-2)(x-1)=0 → x=2 & x=1

 E = {2, 1}, and

2

Empty Set

A set with no elements is called an empty set.

An empty is denoted by { } or ∅.

For example,

- ∅ = {x: x is an integer and x
2
 + 5 = 0}

- ∅ = {x: x are living beings who never die}

- ∅ = {x: x is the UOT student of age below 15}

- ∅ = { x: x is the set of persons of age over 200}

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

5

Universal set:

In any application of the theory of sets, the members of all sets

under investigation usually belong to some fixed large set called

the universal set.

For example:

In human population studies the universal set consists of all the

people in the world.

We will let the symbol U denotes the universal set.

Subsets:

 Every element in a set A is also an element of a set B, then A

is called a subset of B.

We also say that B contains A.

This relationship is written:

 A  B or B  A

If A is not a subset of B, i.e. if at least one element of A does not

belong to B, we write A  B.

Example 4:

Consider the sets:

A = {1,3,4,5,8,9}, B = {1,2,3,5,7} and C ={1,5}

Then C A and C B

since 1 and 5, the element of C, are also members of A and B.

But B A since some of its elements, e.g. 2 and 7, do not belong

to A.

Furthermore, since the elements of A, B and C must also belong

to the universal set U,

we have that U must at least the set {1,2,3,4,5,7,8,9}.

 AB : { xA  xB

 AB :  xA but xB

 : For all لكل

 : There exists يوجد على الاقل

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

6

The notion of subsets is graphically illustrated below:

 A is entirely within B so A  B.

 A and B are disjoint or (A  B = ) so we could write A  B and B  A.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

7

Set of numbers:

Several sets are used so often, they are given special symbols.

N = the set of natural numbers or positive integers

Z = the set of all integers: . . . ,−2,−1, 0, 1, 2, . . .

Q = the set of rational numbers

 Where Q ={ a/b : a , b  Z, b0}

R = the set of real numbers

C = the set of complex numbers

 Where C={ x + iy ; x , y R; i = -1}

Observe that N  Z  Q  R  C.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

8

Theorem 1:

 For any set A, B, C:

1.   A  U.

2. A  A.

3. If A  B and B  C, then A  C.

4. A = B if and only if A  B and B  A.

Set operations:

1) UNION:

The union of two sets A and B, denoted by A  B, is the set of

all elements which belong to A or to B;

 A  B = { x : x  A or x  B}

Example

A={1,2,3,4,5} B={5,7,9,11,13}

A  B = {1,2,3,4,5,7,9,11,13}

2) INTERSECTION

 The intersection of two sets A and B, denoted by A ∩ B, is the

set of elements which belong to both A and B;

 A ∩ B = { x : x A and x B}.

Example 1

A={1,3,5,7,9} B={2,3,4,5,6}

The elements they have in common are 3 and 5

A  B = {3,5}

Example 2

A={The English alphabet} B={vowels}

So A  B = {vowels}

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

9

Example 3

A={1,2,3,4,5} B={6,7,8,9,10}

In this case A and B have nothing in common. A  B = 

3) THE DIFFERENCE:

The difference of two sets A\B or A-B is those elements which

belong to A but which do not belong to B.

A\B = {x : x A, x  B}

4) COMPLEMENT OF SET:
Complement of set A

c
 or A' , is the set of elements which belong

to U but which do not belong to A .

 A
c
 = {x : x  U, x  A}

Example 1:

let A={1,2,3}

 B = {3,4}

 U={1,2,3,4,5,6}

Find:

 A  B = {1, 2, 3, 4}

 A  B = {3}

 A - B = {1, 2}

 A
c
 = {4, 5, 6}

5) Symmetric difference of sets

The symmetric difference of sets A and B, denoted by A B,

consists of those elements which belong to A or B but not to

both. That is,

 A B = (A  B)\(A ∩ B) or

 A B = (A\B)  (B\A)

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

10

Example:

 Suppose U = N = {1, 2, 3, . . .} is the universal set.

 Let A = {1, 2, 3, 4}, B= {3, 4, 5, 6, 7},

 C = {2, 3, 8, 9}, E= {2, 4, 6, 8,. . .}

Then:

A
c
 = {5, 6, 7, . . .},

B
c
 = {1, 2, 8, 9, 10, . . .},

C
c
={1,4,5,6,7,10,…}

E
c
 ={1, 3, 5, 7, ...}

A\B = {1, 2},

A\C = {1, 4},

B\C = {4, 5, 6, 7},

A\E = {1, 3},

B\A = {5, 6, 7},

C\A = {8, 9},

C\B = {2, 8, 9},

E\A = {6, 8, 10, 12, . . .}.

Furthermore:

 A B = (A\B)  (B\A) = {1, 2, 5, 6, 7},

B C = {2, 4, 5, 6, 7, 8, 9},

A C = (A\C)  (A\C) = {1, 4, 8, 9},

A E = {1, 3, 6, 8, 10, . . .}.

Theorem 2 :

A  B ,

A  B = A ,

A  B = B are equivalent

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

11

Theorem 3: (Algebra of sets)

Sets under the above operations satisfy various laws or identities

which are listed below:

1- A  A = A

 A  A = A

2- (A  B) C = A  (B  C) Associative laws

 (A  B)  C = A  (B  C)

3- A  B = B  A Commutativity

 A  B = B  A

4- A C) = (A  C) Distributive laws

 A C) = (A   C)

5- A   = A Identity laws

 A  U = A

6- A  U = U Identity laws

 A   = 

7- (A
c
)

c
 = A Double complements

8- A  A
 c

= U Complement intersections

 and unions

 A  A
 c

= 

9- U
c

 = 

 
 c

 = U

10- (A  B)
 c

 = A
 c
 B

 c
 De Morgan's laws

 (A B)
 c

 = A
 c
 B

 c

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

12

Power set

The power set of some set S, denoted P(S), is the set of all

subsets of S (including S itself and the empty set)

 P(S) = {e : e  S}

Example 1:

Let A = { 1,2 3}

Power set of set A = P(A)

 ={1},{2},{3},{1,2},{1,3},{2,3},{},A]

Example 2:

 P({0,1})={{},{0},{1},{0,1}}

Classes of sets:

 Collection of subset of a set with some properties

Example:

Suppose A = { 1,2 3} ,

 let X2 be the class of subsets of A which contain exactly two

elements of A. Then

 class X0 = [{}]

class X1 = [{1},{2},{3}]

class X2 = [{1,2},{1,3},{2,3}]

class X3 = [{1,2,3}]

Cardinality
The cardinality of a set S, denoted |S|, is simply the number of

elements a set has, so

 |{a,b,c,d}| = 4,

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

13

The cardinality of the power set

Theorem:

 If |A| = n then |P(A)| = 2
n

 (Every set with n elements has 2
n
 subsets)

Problem set

Write the answers to the following questions.

1. |{1,2,3,4,5,6,7,8,9,0}|

2. |P({1,2,3})|

3. P({0,1,2})

4. P({1})

Answers

1. 10

2. 2
3
=8

3. {{},{0},{1},{2},{0,1},0,2},{1,2},{0,1,2}}

4. {{},{1}}

The Cartesian product

The Cartesian Product of two sets is the set of all tuples made

from elements of two sets.

We write the Cartesian Product of two sets A and B as A × B. It

is defined as:

It may be clearer to understand from examples;

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

14

Example:

If A = {1, 2, 3} and B = {x, y} then

A . B = {(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)}

B . A = {(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)}

It is clear that, the cardinality of the Cartesian product of two

sets A and B is:

A Cartesian Product of two sets A and B can be produced by

making tuples of each element of A with each element of B; this

can be visualized as a grid (which Cartesian implies) or table: if,

e.g.,

A = { 0, 1 } and B = { 2, 3 }, the grid is

×
A

0 1

B
2 (0,2) (1,2)

3 (0,3) (1,3)

Problem set

Answer the following questions:

 1. {2,3,4}×{1,3,4}

 2. {0,1}×{0,1}

3. |{1,2,3}×{0}|

4. |{1,1}×{2,3,4}|

Answers

1. {(2,1),(2,3),(2,4),(3,1),(3,3),(3,4),(4,1),(4,3),(4,4)}

2. {(0,0),(0,1),(1,0),(1,1)}

3. 3

4. 6

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

15

EXAMPLE

What is the Cartesian product A × B × C, where

A = {0, 1},

B = {1, 2}, and

C = {0, 1, 2} ?

Solution:

The Cartesian product A × B × C consists of all ordered triples

(a, b, c), where a ∈ A, b ∈ B, and c ∈ C. Hence,

A× B × C = {(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1), (0, 2, 2),(1, 1, 0),

 (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)}.

EXAMPLE

Suppose that A = {1, 2}. It follows that

A
2
 = {(1, 1), (1, 2), (2, 1), (2, 2)} and

A
3
 = {(1,1,1), (1,1,2), (1,2,1), (1,2, 2), (2,1,1), (2,1,2), (2, 2,1), (2, 2, 2)}.

Computer Representation of Sets
There are various ways to represent sets using a computer. One

method is to store the elements of the set in an unordered

fashion. However, if this is done, the operations of computing

the union, intersection, or difference of two sets would be time-

consuming, because each of these operations would require a

large amount of searching for elements. We will present a

method for storing elements using an arbitrary ordering of the

elements of the universal set. This method of representing sets

makes computing combinations of sets easy.
Assume that the universal set U is finite (and of reasonable size

so that the number of elements of U is not larger than the

memory size of the computer being used). First, specify an

arbitrary ordering of the elements of U, for instance:

a1, a2, . . . , an. Represent a subset A of U with the bit string of

length n, where the ith bit in this string is 1 if ai belongs to A

and is 0 if ai does not belong to A.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

16

Example
Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and the ordering of

elements of U has the elements in increasing order; that is,

ai = i. What bit strings represent

1- the subset of all odd integers in U,

2- The subset of all even integers in U, and

3- the subset of integers not exceeding 5 in U?

Solution:
1- The bit string that represents the set of odd integers in U,

namely, {1, 3, 5, 7, 9}, has a one bit in the first, third, fifth,

seventh, and ninth positions, and a zero elsewhere. It is:

 10 1010 1010.

2- we represent the subset of all even integers in U, namely,

{2, 4, 6, 8, 10}, by the string 01 0101 0101.

3- The set of all integers in U that do not exceed 5, namely,

{1, 2, 3, 4, 5}, is represented by the String 11 1110 0000.

Using bit strings to represent sets, it is easy to find complements

of sets and unions, intersections, and differences of sets. To find

the bit string for the complement of a set from the bit string for

that set, we simply change each 1 to a 0 and each 0 to 1, because

x ∈ A if and only if x ∉ Ā. Note that this operation corresponds

to taking the negation of each bit when we associate a bit with a

truth value—with 1 representing true and 0 representing false.

Example
We have seen that the bit string for the set {1, 3, 5, 7, 9} (with

universal set {1, 2, 3, 4,5, 6, 7, 8, 9, 10}) is 10 1010 1010.What

is the bit string for the complement of this set?

Solution:
The bit string for the complement of this set is obtained by

replacing 0s with 1s and vice versa. This yields the string 01

0101 0101, which corresponds to the set {2, 4, 6, 8, 10}.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

17

To obtain the bit string for the union and intersection of two sets

we perform bitwise Boolean operations on the bit strings

representing the two sets.

The bit in the ith position of the bit string of the union is 1 if

either of the bits in the ith position in the two strings is 1 (or

both are 1), and is 0 when both bits are 0. Hence, the bit string

for the union is the bitwise OR of the bit strings

for the two sets. The bit in the ith position of the bit string of the

intersection is 1 when the bits in the corresponding position in

the two strings are both 1, and is 0 when either of the two bits

is 0 (or both are). Hence, the bit string for the intersection is the

bitwise AND of the bit strings for the two sets.

EXAMPLE

The bit strings for the sets {1, 2, 3, 4, 5} and {1, 3, 5, 7, 9} are

11 1110 0000 and 10 1010 1010, respectively. Use bit strings to

find the union and intersection of these sets.

Solution:

The bit string for the union of these sets is:

11 1110 0000 ∨ 10 1010 1010 = 11 1110 1010, which

corresponds to the set {1, 2, 3, 4, 5, 7, 9}.

The bit string for the intersection of these sets is

11 1110 0000 ∧ 10 1010 1010 = 10 1010 0000, which

corresponds to the set {1, 3, 5}.

Finite Sets and Counting Principle:
A set is said to be finite if it contains exactly m distinct

elements, where m denotes some nonnegative integer.

Otherwise, a set is said to be infinite.

For example:

- The empty set  and the set of letters of English alphabet are

finite sets,

- The set of even positive integers, {2,4,6,…..}, is infinite.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

18

 If a set A is finite, we let n(A) or #(A) denote the number of

elements of A.

Example:

If A ={1,2,a,w} then

 n(A) = #(A) = |A| = 4

Lemma: If A and B are finite sets and disjoint Then Ais

finite set and:

 n(A B) = n(A) + n(B)

Theorem (Inclusion–Exclusion Principle): Suppose A and B are

finite sets. Then

 A  B and A ∩ B are finite and

 |A B| = |A| + |B| - | A  B|

That is, we find the number of elements in A or B (or both) by

first adding n(A) and n(B) (inclusion) and then subtracting

n(A ∩ B) (exclusion) since its elements were counted twice.

We can apply this result to obtain a similar formula for three

sets:

Corollary:

If A, B, C are finite sets then

|ABC| = |A| + |B| + |C| - |AB| - |AC| - |BC| + |AB C|

Example (1) :

A= {1,2,3}

B= {3,4}

C= {5,6}

A B  C = {1,2,3,4,5,6}

|A  B  C| = 6

|A| =3 , |B| = 2 , |C| = 2

 B = {3} , | B | = 1

C  , | C | = 0

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

19

B C = { } , | C | = 0

 B  C = { } , | B C | = 0

|ABC| = |A| + |B| + |C| - |AB| - |AC| - |BC| + |AB C|

|A B C | = 3 + 2 +2 -1 – 0 – 0 + 0 = 6

Example (2):

Suppose a list A contains the 30 students in a mathematics class,

and a list B contains the 35 students in an English class, and

suppose there are 20 names on both lists. Find the number of

students:

 (a) only on list A

 (b) only on list B

 (c) on list A B

Solution:

(a) List A has 30 names and

 20 are on list B;

 hence 30 − 20 = 10 names are only on list A.

(b) Similarly, 35 − 20 = 15 are only on list B.

(c) We seek n(A  B). By inclusion–exclusion,

 n(A  B) = n(A) + n(B) − n(A ∩ B)

 = 30 + 35 − 20 = 45.

Example (3):

Suppose that 100 of 120 computer science students at a college

take at least one of languages: French, German, and Russian:

65 study French (F).

45 study German (G).

42 study Russian (R).

20 study French & German F  G.

25 study French & Russian F R.

15 study German & Russian G  R.

Find the number of students who study:

1) All three languages (F G R)

2) The number of students in each of the eight regions of the

Venn diagram

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

20

Solution:
|F  G  R| = |F| + |G| + |R| - |F G| - |F R| - |G R| + |F G R|

100 = 65+ 45 + 42 - 20 - 25 - 15 + |F G R|

100 = 92 + |F G R|

|F G R| = 8 students study the 3 languages

20 – 8 = 12 (F G) - R

25 – 8 = 17 (F R) - G

15 – 8 = 7 (G R) - F

65 – 12 – 8 – 17 = 28 students study French only

45 – 12 – 8 7 = 18 students study German only

42 – 17 – 8 7 = 10 students study Russian only

120 – 100 = 20 students do not study any language

Mathematic induction:

Suppose that we have an infinite ladder and we want to know

whether we can reach every step on this ladder. We know two

things:

l. We can reach the first rung of the ladder.

2. If we can reach a particular rung of the ladder, then we can

reach the next rung.

Can we conclude that we can reach every rung? By (1), we

know that we can reach the first rung of the ladder. Moreover,

because we can reach the first rung, by (2), we can also reach

the second rung; it is the next rung after the first rung. Applying

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

21

(2) again, because we can reach the second rung, we can also

reach the third rung. Continuing in this way, we can show that

we can reach the fourth rung, the fifth rung, and so on. For

example, after 100 uses of (2), we know that we can reach the

101 st rung.

We can verify using an important proof technique called

mathematical induction. That is, we can show that P(n) is true

for every positive integer n, where P(n) is the statement that we

can reach the nth rung of the ladder.

Mathematical induction is an important proof technique that can

be used to prove assertions of this type. Mathematical induction

is used to prove results about a large variety of discrete objects.

For example, it is used to prove results about the complexity of

algorithms, the correctness of certain types of computer

programs, theorems about graphs and trees, as well as a wide

range of identities and inequalities.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

22

In general, mathematical induction can be used to prove

statements that assert that P(n) is true for all positive integers n,
where P(n) is a propositional function.

PRINCIPLE OF MATHEMATICAL INDUCTION

To prove that P(n) is true for all positive integers n, where P(n)

is a propositional function, we complete two steps:

(i)BASIS STEP: We verify that P(1) is true.

(ii)INDUCTIVE STEP: We show that the conditional statement

P(k)→P(k + I) is true for all positive integers k.

EXAMPLE1:

Show that if n is a positive integer, then

 n (n + 1)

 1+2+ … +n = ---------

2
. Prove P (for n ≥ 1)

Solution:

Let P(n) be the proposition that the sum of the first n positive

integers is n(n + 1)/2

We must do two things to prove that P(n) is true for

n = 1, 2, 3,

Namely, we must show that P(1) is true and that the conditional

statement P(k) implies P(k + 1) is true for k = 1,2.3,

 1(1+1)

(i)BASIS STEP: P(1) IS true, because 1 = ----------

2

 left side =1 & Right side =2/2 = 1

 left side = Right side

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

23

 (ii)INDUCTIVE STEP: For the inductive hypothesis we assume

that P(k) holds for an arbitrary positive integer k. That is, we

assume that P(k) is true

 k(k + 1)

 1+2+ … +k = ---------

 2

Under this assumption, it must be shown that P(k + 1) is true,

namely, that

to prove that P(k+1) is true

1 + 2 + 3 + 4 + ..… + k + (k+1) = 1/2 * k * (k+1) + (k+1)

 k (k+1) + 2 (k+ 1)

 = ---------------------------

 2

 (k+1) (k+ 2)

 = ---------------

 2

 = 1/2 (k + 1)(k + 2)

So P is true for all n  k

Example 2:
Conjecture a formula for the sum of the first n positive odd

integers. Then prove your conjecture using mathematical

induction.

Solution:

The sums of the first n positive odd integers for

n = 1,2,3,4,5 are:

1 = 1, 1 + 3 = 4, 1 + 3 + 5 = 9,

1+3+5+7=16, 1 + 3 + 5 + 7 + 9 = 25.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

24

From these values it is reasonable to conjecture that the sum of

the first n positive odd integers is n
2
, that is,

 1 + 3 + 5 + ... + (2n - 1) = n
2

 We need a method to prove that this conjecture is correct, if in

fact it is.

Let P(n) denote the proposition that the sum of the first n odd

positive integers is n
2

(i)BASIS STEP: P(1) states that the sum of the first one odd

positive integer is 1
2
. This is true because the sum of the first

odd positive integer is 1.

(ii)INDUCTIVE STEP:

 we first assume the inductive hypothesis.

The inductive hypothesis is the statement that P(k) is true, that

is,

 1 + 3 + 5 + ... + (2k - 1) = k
2

(ii) n=k; Assuming P(k) is true,

We add (2k-1)+2 = 2K + 1 to both sides of P(k), obtaining:

 1 + 3 + 5 + … + (2k – 1) + (2k + 1) = k
2
 +(2k + 1)

 = (k + 1)
2

Which is P(k + 1).

That is, P(k + 1) is true whenever P(k) is true.

By the principle of mathematical induction:

 P is true for all n .k.

Example 3:

Prove the following proposition (for n ≥ 0):

 P(n) : 1 + 2 + 2
2
 + 2

3
 + … +2

n
 = 2

n+1
 − 1

solution :

 (i) P(0) : left side =1

 Right side =2
1
-1=1

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

25

 (ii) Assuming P(k) is true ; n=k

 P(k) : 1 + 2 + 2
2
 + 2

3
 + … +2

k
 = 2

k+1
 − 1

We add 2
k+1

 to both sides of P(k), obtaining

1 + 2 + 2
2
 + 2

3
 + … +2

k
 + 2

k+1
 = 2

k+1
 − 1+ 2

k+1

 = 2(2
k+1

) − 1 = 2
k+2

 – 1

which is P(k +1). That is, P(k +1) is true whenever P(k) is true.

By the principle of induction:

 P(n) is true for all n.

Homework:

Prove by induction:

1) 2 + 4 + 6 + ……. + 2n = n (n + 1)

2) 1 + 4 + 7 + ……. + (3n – 2) = 1/2 n (3n - 1)

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

26

Relations
The important aspect of the any set is the relationship between

its elements. The association of relationship established by

sharing of some common feature proceeds comparing of related

objects. For example, assume a set of students, where students

are related with each other if their sir names are same.

Conversely, if set is formed a class of students then we say that

students are related if they belong to same class etc.

Relation is a predefined alliance of objects. The examples of

relations are viz. brother and sister, and mathematical relation

such as less than, greater than, and equal etc.

The relations can be classifying on the basis of its association

among the objects. For example, relations said above are all

association among two objects so these relations are called

binary relation. Similarly, relations of parent to their children,

boss and subordinates, brothers and sisters etc. are the examples

of relations among three/more objects known as tertiary relation,

quadratic relations and so on. In general an n-ary relation is the

relation framed among n objects.

Product sets:

Consider two arbitrary sets A and B. The set of all ordered pairs

(a,b) where aA and bB is called the product, or Cartesian

product, of A and B.

 A × B = {(a,b) : aA and bB}

Example

R denotes the set of real numbers and so :

R
2
 = R×R is the set of ordered pairs of real numbers.

The geometrical representation of R
2
 as points in the plane as in

Fig.-1. Here each point P represents an ordered pair (a, b) of real

numbers and vice versa; the vertical line through P meets the

x-axis at a, and the horizontal line through P meets the y-axis at

b. R
2
 is called the Cartesian plane.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

27

 Fig. -1

Example:

a)Let A = {1,2} and B = {a ,b ,c} then

 A × B = {(1,a), (1,b),(1,c),(2,a),(2,b),(2,c)}, Also,

 A × A = {(1, 1), (1, 2), (2, 1), (2, 2)}

The order in which the sets are considered is important, so

 A×B ≠ B ×A.

 n(A×B) = n(A)×n(B) = 2 × 3 = 6

Binary relation:

A relation between two objects is a binary relation and it is

given by a set of ordered couples.

Let A and B be sets. A binary relation from A to B is a subset of

A × B.

Suppose R is a relation from A to B. Then R is a set of ordered

pairs where each first element comes from A and each second

element comes from B. That is, for each pair a ∈ A and b ∈ B,

exactly one of the following is true:

 (i) (a, b) ∈ R; we then say ―a is R-related to b‖, written aRb.

 (ii) (a, b) ∉R; we then say ―a is not R-related to b‖, written

a b.

Example

(a) A = (1, 2, 3) and B = {x, y, z}, and let

R = {(1, y), (1, z), (3, y)}. Then R is a relation from A to B

since R is a subset of A × B.

With respect to this relation

 1Ry, 1Rz, 3Ry but (1,x)R & (2,x)R

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

28

 (b) Set inclusion ⊆ is a relation on any collection of sets. For,

given any pair of set A and B, either A ⊆ B or or A ⊈B.

(c) Consider the set L of lines in the plane. Perpendicularity,

written ―⊥,‖ is a relation on L. That is, given any pair of lines a

and b, either a ⊥ b or a not⊥ b. Similarly, ―is parallel to,‖ written

―||‖ is a relation on L since either a ∥b or a ∦b.

(d) Let A be any set. Then A × A and ∅ are subsets of A × A and

hence are relations on A called the universal relation and empty

relation, respectively.

Example :

Let A = {1, 2, 3}. Define a relation R on A by writing

(x, y) R , such that ab, list the element of R

 aRb ↔ ab , a,bA

R = {(1,1),(2,1), (2,2), (3,1), (3,2), (3,3)}.

Pictorial representation of relations
There are various ways of picturing relations:

I - By coordinate plane

Let S be a relation on the set R of real numbers; that is, S is a

subset of R
2
 = R × R. Frequently, S consists of all ordered pairs

of real numbers which satisfy some given equation

 E(x, y) = 0 (such as x2 + y2 = 25).

Since R
2

 can be represented by the set of points in the plane, we

can picture S by emphasizing those points in the plane which

belong to S. The pictorial representation of the relation is called

the graph of the relation.

For example,

the graph of the relation x
2
+y

2
 = 25 is a circle having its center

at the origin and radius 5.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

29

II -Directed Graphs of Relations on Sets

Relation can be represented pictorially by drawing its graph

(directed graph). Consider a relation R be defined between two

sets:

 X = {x1, x2, …….., xl} and

 Y = { y1, y2, …….., ym}

i.e., xi R yj , that is ordered couple (xi, yj) ∈ R where 1 ≤ i ≤ l

and 1 ≤ j ≤ m. The elements of sets X and Y are represented by

small circle called nodes. The existence of the ordered couple

such as (xi, yj) is represented by means of an edge marked with

an arrow in the direction from xi to yj.

While all nodes related to the ordered couples in R are

connected by proper arrows, we get a directed graph of the

relation R. For the ordered couples xi Ryj and yj Rxi we draw

two arcs between nodes xi and yj,

If ordered couple is like xiRxi or (xi, xi) ∈ R then we get self

loop over the node xi.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

30

Example,

Relation R on the set A = {1, 2, 3, 4}:

 R = {(1, 2), (2, 2), (2, 4), (3, 2), (3, 4), (4, 1), (4, 3)}

Fig. 3 shows the directed graph of R

 Fig. -3

III - matrix

Form a rectangular array (matrix) whose rows are labeled by the

elements of A and whose columns are labeled by the elements of

B. Put a 1 or 0 in each position of the array according as a ∈ A is

or is not related to b ∈ B. This array is called the matrix of the

relation.

Example,

let A = {1, 2, 3} and B = {x, y, z}.

 R = {(1,y),(1,z),(3,y)}

Fig. 4 shows the matrix of R.

 Fig. 4

IV - arrow from

Write down the elements of A and the elements of B in two disjoint disks,

and then draw an arrow from a ∈ A to b ∈ B whenever a is related to b.

This picture will be called the arrow diagram of the relation.

Fig. 5 pictures the relation R in the previous example by the arrow form.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

31

 Fig. 5

Properties of binary relations (Types of relations)

Let R be a relation on the set A

1)Reflexive :

R is said to be reflexive if ordered couple (x, x) ∈ R for ∀x ∈ X.

a A aRa or (a,a) R ; a, b A. .

Thus R is not reflexive if there exists a A such that

(a, a) R.

Example i:

Consider the following five relations on the set A = {1, 2, 3, 4}:

R1 = {(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)}

R2 = {(1, 1)(1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}

R3 = {(1, 3), (2, 1)}

R4 = ∅, the empty relation

R5 = A × A, the universal relation

Determine which of the relations are reflexive.

Since A contains the four elements 1, 2, 3, and 4,

a relation R on A is reflexive if it contains the four pairs

 (1, 1), (2, 2), (3, 3), and (4, 4).

Thus only R2 and the universal relation R5 = A × A are

reflexive.

Note that R1,R3R3, and R4 are not reflexive since, for example,

(2, 2) does not belong to any of them.

Example ii

Consider the following five relations:

(1) Relation ≤ (less than or equal) on the set Z of integers.

(2) Set inclusion ⊆ on a collection C of sets.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

32

 (3) Relation ⊥ (perpendicular) on the set L of lines in the

plane.

(4) Relation ∥ (parallel) on the set L of lines in the plane.

Determine which of the relations are reflexive.

The relation (3) is not reflexive since no line is perpendicular to

itself.

Also (4) is not reflexive since no line is parallel to itself.

The other relations are reflexive; that is,

x ≤ x for every x ∈ Z,

A ⊆ A for any set A ∈ C, and

2) Symmetric :

R is said to be symmetric if, ordered couple (x, y) ∈ R and also

ordered couple (y, x) ∈ R for ∀x, ∀y ∈ X.

aRb bRa a,b A. [if whenever (a, b) ∈ R then (b, a)

∈ R.]

Thus R is not symmetric if there exists a, b ∈ A such that

(a, b) ∈ R but (b, a) R.

Example

(a) Determine which of the relations in Example i are symmetric

R1 = {(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)}

R2 = {(1, 1)(1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}

R3 = {(1, 3), (2, 1)}

R4 = ∅, the empty relation

R5 = A × A, the universal relation

R1 is not symmetric since (1, 2) ∈ R1 but (2, 1) R1.

R3 is not symmetric since (1, 3) ∈ R3 but (3, 1) R3.

The other relations are symmetric.

(b) Determine which of the relations in Example ii are

symmetric.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

33

(1) Relation ≤ (less than or equal) on the set Z of integers.

(2) Set inclusion ⊆ on a collection C of sets.

(3) Relation ⊥ (perpendicular) on the set L of lines in the

plane.

(4) Relation ∥ (parallel) on the set L of lines in the plane.

The relation ⊥ is symmetric since if line a is perpendicular to

line b then b is perpendicular to a.

Also, ∥ is symmetric since if line a is parallel to line b then b is

parallel to line a.

The other relations are not symmetric. For example:

3 ≤ 4 but 4 not≤ 3; {1, 2} ⊆ {1, 2, 3} but {1, 2, 3} not ⊆{1, 2}.

3) Transitive :

R is said to be transitive if ordered couple (x, z) ∈ R whenever

both ordered couples (x, y) ∈ R and (y, z) ∈ R.

 aRb bRc aRc. that is, if whenever (a, b), (b, c) ∈ R

then (a, c) ∈ R.

Thus R is not transitive if there exist a, b, c ∈ R such that

(a, b), (b, c) ∈ R but (a, c) R.

Example

(a) Determine which of the relations in example i are transitive.

R1 = {(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)}

R2 = {(1, 1)(1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}

R3 = {(1, 3), (2, 1)}

R4 = ∅, the empty relation

R5 = A × A, the universal relation

The relation R3 is not transitive since (2, 1), (1, 3) ∈ R3 but (2,

3) R3. All the other relations are transitive.

(b) Determine which of the relations in example ii are transitive.

(1) Relation ≤ (less than or equal) on the set Z of integers.

(2) Set inclusion ⊆ on a collection C of sets.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

34

 (3) Relation ⊥ (perpendicular) on the set L of lines in the plane.

(4) Relation ∥ (parallel) on the set L of lines in the plane.

The relations ≤, ⊆, and | are transitive, but certainly not ⊥.

Also, since no line is parallel to itself, we can have

a ∥ b and b ∥ a, but a ∥ a. Thus ∥ is not transitive.

4)Equivalence relation :

A binary relation on any set is said an equivalence relation if it

is reflexive, symmetric, and transitive.

R is an equivalence relation on S if it has the following three

properties:

a - For every a ∈S, aRa. (reflexive)

b- If aRb, then bRa. (symmetric)

c- If aRb and bRc, then aRc. (transitive)

5) Irreflexive :

a A (a,a) R

6) AntiSymmetric :

if (x, y) ∈ R but (y,x) ∉ R unless x = y.

 or

if aRb and bRa then a=b,

that is, if a ≠b and aRb then (b,a)R.

Thus R is not antisymmetric if there exist distinct elements a

and b in A such that aRb and bRa.

the relations ,and are antisymmetric

Example

(a) Determine which of the relations in Example i are

antisymmetric.

R1 = {(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)}

R2 = {(1, 1)(1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}

R3 = {(1, 3), (2, 1)}

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

35

R4 = ∅, the empty relation

R5 = A × A, the universal relation

R2 is not antisymmetric since (1, 2) and (2, 1) belong to R2, but

1 ≠ 2. Similarly,

the universal relation R3 is not antisymmetric.

All the other relations are antisymmetric.

(b) Determine which of the relations in Example ii are

antisymmetric.

(1) Relation ≤ (less than or equal) on the set Z of integers.

(2) Set inclusion ⊆ on a collection C of sets.

(3) Relation ⊥ (perpendicular) on the set L of lines in the plane.

(4) Relation ∥ (parallel) on the set L of lines in the plane.

The relation≤ is antisymmetric since whenever a ≤ b and b ≤ a

then a = b.

Set inclusion ⊆ is antisymmetric since whenever

A ⊆ B and B ⊆ A then A = B. Also,

The relations ⊥ and ∥ are not antisymmetric.

7) Compatible :

if a relation is only reflexive and symmetric then it is called a

compatibility relation. So, we can say that: every equivalence

relation is a compatibility relation, but not every compatibility

relation is an equivalence relation.

Example:

Determine the properties of the relation of set (inclusion on

any collection of sets):

1) A A for any set, so is reflexive

2) A B does not imply B A, so is not symmetric

3) If A B and B C then A C, so is transitive

4) is reflexive, not symmetric & transitive, so is not

equivalence relations

5) A A, so is not Irreflexive

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

36

6) If A B and B A then A = B, so is anti-symmetric

7) is reflexive and not symmetric then it is not compatibility

relation.

Example:

If A ={1,2,3} and R={(1,1),(1,2),(2,1),(2,3)}, is R equivalence

relation ?

1) 2 is in A but (2,2) R, so R is not reflexive

2) (2,3) R but (3,2) R, so R is not symmetric

3) (1,2) R and (2,3) R but (1,3) R, so R is not

transitive

So R is not Equivalence relation.

Example:

What is the properties of the relation = ?

1) a=a for any element a A, so = is reflexive

2) If a = b then b = a, so = is symmetric

3) If a = b and b = c then a = c, so = is transitive

4) = is (reflexive + symmetric + transitive), so = is

equivalence

5) a = a, so = is not Irreflexive

6) If a = b and b = a then a = b, so = is anti-symmetric

7) is reflexive and symmetric then it is compatibility

relation.

Remark:

The properties of being symmetric and being antisymmetric are

not negatives of each other.

For example,

the relation R = {(1, 3), (3, 1), (2, 3)} is neither symmetric nor

antisymmetric.

On the other hand, the relation R = {(1, 1), (2, 2)} is both

symmetric and antisymmetric.

From the directed graph of a relation we can easily examine

some of its properties. For example if a relation is reflexive,

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

37

then we must get a self-loop at each node. Conversely if a

relation is irreflexive, then there is no self-loop at any node.

For symmetric relation if one node is connected to another,

thenthere must be a return arc from second node to the first

node.

For antisymmetric relation there is no such direct return arc

exist. Similarly we examine the transitivity of the relation in the

directed graph.

8) Partial ordered relation

A binary relation R is said to be partial ordered relation if it is:

 reflexive, antisymmetric, and transitive.

Example,

R={(w,w), (x, x), (y, y), (z, z),(w, x), (w, y), (w, z),(x, y), (x, z)}

In a partial ordered relation objects are related through

superior/inferior criterion..

Example

In the arithmetic relation less than or equal to‟ ≤‟ (or

greater than or equal to "≥‟) are partial ordered relations.

Since,

(1) Every number is equated to itself so it is reflexive.

(2) Also, if m and n are two numbers then ordered couple

(m, n) ∈ R if m = n ⇒ n ≰ m so (n, m) ∉ R hence, relation

is antisymmetric.

(3) if (m, n) ∈ R and (n, k) ∈R ⇒ m = n and n = k ⇒ m = k

so (m, k) ∈ R hence, R is transitive.

Example

The relation ⊆ of set inclusion is a partial ordering on any

collection of sets since set inclusion has the three desired

properties. That is,

(1) A ⊆ A for any set A (reflexive).

(2) If A ⊆ B and B ⊆ A, then A = B (antisymmetric).

(3) If A ⊆ B and B ⊆ C, then A ⊆ C (transitive).

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

38

Composition of relations:
When a relation is formed over stages such that let R be one

relation defined from set X to Y, and S be another relation

defined from set Y to Z,

then a relation W denoted by R S is a composite relation, i.e

W = R S ={(x,z) : x X for which (x,y) R and (y,z) S}

Composite relation W can also represented by a diagram.

Example :

let A ={1,2,3,4}

 B = {a, b, c, d}

 C = {x, y, z}

And

 R = {(1,a),(2,d),(3,a),(3,d),(3,b)}

 S = {(b,x),(b,z),(c,y),(d,z)}

Find R S ?

Solution :

1) The first way by arrow form

There is an arrow (path) from 2 to d which is followed by an

arrow from d to z

 2Rd and dSz  2(R S) z

And 3(R◦S)x and 3(R◦S)z

So R S = {(3,x),(3,z),(2,z)}

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

39

2) The second way by matrix:

R S = MR . MS =

R S = {(2,z),(3,x),(3,z)}

Example,

let R1 = {(p, q), (r, s), (t, u), (q, s)} and

 R2 = {(q, r), (s, v), (u, w)} are two relations then,

R1 R2 = {(p, r), (r, v), (t, w), (q, v)}, and

R2 R1 = {(q, s)}

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

40

Home work:

Consider the following relations on the set A = {1, 2, 3}:

 R = {(1, 1), (1, 2), (1, 3), (3, 3)},

 S = {(1, 1)(1, 2), (2, 1)(2, 2), (3, 3)},

 T = {(1, 1), (1, 2), (2, 2), (2, 3)}

  = empty relation

 A× A = universal relation

 Determine whether or not each of the above relations on A is:

 (1) reflexive;

(2) symmetric;

(3) transitive;

 (4) antisymmetric.

(5) Irreflexive

 (6) compatibility

7) Partial ordered relation

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

41

Function:

In many instances we assign to each element of a set a particular

element of a second set. For example, suppose that each student

in a discrete mathematics class is assigned a letter grade from

the set {A,B,C,D, F}. And suppose that the grades are A for

Adams, C for Chou, B for Goodfriend, A for Rodriguez, and F

for Stevens. This assignment is an example of a function. This

assignment is an example of a function. The concept of a

function is extremely important in mathematics and computer

science.

 Fig. 1 Assignment of Grades in a Discrete Mathematics Class.

Function is a class of relation. it establishes the relationship

between objects. For example, in computer system input is fed

to the system in form of data or objects and the system generates

the output that will be the function of input. So, function is the

mapping or transformation of objects from one form to other.

Definition:

Let A and B be nonempty sets. A function F: AB is a rule

which associates with each element of A a unique element in B.

EXAMPLE 1
Let R be the relation with ordered pairs (Abdul, 22), (Brenda,

24), (Carla, 21), (Desire, 22), (Eddie, 24), and (Felicia, 22).

Here each pair consists of a graduate student and this student’s

age. Specify a function determined by this relation.

Solution:

If f is a function specified by R, then

f (Abdul) = 22,

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

42

f (Brenda) = 24,

f (Carla) = 21,

f (Desire) = 22,

f (Eddie) = 24, and

f (Felicia) = 22. (Here, f (x) is the age of x, where x is a student.)

EXAMPLE 2

Consider the function f (x) = x
3
, i.e., f assigns to each real

number its cube. Then the image of 2 is 8, and so we may write

f (2) = 8.

Example 3 :

 consider the following relation on the set A={1,2,3}

F = {(1,3),(2,3),(3,1)}

F is a function

 G = {1,2},(3,1)}

 G is not a function from A to A

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

43

H = {(1,3),(2,1),(1,2),(3,1)}

H is not a function .

Classification of functions:

(One-to-one ,onto and invertible functions) :

Some functions never assign the same value to two different

domain elements. These functions are said to be one-to-one.

1) One –to-one :

a function F:AB is said to be one-to-one if different

elements in the domain (A) have distinct images.

Or If F(a) =F(a’)  a = a’

 Fig 2: A One-to-One Function.

2) Onto :

F:AB is said to be an onto function if each element of B is the

image of some element of A.

  bB  a  A : F(a) = b

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

44

EXAMPLE
Let f be the function from {a, b, c, d} to {1, 2, 3} defined by

 f (a) = 3,

f (b) = 2,

f (c) = 1, and

f (d) = 3.

Is f an onto function?

Solution:

Because all three elements of the codomain are images of

elements in the domain, we see that f is onto. This is illustrated

in Figure 3.

 Fig. 3 An Onto Function

Fig 4 . Examples of Different Types of Correspondences.

3) Invertible (One-to-one correspondence)

F:A B is invertible if and only if F is both one-to-one and

onto.

F:A B is invertible if its inverse relation f
-1

 is a function

 F:B A

 F
-1

 :{(b,a)  (a,b)  F}

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

45

EXAMPLE
Let f be the function from {a, b, c, d} to {1, 2, 3, 4} with

 f (a) = 4,

f (b) = 2,

f (c) = 1, and

f (d) = 3. Is f an invertible?

Solution:

The function f is one-to-one and onto.

It is one-to-one because no two values in the domain are

assigned the same function value.

It is onto because all four elements of the codomain are images

of elements in the domain. Hence, f is a invertible.

Figure 4 displays four functions where

the first is one-to-one but not onto,

the second is onto but not one-to-one,

the third is both one-to-one and onto, and

the fourth is neither one-to-one nor onto.

The fifth correspondence in Figure 4 is not a function, because it

sends an element to two different elements.

 one to one but not onto

 (3B but it is not the image under f1)

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

46

 both one to one & onto

 (or one to one correspondence between A and B)

 not one to one & onto

 not one to one & not onto

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

47

Graph of a function:

We can associate a set of pairs in A × B to each function from

A to B. This set of pairs is called the graph of the function and

is often displayed pictorially to aid in understanding the

behavior of the function.

EXAMPLE
Display the graph of the function f (n) = 2n + 1 from the set of

integers to the set of integers.

Solution:

The graph of f is the set of ordered pairs of the form (n, 2n + 1),

where n is an integer.

EXAMPLE
Display the graph of the function f (x) = x

2
 from the set of

integers to the set of integers.

Solution:

The graph of f is the set of ordered pairs of the form (x, f (x)) =

(x, x
2
), where x is an integer.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

48

By a real polynomial function, we mean a function f: R → R of

the form

where the ai are real numbers. Since R is an infinite set, it would

be impossible to plot each point of the graph. However, the

graph of such a function can be approximated by first plotting

some of its points and then drawing a smooth curve though

these points. The table points are usually obtained from a table

where various values are assigned to x and the corresponding

value of f(x) computed.

Example: let f: R→R and f(x)= x
3
, find f(x)

 f(3) = 3
3
 = 27

 f(-2) = (-2)
3
 = -8

Example : let f: R→R and f (x) = x
2
 − 2x – 3, , find f(x)

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

49

Geometrical Characterization of One-to-One and Onto

Functions

 For the functions of the form f : R → R. the graphs of such

functions may be plotted in the Cartesian plane and functions

may be identified with their graphs, so the concepts of being

one-to-one and onto have some geometrical meaning :

(1) f :R → R is said to be one-to-one if there are no 2 distinct

pairs (a1,b) and (a2,b) in the graph one-to-one or if each

horizontal line intersects the graph of f in at most one point.

(2) f :R → R is an onto function if each horizontal line intersects

the graph of f at one or more points (at least once)

 (3) if f is both one-to-one and onto, i.e. invertible, then each

horizontal line will intersect the graph of f at exactly one point.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

50

 --

f(x)NOT (ONE-TO-ONE) & NOT (ONTO)

Sequences of sets

A sequence is a discrete structure used to represent an ordered

list.

For example,

 1, 2, 3, 5, 8 is a sequence with five terms (called a list)

 1, 3, 9, 27, 81 , . . . , 3n, . . . is an infinite sequence.

A sequence is a function from subset of the set of integers

(usually either the set {0, 1, 2, . . .} or the set {1, 2, 3, . . .}) to a

set S.. The notation an is used to denote the image of the

integer n that called the term of the sequence and used to

describe the sequence . Thus a sequence is usually denoted by

 a1, a2, a3, . . .

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

51

We describe sequences by listing the terms of the sequence in

order of increasing subscripts.

EXAMPLE 1

Consider the sequence {an}, where

The list of the terms of this sequence, beginning with a1,

namely,

 a1, a2, a3, a4, . . . ,

starts with

 EXAMPLE 2

a-The sequences {bn} with bn = (−1)
n

if we start at n = 0, the list of terms begins with 1,−1, 1,−1, 1, .

. .

b-The sequences {cn} with cn = 2 × 5
n

if we start at n = 0, the list of terms begins with

 2, 10, 50, 250, 1250, . . .

c- The sequences {dn} with dn = 6 × (1/3)
n

if we start at n = 0, The list of terms begins with

d- The sequences {bn} with bn = 2
-n

if we start at n = 0, The list of terms begins with

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

52

 e- The sequences {bn} with

 if we start at n = 1, The list of terms begins with

RECURSIVELY DEFINED FUNCTIONS

A function is said to be recursively defined if the function

definition refers to itself. In order for the definition not to be

circular, the function definition must have the following two

properties:

(1) There must be certain arguments, called base values, for

which the function does not refer to itself.

(2) Each time the function does refer to itself, the argument of

the function must be closer to a base value.

A recursive function with these two properties is said to be well-

defined.

Factorial Function

The product of the positive integers from 1 to n, inclusive, is

called ―n factorial‖ and is usually denoted by n!. That is,

 n! = n(n − 1)(n − 2) ・ ・ ・ 3 ・ 2 ・ 1

where

 0! = 1, so that the function is defined for all nonnegative

integers. Thus:

We have: f(0) = 0! = 1

 f (1) = 1! = 1,

 f (2) = 2! = 1 ・ 2 = 2,

 f (6) = 6! = 1 ・ 2 ・ 3 ・ 4 ・ 5 ・ 6 = 720,

and

 f (20) = 1x 2 x3x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11x 12 x 13 x 14 x

15x16 x 17 x 18 x 19 x20 = 2,432,902,008,176,640,000.

the factorial function grows extremely rapidly as n grows.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

53

This is true for every positive integer n; that is,

 n! = n ・ (n − 1)!

Accordingly, the factorial function may also be defined as

follows:

Definition of Factorial Function:

 (a) If n = 0, then n! = 1.

 (b) If n > 0, then n! = n ・ (n − 1)!

The definition of n! is recursive, since it refers to itself when it

uses (n − 1)!. However:

(1) The value of n! is explicitly given when n = 0 (thus 0 is a

base value).

(2) The value of n! for arbitrary n is defined in terms of a

smaller value of n which is closer to the base value 0.

Accordingly, the definition is not circular, or, in other words, the

function is well-defined.

EXAMPLE 7: the 4! Can be calculated in 9 steps using the

recursive definition .

Fibonacci Sequence

The Fibonacci sequence is a particularly useful sequence that is

important for many applications, including modeling the

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

54

population growth of rabbits. It is usually denoted by F0, F1, F2,

. . and can be defined by:

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

That is, F0 = 0 and F1 = 1 and each succeeding term is the sum

of the two preceding terms. For example, the next two terms of

the sequence are

 34 + 55 = 89 and

 55 + 89 = 144

Fibonacci Sequence can be defined:

(a) If n = 0, or n = 1, then Fn = n.

(b) If n > 1, then Fn = Fn-1 + Fn-2.

Where : The base values are 0 and 1, and the value of Fn is

defined in terms of smaller values of n which are closer to the

base values.

Accordingly, this function is well-defined.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

55

Graphs:

Graphs are discrete structures consisting of vertices and edges

that connect these vertices, so a graph G(V,E) consists of:

 (i) V, a nonempty set of vertices (or nodes).

 (ii) E, a set of edges. Each edge has either one or two vertices

associated with it, called its endpoints.

Graphs are used in a wide variety of models with computer

science such as communication network, logical design,

transportation networks, formal languages, compiler writing and

retrieval.

For example: in a communication network, where computers

can be represented by vertices and communication links by

edges. A graph in which each edge connects two different

vertices and where no two edges connect the same pair of

vertices is called a simple graph.

Figure (1): simple graph

A computer network may contain multiple links between data

centers, as shown in Figure 2. To model such networks we need

graphs that have more than one edge connecting the same pair of

vertices. Graphs that may have multiple edges connecting the

same vertices are called multigraphs.

Figure (2): multigraphs

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

56

Sometimes a communications link connects a data center with

itself, perhaps a feedback loop for diagnostic purposes. Such a

network is illustrated in Figure 3. To model this network we

need to include edges that connect a vertex to itself. Such edges

are called loops,

Figure (3): multigraphs with loops

In a computer network, some links may operate in only one

direction (such links are called single duplex lines). This may be

the case if there is a large amount of traffic sent to some data

centers, with little or no traffic going in the opposite direction.

Such a network is shown in Figure 4. To model such a computer

network we use a directed graph. Each edge of a directed graph

is associated to an ordered pair.

Figure (4): directed graph

For example we have in Figure (5) the graph G(V,E) where: V

consists of four vertices A, B, C, D ; and, E consists of five

edges

e1 ={A,B},

e2 = {B,C},

e3 = {C, D},

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

57

e4 = {A, C},

e5 = {B, D}.

Figure (5)

Vertices u and v are said to be adjacent if there is an edge

e={u,v}. In such a case, u and v are called the endpoints of e,

and e is said to connect u and v. Also, the edge e is said to be

incident on each of its endpoints u and v.

Figure 6: multigraph with: 1) multiple edges e4 & e5

 2) a loop e6

Degree :

The degree of a vertex v [deg(v)], is equal to the number of

edges which are incident on v. since each edge is counted twice

in counting the degrees of the vertices of a graph.

Theorem: The sum of the degrees of the vertices of a graph is

equal to twice the number of edges. Let G = (V ,E) be an

undirected graph with m edges. Then

 2m = deg(v).

 v∈V

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

58

For example, in the figure (5) we have

deg(A) = 2,

deg(B) = 3,

deg(C) = 3,

deg(D) = 2

The sum of the degrees = twice the number of edges = 2×5=10

EXAMPLE 1: How many edges are there in a graph with 10

vertices each of degree six?

Solution: Because the sum of the degrees of the vertices is

6 × 10 = 60, it follows that 2m = 60

where m is the number of edges. Therefore, m = 30.

A vertex is said to be even or odd according as its degree is an

even or odd number. Thus A and D are even vertices whereas B

and C are odd vertices.

This theorem also holds for multigraphs where a loop is counted

twice towards the degree of its endpoint. For example, in Fig (6)

we have deg (D) = 4 since the edge e6 is counted twice; hence D

is an even vertex.

A vertex of degree zero is called an isolated vertex.

Subgraphs

Consider a graph G = G(V,E) and a graph H = H(V', E') is called

a subgraph of G if the vertices and edges of H are contained in

the vertices and edges of G, that is, if V' ⊆ V and E' ⊆ E.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

59

Sometimes we need only part of a graph to solve a problem. For

instance, we may care only about the part of a large computer

network that involves the computer centers in New York,

Denver, Detroit, and Atlanta. Then we can ignore the other

computer centers and all telephone lines not linking two of these

specific four computer centers. In the graph model for the large

network, we can remove the vertices corresponding to the

computer centers other than the four of interest, and we can

remove all edges incident with a vertex that was removed. When

edges and vertices are removed from a graph, without removing

endpoints of any remaining edges, a smaller graph is obtained.

Such a graph is called a subgraph of the original graph.

EXAMPLE 2: The graph G shown in Figure 7 is a subgraph of

K5. If we add the edge connecting a, b, c and e to G, we obtain

the subgraph induced by W = {a, b, c, e}.

Figure 7

Connectivity :

Many problems can be modeled with paths formed by traveling

along the edges of graphs. For instance, the problem of

determining whether a message can be sent between two

computers using intermediate links can be studied with a graph

model. Problems of efficiently planning routes for mail delivery,

garbage pickup, diagnostics in computer networks, and so on

can be solved using models that involve paths in graphs.

a walk is a sequence of edges that begins at a vertex of a graph

and travels from vertex to vertex along edges of the graph. As

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

60

the path travels along its edges, it visits the vertices along this

walk, that is, the endpoints of these edges.

A walk in a multigraph G consists of an alternating sequence of

vertices and edges of the form:

 v0, e1, v1, e2, v2,……., en-1,vn-1,en,vn

where each edge ei contains the vertices vi−1 and vi (which

appear on the sides of ei in the sequence).

Length of walk : is the number n of edges. When there is no

ambiguity, we denote a path by its sequence of vertices

 (v0, v1, . . . , vn).

Closed walk: the walk is said to be closed if v0 = vn .

Otherwise, we say that the walk is from v0 to vn.

Trail: is a walk in which all edges are distinct.

Path: is a walk in which all vertices are distinct.

Cycle: is a closed walk such that all vertices are distinct except

v1 = vn, A cycle of length k is called a k-cycle.

EXAMPLE 1

In the simple graph shown in Figure 8:

Figure 8

a, d, c, f , e is a path of length 4, because {a, d}, {d, c}, {c, f },

and {f, e} are all edges. However,

d, e, c, a is not a path, because {e, c} is not an edge. Note that

b, c, f , e, b is a circuit of length 4 because {b, c}, {c, f }, {f, e},

and {e, b} are edges, and this path begins and ends at b.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

61

The walk a, b, e, d, a, b, which is of length 5, is not path

because it contains the edge {a, b} twice.

Example: Consider the graph in figure (9), then

Figure (9)

The sequence: (P4, P1, P2, P5, P1, P2, P3, P6) is a walk from P4

to P6. It is not a trail since the edge {P1,P2} is used twice.

The sequence: (P4, P1, P5, P3, P2, P6) Is not a walk since there

is no edge {P2, P6}.

The sequence: (P4, P1, P5, P2, P3, P5, P6) is a trail since no

edge is used twice; but it is not a path since the vertex P5 is used

twice.

The sequence: (P4, P1, P5, P3, P6) Is a path from P4 to P6.

The shortest path from P4 to P6 is (P4, P5, P6) which has length

= 2 (2 edges only)

The distance between vertices u & v d(u,v) is the length of the

shortest path d(P4,P6) = 2.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

62

The Bridges of konigsberg, traversable multigraphs

The eighteenth-century East Prussian town of Konigsberg

included two islands and seven bridges. Question: beginning

anywhere and ending anywhere, can a person walk through

town crossing all seven bridges but not crossing any bridge

twice? The people of Konigsberg wrote to the celebrated Swiss

mathematician L. Euler about this question. Euler proved in

1736 that such a walk is impossible. He replaced the islands and

two side of the river by points and the bridges by curves,

obtaining Fig 12 (b).

Fig. 12

Konigsberg graph is a multigraph, A multigraph is said to

traversable if it can be drawn without any breaks and without

repeating any edge. That is if there is a walk includes all vertices

and uses each edge exactly once. Such a walk must be a trail (no

edge is used twice) and will be called a traversable trail.

We now show how Euler proved that the konigsberg multigraph

is not traversable and the walk in it is impossible. Suppose a

multigraph is traversable and that a traversable trail does not

begin or end at vertex P. thus the edges in the trail incident with

P must appear in pairs, and so P is an even vertex. Therefore if a

vertex Q is odd, the traversable trail must begin or end at Q.

Consequently, a multigraph with more than two odd vertices

cannot be traversable. Observe that the multigraph

corresponding to the Konigsberg bridge problem has four odd

vertices. Thus one cannot walk through Konigsberg so that each

bridge is crossed exactly once.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

63

Tree graph:

A graph T is called a tree if T is connected and T has no cycles.

Consider a tree T . Clearly, there is only one simple path

between two vertices of T ; otherwise, the two paths would form

a cycle. Also:

(a) Suppose there is no edge {u, v} in T and we add the edge

e = {u, v} to T . Then the simple path from u to v in T and e will

form a cycle; hence T is no longer a tree.

(b) suppose there is an edge e = {u, v} in T , and we delete e

 from T . Then T is no longer connected; hence T is no longer a

tree.

Theorem: Let G be a graph with n > 1 vertices. Then the

following are equivalent:

(i) G is a tree.

(ii) G is a cycle-free and has n − 1 edges.

(iii) G is connected and has n − 1 edges.

This theorem also tells us that a finite tree T with n vertices must

have n−1 edges. For example, the tree in Fig. 13(a) has 9

vertices and 8 edges, and the tree in Fig. 13(b) has 13 vertices

and 12 edges.

Figure 13

Labeled And weighted graphs:

 A graph G is called a labeled graph if its edges and/or vertices

are assigned data. If each edge (e) is assigned a non-negative

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

64

number L(e). Then L(e) is called the weight or length of e. The

weight of a path in such a weighted graph G is defined to be the

sum of the weights of the edges in the path.

 One important problem in graph theory is to find a shortest

path, that is, a path of minimum weight (length), between any

two given vertices.

Example: find the minimum path between P & Q:

(P, A1, A2, A5, A3, A6, Q)
Q

Σ L (e) = 3 + 3 + 3 + 2 + 1 + 2 = 14
P

Another minimum path:

(P, A4, A2, A5, A3, A6, Q)
Q

Σ L (e) = 4+ 2 + 3 + 2 + 1 + 2 = 14
P

Spanning Trees

A subgraph T of a connected graph G is called a spanning tree

of G if T is a tree and T includes all the vertices of G.

Minimum Spanning Trees

Suppose G is a connected weighted graph. That is, each edge of

G is assigned a nonnegative number called the weight of the

edge. Then any spanning tree T of G is assigned a total weight

obtained by adding the weights of the edges in T . A minimal

spanning tree of G is a spanning tree whose total weight is as

small as possible.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

65

EXAMPLE 5: Find a minimal spanning tree of the weighted

graph Q, Note that Q has six vertices, so a spanning tree will

have five edges.

First we order the edges by decreasing weights, and then we

successively delete edges without disconnecting Q until five

edges remain. This yields the following data:

Edges: BC AF AC BE CE BF AE DF BD

Weight 8 7 7 7 6 5 4 4 3

Delete Yes Yes Yes No No Yes

Thus the minimal spanning tree of Q which is obtained contains

the edges:

BE, CE, AE, DF, BD The spanning tree has weight 24

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

66

First we order the edges by increasing weights, and then we

successively add edges without forming any cycles until five

edges are included. This yields the following data:

Edges BD AE DF BF CE AC AF BE BC

Weight 3 4 4 5 6 7 7 7 8

Add? Yes Yes Yes No Yes No Yes

Thus the minimal spanning tree of Q which is obtained contains

the edges:

 BD, AE, DF, CE, AF

Observe that this spanning tree is not the same as the one

obtained using Algorithm 1 as expected it also has weight 24.

REPRESENTING GRAPHS IN COMPUTER MEMORY:

There are many useful ways to represent graphs where in

working with a graph it is helpful to be able to choose its most

convenient representation.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

67

(1)adjacency lists

EXAMPLE 6 Use adjacency lists to describe the simple graph

given in Figure 14.

Figure 14

Solution: Table 1 lists those vertices adjacent to each of the

vertices of the graph.

EXAMPLE 7
Represent the directed graph shown in Figure 15 by adjacency

lists

Figure 15

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

68

Solution: Table 2 represents the directed graph shown in Figure

15.

(2)Adjacency Matrices
 Carrying out graph algorithms using the representation of

graphs by adjacency lists, can be cumbersome if there are many

edges in the graph. To simplify computation, graphs can be

represented using matrices. Two types of matrices commonly

used to represent graphs will be presented here. One is based on

the adjacency of vertices, and the other is based on incidence of

vertices and edges.

Suppose that G = (V ,E) is a simple graph where |V| = n. The

adjacency matrix A of G, is the n x n zero–one matrix with 1

as its (i, j)th entry when vi and vj are adjacent, and 0 as its (i, j

)th entry when they are not adjacent.

EXAMPLE 8 Use an adjacency matrix to represent the graph

shown in Figure 16.

Figure 16

Solution:

We order the vertices as a, b, c, d. The matrix representing this

graph is

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

69

EXAMPLE 9: Draw a graph with the following adjacency

matrix

Solution: A graph with this adjacency matrix is shown in Figure

17.

Figure 17

 The adjacency matrix of a simple graph is symmetric, that is,

aij = aji , because both of these entries are 1 when vi and vj are

adjacent, and both are 0 otherwise. Furthermore, because a

simple graph has no loops, each entry aii, i = 1, 2, 3, . . . , n, is 0.

 Adjacency matrices can also be used to represent undirected

graphs with loops and with multiple edges. A loop at the vertex

vi is represented by a 1 at the (i, i)th position of the adjacency

matrix. When multiple edges connecting the same pair of

vertices vi and vj, or multiple loops at the same vertex, are

present, the adjacency matrix is no longer a zero–one matrix,

because the (i, j)th entry of this matrix equals the number of

edges that are associated to {vi , vj }.

EXAMPLE 10: Use an adjacency matrix to represent the

multigraph shown in Figure 18.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

70

Figure 18

Solution: The adjacency matrix using the ordering of vertices a,

b, c, d is:

 The adjacency matrix for a directed graph does not have to be

symmetric, because there may not be an edge from vj to vi when

there is an edge from vi to vj .

TRADE-OFFS BETWEEN ADJACENCY LISTS AND

ADJACENCY MATRICES

When a simple graph contains relatively few edges, that is,

when it is sparse, it is usually preferable to use adjacency lists

rather than an adjacency matrix to represent the graph.

(3) Incidence Matrices

Another common way to represent graphs is to use incidence

matrices. Let G = (V ,E) be an undirected graph. Suppose that

v1, v2, . . . , vn are the vertices and e1, e2, . . . , em are the edges

of G. Then the incidence matrix with respect to this ordering of

V and E is the n×m matrix M = [mij], where:

EXAMPLE 11: Represent the graph shown in Figure 19 with

an incidence matrix.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

71

Figure 19

Solution: The incidence matrix is

EXAMPLE 12:Represent the multigraph shown in the

following figure using an incidence matrix.

Solution: The incidence matrix for this graph is

Rooted tree:

 Recall that a tree graph is a connected cycle-free graph, that is,

a connected graph without any cycles. A rooted tree T is a tree

graph with a designated vertex r called the root of the tree.

Consider a rooted tree T with root r. The length of the path from

the root r to any vertex v is called the level (or depth) of v, and

the maximum vertex level is called the depth of the tree.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

72

Figure 20

Those vertices with degree 1, other than the root r, are called the

leaves of T.

One usually draws a picture of a rooted tree T with the root at

the top of the tree.

Figure 20 shows a rooted tree T with root r and 10 other

vertices. The tree has five leaves, d,f, h, i, and j . Observe that:

level(a) = 1, level(f) = 2, level(j) = 3. Furthermore, the depth of

the tree is 3.

EXAMPLE 13:

Suppose Marc and Erik are playing a tennis tournament such

that the first person to win two games in a row or who wins a

total of three games wins the tournament. Find the number of

ways the tournament can proceed.

Figure 21

The rooted tree in Fig.21 shows the various ways that the

tournament could proceed. There are 10 leaves which

correspond to the 10 ways that the tournament can occur:

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

73

MM, MEMM, MEMEM, MEMEE, MEE, EMM, EMEMM,

EMEME, EMEE, EE

Specifically, the path from the root to the leaf describes who

won which games in the particular tournament.

Order Rooted Tree (ORT):
 Whenever draw the digraph of a tree, we assume some

ordering at each level, by arranging children from left to right.

Where identical to the order obtained by moving down the

leftmost branch of the tree, then the next branch to the right,

then the second branch to the right, and so on.

Degree of tree: The largest number of children in the vertices of

the tree

Binary tree : every vertex has at most 2 children

Algebraic Expressions and Polish Notation

Any algebraic expression involving binary operations +, -, ×, ÷

can be represented by an order rooted tree (ORT).

Let E be any algebraic expression which uses only binary

operations, such as:

 E = (a − b)/((c × d) + e)

Then E can be represented by a tree as

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

74

where the variables in E appear as the external nodes, and the

operations in E appear as internal nodes.

The Polish mathematician Lukasiewicz observed that by placing

the binary operation symbol before its arguments, e.g.:

 +ab instead of a + b and /cd instead of c/d

one does not need to use any parentheses. This notation is called

Polish notation in prefix form. (one can place the symbol after

its arguments, called Polish notation in postfix form.) Rewriting

E in prefix form we obtain:

 E = / − a b+×c d e

Observe that this is precisely the order of the vertices in its tree

which can be obtained by scanning the tree as :

The polish notation form of an algebraic expression represents

the expression unambiguously without the need for parentheses

1) a + b (infix)

2) + a b (prefix)

3) a b + (postfix)

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

75

Example 14:

infix polish notation is : a + b

prefix polish notation : + a b

example 15:

infix polish notation is : a + 2 * b

prefix polish notation : + a * 2 b

example 16:

 infix polish notation is : 2 * a + b

prefix polish notation : + * 2 a b

example 17:

infix polish notation is : (2 * x + y).(5 * a – b)^2

prefix polish notation : * + * 2 x y ^ - * 5 a b 2

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

76

example 18:

 infix polish notation is : (a + 2 * b) (2 * a + b^2)

prefix polish notation : * + a * 2 b + * 2 a ^ b 2

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

77

To evaluate an expression in polish form proceed as follows:

a) move from left to right until we find a simple string of the

 form Pxy, where P is the symbol for a binary operations:

 (+,-,× , /) and x & y are numbers.

b) Evaluate xPy and substitute the answer.

c) Continue this procedure until only one number remains.

Example:

evaluate the value of the expression (a-b)×(c+(d/e)), if a=6, b=4,

c=5, d=2 and e=2

Prefix: * - a b+ c /d e

To evaluate: * - 6 4+ 5 /2 2

a) *- 6 4 +5 / 2 2

b) *2 + 5 / 2 2

c) * 2 + 5 1

d) * 2 6

e) 12

Homework:

Rewrite the following expressions into prefix polish notation

form, construct their corresponding ORT and evaluate their

value

(3*(1-x))/((4+(7-(y+2)))*(7+(x/y)))

(3-(2+x))+((x-2) –(3+x))

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

78

Finite state machines (FSM):

 We may view a digital computer as a machine which is in a

certain ―internal state‖ at any given moment. The computer

―reads‖ an input symbol, and then ―prints‖ an output symbol and

changes its ―state‖. The output symbol depends solely upon the

input symbol and the internal state of the machine, and the

internal state of the machine depends solely upon the preceding

state of the machine and the preceding input symbol.

 A finite state machine FSM (or complete sequential machine)

M consists of five things:

(1) A finite set A of input symbols.

(2) A finite set S of internal states.

(3) A finite set Z of output symbols.

(4) An initial state s0 in S.

(5) A next-state function f f: S x A → S

(6) An output function g g: S x A→ Z

 This machine M is denoted by M = (A, S, Z, q0, f, g) where q0

is the initial state.

Example 1:
The following defines a FSM with two input symbols, three

internal states and three output symbols:

(1) A = {a, b}

(2) S = {q0, q1, q2}

(3) Z = {x, y, z}

(4) Next-state function f: S x A→ S defined by :

 f(q0, a) = q1 f(q1,a) = q2

 f(q2,a) = q0 f(q0, b) = q2

 f(q1, b) = q1 f(q2, b) = q1

(5) Output function g: S x A → Z defined by

 g(q0,a) = x g(q1,a) = x

 g(q2,a) = z g(q0, b) = y

 g(q1, b) = z g(q2, b) = y

 There are two ways of representing a finite state machine in

compact form. One way is by a table called the state table of

machine, and the other way is by a labeled directed graph

called the state diagram of the machine.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

79

 State diagraph State table

We visualize these symbols on an ―input tape.‖ The machine

M ―reads‖ these input symbols one by one and,

simultaneously, changes through a sequence of states.

If the input string: abaab , is given to the machine in

example (1), and suppose q0 is the initial state of the

machine.

 We calculate the string of states and the string of output

symbols from the state diagram by beginning at the vertex q0

and following the arrows which are labeled with the input

symbols:

This yields the following strings of states and output symbols:

 State : q0 q1 q1 q2 q0 q2

Output symbols : x z x z y

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

80

Homework:

Draw the state table for the following FSM and Trace it with

the input: aaabbb, and abaab.

Example 2:

Design a FSM which can do binary addition

we can assume that our numbers have the same number of

digits. If the machine is given the input:

 1101011

+ 0111011

then we want the output to be the binary sum 10100110.

Specifically, the input is the string of pairs of digits to be

added:

 11, 11, 00, 11, 01, 11, 10, b (where b denotes blank

spaces)

and the output should be the string:

 0, 1, 1, 0, 0, 1, 0, 1

We also want the machine to enter a state called ―stop‖ when

the machine finishes the addition.

The input symbols and output symbols are, respectively, as

follows:

A = {00, 01, 10, 11, b} and Z = {0, 1, b}

The machine M that we ―construct‖ will have three states:

S = {carry (c), no carry (n), stop (s)}

Here n is the initial state.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

81

FINITE AUTOMATA

 A finite automaton is similar to a finite state machine except

that an automation has ―accepting‖ and rejecting‖ states rather

than an output. Specifically, a finite automaton M consists of

five things:

(1) A finite set A of input symbols

(2) A finite set S of internal states

(3) A subset T of S (whose elements called accepting states)

(4) An initial state q0 in S

(5) A next-state function f from S  A ino S.

The automaton M is denoted by M = (A, S, T, q0, f) when we

want to designate its five parts

 We can concisely describe a finite automaton M by its state

diagram as was done with finite state machines, except that here

we use double circles for accepting states and each edge is

labeled only by the input symbol. Specifically, the state diagram

D of M is a labeled directed graph whose vertices are the states

of S where accepting states are labeled by having a double

circle, and if f(qj, ai) = qk then there is an arc from qj to qk

which is labeled with ai. Also the initial state q0 is denoted by

having an arrow entering the vertex q0.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

82

 We say that M recognizes or accepts the string W if the final

state sn is an accepting state, i. e. if sn T. We will let L(M)

denote the set of all strings which are recognized by M.

Example 1

 The following defines a finite automaton with two input

symbols and three states:

(1) A = {a,b}, input symbols

(2) S = {q0, q1, q2}, states

(3) T = {q0, q1}, accepting states

(4) q0, the initial state.

(5) Next-state function f : S  A → S defined by:

 f(q0,a) = q0, f(q1,a)=q0, f(q2,a)=q2

 f(q0,b)=q1, f(q1,b)=q2, f(q2,b)=q2

 or by the table:

The automaton M will recognize those strings which do not

have two successive b’s. Thus M will accept:

 aababaaba, aaa, baab, abaaababab, b, aabaaab

 But will reject :

 aabaabba, bbaaa, ababbaab, bb, abbbbaa

Fig. 1

Language L(M) Determined by an Automaton M
Each automaton M with input alphabet A defines a language

over A, denoted by L(M). We say that M recognizes the word w

if the final state sm is an accepting state in Y . The language L(M)

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

83

of M is the collection of all words from A which are accepted by

M.

EXAMPLE2

Determine whether or not the automaton M in Fig. 1 accepts the

words:

 w1 = ababba; w2 = baab; w3 =  (empty

word)

Use Fig. 1 and the words w1 and w2 to obtain the following

respective paths:

 a b a b b a

P1 = s0 → s0 → s1 → s0 → s1→ s2 → s2

 b a a b

P2 = s0 →s1 → s0 → s0 → s1

The final state in P1 is s2 which is not in Y ; hence w1 is not

accepted by M. On the other hand, the final state in P2 is s1

which is in Y ; hence w2 is accepted by M. The final state

determined by w3 is the initial state s0 since w3 =  is the empty

word. Thus w3 is accepted by M since s0 ∈ Y .

EXAMPLE 3

Describe the language L(M) of the automaton M in Fig. 1.

L(M) will consist of all words w on A which do not have two

successive b’s. This comes from the following facts:

(1) We can enter the state q2 if and only if there are two

successive b’s.

(2) We can never leave q2.

(3) The state q2 is the only rejecting (nonaccepting) state.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

84

EXAMPLE4

Construct an automaton M with input symbols a and b, which

only accept those string such that the number of b's is divisible

by 3.

A= {a, b}

S= {q0, q1, q2}

T= {q0}

Accepted symbols: ababaab, baabab, bbabbbba, aa, aabbaab

Rejected symbols: ab, ababbb

 a b

q0 q0 q1

q q1 q2

q2 q2 q0

Some Examples of FSM

 We study examples of finite state machines that are designed to

recognize given patterns.

As there is essentially no standard way of constructing such

machines, we shall illustrate the underlying ideas by examples.

Example 1:

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

85

Suppose that A (input) = Z (output) = {0, 1}, and that we want to

design a finite state machine that recognizes the sequence

pattern 11 in the input string x ∈ A∗. An example of an input

string x ∈ A∗ and its corresponding output string y ∈ Z∗ is

shown below:

 x = 10111010101111110101

 y = 00011000000111110000

Note that the output digit is 0 when the sequence pattern 11 is

not detected and 1 when the sequence pattern 11 is detected. In

order to achieve this, we must ensure that the finite state

machine has at least two states, a ―passive‖ state when the

previous entry is 0 (or when no entry has yet been made), and an

―excited‖ state when the previous entry is 1. Furthermore, the

finite state machine has to observe the following and take the

corresponding actions:

(1) If it is in its ―passive‖ state and the next entry is 0, it gives an

output 0 and remains in its ―passive‖ state.

(2) If it is in its ―passive‖ state and the next entry is 1, it gives an

output 0 and switches to its ―excited‖ state.

(3) If it is in its ―excited‖ state and the next entry is 0, it gives an

output 0 and switches to its ―passive‖ state.

(4) If it is in its ―excited‖ state and the next entry is 1, it gives an

output 1 and remains in its ―excited‖ state.

It follows that if we denote by s1 the ―passive‖ state and by s2

the ‖excited‖ state, then we have the state diagram below:

We then have the corresponding transition table:

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

86

Example 2:
Suppose again that A (input) = Z (output) = {0, 1}, and that we

want to design a finite state machine that recognizes the

sequence pattern 111 in the input string x ∈A∗. An example of

the same input string x ∈ A∗ and its corresponding output string

y ∈ Z∗ is shown below:

 x = 10111010101111110101

 y = 00001000000011110000

In order to achieve this, the finite state machine must now have

at least three states, a ―passive‖ state when the previous entry is

0 (or when no entry has yet been made), an ―expectant‖ state

when the previous two entries are 01 (or when only one entry

has so far been made and it is 1), and an ―excited‖ state when

the previous two entries are 11. Furthermore, the finite state

machine has to observe the following and take the

corresponding actions:

(1) If it is in its ―passive‖ state and the next entry is 0, it gives

an output 0 and remains in its ―passive‖ state.

(2) If it is in its ―passive‖ state and the next entry is 1, it gives

an output 0 and switches to its ―expectant‖ state.

(3) If it is in its ―expectant‖ state and the next entry is 0, it

gives an output 0 and switches to its ―passive‖ state.

(4) If it is in its ―expectant‖ state and the next entry is 1, it

gives an output 0 and switches to its ―excited‖ state.

(5) If it is in its ―excited‖ state and the next entry is 0, it gives

an output 0 and switches to its ―passive‖ state.

(6) If it is in its ―excited‖ state and the next entry is 1, it gives

an output 1 and remains in its ―excited‖ state.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

87

If we now denote by s1 the ―passive‖ state, by s2 the

―expectant‖ state and by s3 the ―excited‖ state, then we have the

state diagram below:

We then have the corresponding transition table:

 An Optimistic Approach

 We construct first of all the part of the machine to take care of

the situation when the required pattern occurs repeatly and

without interruption. We then complete the machine by studying

the situation when the ―wrong‖ input is made at each state.

.

Example 1:

Suppose that A (input) = Z (output) = {0, 1}, and that we want

to design a finite state machine that recognizes the sequence

pattern 11 in the input string x ∈ A∗. Consider first of all the

situation when the required pattern occurs repeatly and without

interruption. In other words, consider the situation when the

input string is 111111 To describe this situation, we have

the following incomplete state diagram:

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

88

It now remains to study the situation when we have the ―wrong‖

input at each state. Naturally, with a ―wrong‖ input, the output is

always 0, so the only unresolved question is to determine the

next state.

Note that whenever we get an input 0, the process starts all over

again; in other words, we must return to state s1.. We therefore

obtain the state diagram as in Example 1.

Example 2:

Suppose again that A (input) = Z (output) = {0, 1}, and that we

want to design a finite state machine that recognizes the

sequence pattern 111 in the input string x ∈ A∗. Consider first

of all the situation when the required pattern occurs repeatly and

without interruption. In other words, consider the situation when

the input string is 111111 To describe this situation, we

have the following incomplete state diagram:

It now remains to study the situation when we have the ―wrong‖

input at each state. As before, with a ―wrong‖ input, the output

is always 0, so the only unresolved question is to determine the

next state.

Note that whenever we get an input 0, the process starts all over

again; in other words, we must return to state s1. We therefore

obtain the state diagram as Example 2.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

89

Deterministic Finite State Automata

we discuss a slightly different version of finite state machines

which is closely related to regular languages. We begin by an

example which helps to illustrate the changes.

Example.1. We shall construct a deterministic finite state

automaton which will recognize the input strings 101 and

nothing else. This automaton can be described by the following

state diagram:

We can also describe the same information in the following

transition table:

We now modify our definition of a finite state machine

accordingly.

Definition. A deterministic finite state automaton is a 5-tuple A

= (S, I, ν, T , s1), where

(a) S is the finite set of states for A;

(b) I is the finite input alphabet for A;

(c) ν : S ×I →S is the next-state function;

(d) T is a non-empty subset of S; and

(e) s1 ∈ S is the starting state.

Remarks.

(1) The states in T are usually called the accepting states.

(2) If not indicated otherwise, we shall always take state s1 as

the starting state.

Dr. Akbas Ezaldeen Discrete structure Computer Sciences

90

Example.2. We shall construct a deterministic finite state

automaton which will recognize the input strings 101 and

100(01)∗ and nothing else. This automaton can be described by

the following state diagram:

We can also describe the same information in the following

transition table:

