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SETS AND ELEMENTS 
A set is a collection of objects called the elements or members 

of the set. The ordering of the elements is not important and 

repetition of elements is ignored,  

for example  

                {1, 3, 1, 2, 2, 1} = {1, 2, 3}. 

One usually uses capital letters, A,B,X, Y, . . . , to denote sets, 

and lowercase letters, a, b, x, y, . . ., to denote elements of sets.  

Below you'll see a sampling of items that could be considered as 

sets:  

 The items in a store  

 The English alphabet  

 Even numbers  

A set could have as many entries as you would like.  

It could have one entry, 10 entries, 15 entries, infinite number of 

entries, or even  have no entries at all!  

For example, in the above list the English alphabet would have 

26 entries, while the set of even numbers would have an infinite 

number of entries.  

Each entry in a set is known as an element or member  

Sets are written using curly brackets "{" and "}", with their 

elements listed in between.  

For example: 

1- the English alphabet could be written as 

{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z} 

2- even numbers could be {0,2,4,6,8,10,...}  

 

Principles: 

 belong to 

 not belong to 

 subset  

 proper subset     (is a non-equal subset) 

For example, {a, b} is a proper subset of {a, b, c},  

but {a, b, c} is not a proper subset of {a, b, c}. 

     not subset 
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So we could replace the statement: "a is belong to the alphabet"  

with:  

          a  {alphabet}  

and replace the statement "3 is not belong to the set of even 

numbers" with: 

          3  {Even numbers} 

 

Now if we named our sets we could go even further. 

Give the set consisting of the alphabet the name A,  

and give the set consisting of even numbers the name E. 

 

We could now write 

a  A 

and 

3  E.  

Problem  

Let A = {2, 3, 4, 5} and C = {1, 2, 3, . . ., 8, 9},  Show that A is 

a proper subset of C. 

Answer 

Each element of A belongs to C, so A ⊆ C. On the other hand, 

 1  C but 1  A. Hence A ≠ C. Therefore A is a proper subset 

of C. 

There are three ways to specify a particular set: 

1) By list its members separated by commas and contained in 

braces{ }, (if it is possible), for example: A= {a,e,i,o,u} 

2) By state those  properties which characterize the elements 

in the set, for example:          

 A={x:x is a letter in the English alphabet, x is a vowel} 

3) Venn diagram: ( A graphical representation of sets). 
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Example (1) 

 A={x:x is a letter in the English alphabet, x is a vowel} 

e  A (e is belong to A) 

f  A (f is not belong to A)  

 

Example (2) 

X is the set {1,3,5,7,9}  

3  X    and    

 4  X  

 

Example (3) 

Let E = {x | x
2
 − 3x + 2 = 0}   → (x-2)(x-1)=0  → x=2 &  x=1 

   E = {2, 1},   and       

2 

 
 

 

Empty Set 

A set with no elements is called an empty set.  

An empty is denoted by { } or ∅.  

For example, 

- ∅ = {x: x is an integer and x
2
 + 5 = 0} 

-  ∅ = {x: x are living beings who never die} 

-  ∅ = {x: x is the UOT student of age below 15} 

-  ∅ = { x: x is the set of persons of age over 200} 
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Universal set: 

In any application of the theory of sets, the members of all sets 

under investigation usually belong to some fixed large set called 

the universal set.  

For example:  

In human population studies the universal set consists of all the 

people in the world.  

We will let the symbol U denotes the universal set. 

 

Subsets: 

   Every element in a set A is also an element of a set B, then A 

is called a subset of B.  

We also say that B contains A.   

This relationship is written: 

                   A  B          or          B  A   

 

If A is not a subset of B, i.e. if at least one element of A does not 

belong to B, we write A  B. 

 

Example 4: 

Consider the sets:  

A = {1,3,4,5,8,9},        B = {1,2,3,5,7}       and         C ={1,5}  

Then C A and C B  

since 1 and 5, the element of C, are also members of A and B. 

 

But B A since some of its elements, e.g. 2 and 7, do not belong 

to A.  

Furthermore, since the elements of A, B and C must also belong 

to the universal set U,  

we have that U must at least the set {1,2,3,4,5,7,8,9}. 

 

   AB   :   { xA                      xB 

   AB   :    xA            but         xB 

 

                      : For all             لكل 

                      : There exists     يوجد على الاقل 
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The notion of subsets is graphically illustrated below: 

 
                                            A is entirely within B so A  B.  

 

 

 

 

 
       A and B are disjoint or (A  B = ) so we could write A  B and B  A. 
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Set of numbers: 

Several sets are used so often, they are given special symbols. 

N = the set of natural numbers or positive integers 

                       

 

Z = the set of all integers: . . . ,−2,−1, 0, 1, 2, . . . 

                       
 

 

Q = the set of rational numbers 

                      
       Where   Q ={ a/b : a , b  Z, b0} 

 

 

R = the set of real numbers 

                    
 

 

C = the set of complex numbers 

                    
        Where   C={ x + iy ; x , y R; i = -1} 

Observe that N  Z  Q  R  C. 
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Theorem 1: 

 For any set A, B, C: 

1.   A  U. 

2. A  A. 

3. If A  B and B  C, then A  C. 

4. A = B if and only if A  B and B  A. 

Set operations: 

1) UNION: 

The union of two sets A and B, denoted by A  B, is the set of 

all elements which belong to A or to B; 

                    A  B =  { x : x  A or x  B} 

Example  

A={1,2,3,4,5}                 B={5,7,9,11,13}  

A  B = {1,2,3,4,5,7,9,11,13} 

                                                                                                               
 

2) INTERSECTION 

 The intersection of two sets A and B, denoted by A ∩ B, is the 

set of elements which belong to both A and B;  

        A ∩ B = { x : x A and x B}.                            

Example 1 

A={1,3,5,7,9}                        B={2,3,4,5,6}  

The elements they have in common are 3 and 5  

A  B = {3,5}  

 

Example 2 

A={The English alphabet}             B={vowels}  

So A  B = {vowels}  
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Example 3 

A={1,2,3,4,5}                               B={6,7,8,9,10}  

In this case A and B have nothing in common. A  B =   

 

3) THE DIFFERENCE: 

The difference of two sets A\B  or A-B is those elements which 

belong to A but which do not belong to B.  

A\B = {x : x A, x  B}                                                                                                                             

                                           

4) COMPLEMENT OF SET:  
Complement of set A

c
 or A' , is the set of elements which belong 

to U but which do not belong to A .               

 A
c
 = {x : x   U, x  A}                                                                                                             

Example 1:  

let    A={1,2,3} 

        B = {3,4} 

        U={1,2,3,4,5,6} 

Find:  

           A  B = {1, 2, 3, 4} 

           A  B = {3} 

           A - B = {1, 2} 

           A
c
 = {4, 5, 6} 

5) Symmetric difference of sets 

The symmetric difference of sets A and B, denoted by A B, 

consists of those elements which belong to A or B but not to 

both. That is, 

    A B = (A  B)\(A ∩ B)  or   

    A B = (A\B)  (B\A)   
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Example: 

 Suppose U = N = {1, 2, 3, . . .} is the universal set. 

 Let A = {1, 2, 3, 4},         B= {3, 4, 5, 6, 7},  

       C = {2, 3, 8, 9},          E= {2, 4, 6, 8,. . .} 

 

Then: 

A
c
 = {5, 6, 7, . . .},  

B
c
 = {1, 2, 8, 9, 10, . . .},  

C
c 
={1,4,5,6,7,10,…}  

E
c
 ={1, 3, 5, 7, ...} 

A\B = {1, 2},  

A\C = {1, 4},  

B\C = {4, 5, 6, 7},  

A\E = {1, 3}, 

B\A = {5, 6, 7},  

C\A = {8, 9},  

C\B = {2, 8, 9},  

E\A = {6, 8, 10, 12, . . .}. 

Furthermore: 

 A  B = (A\B)  (B\A) = {1, 2, 5, 6, 7},    

B  C = {2, 4, 5, 6, 7, 8, 9}, 

A  C = (A\C)  (A\C) = {1, 4, 8, 9},     

A  E = {1, 3, 6, 8, 10, . . .}. 

 

 

Theorem 2 : 

A  B ,  

A  B = A ,  

A  B = B           are equivalent                                
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Theorem 3:  (Algebra of sets) 

Sets under the above operations satisfy various laws or identities 

which are listed below: 

 

1- A  A = A                                                              

     A  A = A 

 

2- (A  B) C = A  (B   C)                         Associative laws 

     (A  B)  C = A  (B  C)       

 

3- A  B = B  A                                               Commutativity 

     A  B = B  A 

 

4- A C ) = (A   C)            Distributive laws 

    A C ) = (A     C) 

 

5- A   = A                                                       Identity laws 

     A  U = A 

 

6- A  U = U                                                        Identity laws 

     A   =   

 

7- (A 
c
) 

c
 = A                                                Double complements 

 

8- A  A
 c   

=  U                                   Complement intersections 

                                                                                  and unions 

    A  A
 c   

=   

 

9-  U 
c   

 =   

     
 c   

  = U 

 

10- (A  B)
 c   

  = A
 c   
   B

 c   
                           De Morgan's laws 

       (A B)
 c   

  = A
 c   
   B

 c   
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Power set 

The power set of some set S, denoted P(S), is the set of all 

subsets of S (including S itself and the empty set) 

 P(S) = {e : e  S} 

Example 1:  

Let A = { 1,2 3} 

Power set of set A =  P(A) 

                                ={1},{2},{3},{1,2},{1,3},{2,3},{},A] 

Example 2:  

     P({0,1})={{},{0},{1},{0,1}}  

Classes of sets: 

 Collection of subset of a set with some properties  

Example:  

Suppose A = { 1,2 3} ,  

 let X2 be the class of subsets of A which contain exactly two 

elements of A. Then 

  class  X0 = [{}] 

class  X1 = [{1},{2},{3}]                         

class  X2 = [{1,2},{1,3},{2,3}] 

class  X3 = [{1,2,3}] 

 
Cardinality 
The cardinality of a set S, denoted |S|, is simply the number of 

elements a set has, so  

              |{a,b,c,d}| = 4,  
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The cardinality of the power set 

Theorem: 

 If  |A| = n then  |P(A)| = 2
n
 

 (Every set with n elements has 2
n
 subsets)           

Problem set 

Write the answers to the following questions. 

1.   |{1,2,3,4,5,6,7,8,9,0}|  

2.   |P({1,2,3})|  

3.    P({0,1,2})  

4.    P({1})  

Answers 

1.   10  

2.    2
3
=8  

3.    {{},{0},{1},{2},{0,1},0,2},{1,2},{0,1,2}}  

4.    {{},{1}}  
 

The Cartesian product 

The Cartesian Product of two sets is the set of all tuples made 

from elements of two sets.  

We write the Cartesian Product of two sets A and B as A × B. It 

is defined as: 

 

It may be clearer to understand from examples; 
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Example:  

If A = {1, 2, 3} and  B = {x, y} then 

 

A . B = {(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)} 

B . A = {(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)} 

It is clear that, the cardinality of the Cartesian product of two 

sets A and B is: 

 
A Cartesian Product of two sets A and B can be produced by 

making tuples of each element of A with each element of B; this 

can be visualized as a grid (which Cartesian implies) or table: if, 

e.g.,  

A = { 0, 1 } and B = { 2, 3 }, the grid is 

× 
A 

0 1 

B 
2  (0,2) (1,2) 

3 (0,3) (1,3) 

 

Problem set 

Answer the following questions: 

      1. {2,3,4}×{1,3,4}  

      2.  {0,1}×{0,1}  

3. |{1,2,3}×{0}|  

4. |{1,1}×{2,3,4}|  

Answers 

1. {(2,1),(2,3),(2,4),(3,1),(3,3),(3,4),(4,1),(4,3),(4,4)}  

2. {(0,0),(0,1),(1,0),(1,1)}  

3. 3  

4. 6  
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EXAMPLE  

What is the Cartesian product A × B × C, where  

A = {0, 1},  

B = {1, 2}, and  

C = {0, 1, 2} ? 

Solution:  

The Cartesian product A × B × C consists of all ordered triples 

(a, b, c), where a ∈ A, b ∈ B, and c ∈ C. Hence, 

 
A× B × C =   {(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1), (0, 2, 2),(1, 1, 0),  

                       (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)}. 

 

EXAMPLE  

Suppose that A = {1, 2}. It follows that  

A
2
 = {(1, 1), (1, 2), (2, 1), (2, 2)} and  

A
3
 = {(1,1,1), (1,1,2), (1,2,1), (1,2, 2), (2,1,1), (2,1,2), (2, 2,1), (2, 2, 2)}. 

                                         

Computer Representation of Sets 
There are various ways to represent sets using a computer. One 

method is to store the elements of the set in an unordered 

fashion. However, if this is done, the operations of computing 

the union, intersection, or difference of two sets would be time-

consuming, because each of these operations would require a 

large amount of searching for elements. We will present a 

method for storing elements using an arbitrary ordering of the 

elements of the universal set. This method of representing sets 

makes computing combinations of sets easy.  
Assume that the universal set U is finite (and of reasonable size 

so that the number of elements of U is not larger than the 

memory size of the computer being used). First, specify an 

arbitrary ordering of the elements of U, for instance: 

a1, a2, . . . , an. Represent a subset A of U with the bit string of 

length n, where the ith bit in this string is 1 if ai belongs to A 

and is 0 if ai does not belong to A.  
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Example  
Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and the ordering of 

elements of U has the elements in increasing order; that is,  

ai = i. What bit strings represent  

1- the subset of all odd integers in U, 

2- The subset of all even integers in U, and  

3- the subset of integers not exceeding 5 in U? 

Solution:  
1- The bit string that represents the set of odd integers in U, 

namely, {1, 3, 5, 7, 9}, has a one bit in the first, third, fifth, 

seventh, and ninth positions, and a zero elsewhere. It is:  

                  10 1010 1010. 

 

2- we represent the subset of all even integers in U, namely, 

{2, 4, 6, 8, 10}, by the string  01 0101 0101. 

 

3- The set of all integers in U that do not exceed 5, namely, 

{1, 2, 3, 4, 5}, is represented by the String 11 1110 0000. 
 

Using bit strings to represent sets, it is easy to find complements 

of sets and unions, intersections, and differences of sets. To find 

the bit string for the complement of a set from the bit string for 

that set, we simply change each 1 to a 0 and each 0 to 1, because 

x ∈ A if and only if x ∉ Ā. Note that this operation corresponds 

to taking the negation of each bit when we associate a bit with a 

truth value—with 1 representing true and 0 representing false. 

 

Example  
We have seen that the bit string for the set {1, 3, 5, 7, 9} (with 

universal set {1, 2, 3, 4,5, 6, 7, 8, 9, 10}) is 10 1010 1010.What 

is the bit string for the complement of this set? 

Solution:  
The bit string for the complement of this set is obtained by 

replacing 0s with 1s and vice versa. This yields the string 01 

0101 0101, which corresponds to the set {2, 4, 6, 8, 10}. 
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To obtain the bit string for the union and intersection of two sets 

we perform bitwise Boolean operations on the bit strings 

representing the two sets.  

The bit in the ith position of the bit string of the union is 1 if 

either of the bits in the ith position in the two strings is 1 (or 

both are 1), and is 0 when both bits are 0. Hence, the bit string 

for the union is the bitwise OR of the bit strings 

for the two sets. The bit in the ith position of the bit string of the 

intersection is 1 when the bits in the corresponding position in 

the two strings are both 1, and is 0 when either of the two bits 

is 0 (or both are). Hence, the bit string for the intersection is the 

bitwise AND of the bit strings for the two sets. 

 

EXAMPLE  

The bit strings for the sets {1, 2, 3, 4, 5} and {1, 3, 5, 7, 9} are 

11 1110 0000 and 10 1010 1010, respectively. Use bit strings to 

find the union and intersection of these sets. 

Solution:  

The bit string for the union of these sets is: 

  

11 1110 0000 ∨ 10 1010 1010 = 11 1110 1010, which 

corresponds to the set {1, 2, 3, 4, 5, 7, 9}.  

The bit string for the intersection of these sets is 

11 1110 0000 ∧ 10 1010 1010 = 10 1010 0000, which 

corresponds to the set {1, 3, 5}. 

 

Finite Sets and Counting Principle: 
A set is said to be finite if it contains exactly m distinct 

elements, where m denotes some nonnegative integer. 

Otherwise, a set is said to be infinite.  

 

For example: 

- The empty set  and the set of letters of English alphabet are 

finite sets,  

- The set of even positive integers, {2,4,6,…..}, is infinite. 
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 If a set A is finite, we let n(A)  or #(A)  denote the number of 

elements of A. 

 

Example:  

If A ={1,2,a,w} then 

     n(A) = #(A) = |A| = 4 

 

Lemma: If A and B are finite sets and disjoint Then Ais 

finite set and: 

            n(A B) = n(A) + n(B) 

 

Theorem (Inclusion–Exclusion Principle): Suppose A and B are 

finite sets. Then  

 A  B and A ∩ B are finite and      

            |A B| = |A| + |B| - | A  B| 

 

That is, we find the number of elements in A or B (or both) by 

first adding n(A) and n(B) (inclusion) and then subtracting  

n(A ∩ B) (exclusion) since its elements were counted twice. 

We can apply this result to obtain a similar formula for three 

sets: 

 

Corollary: 

If A, B, C are finite sets then 

|ABC| = |A| + |B| + |C| - |AB| - |AC| - |BC| + |AB C| 

 

Example (1) : 

A= {1,2,3} 

B= {3,4} 

C= {5,6} 

A B  C = {1,2,3,4,5,6} 

|A  B  C| = 6 

 

|A| =3      ,   |B| = 2   ,   |C| = 2 

 B = {3}           ,   | B | = 1 

C              ,   | C | = 0 
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B C = { }             ,   | C | = 0 

 B  C = { }    ,   | B C | = 0 

 

|ABC| = |A| + |B| + |C| - |AB| - |AC| - |BC| + |AB C| 

|A B C | = 3 + 2 +2 -1 – 0 – 0 + 0 = 6 

 

Example (2): 

Suppose a list A contains the 30 students in a mathematics class, 

and a list B contains the 35 students in an English class, and 

suppose there are 20 names on both lists. Find the number of 

students: 

   (a) only on list A 

   (b) only on list B 

   (c) on list A B     

Solution: 

(a) List A has 30 names and  

    20 are on list B;  

    hence 30 − 20 = 10 names are only on   list A. 

(b) Similarly, 35 − 20 = 15 are only on list B. 

(c) We seek n(A  B). By inclusion–exclusion, 

                    n(A  B) = n(A) + n(B) − n(A ∩ B)  

                                    = 30 + 35 − 20 = 45. 

Example (3): 

Suppose that 100 of 120 computer science students at a college 

take at least one of languages: French, German, and Russian: 

65 study French (F). 

45 study German (G). 

42 study Russian (R). 

20 study French & German F  G. 

25 study French & Russian F R. 

15 study German & Russian G  R. 

Find the number of students who study: 

1) All three languages ( F G R)

2) The number of students in each of the eight regions of the 

Venn diagram 
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Solution: 
|F  G  R| = |F| + |G| + |R| - |F G| - |F R| - |G R| + |F G R| 

100              = 65+ 45 + 42 -    20   -    25    -   15   + |F G R| 

100              = 92     + |F G R| 

|F G R| = 8 students study the 3 languages 

 

20 – 8 = 12     (F G) - R 

25 – 8 = 17    (F R) - G 

15 – 8 = 7      (G R) - F  

 

65 – 12 – 8 – 17 = 28   students study French only 

45 – 12 – 8 7 = 18      students study German only 

42 – 17 – 8 7 = 10      students study Russian only 

120 – 100 = 20        students do not study any language 

 

Mathematic induction: 
 

Suppose that we have an infinite ladder and we want to know 

whether we can reach every step on this ladder. We know two 

things: 

l. We can reach the first rung of the ladder. 

2. If we can reach a particular rung of the ladder, then we can 

reach the next rung. 

Can we conclude that we can reach every rung? By (1), we 

know that we can reach the first rung of the ladder. Moreover, 

because we can reach the first rung, by (2), we can also reach 

the second rung; it is the next rung after the first rung. Applying 
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(2) again, because we can reach the second rung, we can also 

reach the third rung. Continuing in this way, we can show that 

we can reach the fourth rung, the fifth rung, and so on. For 

example, after 100 uses of (2), we know that we can reach the 

101 st rung.  

 

 
                             

We can verify using an important proof technique called 

mathematical induction. That is, we can show that P(n) is true 

for every positive integer n, where P(n) is the statement that we 

can reach the nth rung of the ladder. 

Mathematical induction is an important proof technique that can 

be used to prove assertions of this type. Mathematical induction 

is used to prove results about a large variety of discrete objects. 

For example, it is used to prove results about the complexity of 

algorithms, the correctness of certain types of computer 

programs, theorems about graphs and trees, as well as a wide 

range of identities and inequalities.  
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In general, mathematical induction can be used to prove 

statements that assert that P(n) is true for all positive integers n, 
where P(n) is a propositional function.  
 

PRINCIPLE OF MATHEMATICAL INDUCTION  

To prove that P(n) is true for all positive integers n, where P(n) 

is a propositional function, we complete two steps: 

 

(i)BASIS STEP: We verify that P(1) is true. 

(ii)INDUCTIVE STEP: We show that the conditional statement 

P(k)→P(k + I) is true for all positive integers k. 

 

EXAMPLE1:  

Show that if n is a positive integer, then 

                                    n (n + 1) 

          1+2+ … +n = ---------            

                                      
2 
.                           Prove P (for n ≥ 1) 

Solution:  

 

Let P(n) be the proposition that the sum of the first n positive 

integers is n(n + 1)/2 

We must do two things to prove that P(n) is true for  

n = 1, 2, 3, ....  

Namely, we must show that P(1) is true and that the conditional 

statement P(k) implies P(k + 1) is true for k = 1,2.3, .... 

                                                                     

                                                                      1(1+1) 

(i)BASIS STEP: P(1) IS true, because 1 = ---------- 

                                                                        
2 

 

 

     left side =1       &          Right side =2/2  = 1 

                                                       

     left side = Right side 
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 (ii)INDUCTIVE STEP: For the inductive hypothesis we assume 

that P(k) holds for an arbitrary positive integer k. That is, we 

assume that P(k) is true 

                                                k(k + 1) 

                      1+2+ … +k = --------- 

                                                   2  

Under this assumption, it must be shown that P(k + 1) is true, 

namely, that 

 

            

to prove that P(k+1) is true 

 

1 + 2 + 3 + 4 + ..… + k + (k+1) = 1/2 *  k *  ( k+1 ) + (k+1) 

 

                                                       k ( k+1 )  + 2 ( k+ 1 ) 

                                                    = --------------------------- 

                                                                       2 

 

                                                      (k+1 ) ( k+ 2) 

                                                   = --------------- 

                                                               2 

 

                                                   = 1/2 (k + 1)(k + 2) 

So P is true for all n  k 

 

Example 2: 
Conjecture a formula for the sum of the first n positive odd 

integers. Then prove your conjecture using mathematical 

induction. 

Solution:  

The sums of the first n positive odd integers for  

n = 1,2,3,4,5 are: 

 

1 = 1,                               1 + 3 = 4,                    1 + 3 + 5 = 9,                        

1+3+5+7=16,                  1 + 3 + 5 + 7 + 9 = 25. 
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From these values it is reasonable to conjecture that the sum of 

the first n positive odd integers is n
2
, that is,  

 

    1 + 3 + 5 + ... + (2n - 1) =  n
2
 

 We need a method to prove that this conjecture is correct, if in 

fact it is. 

Let P(n) denote the proposition that the sum of the first n odd 

positive integers is n
2
 

  

(i)BASIS STEP: P(1) states that the sum of the first one odd 

positive integer is 1
2
. This is true because the sum of the first 

odd positive integer is 1.  

 

(ii)INDUCTIVE STEP: 

 we first assume the inductive hypothesis. 

The inductive hypothesis is the statement that P(k) is true, that 

is, 

              1 + 3 + 5 + ... + (2k - 1) = k
2
 

 

 

(ii)    n=k;      Assuming P(k) is true,  

We add (2k-1)+2  = 2K + 1 to both sides of P(k), obtaining: 

 

    1 + 3 + 5 + … + (2k – 1) + (2k + 1) =  k
2
 +(2k + 1)  

                                                              =  (k + 1)
2
 

Which is P(k + 1).   

That is, P(k + 1) is true whenever P(k) is true.    

By the principle of mathematical induction: 

    P is true for all n .k. 

 

Example  3: 

Prove the following proposition (for n ≥ 0): 

                            P(n) : 1 + 2 + 2
2
 + 2

3
 + … +2

n
 = 2 

n+1
 − 1 

solution : 

              (i)   P(0) :     left side =1 

                                  Right side =2
1
-1=1 
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          (ii) Assuming P(k) is true ; n=k 

                            P(k) : 1 + 2 + 2
2
 + 2

3
 + … +2

k
 = 2 

k+1
 − 1 

 

We add 2
k+1

 to both sides of P(k), obtaining 
 

1 + 2 + 2
2
 + 2

3
 + … +2

k
 + 2 

k+1
 = 2 

k+1
 − 1+ 2 

k+1
  

                                                   = 2(2 
k+1

) − 1 = 2 
k+2

 – 1 

 

which is P(k +1). That is, P(k +1) is true whenever P(k) is true. 

By the principle of induction: 

 P(n) is true for all n.
 

 

Homework: 

Prove by induction: 

1) 2 + 4 + 6 + ……. + 2n = n (n + 1) 

2) 1 + 4 + 7 + ……. + (3n – 2) = 1/2 n ( 3n  - 1) 
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Relations 
The important aspect of the any set is the relationship between 

its elements. The association of relationship established by 

sharing of some common feature proceeds comparing of related 

objects. For example, assume a set of students, where students 

are related with each other if their sir names are same. 

 

Conversely, if set is formed a class of students then we say that 

students are related if they belong to same class etc. 

Relation is a predefined alliance of objects. The examples of 

relations are viz. brother and sister, and mathematical relation 

such as less than, greater than, and equal etc. 

 

The relations can be classifying on the basis of its association 

among the objects. For example, relations said above are all 

association among two objects so these relations are called 

binary relation. Similarly, relations of parent to their children, 

boss and subordinates, brothers and sisters etc. are the examples 

of relations among three/more objects known as tertiary relation,  

quadratic relations and so on. In general an n-ary relation is the 

relation framed among n objects. 

 

Product sets: 

Consider two arbitrary sets A and B. The set of all ordered pairs 

(a,b) where aA and bB is called the product, or Cartesian 

product, of A and B. 

                     A × B = {(a,b) : aA and bB} 

 

Example 

R denotes the set of real numbers and so : 

R
2
 = R×R is the set of ordered pairs of real numbers. 

The geometrical representation of R
2
 as points in the plane as in 

Fig.-1. Here each point P represents an ordered pair (a, b) of real 

numbers and vice versa; the vertical line through P meets the   

x-axis at a, and the horizontal line through P meets the y-axis at 

b. R
2
 is called the Cartesian plane. 
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                                                                                                                Fig. -1 

Example: 

a)Let A = {1,2} and B = {a ,b ,c} then 

                     A × B = {(1,a), (1,b),(1,c),(2,a),(2,b),(2,c)}, Also, 

                     A × A = {(1, 1), (1, 2), (2, 1), (2, 2)} 

The order in which the sets are considered is important, so 

               A×B ≠ B ×A. 

              n(A×B) = n(A)×n(B) = 2 × 3 = 6 

 

Binary relation: 

A relation between two objects is a binary relation and it is 

given by a set of ordered couples. 

Let A and B be sets. A binary relation from A to B is a subset of 

A × B. 

Suppose R is a relation from A to B. Then R is a set of ordered 

pairs where each first element comes from A and each second 

element comes from B. That is, for each pair a ∈ A and b ∈ B, 

exactly one of the following is true: 

     (i) (a, b) ∈ R; we then say ―a is R-related to b‖, written aRb. 

     (ii) (a, b) ∉R; we then say ―a is not R-related to b‖, written    

a  b.                                         

 

Example 

(a) A = (1, 2, 3) and B = {x, y, z}, and let 

R = {(1, y), (1, z), (3, y)}. Then R is a relation from A to B 

since R is a subset of A × B. 

With respect to this relation 

               1Ry, 1Rz, 3Ry but (1,x)R & (2,x)R 
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 (b) Set inclusion ⊆ is a relation on any collection of sets. For, 

given any pair of set A and B, either A ⊆ B or or A ⊈B. 

 

(c) Consider the set L of lines in the plane. Perpendicularity, 

written ―⊥,‖ is a relation on L. That is, given any pair of lines a 

and b, either a ⊥ b or a not⊥ b. Similarly, ―is parallel to,‖ written 

―||‖ is a relation on L since either a ∥b or a ∦b. 
 

(d) Let A be any set. Then A × A and ∅ are subsets of A × A and 

hence are relations on A called the universal relation and empty 

relation, respectively. 
 

Example : 

Let A = {1, 2, 3}. Define a relation R on A by writing 

(x, y) R , such that ab, list the element of R 

     aRb ↔ ab , a,bA 

R = {(1,1),(2,1), (2,2), (3,1), (3,2), (3,3)}. 

 

Pictorial representation of relations 
There are various ways of picturing relations: 

 

I - By coordinate plane 

Let S be a relation on the set R of real numbers; that is, S is a 

subset of R
2
 = R × R. Frequently, S consists of all ordered pairs 

of real numbers which satisfy some given equation 

     E(x, y) = 0 (such as x2 + y2 = 25). 

Since R
2

 can be represented by the set of points in the plane, we 

can picture S by emphasizing those points in the plane which 

belong to S. The pictorial representation of the relation is called 

the graph of the relation. 

 

For example, 

the graph of the relation x
2
+y

2
 = 25 is a circle having its center 

at the origin and radius 5. 
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II -Directed Graphs of Relations on Sets 

Relation can be represented pictorially by drawing its graph 

(directed graph). Consider a relation R be defined between two 

sets: 

          X = {x1, x2, …….., xl} and 

          Y = { y1, y2, …….., ym} 

i.e., xi R yj , that is ordered couple (xi, yj) ∈ R where 1 ≤ i ≤ l 

and 1 ≤ j ≤ m. The elements of sets X and Y are represented by 

small circle called nodes. The existence of the ordered couple 

such as (xi, yj) is represented by means of an edge marked with 

an arrow in the direction from xi to yj. 

 
While all nodes related to the ordered couples in R are 

connected by proper arrows, we get a directed graph of the 

relation R. For the ordered couples xi Ryj and yj Rxi we draw 

two arcs between nodes xi and yj, 

 
If ordered couple is like xiRxi or (xi, xi) ∈ R then we get self 

loop over the node xi. 
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Example, 

Relation R on the set A = {1, 2, 3, 4}: 

             R = {(1, 2), (2, 2), (2, 4), (3, 2), (3, 4), (4, 1), (4, 3)} 

Fig. 3 shows the directed graph of R 

 
                                                                                Fig. -3 

III - matrix 

Form a rectangular array (matrix) whose rows are labeled by the 

elements of A and whose columns are labeled by the elements of 

B. Put a 1 or 0 in each position of the array according as a ∈ A is 

or is not related to b ∈ B. This array is called the matrix of the 

relation. 

Example, 

let A = {1, 2, 3} and B = {x, y, z}. 

      R = {(1,y),(1,z),(3,y)} 

Fig. 4 shows the matrix of R.                        

 
                                                                        Fig. 4 

 

 

 

IV - arrow from 

Write down the elements of A and the elements of B in two disjoint disks, 

and then draw an arrow from a ∈ A to b ∈ B whenever a is related to b. 

This picture will be called the arrow diagram of the relation. 

Fig. 5 pictures the relation R in the previous example by the arrow form.         



Dr. Akbas Ezaldeen                        Discrete structure                        Computer Sciences  

 

31 

 

 

 
                                                                               Fig. 5 

Properties of binary relations (Types of relations) 

Let R be a relation on the set A 

1)Reflexive : 

R is said to be reflexive if ordered couple (x, x) ∈ R for ∀x ∈ X. 

a A aRa or (a,a) R ; a, b A. . 

Thus R is not reflexive if there exists a A such that 

(a, a) R. 

 

Example i: 

Consider the following five relations on the set A = {1, 2, 3, 4}: 

R1 = {(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)} 

R2 = {(1, 1)(1, 2), (2, 1), (2, 2), (3, 3), (4, 4)} 

R3 = {(1, 3), (2, 1)} 

R4 = ∅, the empty relation 

R5 = A × A, the universal relation 

 

Determine which of the relations are reflexive. 

 

Since A contains the four elements 1, 2, 3, and 4, 

a relation R on A is reflexive if it contains the four pairs 

   (1, 1), (2, 2), (3, 3), and (4, 4). 

Thus only R2 and the universal relation R5 = A × A are 

reflexive. 

Note that R1,R3R3, and R4 are not reflexive since, for example, 

(2, 2) does not belong to any of them. 

Example ii 

Consider the following five relations: 

(1) Relation ≤ (less than or equal) on the set Z of integers. 

(2) Set inclusion ⊆ on a collection C of sets. 
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 (3) Relation ⊥ (perpendicular) on the set L of lines in the 

plane. 

(4) Relation ∥ (parallel) on the set L of lines in the plane. 

 

Determine which of the relations are reflexive. 

 

The relation (3) is not reflexive since no line is perpendicular to 

itself. 

Also (4) is not reflexive since no line is parallel to itself. 

The other relations are reflexive; that is, 

x ≤ x for every x ∈ Z, 

A ⊆ A for any set A ∈ C, and 

 

2) Symmetric : 

R is said to be symmetric if, ordered couple (x, y) ∈ R and also 

ordered couple (y, x) ∈ R for ∀x, ∀y ∈ X. 

aRb bRa a,b A. [ if whenever (a, b) ∈ R then (b, a) 

∈ R.] 

Thus R is not symmetric if there exists a, b ∈ A such that 

(a, b) ∈ R but (b, a) R. 

 

Example 

(a) Determine which of the relations in Example i are symmetric 

R1 = {(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)} 

R2 = {(1, 1)(1, 2), (2, 1), (2, 2), (3, 3), (4, 4)} 

R3 = {(1, 3), (2, 1)} 

R4 = ∅, the empty relation 

R5 = A × A, the universal relation 

 

R1 is not symmetric since (1, 2) ∈ R1 but (2, 1) R1. 

R3 is not symmetric since (1, 3) ∈ R3 but (3, 1) R3. 

The other relations are symmetric. 

 

(b) Determine which of the relations in Example ii are 

symmetric. 
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(1) Relation ≤ (less than or equal) on the set Z of integers. 

(2) Set inclusion ⊆ on a collection C of sets. 

(3) Relation ⊥ (perpendicular) on the set L of lines in the 

plane. 

(4) Relation ∥ (parallel) on the set L of lines in the plane. 

 

The relation ⊥ is symmetric since if line a is perpendicular to 

line b then b is perpendicular to a. 

Also, ∥ is symmetric since if line a is parallel to line b then b is 

parallel to line a. 

The other relations are not symmetric. For example: 

3 ≤ 4 but 4 not≤ 3; {1, 2} ⊆ {1, 2, 3} but {1, 2, 3} not ⊆{1, 2}. 

 

3) Transitive : 

R is said to be transitive if ordered couple (x, z) ∈ R whenever 

both ordered couples (x, y) ∈ R and (y, z) ∈ R. 

        aRb bRc aRc. that is, if whenever (a, b), (b, c) ∈ R 

then (a, c) ∈ R. 

Thus R is not transitive if there exist a, b, c ∈ R such that 

(a, b), (b, c) ∈ R but (a, c) R. 

 

Example 

(a) Determine which of the relations in example i are transitive. 

 

R1 = {(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)} 

R2 = {(1, 1)(1, 2), (2, 1), (2, 2), (3, 3), (4, 4)} 

R3 = {(1, 3), (2, 1)} 

R4 = ∅, the empty relation 

R5 = A × A, the universal relation 

 

The relation R3 is not transitive since (2, 1), (1, 3) ∈ R3 but (2, 

3) R3. All the other relations are transitive. 
 

(b) Determine which of the relations in example ii are transitive. 

 

(1) Relation ≤ (less than or equal) on the set Z of integers. 

(2) Set inclusion ⊆ on a collection C of sets. 
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 (3) Relation ⊥ (perpendicular) on the set L of lines in the plane. 

(4) Relation ∥ (parallel) on the set L of lines in the plane. 

 

The relations ≤, ⊆, and | are transitive, but certainly not ⊥. 

Also, since no line is parallel to itself, we can have 

a ∥ b and b ∥ a, but a ∥ a. Thus ∥ is not transitive. 

 

4)Equivalence relation : 

A binary relation on any set is said an equivalence relation if it 

is reflexive, symmetric, and transitive. 

 

R is an equivalence relation on S if it has the following three 

properties: 

a - For every a ∈S, aRa. (reflexive) 

b- If aRb, then bRa. (symmetric) 

c- If aRb and bRc, then aRc. (transitive) 

 

5) Irreflexive : 

a A (a,a) R 

 

6) AntiSymmetric : 

if (x, y) ∈ R but (y,x) ∉ R unless x = y. 

    or 

if aRb and bRa then a=b, 

that is,   if a ≠b and aRb then (b,a)R. 

Thus R is not antisymmetric if there exist distinct elements a 

and b in A such that aRb and bRa. 

 

the relations ,and are antisymmetric 

 

Example 

(a) Determine which of the relations in Example i are 

antisymmetric. 

 

R1 = {(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)} 

R2 = {(1, 1)(1, 2), (2, 1), (2, 2), (3, 3), (4, 4)} 

R3 = {(1, 3), (2, 1)} 
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R4 = ∅, the empty relation 

R5 = A × A, the universal relation 

 

R2 is not antisymmetric since (1, 2) and (2, 1) belong to R2, but 

1 ≠ 2. Similarly, 

the universal relation R3 is not antisymmetric. 

All the other relations are antisymmetric. 

 

(b) Determine which of the relations in Example ii are 

antisymmetric. 

(1) Relation ≤ (less than or equal) on the set Z of integers. 

(2) Set inclusion ⊆ on a collection C of sets. 

(3) Relation ⊥ (perpendicular) on the set L of lines in the plane. 

(4) Relation ∥ (parallel) on the set L of lines in the plane. 

 

The relation≤ is antisymmetric since whenever a ≤ b and b ≤ a 

then a = b. 

Set inclusion ⊆ is antisymmetric since whenever 

A ⊆ B and B ⊆ A then A = B. Also, 

The relations ⊥ and ∥ are not antisymmetric. 

 

7) Compatible : 

if a relation is only reflexive and symmetric then it is called a 

compatibility relation. So, we can say that: every equivalence 

relation is a compatibility relation, but not every compatibility 

relation is an equivalence relation. 

 

Example: 

Determine the properties of the relation of set (inclusion on 

any collection of sets): 

1) A A for any set, so is reflexive 

2) A B does not imply B A, so is not symmetric 

3) If A B and B C then A C, so is transitive 

4) is reflexive, not symmetric & transitive, so is not 

equivalence relations 

5) A A, so is not Irreflexive 



Dr. Akbas Ezaldeen                        Discrete structure                        Computer Sciences  

 

36 

 

6) If A B and B A then A = B, so is anti-symmetric 

7) is reflexive and not symmetric then it is not compatibility 

relation. 

 

Example: 

If A ={1,2,3} and R={(1,1),(1,2),(2,1),(2,3)}, is R equivalence 

relation ? 

1) 2 is in A but (2,2) R, so R is not reflexive 

2) (2,3) R but (3,2) R, so R is not symmetric 

3) (1,2) R and (2,3) R but (1,3) R, so R is not 

transitive 

So R is not Equivalence relation. 

 

Example: 

What is the properties of the relation =  ? 

1) a=a for any element a A, so = is reflexive 

2) If a = b then b = a, so = is symmetric 

3) If a = b and b = c then a = c, so = is transitive 

4) = is (reflexive + symmetric + transitive), so = is 

equivalence 

5) a = a, so = is not Irreflexive 

6) If a = b and b = a then a = b, so = is anti-symmetric 

7) is reflexive and symmetric then it is compatibility 

relation. 

 

Remark: 

The properties of being symmetric and being antisymmetric are 

not negatives of each other. 

For example, 

the relation R = {(1, 3), (3, 1), (2, 3)} is neither symmetric nor 

antisymmetric. 

On the other hand, the relation R = {(1, 1), (2, 2)} is both 

symmetric and antisymmetric. 

 

From the directed graph of a relation we can easily examine 

some of its properties. For example if a relation is reflexive, 
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then we must get a self-loop at each node. Conversely if a 

relation is irreflexive, then there is no self-loop at any node. 

For symmetric relation if one node is connected to another, 

thenthere must be a return arc from second node to the first 

node. 

For antisymmetric relation there is no such direct return arc 

exist. Similarly we examine the transitivity of the relation in the 

directed graph. 
 

8) Partial ordered relation 

A binary relation R is said to be partial ordered relation if it is: 

      reflexive, antisymmetric, and transitive. 

 

Example, 

R={(w,w), (x, x), (y, y), (z, z),(w, x), (w, y), (w, z),(x, y), (x, z)} 

In a partial ordered relation objects are related through 

superior/inferior criterion.. 
  

Example 

In the arithmetic relation less than or equal to‟ ≤‟ (or 

greater than or equal to "≥‟) are partial ordered relations. 

 

Since, 

(1) Every number is equated to itself so it is reflexive. 

(2) Also, if m and n are two numbers then ordered couple  

(m, n) ∈ R if m = n ⇒ n ≰ m so (n, m) ∉ R hence, relation 

is antisymmetric. 

(3) if (m, n) ∈ R and (n, k) ∈R ⇒ m = n and n = k ⇒ m = k 

so (m, k) ∈ R hence, R is transitive. 

 

Example 

The relation ⊆ of set inclusion is a partial ordering on any 

collection of sets since set inclusion has the three desired 

properties. That is, 

(1) A ⊆ A for any set A (reflexive). 

(2) If A ⊆ B and B ⊆ A, then A = B (antisymmetric). 

(3) If A ⊆ B and B ⊆ C, then A ⊆ C (transitive). 
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Composition of relations: 
When a relation is formed over stages such that let R be one 

relation defined from set X to Y, and S be another relation 

defined from set Y to Z, 

then a relation W denoted by R S is a composite relation, i.e 

W = R S ={(x,z) : x X for which (x,y) R and (y,z) S} 

Composite relation W can also represented by a diagram. 

 

Example : 

let   A ={1,2,3,4} 

       B = {a, b, c, d} 

       C = {x, y, z} 

And 

       R = {(1,a),(2,d),(3,a),(3,d),(3,b)} 

       S = {(b,x),(b,z),(c,y),(d,z)} 

Find R S ? 

 

Solution : 

1) The first way by arrow form 

 
There is an arrow (path) from 2 to d which is followed by an 

arrow from d to z 

 

         2Rd   and   dSz   2(R S) z 

And  3(R◦S)x and 3(R◦S)z 

 

So   R S = {(3,x),(3,z),(2,z)} 
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2) The second way by matrix: 

 
 

R S = MR . MS = 

 
 

 

R S = {(2,z),(3,x),(3,z)} 

 

Example, 

let R1 = {(p, q), (r, s), (t, u), (q, s)} and 

     R2 = {(q, r), (s, v), (u, w)} are two relations then, 

 

R1 R2 = {(p, r), (r, v), (t, w), (q, v)}, and 

 

R2 R1 = {(q, s)} 
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Home work:  

Consider the following relations on the set A = {1, 2, 3}: 

         R = {(1, 1), (1, 2), (1, 3), (3, 3)},  

         S = {(1, 1)(1, 2), (2, 1)(2, 2), (3, 3)},  

         T = {(1, 1), (1, 2), (2, 2), (2, 3)}  

         = empty relation 

       A× A = universal relation 

 

 Determine whether or not each of the above relations on A is:  

      (1) reflexive;  

(2) symmetric;  

(3) transitive; 

 (4) antisymmetric. 

(5) Irreflexive     

 (6) compatibility  

7) Partial ordered relation 
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Function: 

In many instances we assign to each element of a set a particular 

element of a second set. For example, suppose that each student 

in a discrete mathematics class is assigned a letter grade from 

the set {A,B,C,D, F}. And suppose that the grades are A for 

Adams, C for Chou, B for Goodfriend, A for Rodriguez, and F 

for Stevens. This assignment is an example of a function. This 

assignment is an example of a function. The concept of a 

function is extremely important in mathematics and computer 

science. 

 
                                                Fig. 1 Assignment of Grades in a Discrete Mathematics Class. 

 

Function is a class of relation. it establishes the relationship 

between objects. For example, in computer system input is fed 

to the system in form of data or objects and the system generates 

the output that will be the function of input. So, function is the 

mapping or transformation of objects from one form to other.  

 

Definition:  

Let A and B be nonempty sets. A function F: AB is a rule 

which associates with each element of A a unique element in B.  

 

EXAMPLE 1  
Let R be the relation with ordered pairs (Abdul, 22), (Brenda, 

24), (Carla, 21), (Desire, 22), (Eddie, 24), and (Felicia, 22). 

Here each pair consists of a graduate student and this student’s 

age. Specify a function determined by this relation. 

Solution:  

If f is a function specified by R, then  

f (Abdul ) = 22,  
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f (Brenda) = 24,  

f (Carla) = 21,  

f (Desire) = 22,  

f (Eddie) = 24, and  

f (Felicia) = 22. (Here, f (x) is the age of x, where x is a student.)  

 

EXAMPLE 2  

Consider the function f (x) = x
3
, i.e., f assigns to each real 

number its cube. Then the image of 2 is 8, and so we may write  

f (2) = 8. 

 

Example 3 : 

 consider the following relation on the set  A={1,2,3} 

F = {(1,3),(2,3),(3,1)}        

F is a function 

                                                           
----------------------------------------------------------------------- 

 

 

 G = {1,2},(3,1)}                 

 G is not a function from A to A 
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H = {(1,3),(2,1),(1,2),(3,1)}   

H is not a function . 

                                                             

 
 

Classification of functions: 

(One-to-one ,onto and invertible functions) : 

 

Some functions never assign the same value to two different 

domain elements. These functions are said to be one-to-one. 

1) One –to-one  : 

a function F:AB is said to be one-to-one if different 

elements in the domain (A) have distinct images. 

Or  If   F(a) =F(a’)                 a = a’ 

 

 
                                                             Fig 2: A One-to-One Function. 

 

 

2) Onto :  

F:AB is said to be an onto function if each element of B is the 

image of some element of A. 

    bB          a  A : F(a) = b 
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EXAMPLE  
Let f be the function from {a, b, c, d} to {1, 2, 3} defined by 

 f (a) = 3,  

f (b) = 2,  

f (c) = 1, and 

f (d) = 3. 

Is f an onto function? 

 

Solution:  

Because all three elements of the codomain are images of  

elements in the domain, we see that f is onto. This is illustrated 

in Figure 3.  

 
                                                                                                         Fig. 3 An Onto Function 

 

 

 
Fig 4 . Examples of Different Types of Correspondences. 

 

 

3) Invertible (One-to-one correspondence) 

F:A B is invertible if and only if F is both one-to-one and 

onto. 

 

F:A B is invertible if its inverse relation f 
-1

 is a function 

 F:B A 

                    F 
-1

 :{(b,a)  (a,b)  F} 
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EXAMPLE   
Let f be the function from {a, b, c, d} to {1, 2, 3, 4} with 

 f (a) = 4,  

f (b) = 2,  

f (c) = 1, and 

f (d) = 3. Is f an invertible? 

 

Solution:  

The function f is one-to-one and onto.  

It is one-to-one because no two values in the domain are 

assigned the same function value.  

It is onto because all four elements of the codomain are images 

of elements in the domain. Hence, f is a invertible. 

 

Figure 4 displays four functions where  

the first is one-to-one but not onto,  

the second is onto but not one-to-one, 

the third is both one-to-one and onto, and  

the fourth is neither one-to-one nor onto.  

The fifth correspondence in Figure 4 is not a function, because it 

sends an element to two different elements. 

 

  

                             
                                                         one to one but not onto 

                                                          (3B but it is not the image under f1) 
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                                                 both one to one & onto 

                                               (or one to one correspondence between A and B) 

 

            
                                                          not one to one & onto 

 

 

 

                                                              
                                       

                                                   not one to one & not onto 
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Graph of a function:  

We can associate a set of pairs in A × B to each function from 

A to B. This set of pairs is called the graph of the function and 

is often displayed pictorially to aid in understanding the 

behavior of the function. 

 

EXAMPLE  
Display the graph of the function f (n) = 2n + 1 from the set of 

integers to the set of integers. 

 

Solution:  

The graph of f is the set of ordered pairs of the form (n, 2n + 1), 

where n is an integer. 

 

 
EXAMPLE  
Display the graph of the function f (x) = x

2
 from the set of 

integers to the set of integers. 

Solution:  

The graph of f is the set of ordered pairs of the form (x, f (x)) =  

(x, x
2
), where x is an integer.  
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By a real polynomial function, we mean a function  f: R → R of 

the form 

     
where the ai are real numbers. Since R is an infinite set, it would 

be impossible to plot each point of the graph. However, the 

graph of such a function can be approximated by first plotting 

some of its points and then drawing a smooth curve though 

these points. The table points are usually obtained from a table 

where various values are assigned to x and the corresponding 

value of f(x) computed.   

 

Example:  let f: R→R and f(x)= x
3 
, find f(x) 

 

                f(3)   =  3
3
 = 27 

                f(-2)  =  (-2)
3
 = -8   

                                      
 

 

 

Example  :  let f: R→R and f (x) = x
2
 − 2x – 3, , find f(x) 
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Geometrical Characterization of One-to-One and Onto 

Functions 

 For the functions of the form f : R → R. the graphs of such 

functions may be plotted in the Cartesian plane and functions 

may be identified with their graphs, so the concepts of being 

one-to-one and onto have some geometrical meaning : 

 

(1) f :R → R is said to be one-to-one if there are no 2 distinct 

pairs (a1,b) and (a2,b) in the graph one-to-one or if each 

horizontal line intersects the graph of f in at most one point. 

  

                                                                              

 

(2) f :R → R is an onto function if each horizontal line intersects 

the graph of f at one or more points (at least once) 

 

        
                                                                                                   

 
 

 (3) if f is both one-to-one and onto, i.e. invertible, then each 

horizontal line will intersect the graph of f at exactly one point. 
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 ------------------------------------------ 

 

 

            

 
f(x)NOT (ONE-TO-ONE) & NOT (ONTO) 

 

Sequences of sets 

A sequence is a discrete structure used to represent an ordered 

list.  

For example,  

 1, 2, 3, 5, 8     is a sequence with five terms (called a list) 

 1, 3, 9, 27, 81 , . . . , 3n, . . .     is an infinite sequence. 

 

A sequence is a function from subset of the set of integers 

(usually either the set {0, 1, 2, . . .} or the set {1, 2, 3, . . .}) to a 

set S.. The notation  an  is used to denote the image of the 

integer n that called the term of the sequence and used to 

describe the sequence . Thus a sequence is usually denoted by 

                      a1, a2, a3, . . .  
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We describe sequences by listing the terms of the sequence in 

order of increasing subscripts. 

 

EXAMPLE 1  

Consider the sequence {an}, where 

 

 
 

The list of the terms of this sequence, beginning with a1, 

namely, 

            a1, a2, a3, a4, . . . , 

starts with 

 

 
 

 EXAMPLE 2  

a-The sequences {bn} with  bn = (−1)
n
 

if we start at n = 0, the list of terms begins with    1,−1, 1,−1, 1, . 

. .           
                                                                                                 

 

 

b-The sequences {cn} with cn = 2 × 5
n
 

if we start at n = 0, the list of terms begins with   

              2, 10, 50, 250, 1250, . . .   

 

c- The sequences {dn} with dn = 6 × (1/3)
n
  

if we start at n = 0, The list of terms begins with 
  

               
  

d- The sequences {bn} with bn = 2 
-n 

if we start at n = 0, The list of terms begins with 
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 e- The sequences {bn} with   

 if we start at n = 1, The list of terms begins with 

                
 

RECURSIVELY DEFINED FUNCTIONS 

A function is said to be recursively defined if the function 

definition refers to itself. In order for the definition not to be 

circular, the function definition must have the following two 

properties: 

(1) There must be certain arguments, called base values, for 

which the function does not refer to itself. 

(2) Each time the function does refer to itself, the argument of 

the function must be closer to a base value. 

A recursive function with these two properties is said to be well-

defined. 

 

Factorial Function 

The product of the positive integers from 1 to n, inclusive, is 

called ―n factorial‖ and is usually denoted by n!. That is, 

                       n! = n(n − 1)(n − 2) ・ ・ ・ 3 ・ 2 ・ 1 

where  

 0! = 1, so that the function is defined for all nonnegative 

integers. Thus: 

We have: f(0) =  0! = 1  

 

               f (1) = 1! = 1,  

               f (2) = 2! = 1 ・ 2 = 2,  

               f (6) = 6! = 1 ・ 2 ・ 3 ・ 4 ・ 5 ・ 6 = 720, 

and    

 

 f (20) = 1x 2 x3x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11x 12 x 13 x 14 x 

15x16 x 17 x 18 x 19 x20 = 2,432,902,008,176,640,000. 

 

the factorial function grows extremely rapidly as n grows. 
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This is true for every positive integer n; that is, 

                               n! = n ・ (n − 1)! 

Accordingly, the factorial function may also be defined as 

follows: 

Definition of Factorial Function: 

         (a) If n = 0, then n! = 1. 

         (b) If n > 0, then n! = n ・ (n − 1)! 

 

The definition of n! is recursive, since it refers to itself when it 

uses (n − 1)!. However: 

(1) The value of n! is explicitly given when n = 0 (thus 0 is a 

base value). 

(2) The value of n! for arbitrary n is defined in terms of a 

smaller value of n which is closer to the base value 0. 

 

Accordingly, the definition is not circular, or, in other words, the 

function is well-defined. 

 

EXAMPLE 7: the 4! Can be calculated in 9 steps using the 

recursive definition .  

 
 

Fibonacci Sequence 

 

The Fibonacci sequence is a particularly useful sequence that is 

important for many applications, including modeling the 
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population growth of rabbits. It is usually denoted by F0, F1, F2, 

. . and can be defined by: 

                 0,   1,   1,   2,   3,   5,   8,   13,   21,   34,   55,   . . . 

 

That is, F0 = 0 and F1 = 1 and each succeeding term is the sum 

of the two preceding terms. For example, the next two terms of 

the sequence are 

                 34 + 55 = 89 and  

                 55 + 89 = 144 

 

Fibonacci Sequence can be defined: 

(a) If n = 0, or n = 1, then Fn = n. 

(b) If n > 1, then Fn = Fn-1 + Fn-2. 

 

Where : The base values are 0 and 1, and the value of Fn is 

defined in terms of smaller values of n which are closer to the 

base values. 

Accordingly, this function is well-defined. 
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Graphs: 

Graphs are discrete structures consisting of vertices and edges 

that connect these vertices, so a graph G(V,E) consists of: 

    (i) V, a nonempty set of vertices (or nodes). 

    (ii) E, a set of edges. Each edge has either one or two vertices 

associated with it, called its endpoints.  

 

Graphs are used in a wide variety of models with computer 

science such as communication network, logical design, 

transportation networks, formal languages, compiler writing and 

retrieval. 

For example: in  a communication network, where computers 

can be represented by vertices and communication links by 

edges. A graph in which each edge connects two different 

vertices and where no two edges connect the same pair of 

vertices is called a simple graph. 

 

 
Figure (1): simple graph 

 

A computer network may contain multiple links between data 

centers, as shown in Figure 2. To model such networks we need 

graphs that have more than one edge connecting the same pair of 

vertices. Graphs that may have multiple edges connecting the 

same vertices are called multigraphs. 

 
Figure (2): multigraphs 
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Sometimes a communications link connects a data center with 

itself, perhaps a feedback loop for diagnostic purposes. Such a 

network is illustrated in Figure 3. To model this network we 

need to include edges that connect a vertex to itself. Such edges 

are called loops, 

 
Figure (3): multigraphs with loops 

 

 

In a computer network, some links may operate in only one 

direction (such links are called single duplex lines). This may be 

the case if there is a large amount of traffic sent to some data 

centers, with little or no traffic going in the opposite direction. 

Such a network is shown in Figure 4. To model such a computer 

network we use a directed graph. Each edge of a directed graph 

is associated to an ordered pair. 

 
Figure (4): directed graph 

 

 

For example we have in Figure (5) the graph G(V,E) where: V 

consists of four vertices A, B, C, D ; and, E consists of five 

edges  

e1 ={A,B},  

e2 = {B,C},  

e3 = {C, D},  
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e4 = {A, C}, 

e5 = {B, D}. 

 
Figure (5) 

   

Vertices u and v are said to be adjacent if there is an edge 

e={u,v}. In such a case, u and v are called the endpoints of e, 

and e is said to connect u and v. Also, the edge e is said to be 

incident on each of its endpoints u and v. 

 
Figure 6: multigraph with: 1) multiple edges e4 & e5  

                     2)  a loop e6 

 

Degree : 

The degree of a vertex v [deg(v)], is equal to the number of 

edges which are incident on v. since each edge is counted twice 

in counting the degrees of the vertices of a graph. 

 

Theorem: The sum of the degrees of the vertices of a graph is 

equal to twice the number of edges. Let G = (V ,E) be an 

undirected graph with m edges. Then 

                 2m =  deg(v). 

                v∈V 
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For example, in the figure (5) we have 

 
deg(A) = 2, 

deg(B) = 3, 

deg(C) = 3, 

deg(D) = 2 

 

The sum of the degrees = twice the number of edges = 2×5=10  

 

EXAMPLE 1:  How many edges are there in a graph with 10 

vertices each of degree six? 

Solution: Because the sum of the degrees of the vertices is  

6 × 10 = 60, it follows that 2m = 60 

where m is the number of edges. Therefore, m = 30. 

 

A vertex is said to be even or odd according as its degree is an 

even or odd number. Thus A and D are even vertices whereas B 

and C are odd vertices. 

This theorem also holds for multigraphs where a loop is counted 

twice towards the degree of its endpoint. For example, in Fig (6) 

we have deg (D) = 4 since the edge e6 is counted twice; hence D 

is an even vertex. 

A vertex of degree zero is called an isolated vertex. 

 

Subgraphs 

Consider a graph G = G(V,E) and a graph H = H(V', E') is called 

a subgraph of G if the vertices and edges of H are contained in 

the vertices and edges of G, that is, if V' ⊆ V and E' ⊆ E. 

 



Dr. Akbas Ezaldeen                        Discrete structure                        Computer Sciences  

 

59 

 

Sometimes we need only part of a graph to solve a problem. For 

instance, we may care only about the part of a large computer 

network that involves the computer centers in New York, 

Denver, Detroit, and Atlanta. Then we can ignore the other 

computer centers and all telephone lines not linking two of these 

specific four computer centers. In the graph model for the large 

network, we can remove the vertices corresponding to the 

computer centers other than the four of interest, and we can 

remove all edges incident with a vertex that was removed. When 

edges and vertices are removed from a graph, without removing 

endpoints of any remaining edges, a smaller graph is obtained. 

Such a graph is called a subgraph of the original graph. 

 

EXAMPLE 2:  The graph G shown in Figure 7 is a subgraph of 

K5. If we add the edge connecting a, b, c and e to G, we obtain 

the subgraph induced by W = {a, b, c, e}. 

 

 
Figure 7 

 

 

Connectivity : 

Many problems can be modeled with paths formed by traveling 

along the edges of graphs. For instance, the problem of 

determining whether a message can be sent between two 

computers using intermediate links can be studied with a graph 

model. Problems of efficiently planning routes for mail delivery, 

garbage pickup, diagnostics in computer networks, and so on 

can be solved using models that involve paths in graphs. 

 

a walk is a sequence of edges that begins at a vertex of a graph 

and travels from vertex to vertex along edges of the graph. As 
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the path travels along its edges, it visits the vertices along this 

walk, that is, the endpoints of these edges. 

A walk in a multigraph G consists of an alternating sequence of 

vertices and edges of the form:  

       v0, e1, v1, e2, v2,……., en-1,vn-1,en,vn 

where each edge ei contains the vertices vi−1 and vi (which 

appear on the sides of ei in the sequence). 

 

Length of walk : is the number n of edges. When there is no 

ambiguity, we denote a path by its sequence of vertices  

            (v0, v1, . . . , vn). 

Closed walk: the walk is said to be closed if v0 = vn . 

Otherwise, we say that the walk is from v0 to vn. 

 

Trail: is a walk in which all edges are distinct. 

Path: is a walk in which all vertices are distinct. 

Cycle: is a closed walk such that all vertices are distinct except 

v1 = vn, A cycle of length k is called a k-cycle. 
 

EXAMPLE 1  

In the simple graph shown in Figure 8:   

 
Figure 8 

 

a, d, c, f , e is a path of length 4, because {a, d}, {d, c}, {c, f }, 

and {f, e} are all edges. However,  

 

d, e, c, a is not a path, because {e, c} is not an edge. Note that  

 

b, c, f , e, b is a circuit of length 4 because {b, c}, {c, f }, {f, e}, 

and {e, b} are edges, and this path begins and ends at b.  
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The walk a, b, e, d, a, b, which is of length 5, is not path 

because it contains the edge {a, b} twice. 
 

 

Example: Consider the graph in figure (9), then 

 
Figure (9) 

 

The sequence: (P4, P1, P2, P5, P1, P2, P3, P6) is a walk from P4 

to P6. It is not a trail since the edge {P1,P2} is used twice. 

 

The sequence: (P4, P1, P5, P3, P2, P6) Is not a walk since there 

is no edge {P2, P6}. 

 

The sequence: (P4, P1, P5, P2, P3, P5, P6) is a trail since no 

edge is used twice; but it is not a path since the vertex P5 is used 

twice. 

The sequence: (P4, P1, P5, P3, P6)  Is a path from P4 to P6. 

 

The shortest path from P4 to P6 is (P4, P5, P6) which has length 

= 2 (2 edges only) 

The distance between vertices u & v d(u,v) is the length of the 

shortest path d(P4,P6) = 2. 
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The Bridges of konigsberg, traversable multigraphs 

The eighteenth-century East Prussian town of Konigsberg 

included two islands and seven bridges. Question: beginning 

anywhere and ending anywhere, can a person walk through 

town crossing all seven bridges but not crossing any bridge 

twice? The people of Konigsberg wrote to the celebrated Swiss 

mathematician L. Euler about this question. Euler proved in 

1736 that such a walk is impossible. He replaced the islands and 

two side of the river by points and the bridges by curves, 

obtaining Fig 12 (b). 

Fig. 12 

Konigsberg graph is a multigraph, A multigraph is said to 

traversable if it can be drawn without any breaks and without  

repeating any edge. That is if there is a walk includes all vertices 

and uses each edge exactly once. Such a walk must be a trail (no 

edge is used twice) and will be called a traversable trail. 

We now show how Euler proved that the konigsberg multigraph 

is not traversable and the walk in it is impossible. Suppose a 

multigraph is traversable and that a traversable trail does not 

begin or end at vertex P. thus the edges in the trail incident with 

P must appear in pairs, and so P is an even vertex. Therefore if a 

vertex Q is odd, the traversable trail must begin or end at Q. 

Consequently, a multigraph with more than two odd vertices 

cannot be traversable. Observe that the multigraph 

corresponding to the Konigsberg bridge problem has four odd 

vertices. Thus one cannot walk through Konigsberg so that each 

bridge is crossed exactly once. 
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Tree graph: 

A graph T is called a tree if T is connected and T has no cycles.  

Consider a tree T . Clearly, there is only one simple path 

between two vertices of T ; otherwise, the two paths would form 

a cycle. Also: 

(a) Suppose there is no edge {u, v} in T and we add the edge  

e = {u, v} to T . Then the simple path from u to v in T and e will 

form a cycle; hence T is no longer a tree. 

(b) suppose there is an edge e = {u, v} in T , and we delete e 

 from T . Then T is no longer connected; hence T is no longer a 

tree. 

Theorem: Let G be a graph with n > 1 vertices. Then the 

following are equivalent: 

(i) G is a tree. 

(ii) G is a cycle-free and has n − 1 edges. 

(iii) G is connected and has n − 1 edges. 

This theorem also tells us that a finite tree T with n vertices must 

have n−1 edges. For example, the tree in Fig. 13(a) has 9 

vertices and 8 edges, and the tree in Fig. 13(b) has 13 vertices 

and 12 edges. 

 
Figure 13 

 

Labeled And weighted graphs: 

  A graph G is called a labeled graph if its edges and/or vertices 

are assigned data. If each edge (e) is assigned a non-negative 
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number L(e). Then L(e) is called the weight or length of e. The 

weight of a path in such a weighted graph G is defined to be the 

sum of the weights of the edges in the path. 

  One important problem in graph theory is to find a shortest 

path, that is, a path of minimum weight (length), between any 

two given vertices. 

Example: find the minimum path between P & Q: 

 
(P, A1, A2, A5, A3, A6, Q) 
Q 

Σ L (e) = 3 + 3 + 3 + 2 + 1 + 2 = 14 
P 

Another minimum path: 

(P, A4, A2, A5, A3, A6, Q) 
Q 

Σ L (e) = 4+ 2 + 3 + 2 + 1 + 2 = 14 
P 

 

Spanning Trees 

A subgraph T of a connected graph G is called a spanning tree 

of G if T is a tree and T includes all the vertices of G. 

 
Minimum Spanning Trees 

Suppose G is a connected weighted graph. That is, each edge of 

G is assigned a nonnegative number called the weight of the 

edge. Then any spanning tree T of G is assigned a total weight 

obtained by adding the weights of the edges in T . A minimal 

spanning tree of G is a spanning tree whose total weight is as 

small as possible. 
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EXAMPLE 5: Find a minimal spanning tree of the weighted 

graph Q, Note that Q has six vertices, so a spanning tree will 

have five edges. 

 
First we order the edges by decreasing weights, and then we 

successively delete edges without disconnecting Q until five 

edges remain. This yields the following data: 

Edges:  BC   AF   AC    BE    CE    BF  AE   DF   BD 

Weight  8      7       7      7       6       5      4      4      3 

Delete   Yes  Yes   Yes  No   No     Yes 

 

Thus the minimal spanning tree of Q which is obtained contains 

the edges: 

BE, CE, AE, DF, BD The spanning tree has weight 24 

 



Dr. Akbas Ezaldeen                        Discrete structure                        Computer Sciences  

 

66 

 

  

First we order the edges by increasing weights, and then we 

successively add edges without forming any cycles until five 

edges are included. This yields the following data: 

 

Edges    BD   AE   DF    BF   CE    AC   AF    BE    BC 

Weight  3       4      4       5      6       7       7       7       8 

Add?     Yes  Yes  Yes   No   Yes   No    Yes 

 

Thus the minimal spanning tree of Q which is obtained contains 

the edges: 

    BD, AE, DF, CE, AF 

Observe that this spanning tree is not the same as the one 

obtained using Algorithm 1 as expected it also has weight 24. 

 
REPRESENTING GRAPHS IN COMPUTER MEMORY: 

There are many useful ways to represent graphs where in 

working with a graph it is helpful to be able to choose its most 

convenient representation.  
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(1)adjacency lists 

EXAMPLE 6 Use adjacency lists to describe the simple graph 

given in Figure 14. 

 

 
Figure 14 

Solution: Table 1 lists those vertices adjacent to each of the 

vertices of the graph. 

 
 

 

 

EXAMPLE 7  
Represent the directed graph shown in Figure 15 by adjacency  

lists  

 
Figure 15 
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Solution: Table 2 represents the directed graph shown in Figure 

15. 

 
 

(2)Adjacency Matrices 
   Carrying out graph algorithms using the representation of 

graphs by adjacency lists, can be cumbersome if there are many 

edges in the graph. To simplify computation, graphs can be 

represented using matrices. Two types of matrices commonly 

used to represent graphs will be presented here. One is based on 

the adjacency of vertices, and the other is based on incidence of 

vertices and edges. 

Suppose that G = (V ,E) is a simple graph where |V| = n. The 

adjacency matrix A of G, is the n x n zero–one matrix with 1 

as its (i, j )th entry when vi and vj are adjacent, and 0 as its (i, j 

)th entry when they are not adjacent.  

     
 

EXAMPLE 8 Use an adjacency matrix to represent the graph 

shown in Figure 16. 

 
Figure 16 

Solution: 

We order the vertices as a, b, c, d. The matrix representing this 

graph is 
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EXAMPLE 9: Draw a graph with the following adjacency 

matrix 

 
Solution: A graph with this adjacency matrix is shown in Figure 

17. 

 
Figure 17 

  The adjacency matrix of a simple graph is symmetric, that is, 

aij = aji , because both of these entries are 1 when vi and vj are 

adjacent, and both are 0 otherwise. Furthermore, because a 

simple graph has no loops, each entry aii, i = 1, 2, 3, . . . , n, is 0. 

   

   Adjacency matrices can also be used to represent undirected 

graphs with loops and with multiple edges. A loop at the vertex 

vi is represented by a 1 at the (i, i)th position of the adjacency 

matrix. When multiple edges connecting the same pair of 

vertices vi and vj, or multiple loops at the same vertex, are 

present, the adjacency matrix is no longer a zero–one matrix, 

because the (i, j )th entry of this matrix equals the number of 

edges that are associated to {vi , vj }.  

 

EXAMPLE 10: Use an adjacency matrix to represent the 

multigraph shown in Figure 18. 
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Figure 18 

Solution: The adjacency matrix using the ordering of vertices a, 

b, c, d is: 

 
 

 The adjacency matrix for a directed graph does not have to be 

symmetric, because there may not be an edge from vj to vi when 

there is an edge from vi to vj . 

 

TRADE-OFFS BETWEEN ADJACENCY LISTS AND 

ADJACENCY MATRICES  

When a simple graph contains relatively few edges, that is, 

when it is sparse, it is usually preferable to use adjacency lists 

rather than an adjacency matrix to represent the graph. 

 

(3) Incidence Matrices 

Another common way to represent graphs is to use incidence 

matrices. Let G = (V ,E) be an undirected graph. Suppose that 

v1, v2, . . . , vn are the vertices and e1, e2, . . . , em are the edges 

of G. Then the incidence matrix with respect to this ordering of 

V and E is the n×m matrix M = [mij ], where: 

      
 

EXAMPLE 11: Represent the graph shown in Figure 19 with 

an incidence matrix. 
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Figure 19 

 

Solution: The incidence matrix is 

 

 
 

EXAMPLE 12:Represent the multigraph shown in the 

following figure using an incidence matrix. 

 
Solution: The incidence matrix for this graph is 

 
 

Rooted tree: 

  Recall that a tree graph is a connected cycle-free graph, that is, 

a connected graph without any cycles. A rooted tree T is a tree 

graph with a designated vertex r called the root of the tree. 

  

Consider a rooted tree T with root r. The length of the path from 

the root r to any vertex v is called the level (or depth) of v, and 

the maximum vertex level is called the depth of the tree.  
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Figure 20 

Those vertices with degree 1, other than the root r, are called the 

leaves of T. 

One usually draws a picture of a rooted tree T with the root at 

the top of the tree.  

Figure 20 shows a rooted tree T with root r and 10 other 

vertices. The tree has five leaves, d,f, h, i, and j . Observe that: 

level(a) = 1, level(f ) = 2, level(j ) = 3. Furthermore, the depth of 

the tree is 3. 

 

EXAMPLE 13:  

Suppose Marc and Erik are playing a tennis tournament such 

that the first person to win two games in a row or who wins a 

total of three games wins the tournament. Find the number of 

ways the tournament can proceed. 

 
Figure 21 

 

The rooted tree in Fig.21 shows the various ways that the 

tournament could proceed. There are 10 leaves which 

correspond to the 10 ways that the tournament can occur: 
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MM, MEMM, MEMEM, MEMEE, MEE, EMM, EMEMM, 

EMEME, EMEE, EE 

Specifically, the path from the root to the leaf describes who 

won which games in the particular tournament. 

 

Order Rooted Tree (ORT):  
  Whenever draw the digraph of a tree, we assume some 

ordering at each level, by arranging children from left to right. 

Where identical to the order obtained by moving down the 

leftmost branch of the tree, then the next branch to the right, 

then the second branch to the right, and so on. 

 
 

Degree of tree: The largest number of children in the vertices of 

the tree 

Binary tree : every vertex has at most 2 children 

 

Algebraic Expressions and Polish Notation 

Any algebraic expression involving binary operations +, -, ×, ÷ 

can be represented by an order rooted tree (ORT). 

Let E be any algebraic expression which uses only binary 

operations, such as: 

                        E = (a − b)/((c × d) + e) 

Then E can be represented by a tree as  
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where the variables in E appear as the external nodes, and the 

operations in E appear as internal nodes. 

The Polish mathematician Lukasiewicz observed that by placing 

the binary operation symbol before its arguments, e.g.: 

       +ab instead of a + b and /cd instead of c/d 

one does not need to use any parentheses. This notation is called 

Polish notation in prefix form. (one can place the symbol after 

its arguments, called Polish notation in postfix form.) Rewriting 

E in prefix form we obtain: 

                        E = / − a b+×c d e 

Observe that this is precisely the order of the vertices in its tree 

which can be obtained by scanning the tree as : 

 
 

The polish notation form of an algebraic expression represents 

the expression unambiguously without the need for parentheses 

1) a + b (infix) 

2) + a b (prefix) 

3) a b + (postfix) 
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Example 14:  

infix polish notation is : a + b 

prefix polish notation : + a b 

 
 

example 15:  

infix polish notation is : a + 2 * b 

prefix polish notation : + a * 2 b 

 
example 16: 

 infix polish notation is : 2 * a + b 

prefix polish notation : + * 2 a b 

 
 

 

example 17:  

infix polish notation is : (2 * x + y).(5 * a – b )^2 

prefix polish notation : * + * 2 x y ^ - * 5 a b 2 
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example 18: 

 infix polish notation is : (a + 2 * b) ( 2 * a + b^2) 

prefix polish notation : * + a * 2 b + * 2 a ^ b 2 
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To evaluate an expression in polish form proceed as follows: 

a) move from left to right until we find a simple string of the  

    form Pxy, where P is the symbol for a binary operations: 

    (+,-,× , / ) and x & y are numbers. 

b) Evaluate xPy and substitute the answer. 

c) Continue this procedure until only one number remains. 

 

Example: 

evaluate the value of the expression (a-b)×(c+(d/e)), if a=6, b=4, 

c=5, d=2 and e=2 

 

Prefix:           * - a b+ c /d e 

To evaluate:  * - 6 4+ 5 /2 2 

 

a) *- 6 4 +5 / 2 2 

b) *2 + 5 / 2 2 

c) * 2 + 5 1 

d) * 2 6 

e) 12 

 

 

Homework: 

Rewrite the following expressions into prefix polish notation 

form, construct their corresponding ORT and evaluate their 

value  

(3*(1-x))/((4+(7-(y+2)))*(7+(x/y))) 

(3-(2+x))+((x-2) –(3+x)) 
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Finite state machines (FSM): 

  We may view a digital computer as a machine which is in a 

certain ―internal state‖ at any given moment.  The computer 

―reads‖ an input symbol, and then ―prints‖ an output symbol and 

changes its ―state‖. The output symbol depends solely upon the 

input symbol and the internal state of the machine, and the 

internal state of the machine depends solely upon the preceding 

state of the machine and the preceding input symbol. 

  A finite state machine FSM (or complete sequential machine) 

M consists of five things: 

(1) A finite set A of input symbols. 

(2) A finite set S of internal states. 

(3) A finite set Z of output symbols. 

(4) An initial state s0 in S. 

(5) A next-state function f                 f: S x A → S 

(6) An output function g                    g: S x A→ Z 

  This machine M is denoted by M = (A, S, Z, q0, f, g) where q0 

is the initial state.  

  

Example 1:  
The following defines a FSM with two input symbols, three 

internal states and three output symbols: 

(1) A = {a, b} 

(2) S = {q0, q1, q2} 

(3) Z = {x, y, z} 

(4)  Next-state function f: S x A→ S    defined by : 

      f(q0, a) = q1               f(q1,a) = q2               

      f(q2,a) = q0                f(q0, b) = q2                 

      f(q1, b) = q1               f(q2, b) = q1 

(5)  Output function g: S x A → Z  defined by  

      g(q0,a) = x                 g(q1,a) = x              

      g(q2,a) = z                 g(q0, b) = y             

      g(q1, b) = z                g(q2, b) = y 

  There are two ways of representing a finite state machine in 

compact form. One way is by a table called the state table of 

machine, and the other way is by a labeled directed graph 

called the state diagram of the machine. 
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                     State diagraph                                  State table 

 

We visualize these symbols on an ―input tape.‖ The machine 

M ―reads‖ these input symbols one by one and, 

simultaneously, changes through a sequence of states. 

If the input string:    abaab  , is given to the machine in 

example (1), and suppose  q0 is the initial state of the 

machine.   

  We calculate the string of states and the string of output 

symbols from the state diagram by beginning at the vertex q0 

and following the arrows which are labeled with the input 

symbols: 

 
This yields the following strings of states and output symbols: 

                State  :      q0  q1 q1 q2 q0 q2 

Output symbols :       x   z   x   z   y 
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Homework: 

Draw the state table for the following FSM and Trace it with 

the input: aaabbb, and abaab. 

 
Example 2: 

Design a FSM which can do binary addition 

we can assume that our numbers have the same number of 

digits. If the machine is given the input: 

   1101011 

+ 0111011 

then we want the output to be the binary sum 10100110. 

Specifically, the input is the string of pairs of digits to be 

added: 

       11, 11, 00, 11, 01, 11, 10, b    (where b denotes blank 

spaces) 

and the output should be the string: 

       0, 1, 1, 0, 0, 1, 0, 1 

We also want the machine to enter a state called ―stop‖ when 

the machine finishes the addition. 

The input symbols and output symbols are, respectively, as 

follows: 

A = {00, 01, 10, 11, b} and Z = {0, 1, b} 

 

The machine M that we ―construct‖ will have three states: 

S = {carry (c), no carry (n), stop (s)} 

Here n is the initial state. 
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FINITE AUTOMATA 

  A finite automaton is similar to a finite state machine except 

that an automation has ―accepting‖ and rejecting‖ states rather 

than an output. Specifically, a finite automaton M consists of 

five things: 

(1) A finite set A of input symbols 

(2) A finite set S of internal states 

(3) A subset T of S (whose elements called accepting states) 

(4) An initial state q0 in S 

(5) A next-state function f from S  A ino S.  

 

The automaton M is denoted by M = (A, S, T, q0, f) when we 

want to designate its five parts   

  We can concisely describe a finite automaton M by its state 

diagram as was done with finite state machines, except that here 

we use double circles for accepting states and each edge is 

labeled only by the input symbol. Specifically, the state diagram 

D of M is a labeled directed graph whose vertices are the states 

of S where accepting states are labeled by having a double 

circle, and  if f(qj, ai)  = qk then there is an arc from qj to qk 

which is labeled with ai. Also the initial state q0 is denoted by 

having an arrow entering the vertex q0.  
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  We say that M recognizes or accepts the string W if the final 

state sn is an accepting state, i. e. if sn T. We will let L(M)  

denote the set of all strings which are recognized by M. 

Example 1 

    The following defines a finite automaton with two input 

symbols and three states: 

(1) A = {a,b}, input symbols 

(2) S = {q0, q1, q2}, states 

(3) T = {q0, q1}, accepting states 

(4) q0, the initial state. 

(5) Next-state function f : S  A → S defined by:  

 f(q0,a) = q0,             f(q1,a)=q0,             f(q2,a)=q2 

 f(q0,b)=q1,               f(q1,b)=q2,            f(q2,b)=q2 

 or by the table: 

 
 

The automaton M will recognize those strings which do not 

have two successive b’s.   Thus M will accept: 

                        aababaaba, aaa, baab, abaaababab, b, aabaaab 

  But will reject : 

                        aabaabba, bbaaa, ababbaab, bb, abbbbaa 

 
Fig. 1 

Language L(M) Determined by an Automaton M 
Each automaton M with input alphabet A defines a language 

over A, denoted by L(M). We say that M recognizes the word w 

if the final state sm is an accepting state in Y . The language L(M) 
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of M is the collection of all words from A which are accepted by 

M. 

 

EXAMPLE2   

Determine whether or not the automaton M in Fig. 1 accepts the 

words: 

    w1 = ababba;                w2 = baab;               w3 =  (empty 

word) 

Use Fig. 1 and the words w1 and w2 to obtain the following 

respective paths: 

               a           b            a            b             b           a 

P1 = s0 → s0 → s1 → s0 → s1→ s2 → s2
  

                       b          a            a            b          

P2 = s0 →s1 → s0 → s0 → s1 

The final state in P1 is s2 which is not in Y ; hence w1 is not 

accepted by M. On the other hand, the final state in P2 is s1 

which is in Y ; hence w2 is accepted by M. The final state 

determined by w3 is the initial state s0 since w3 =  is the empty 

word. Thus w3 is accepted by M since s0 ∈ Y . 

 

EXAMPLE 3 

Describe the language L(M) of the automaton M in Fig. 1. 

L(M) will consist of all words w on A which do not have two 

successive b’s. This comes from the following facts: 

(1) We can enter the state q2 if and only if there are two 

successive b’s. 

(2) We can never leave q2. 

(3) The state q2 is the only rejecting (nonaccepting) state. 
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EXAMPLE4  

Construct an automaton M with input symbols a and b, which 

only accept those string such that the number of b's is divisible 

by 3. 

A= {a, b} 

S= {q0, q1, q2} 

T= {q0}  

 

Accepted symbols: ababaab, baabab, bbabbbba, aa, aabbaab 

 

Rejected symbols: ab, ababbb 

 

 
 a b 

q0 q0 q1 

q q1 q2 

q2 q2 q0 

 

 

 

Some Examples of  FSM 

  We study examples of finite state machines that are designed to 

recognize given patterns. 

As there is essentially no standard way of constructing such 

machines, we shall illustrate the underlying ideas by examples. 

 

Example 1:  
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Suppose that A (input) = Z (output) = {0, 1}, and that we want to 

design a finite state machine that recognizes the sequence 

pattern 11 in the input string x ∈ A∗. An example of an input 

string x ∈ A∗ and its corresponding output string y ∈ Z∗ is 

shown below: 

                       x = 10111010101111110101 

                       y = 00011000000111110000 

 

Note that the output digit is 0 when the sequence pattern 11 is 

not detected and 1 when the sequence pattern 11 is detected. In 

order to achieve this, we must ensure that the finite state 

machine has at least two states, a ―passive‖ state when the 

previous entry is 0 (or when no entry has yet been made), and an 

―excited‖ state when the previous entry is 1. Furthermore, the 

finite state machine has to observe the following and take the 

corresponding actions: 

(1) If it is in its ―passive‖ state and the next entry is 0, it gives an 

output 0 and remains in its ―passive‖ state. 

(2) If it is in its ―passive‖ state and the next entry is 1, it gives an 

output 0 and switches to its ―excited‖ state. 

(3) If it is in its ―excited‖ state and the next entry is 0, it gives an 

output 0 and switches to its ―passive‖ state. 

(4) If it is in its ―excited‖ state and the next entry is 1, it gives an 

output 1 and remains in its ―excited‖ state. 

It follows that if we denote by s1 the ―passive‖ state and by s2 

the ‖excited‖ state, then we have the state diagram below: 

 

 
We then have the corresponding transition table: 
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Example 2:   
Suppose again that  A (input) = Z (output) = {0, 1}, and that we 

want to design a finite state machine that recognizes the 

sequence pattern 111 in the input string x ∈A∗. An example of 

the same input string x ∈ A∗ and its corresponding output string 

y ∈ Z∗ is shown below: 

                              x = 10111010101111110101 

                              y = 00001000000011110000 

In order to achieve this, the finite state machine must now have 

at least three states, a ―passive‖ state when the previous entry is 

0 (or when no entry has yet been made), an ―expectant‖ state 

when the previous two entries are 01 (or when only one entry 

has so far been made and it is 1), and an ―excited‖ state when 

the previous two entries are 11. Furthermore, the finite state 

machine has to observe the following and take the 

corresponding actions: 

(1) If it is in its ―passive‖ state and the next entry is 0, it gives 

an output 0 and remains in its ―passive‖ state. 

(2) If it is in its ―passive‖ state and the next entry is 1, it gives 

an output 0 and switches to its ―expectant‖ state. 

(3) If it is in its ―expectant‖ state and the next entry is 0, it 

gives an output 0 and switches to its ―passive‖ state. 

(4) If it is in its ―expectant‖ state and the next entry is 1, it 

gives an output 0 and switches to its ―excited‖ state. 

(5) If it is in its ―excited‖ state and the next entry is 0, it gives 

an output 0 and switches to its ―passive‖ state. 

(6) If it is in its ―excited‖ state and the next entry is 1, it gives 

an output 1 and remains in its ―excited‖ state. 
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If we now denote by s1 the ―passive‖ state, by s2 the 

―expectant‖ state and by s3 the ―excited‖ state, then we have the 

state diagram below: 

 
We then have the corresponding transition table: 

 
 

 

 An Optimistic Approach 

  We construct first of all the part of the machine to take care of 

the situation when the required pattern occurs repeatly and 

without interruption. We then complete the machine by studying 

the situation when the ―wrong‖ input is made at each state. 

. 

Example 1:   

Suppose that A (input) = Z (output)  = {0, 1}, and that we want 

to design a finite state machine that recognizes the sequence 

pattern 11 in the input string x ∈ A∗. Consider first of all the 

situation when the required pattern occurs repeatly and without 

interruption. In other words, consider the situation when the 

input string is 111111 . . . . To describe this situation, we have 

the following incomplete state diagram: 
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It now remains to study the situation when we have the ―wrong‖ 

input at each state. Naturally, with a ―wrong‖ input, the output is 

always 0, so the only unresolved question is to determine the 

next state. 

Note that whenever we get an input 0, the process starts all over 

again; in other words, we must return to state s1.. We therefore 

obtain the state diagram as in Example 1. 

 

Example 2:   

Suppose again that A (input) = Z (output) = {0, 1}, and that we 

want to design a finite state machine that recognizes the 

sequence pattern 111 in the input string x ∈ A∗. Consider first 

of all the situation when the required pattern occurs repeatly and 

without interruption. In other words, consider the situation when 

the input string is 111111 . . . . To describe this situation, we 

have the following incomplete state diagram: 

 
It now remains to study the situation when we have the ―wrong‖ 

input at each state. As before, with a ―wrong‖ input, the output 

is always 0, so the only unresolved question is to determine the 

next state. 

Note that whenever we get an input 0, the process starts all over 

again; in other words, we must return to state s1. We therefore 

obtain the state diagram as Example 2. 
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Deterministic Finite State Automata 

we discuss a slightly different version of finite state machines 

which is closely related to regular languages. We begin by an 

example which helps to illustrate the changes. 

 

Example.1. We shall construct a deterministic finite state 

automaton which will recognize the input strings 101 and 

nothing else. This automaton can be described by the following 

state diagram: 

 

 

 
We can also describe the same information in the following 

transition table: 

 

 
We now modify our definition of a finite state machine 

accordingly. 

Definition. A deterministic finite state automaton is a 5-tuple A 

= (S, I, ν, T , s1), where 

(a) S is the finite set of states for A; 

(b) I is the finite input alphabet for A; 

(c) ν : S ×I →S is the next-state function; 

(d) T is a non-empty subset of S; and 

(e) s1 ∈ S is the starting state. 

 

Remarks. 

(1) The states in T are usually called the accepting states. 

(2) If not indicated otherwise, we shall always take state s1 as 

the starting state. 
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Example.2. We shall construct a deterministic finite state 

automaton which will recognize the input strings 101 and 

100(01)∗ and nothing else. This automaton can be described by 

the following state diagram: 

 

 
 

We can also describe the same information in the following 

transition table: 

 

 
 

 

 

 


