

هياكل بيانات: المادة

علاء عبدالحسين هاشم. م : مدرس المادة

2025-2024

Lecture 1 Data Structure

1. Introduction to Data Structures

What is Data Structure?

Whenever we want to work with large amount of data, then organizing that

data is very important. If that data is not organized effectively, it is very

difficult to perform any task on that data. If it is organized effectively then

any operation can be performed easily on that data.

A data structure can be defined as follows:

Data structure is a method of organizing large amount of data more

efficiently so that any operation on that data becomes easy.

NOTE

☀ Every data structure is used to organize the large amount of data

☀ Every data structure follows a particular principle

☀ The operations in a data structure should not violate the basic principle

of that data structure.

Based on the organizing method of a data structure, data structures are

divided into two types.

1. Linear Data Structures

2. Non - Linear Data Structures

1. Linear Data Structures

If a data structure is organizing the data in sequential order, then that data

structure is called as Linear Data Structure.

Example

1. Arrays

2. Stack

3. Queue

4. List (Linked List)

Lecture 1 Data Structure

2. Non - Linear Data Structures

If a data structure is organizing the data in random order, then that data

structure is called as Non-Linear Data Structure.

Example

1. Tree

2. Graph

3. Heaps, Etc.

2. STACK
2.1 what is the stack?

Stack: is a linear list of homogeneous elements in which all the insertions and

deletions are at one end called top for this reason stack is referred to as

Last- In- First-Out (LIFO) lists. Given a stack S=(10,20,30,40,50,60), we say

that 10 is a bottom element and the 60 is on top of the elements .

Example

2.2 Stack Representation using array

The simplest method to represent a stack is to use an array, one end of the

array is the fixed bottom of the stack while other is the top of the stack.

during the execution of the program we should keep tracks of the current

position of the top of the stack.

Datatype stackName [size];

int top=-1;

Lecture 1 Data Structure

2.3 Stack’s operations:

1. Stack Full: this operation is to check whether the stack is full or not, and it

depends on the value of the top, this should be checked before the push

operation.

if top == size -1

then stackfull

2. Stack Empty: this operation is to check whether the stack is empty or not,

and it depends on the value of the top, this should be checked before the

pop operation.

if top == -1 then stackempty

3. Push: It means insert new element to the stack, and before the insertion

we should do the following:

 Check whether stack is FULL. (top == size-1)

 If it is FULL, then display "Stack is FULL!!! Insertion is not

possible!!!" and terminate the function.

 If it is NOT FULL, then increment top value by one (top++) and set

stack[top] to value (stack[top] = value).

4. Pop: It means delete element from the stack, and the element is always

deleted from top position. before the deletion we should do the following:

 Check whether stack is EMPTY. (top == -1)

 If it is EMPTY, then display "Stack is EMPTY!!! Deletion is not

possible!!!" and terminate the function.

 If it is NOT EMPTY, then delete stack[top] and decrement top

value by one (top--).

Lecture 1 Data Structure

2.4 Stack’s algorithms:

1. Push(value) algorithm
void pushSt (stack[size], int &top)

{ int value;

if (top==(size-1) cout << "stack is full, insertion is not possible";

else

{
cin>>value;
++top;
stack[top]=value;

}
}

2. POP(value) algorithm
void popSt (int stack[size], int &top)

{ int value;

if (top == -1) cout<<"stack is empty, deletion is not possible ";

else

{

value= stack[top];

--top;

}

}

3. Print Stack algorithm

Display the contents of the stack.

void printSt (int stack[size], int top)

{

int i;

for(i=top;i>=0;--i)

cout<<st[i]<<endl<<endl;

}

Lecture 3 Data Structure

3. QUEUE
3.1 what is the Queue?

Queue is a linear data structure in which the insertion and deletion

operations are performed at two different ends. The Insertion is performed

at one end and deletion is performed at another end. The insertion operation

is performed at a position which is known as 'rear' and the deletion operation

is performed at a position which is known as 'front'. In queue data structure,

the insertion and deletion operations are performed based on

FIFO (First- In- First- Out) principle.

Queue data structure can be defined as follows...

Queue is a linear data structure in which the operations are performed based

on FIFO principle.

Example

Queue after inserting 20, 33, 54, 65 and 90.

3.2 Queue Representation using array

The Queue can be represented using one-dimension array, the two integer

variables 'front' and 'rear' must be initialized both with '-1', as below:

Datatype QueueName [size];

int front=-1, rear=-1;

3.3 Queue’s operations:

1. Inserting value into the Queue

It means inserting a new element into the queue. The new element is always

inserted at rear position.

The following steps should be checked before insert an element into the

queue.

Lecture 3 Data Structure

1. Check whether queue is FULL. (rear == SIZE-1)

2 - If it is FULL, then display "Queue is FULL!!! Insertion is not possible " and

terminate.

3 - If it is NOT FULL, then increment rear value by one (rear++) and set

queue[rear] = value.

2. Deleting value from the Queue

It means deleting an element from the queue. The element is always deleted

at front position. The following steps should be checked before delete an

element from the queue.

1. Check whether queue is EMPTY. (front == rear)

2. If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not possible"

and terminate.

3. If it is NOT EMPTY, then increment the front value by one (front ++). Then

display queue[front] as deleted element. Then check whether both front and

rear are equal (front == rear), if it TRUE, then set both front and rear to '-1'

(front = rear = -1).

2.3 Queue’s algorithms:

1.Insertion(value) to queue algorithm
void insertQ(int q[size], int &f, int &r)

{

int value;

If (r==size -1) cout<<" Queue is full !! Insertion is not possible \n";

else

{

cin>>value;

++r;

q[r]=value;

}

If (f == -1)

f=0;

}

Lecture 3 Data Structure

2. Deleting (value) from the Queue algorithm

void deletQ(int q[size], int &f, int &r)

{

int value;

if (f == -1) cout<<"under flow !! Queue is empty deletion is not possible \n";

else

if (f == r)

{

value=q[f];

f=-1

r=-1;

}

else

{

value=q[f];

++f;

}

}

3. Prints() the elements of a Queue

void printq (int q[6], int f, int r)

{

int i;

if (r==-1) cout<< "Queue is empty nothing to print!!" ;

else

for(i=f; i<=r; i++)

cout <<q[i]<<" ";

}

Lecture 4 Data Structure

4. Circular Queue

4.1 What is Circular Queue

In a normal Queue Data Structure, we can insert elements until queue

becomes full. But once if queue becomes full, we cannot insert the next

element until all the elements are deleted from the queue.

For example consider the queue below:

After inserting all the elements into the queue, Queue is full.

Now consider the following situation after deleting four elements from the

queue, the queue is full even four elements are deleted.

This situation also says that Queue is Full and we can not insert the new

element because, 'rear' is still at last position. In above situation, even

though we have empty positions in the queue we can not make use of them

to insert new element. This is the major problem in normal queue data

structure. To overcome this problem, we use circular queue data structure.

A Circular Queue can be defined as follows...

Circular Queue is a linear data structure in which the operations are

performed based on FIFO (First -In-First- Out) principle and the last position

is connected back to the first position to make a circle.

Graphical representation of a circular queue is as follows...

4.2 Implementation of Circular Queue

circular queue data structure is implementing by using one-dimension array,

and define two integer variables 'front' and 'rear' and initialize both with '-1'

as below:

Datatype QueueName [size];

(int front = -1, rear = -1)

Lecture 4 Data Structure

4.2 CQueue’s operations:

4.2.1. Inserting value into the CQueue

It means inserting a new element into the cqueue. The new element is always

inserted at rear position. The following steps should be checked before insert

an element into the cqueue.

1. Check whether cqueue is FULL. ((rear == SIZE-1 && front == 0) || (front

== rear+1)).

2. If it is FULL, then print "Queue is FULL!!! Insertion is not possible!!!" and

terminate.

3. If it is NOT FULL, then check if there is an empty place at the front of the

cqueue (rear == SIZE - 1 && front > 0) if it is TRUE, then set rear = 0, set

CQueue[rear] = value. (this is rotation state during the insertion).

4. Otherwise increment rear value by one (rear++), set CQueue[rear] = value

5. Check if 'front == -1' if it is TRUE, then set front = 0.

4.2.2 Insertion(value) to CQueue algorithm

void insertCQ (int CQ[size], int &F, int &R)

{ int value;

if((R==size -1 && F==0 || F== R+1) cout<<"Queue is FULL!!! Insertion is not possible";

else if (R== size -1 && F>0)

{

cin>>value;

R=0;

CQ[R]=value;

}

else

{ cin>>value;

R++;

CQ[R]= value;

}

if(F==-1)

F=0;

}

Lecture 4 Data Structure

4.2.3 Deleting value from the CQueue

It means deleting an element from the cqueue. The element is always

deleted at front position. The following steps should be checked before

delete an element from the cqueue.

1. Check whether queue is EMPTY. (front == -1 && rear == -1)

2. If it is EMPTY, then display "CQueue is EMPTY!!! Deletion is not possible"

and terminate.

3. If it is NOT EMPTY, then check whether both front and rear are equal (front

== rear), if it TRUE, this means there is only one element in the queue so

delete the element and set both front and rear to '-1' (front = rear = -1).

4. check if the (front=size -1) then delete the element and set the front=0

(this is rotation state during the deletion).

4.2.4 Deletion(value) from CQueue algorithm

void del(int CQ[6],int &F,int &R)

{ int value ;

if(F==-1) cout<<" CQueue is EMPTY!!! Deletion is not possible ";

else if (F==R)

{ value =CQ[F];

R=F=-1;

}

else if (F==size-1 && F>R)

{

}

else

{

value =CQ[F];

F=0;

value =CQ[F];

F++;
 }
}

Lecture 4 Data Structure

4.2.5 Print () - prints the elements of a Circular Queue

void printCQ (int CQ[size] , int F , int R)

{ int i;

if(R>=F)

{

}

else

{

}

}

for(i=F;i<=R;i++)

cout<<CQ[i]<<" ";

cout<<'\n';

for(i=F;i<=5;i++)

cout<<CQ[i]<<" ";

for(i=0;i<=R;i++)

cout<<CQ[i]<<" ";

cout<<'\n';

Lecture 5 Data Structure

5. Single Linked List

5.1 What is Linked List?

When we want to work with an unknown number of data values, we use a

linked list data structure to organize that data. The linked list is a linear data

structure that contains a sequence of elements such that each element links

to its next element in the sequence. Each element in a linked list is called

"Node".

What is Single Linked List?

Single linked list is a sequence of elements in which every element has link

to its next element in the sequence.

In any single linked list, the individual element is called as "Node". Every

"Node" contains two fields, data field, and the link field. The data field is

used to store actual value of the node and link field is used to store the

address of next node in the sequence.

The graphical representation of a node in a single linked list is as

follows...

Important Note:

 In a single linked list, the address of the first node is always stored in a

reference node known as "head”. (we always refer to it as “plist”)

 Always next field (link part) of the last node must be NULL.

Lecture 5 Data Structure

Example

5.2 Declaration of linked list

Here a declaration example of linked list:

declare the null value as below at the header of the program

#define null 0;

struct node

{

int info;

struct node * next;

}; typedef struct node* nodeptr;

5.3 Operations on Single Linked List

The following operations are performed on a Single Linked List:

 Creation

 Insertion

 Deletion

 Display

5.3.1 Create new linked list

Before we implement any operations, first we should create the first node in

the list, as in the below:
void creatlist(nodeptr plist)

{ nodeptr p,q;

p=new node;

cin>>p->info;

p->next=null;

plist=p;

}

Lecture 5 Data Structure

5.3.2 Insertion

In a single linked list, the insertion operation can be performed in three ways.

as follows:

 Inserting at Beginning of the list

 Inserting at End of the list

 Inserting at Specific location in the list

1. Inserting at Beginning of the list

void insertBegin(nodeptr plist)

{

nodeptr p;

p=new node;

cin>>p->info;

p->next=plist;

plist =p;

}

2. Inserting at End of the list

void insertend(nodeptr plist)

{

nodeptr p,q;

q=plist;

while (q->next!= 0)

q=q->next;

p=new node;

cin>>p->info;

p->next=null;

q->next=p;

}

Lecture 5 Data Structure

3. Inserting at Specific location in the list (Between two nodes)

void insertBetwen(nodeptr plist)

{

nodeptr p,a,b;

int i,L;

cout<<"enter the number of location=";

cin>>L;

p=new node;

cin>>p->info;

a=plist;

for (i=2; i<L; i++)

a=a->next;

b=a->next;

a->next=p;

p->next=b;

}

5.3.3 Deletion

In single linked list, the deletion operation can be performed in three ways,

as follows:

 Deleting from Beginning of the list

 Deleting from End of the list

 Deleting a Specific Node

1. Deleting from Beginning of the list

void deletBegin(nodeptr plist)

{

nodeptr p;

p=plist;

plist=plist->next;

free(p);

}

Lecture 5 Data Structure

2. Deleting from End of the list

void deletEnd(nodeptr plist)

{

nodeptr q,p;

p=plist;

q=plist;

while (p->next != null)

{ q=p;

p=p->next;

}

free(p);

q->next=null;

}

3. Deleting a Specific Node from the list

void deletBetwen (nodeptr plist)

{

nodeptr p,b,a;

int L,i;

cout<<"enter the number of location= ";

cin>>L;

b=plist;

for(i=2;i<L;i++)

b=b->next;

p=b->next;

a=p->next;

free(p);

b->next=a;

}

Lecture 5 Data Structure

5.3.4 Displaying a Single Linked List

void DisplayList(nodeptr plist)

{ nodeptr q;

If (plist == null)

{

cout<<("\n List is Empty \n");

}

else
q=plist;

while(q->next != 0)

{

cout<<q->info<<" " ;

q=q->next;

}

cout<<q->info<<" ";

cout<<'\n';

}

